Tryptamine (BioDeep_00000000123)
Secondary id: BioDeep_00000399993, BioDeep_00000412404
natural product human metabolite PANOMIX_OTCML-2023 blood metabolite BioNovoGene_Lab2019
代谢物信息卡片
化学式: C10H12N2 (160.1)
中文名称: 色胺
谱图信息:
最多检出来源 Homo sapiens(blood) 15.78%
Last reviewed on 2024-06-29.
Cite this Page
Tryptamine. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China.
https://query.biodeep.cn/s/tryptamine (retrieved
2024-12-22) (BioDeep RN: BioDeep_00000000123). Licensed
under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
分子结构信息
SMILES: C1=CC=C2C(=C1)C(=CN2)CCN
InChI: InChI=1/C10H12N2/c11-6-5-8-7-12-10-4-2-1-3-9(8)10/h1-4,7,12H,5-6,11H2
描述信息
Tryptamine, also known as TrpN, is a catabolite of tryptophan converted by the gut microbiota. After absorption through the intestinal epithelium, tryptophan catabolites enter the bloodstream and are later excreted in the urine. Both Clostridium sp. and Ruminococcus sp. have been found to convert tryptophan into tryptamine (PMID: 30120222). Tryptamine is a monoamine compound that is a common precursor molecule to many hormones and neurotransmitters. Biosynthesis generally proceeds from the amino acid tryptophan, with tryptamine acting as a precursor for other compounds. Substitutions to the tryptamine molecule give rise to a group of compounds collectively known as tryptamines. The most well-known tryptamines are serotonin, an important neurotransmitter, and melatonin, a hormone involved in regulating the sleep-wake cycle. Tryptamine has been detected, but not quantified in, several different foods, such as onion-family vegetables, acerola, Japanese walnuts, custard apples, and green zucchinis. This could make tryptamine a potential biomarker for the consumption of these foods.
Tryptamine is an aminoalkylindole consisting of indole having a 2-aminoethyl group at the 3-position. It has a role as a human metabolite, a plant metabolite and a mouse metabolite. It is an aminoalkylindole, an indole alkaloid, an aralkylamino compound and a member of tryptamines. It is a conjugate base of a tryptaminium.
Tryptamine is a natural product found in Mus musculus, Prosopis glandulosa, and other organisms with data available.
Occurs widely in plants, especies Lens esculenta (lentil) and the fungi Coprinus micaceus (glistening ink cap)
An aminoalkylindole consisting of indole having a 2-aminoethyl group at the 3-position.
KEIO_ID T031
同义名列表
63 个代谢物同义名
InChI=1/C10H12N2/c11-6-5-8-7-12-10-4-2-1-3-9(8)10/h1-4,7,12H,5-6,11H; 5-22-10-00045 (Beilstein Handbook Reference); (Amino-2 ethyl)-3 indole;3-Indoleethylamine; Tryptamine, Vetec(TM) reagent grade, 98\\%; 5E7B376B-5933-446C-9D88-661B5F480122; (Amino-2 ethyl)-3 indole [French]; Tryptamine, analytical standard; 2-(1H-Indol-3-Yl)Ethan-1-Amine; 2-(1H-indol-3-yl)-ethyl-amine; 2-(1H-Indol-3-yl)ethanamine #; 2-(1h-indol-3-yl) ethylamine; 2-(1H-INDOL-3-YL)-ETHYLAMINE; .beta.-(3-Indolyl)ethylamine; tryptamine monohydrochloride; 2-(1H-indol-3-yl)ethylamine; 2-(1H-Indol-3-yl)ethanamine; 3-(2-Aminoethyl)-1H-indole; beta-(3-Indolyl)ethylamine; 3-(beta-aminoethyl)-indole; Indole, 3-(2-aminoethyl)-; (Amino-2 ethyl)-3 indole; 2-(Indol-3-yl)ethylamine; 2-Indol-3-yl-aethylamin; 2-indol-3-yl-ethylamine; 3-(2-amino)ethyl indole; 2-(3-Indolyl)ethylamine; Β-(3-indolyl)ethylamine; 1H-Indole-3-ethanamine; 2-Indol-3-ylethylamine; 3-(2-aminoethyl)indole; 3-[2-Aminoethyl]indole; Tryptamine, free base; (3-Indolyl)ethylamine; 3-indolylethylamine; 3-Indoleethylamine; tryptamine sulfate; 3-Indoleethanamine; Indol-3-ethylamine; Spectrum5_001296; Spectrum2_000873; Tryptamine, 98\\%; Spectrum3_001890; Spectrum4_000850; TRYPTAMINE [MI]; Oprea1_870097; Lopac0_000061; DivK1c_000862; KBio2_000393; KBio2_002961; KBio1_000862; KBio3_002903; KBio2_005529; IDI1_000862; triptamine; Tryptamine; Tryptamin; TRPN; TSH; beta-3-Indolylethylamine hydrochloride; 3-(2-Aminoethyl)indole Hydrochloride; Tryptamine; Tryptamine; Tryptamine
数据库引用编号
35 个数据库交叉引用编号
- ChEBI: CHEBI:16765
- KEGG: C00398
- PubChem: 1150
- HMDB: HMDB0000303
- Metlin: METLIN325
- DrugBank: DB08653
- ChEMBL: CHEMBL6640
- Wikipedia: Tryptamine
- MeSH: tryptamine
- ChemIDplus: 0000061541
- MetaCyc: TRYPTAMINE
- KNApSAcK: C00001434
- foodb: FDB000917
- chemspider: 1118
- CAS: 61-54-1
- MoNA: KO004145
- MoNA: KO004143
- MoNA: PS006902
- MoNA: PS006901
- MoNA: KO004142
- MoNA: KO004144
- MoNA: KO004146
- MoNA: PS006904
- MoNA: PS006903
- PMhub: MS000000981
- MetaboLights: MTBLC16765
- PDB-CCD: TSS
- 3DMET: B00104
- NIKKAJI: J4.816J
- RefMet: Tryptamine
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-403
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-881
- PubChem: 3688
- KNApSAcK: 16765
- LOTUS: LTS0181180
分类词条
相关代谢途径
Reactome(0)
PlantCyc(0)
代谢反应
473 个相关的代谢反应过程信息。
Reactome(0)
WikiPathways(0)
Plant Reactome(464)
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Serotonin biosynthesis:
H+ + NAD(P)H + Oxygen + tryptamine ⟶ 5HT + NAD(P)+ + dihydrogen
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Serotonin biosynthesis:
H+ + NAD(P)H + Oxygen + tryptamine ⟶ 5HT + NAD(P)+ + dihydrogen
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Serotonin biosynthesis:
H+ + NAD(P)H + Oxygen + tryptamine ⟶ 5HT + NAD(P)+ + dihydrogen
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Serotonin biosynthesis:
H+ + NAD(P)H + Oxygen + tryptamine ⟶ 5HT + NAD(P)+ + dihydrogen
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Serotonin biosynthesis:
H+ + NAD(P)H + Oxygen + tryptamine ⟶ 5HT + NAD(P)+ + dihydrogen
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Serotonin biosynthesis:
H+ + NAD(P)H + Oxygen + tryptamine ⟶ 5HT + NAD(P)+ + dihydrogen
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Serotonin biosynthesis:
H+ + NAD(P)H + Oxygen + tryptamine ⟶ 5HT + NAD(P)+ + dihydrogen
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Serotonin biosynthesis:
H+ + NAD(P)H + Oxygen + tryptamine ⟶ 5HT + NAD(P)+ + dihydrogen
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Serotonin biosynthesis:
H+ + NAD(P)H + Oxygen + tryptamine ⟶ 5HT + NAD(P)+ + dihydrogen
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Serotonin biosynthesis:
H+ + NAD(P)H + Oxygen + tryptamine ⟶ 5HT + NAD(P)+ + dihydrogen
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Serotonin biosynthesis:
H+ + NAD(P)H + Oxygen + tryptamine ⟶ 5HT + NAD(P)+ + dihydrogen
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Serotonin biosynthesis:
H+ + NAD(P)H + Oxygen + tryptamine ⟶ 5HT + NAD(P)+ + dihydrogen
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Serotonin biosynthesis:
H+ + NAD(P)H + Oxygen + tryptamine ⟶ 5HT + NAD(P)+ + dihydrogen
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Serotonin biosynthesis:
H+ + NAD(P)H + Oxygen + tryptamine ⟶ 5HT + NAD(P)+ + dihydrogen
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Serotonin biosynthesis:
H+ + NAD(P)H + Oxygen + tryptamine ⟶ 5HT + NAD(P)+ + dihydrogen
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Serotonin biosynthesis:
H+ + NAD(P)H + Oxygen + tryptamine ⟶ 5HT + NAD(P)+ + dihydrogen
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Serotonin biosynthesis:
H+ + NAD(P)H + Oxygen + tryptamine ⟶ 5HT + NAD(P)+ + dihydrogen
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Serotonin biosynthesis:
H+ + NAD(P)H + Oxygen + tryptamine ⟶ 5HT + NAD(P)+ + dihydrogen
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Serotonin biosynthesis:
H+ + NAD(P)H + Oxygen + tryptamine ⟶ 5HT + NAD(P)+ + dihydrogen
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Serotonin biosynthesis:
H+ + NAD(P)H + Oxygen + tryptamine ⟶ 5HT + NAD(P)+ + dihydrogen
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Serotonin biosynthesis:
H+ + NAD(P)H + Oxygen + tryptamine ⟶ 5HT + NAD(P)+ + dihydrogen
- Metabolism and regulation:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Secondary metabolism:
GPP + H2O ⟶ PPi + geraniol
- Serotonin biosynthesis:
H+ + NAD(P)H + Oxygen + tryptamine ⟶ 5HT + NAD(P)+ + dihydrogen
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Serotonin biosynthesis:
H+ + NAD(P)H + Oxygen + tryptamine ⟶ 5HT + NAD(P)+ + dihydrogen
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Hormone signaling, transport, and metabolism:
3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-octanoate + Oxygen ⟶ CH3COO- + jasmonic acid
- IAA biosynthesis I:
CH3COO- + indole ⟶ IAA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + indole-3-acetonitrile ⟶ IAA + ammonia
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Serotonin biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Serotonin biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
H2O + indole-3-acetyl-ala ⟶ IAA + L-Ala
- IAA biosynthesis I:
indole-3-pyruvate ⟶ carbon dioxide + indole acetaldehyde
- Secondary metabolism:
DMAPP + genistein ⟶ PPi + lupiwighteone
- Serotonin biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Serotonin biosynthesis:
5HT + caffeoyl-CoA ⟶ CoA-SH + H+ + caffeoylserotonin
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Serotonin biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Serotonin biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Serotonin biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Serotonin biosynthesis:
5HT + caffeoyl-CoA ⟶ CoA-SH + H+ + caffeoylserotonin
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Serotonin biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Serotonin biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Serotonin biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + indole-3-acetonitrile ⟶ IAA + ammonia
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Serotonin biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + indole-3-acetonitrile ⟶ IAA + ammonia
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Serotonin biosynthesis:
5HT + caffeoyl-CoA ⟶ CoA-SH + H+ + caffeoylserotonin
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Serotonin biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Serotonin biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Serotonin biosynthesis:
5HT + caffeoyl-CoA ⟶ CoA-SH + H+ + caffeoylserotonin
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Serotonin biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Serotonin biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + indole-3-acetonitrile ⟶ IAA + ammonia
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Serotonin biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Serotonin biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Serotonin biosynthesis:
5HT + caffeoyl-CoA ⟶ CoA-SH + H+ + caffeoylserotonin
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Serotonin biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Serotonin biosynthesis:
5HT + caffeoyl-CoA ⟶ CoA-SH + H+ + caffeoylserotonin
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Serotonin biosynthesis:
5HT + caffeoyl-CoA ⟶ CoA-SH + H+ + caffeoylserotonin
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Secologanin and strictosidine biosynthesis:
secologanin + tryptamine ⟶ H2O + strictosidine
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Serotonin biosynthesis:
5HT + caffeoyl-CoA ⟶ CoA-SH + H+ + caffeoylserotonin
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Serotonin biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Serotonin biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Serotonin biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
secologanin + tryptamine ⟶ H2O + strictosidine
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Serotonin biosynthesis:
5HT + caffeoyl-CoA ⟶ CoA-SH + H+ + caffeoylserotonin
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Serotonin biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Serotonin biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Serotonin biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Serotonin biosynthesis:
5HT + caffeoyl-CoA ⟶ CoA-SH + H+ + caffeoylserotonin
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Serotonin biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Serotonin biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Serotonin biosynthesis:
5HT + caffeoyl-CoA ⟶ CoA-SH + H+ + caffeoylserotonin
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Secondary metabolism:
L-Phe ⟶ ammonia + trans-cinnamate
- Serotonin biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Serotonin biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Serotonin biosynthesis:
5HT + caffeoyl-CoA ⟶ CoA-SH + H+ + caffeoylserotonin
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Serotonin biosynthesis:
5HT + caffeoyl-CoA ⟶ CoA-SH + H+ + caffeoylserotonin
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + indole-3-acetonitrile ⟶ IAA + ammonia
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Serotonin biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + indole-3-acetonitrile ⟶ IAA + ammonia
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Serotonin biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Serotonin biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + indole-3-acetonitrile ⟶ IAA + ammonia
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Serotonin biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + indole-3-acetonitrile ⟶ IAA + ammonia
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Serotonin biosynthesis:
5HT + caffeoyl-CoA ⟶ CoA-SH + H+ + caffeoylserotonin
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + indole-3-acetonitrile ⟶ IAA + ammonia
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Secologanin and strictosidine biosynthesis:
GPP + H2O ⟶ PPi + geraniol
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Serotonin biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Serotonin biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Serotonin biosynthesis:
5HT + caffeoyl-CoA ⟶ CoA-SH + H+ + caffeoylserotonin
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + indole-3-acetonitrile ⟶ IAA + ammonia
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Serotonin biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Serotonin biosynthesis:
5HT + caffeoyl-CoA ⟶ CoA-SH + H+ + caffeoylserotonin
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Serotonin biosynthesis:
5HT + caffeoyl-CoA ⟶ CoA-SH + H+ + caffeoylserotonin
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Serotonin biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Serotonin biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
INOH(1)
- Tryptophan degradation ( Tryptophan degradation ):
L-Tryptophan + O2 ⟶ N-Formyl-L-kynurenine
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(7)
- Tryptophan Metabolism:
L-Tryptophan + Oxygen ⟶ N'-Formylkynurenine
- Tryptophan Metabolism:
L-Tryptophan + Oxygen ⟶ N'-Formylkynurenine
- Tryptophan Metabolism:
L-Tryptophan + Oxygen ⟶ N'-Formylkynurenine
- Tryptophan Metabolism:
L-Tryptophan + Oxygen ⟶ N'-Formylkynurenine
- Tryptophan Metabolism:
L-Tryptophan + Oxygen ⟶ N'-Formylkynurenine
- Tryptophan Metabolism:
Phosphoadenosine phosphosulfate + indolylmethyl-desulfoglucosinolate ⟶ Adenosine 3',5'-diphosphate + Glucobrassicin + Hydrogen Ion
- Indole Alkaloid Biosynthesis:
17-O-Acetylnorajmaline + Water ⟶ Acetic acid + Norajmaline
PharmGKB(0)
197 个相关的物种来源信息
- 3808 - Acacia: LTS0181180
- 383632 - Acacia baileyana: 10.1071/CH9661539
- 3624 - Actinidia: LTS0181180
- 3625 - Actinidia chinensis: 10.1002/PCA.2800060605
- 3625 - Actinidia chinensis: LTS0181180
- 3623 - Actinidiaceae: LTS0181180
- 5339 - Agaricaceae: LTS0181180
- 155619 - Agaricomycetes: LTS0181180
- 178513 - Amphimedon: 10.1016/S0040-4039(00)73363-6
- 178513 - Amphimedon: LTS0181180
- 4614 - Ananas: LTS0181180
- 4615 - Ananas comosus: 10.1002/PCA.2800060605
- 4615 - Ananas comosus: LTS0181180
- 6101 - Anthozoa: 10.1016/0041-0101(90)90132-Q
- 6101 - Anthozoa: LTS0181180
- 4037 - Apiaceae: LTS0181180
- 4056 - Apocynaceae: LTS0181180
- 3701 - Arabidopsis: LTS0181180
- 3702 - Arabidopsis thaliana: 10.1104/PP.114.240986
- 3702 - Arabidopsis thaliana: LTS0181180
- 4210 - Asteraceae: LTS0181180
- 2 - Bacteria: LTS0181180
- 5204 - Basidiomycota: LTS0181180
- 24079 - Bignoniaceae: LTS0181180
- 5398 - Bolbitiaceae: LTS0181180
- 3700 - Brassicaceae: LTS0181180
- 4613 - Bromeliaceae: LTS0181180
- 3593 - Cactaceae: LTS0181180
- 3427 - Calycanthaceae: LTS0181180
- 4057 - Catharanthus: LTS0181180
- 4058 - Catharanthus roseus:
- 4058 - Catharanthus roseus: 10.1007/978-1-4684-5341-6_63
- 4058 - Catharanthus roseus: 10.1007/BF00172730
- 4058 - Catharanthus roseus: 10.1007/BF02632125
- 4058 - Catharanthus roseus: 10.1016/S0141-0229(98)00121-5
- 4058 - Catharanthus roseus: 10.1055/S-2006-962374
- 4058 - Catharanthus roseus: 10.1055/S-2007-969782
- 4058 - Catharanthus roseus: 10.1515/ZNC-1987-9-1012
- 4058 - Catharanthus roseus: LTS0181180
- 41503 - Centaurea: LTS0181180
- 41537 - Centaurea montana: 10.1016/J.TET.2006.09.020
- 41537 - Centaurea montana: LTS0181180
- 13418 - Chimonanthus: LTS0181180
- 13419 - Chimonanthus praecox: 10.1016/J.TETLET.2006.03.047
- 13419 - Chimonanthus praecox: LTS0181180
- 3051 - Chlamydomonadaceae: LTS0181180
- 3052 - Chlamydomonas: LTS0181180
- 3055 - Chlamydomonas reinhardtii: 10.1074/JBC.M110.122812
- 3055 - Chlamydomonas reinhardtii: LTS0181180
- 3166 - Chlorophyceae: LTS0181180
- 3041 - Chlorophyta: LTS0181180
- 7711 - Chordata: LTS0181180
- 43462 - Cinchona: LTS0181180
- 153742 - Cinchona calisaya: 10.1055/S-2006-960051
- 153742 - Cinchona calisaya: LTS0181180
- 6073 - Cnidaria: LTS0181180
- 6042 - Demospongiae: LTS0181180
- 53866 - Desmodium: LTS0181180
- 162747 - Dicorynia: LTS0181180
- 162748 - Dicorynia guianensis: 10.2307/4117899
- 162748 - Dicorynia guianensis: LTS0181180
- 3039 - Euglena gracilis: 10.3389/FBIOE.2021.662655
- 33682 - Euglenozoa: LTS0181180
- 2759 - Eukaryota: LTS0181180
- 3803 - Fabaceae: LTS0181180
- 4751 - Fungi: LTS0181180
- 1236 - Gammaproteobacteria: LTS0181180
- 648866 - Grona styracifolia: 10.1016/S0031-9422(00)84646-4
- 670328 - Grona triflora: 10.1055/S-0028-1099570
- 9606 - Homo sapiens: -
- 9606 - Homo sapiens: 10.1007/S11306-016-1051-4
- 4512 - Hordeum: LTS0181180
- 4513 - Hordeum vulgare: 10.1271/BBB.58.1723
- 4513 - Hordeum vulgare: LTS0181180
- 44204 - Isididae: LTS0181180
- 1074817 - Isis: LTS0181180
- 5653 - Kinetoplastea: LTS0181180
- 3863 - Lens: LTS0181180
- 3864 - Lens culinaris: 10.2307/4117899
- 3864 - Lens culinaris: LTS0181180
- 4447 - Liliopsida: LTS0181180
- 3398 - Magnoliopsida: LTS0181180
- 3629 - Malvaceae: LTS0181180
- 40674 - Mammalia: LTS0181180
- 33208 - Metazoa: LTS0181180
- 21013 - Mimosa: LTS0181180
- 648482 - Mimosa scabrella: 10.1021/NP50002A017
- 367329 - Mimosa somnians: 10.1021/NP50002A017
- 367329 - Mimosa somnians: LTS0181180
- 10066 - Muridae: LTS0181180
- 10088 - Mus: LTS0181180
- 10090 - Mus musculus: 10.1007/S15016-017-5929-9
- 10090 - Mus musculus: LTS0181180
- 10090 - Mus musculus: NA
- 4640 - Musa: LTS0181180
- 89151 - Musa × paradisiaca: 10.1002/PCA.2800060605
- 4637 - Musaceae: LTS0181180
- 22274 - Myristicaceae: LTS0181180
- 178475 - Niphatidae: LTS0181180
- 43874 - Nitraria: LTS0181180
- 1619327 - Nitraria komarovii: 10.1007/BF00631009
- 1619327 - Nitraria komarovii: LTS0181180
- 1619328 - Nitraria schoberi:
- 1619328 - Nitraria schoberi: 10.1007/S10600-005-0211-Y
- 1619328 - Nitraria schoberi: 10.1021/NP50076A006
- 1619328 - Nitraria schoberi: LTS0181180
- 91851 - Nitrariaceae: LTS0181180
- 149687 - Ototropis elegans: 10.1016/S0031-9422(00)84646-4
- 71684 - Panaeolus: LTS0181180
- 1033290 - Panaeolus antillarum: 10.1016/0378-8741(93)90086-K
- 1033290 - Panaeolus antillarum: LTS0181180
- 330933 - Panaeolus semiovatus: 10.1016/0378-8741(93)90086-K
- 330933 - Panaeolus semiovatus: LTS0181180
- 3596 - Pereskia: LTS0181180
- 3597 - Pereskia aculeata: 10.3109/13880209.2015.1008144
- 3597 - Pereskia aculeata: LTS0181180
- 4101 - Petunia: LTS0181180
- 4102 - Petunia × hybrida: 10.1016/S0981-9428(00)80096-0
- 49562 - Peucedanum: LTS0181180
- 1572681 - Peucedanum palustre: 10.1055/S-2006-958068
- 1572681 - Peucedanum palustre: LTS0181180
- 1603820 - Phyllodium elegans: 10.1016/S0031-9422(00)84646-4
- 4479 - Poaceae: LTS0181180
- 355332 - Polygala tenuifolia: 10.1016/0031-9422(73)80483-2
- 6040 - Porifera: LTS0181180
- 35715 - Prosopis: LTS0181180
- 207710 - Prosopis alba: 10.1016/0031-9422(75)83054-8
- 207711 - Prosopis alpataco: 10.1016/S0378-8741(00)00171-9
- 207711 - Prosopis alpataco: LTS0181180
- 35716 - Prosopis chilensis: 10.1016/S0378-8741(00)00171-9
- 35716 - Prosopis chilensis: LTS0181180
- 102697 - Prosopis glandulosa: 10.1021/NP800653Z
- 102697 - Prosopis glandulosa: LTS0181180
- 207716 - Prosopis nigra: 10.1016/0031-9422(75)83054-8
- 207716 - Prosopis nigra: LTS0181180
- 3754 - Prunus: LTS0181180
- 122119 - Prunus angustifolia: 10.1002/PCA.2800060605
- 3758 - Prunus domestica: 10.1002/PCA.2800060605
- 3758 - Prunus domestica: LTS0181180
- 184208 - Psathyrellaceae: LTS0181180
- 135621 - Pseudomonadaceae: LTS0181180
- 286 - Pseudomonas: LTS0181180
- 303 - Pseudomonas putida: 10.1371/JOURNAL.PONE.0156509
- 303 - Pseudomonas putida: LTS0181180
- 22663 - Punica granatum: 10.1016/J.JEP.2006.09.006
- 4059 - Rauvolfia: LTS0181180
- 4060 - Rauvolfia serpentina:
- 4060 - Rauvolfia serpentina: 10.1002/PCA.567
- 4060 - Rauvolfia serpentina: 10.1055/S-2000-8618
- 4060 - Rauvolfia serpentina: LTS0181180
- 3745 - Rosaceae: LTS0181180
- 24966 - Rubiaceae: LTS0181180
- 4070 - Solanaceae: LTS0181180
- 4107 - Solanum: LTS0181180
- 4081 - Solanum lycopersicum: 10.1002/PCA.2800060605
- 4081 - Solanum lycopersicum: LTS0181180
- 4111 - Solanum melongena: 10.1002/PCA.2800060605
- 4111 - Solanum melongena: LTS0181180
- 49840 - Sophora flavescens: 10.3390/MOLECULES21101413
- 6122 - Stichodactyla: LTS0181180
- 230562 - Stichodactyla gigantea: 10.1126/SCIENCE.234.4776.585
- 230562 - Stichodactyla gigantea: LTS0181180
- 42825 - Stichodactylidae: LTS0181180
- 35493 - Streptophyta: LTS0181180
- 52860 - Tabernaemontana: LTS0181180
- 52861 - Tabernaemontana divaricata:
- 52861 - Tabernaemontana divaricata: 10.1007/BF00235298
- 52861 - Tabernaemontana divaricata: 10.1016/S0031-9422(00)90584-3
- 52861 - Tabernaemontana divaricata: 10.1055/S-2006-957879
- 52861 - Tabernaemontana divaricata: 10.1055/S-2006-961445
- 52861 - Tabernaemontana divaricata: LTS0181180
- 761068 - Tabernaemontana elegans: 10.1055/S-2006-961912
- 761068 - Tabernaemontana elegans: LTS0181180
- 53927 - Tachigali: LTS0181180
- 53928 - Tachigali paniculata: 10.1021/NP50003A014
- 53928 - Tachigali paniculata: LTS0181180
- 69903 - Tecoma: LTS0181180
- 69904 - Tecoma stans: 10.1016/S0031-9422(00)83513-X
- 69904 - Tecoma stans: LTS0181180
- 3640 - Theobroma: LTS0181180
- 3641 - Theobroma cacao: 10.1021/JF000508L
- 3641 - Theobroma cacao: LTS0181180
- 63045 - Thysselinum palustre: 10.1055/S-2006-958068
- 58023 - Tracheophyta: LTS0181180
- 5690 - Trypanosoma: LTS0181180
- 5691 - Trypanosoma brucei: 10.1371/JOURNAL.PNTD.0001618
- 5691 - Trypanosoma brucei: LTS0181180
- 5654 - Trypanosomatidae: LTS0181180
- 468162 - Vachellia: LTS0181180
- 205076 - Vachellia rigidula:
- 205076 - Vachellia rigidula: 10.1016/S0031-9422(97)01022-4
- 205076 - Vachellia rigidula: LTS0181180
- 33090 - Viridiplantae: LTS0181180
- 224865 - Virola: LTS0181180
- 203720 - Xanthoselinum: LTS0181180
- 203721 - Xanthoselinum alsaticum: 10.1055/S-2006-958068
- 203721 - Xanthoselinum alsaticum: LTS0181180
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Lei-Qi Liu, Jing-Ze Chen, Wu-Sheng Fu, Cui-Ying Tang. [Determination of amanita peptide and tryptamine toxins in wild mushrooms by high performance liquid chromatography-tandem mass spectrometry].
Se pu = Chinese journal of chromatography.
2023 Nov; 41(11):976-985. doi:
10.3724/sp.j.1123.2023.07013
. [PMID: 37968816] - Daijing Wei, Yun Yang, Ruiying Xi, Yunqing He, Ighodaro Igbe, Fei Wang, Guolin Zhang, Yinggang Luo. Hunteriasines A - D, tryptamine-derived alkaloids from Hunteria umbellata.
Phytochemistry.
2023 Sep; 213(?):113752. doi:
10.1016/j.phytochem.2023.113752
. [PMID: 37330032] - Lixiang Zhai, Haitao Xiao, Chengyuan Lin, Hoi Leong Xavier Wong, Yan Y Lam, Mengxue Gong, Guojun Wu, Ziwan Ning, Chunhua Huang, Yijing Zhang, Chao Yang, Jingyuan Luo, Lu Zhang, Ling Zhao, Chenhong Zhang, Johnson Yiu-Nam Lau, Aiping Lu, Lok-Ting Lau, Wei Jia, Liping Zhao, Zhao-Xiang Bian. Gut microbiota-derived tryptamine and phenethylamine impair insulin sensitivity in metabolic syndrome and irritable bowel syndrome.
Nature communications.
2023 Aug; 14(1):4986. doi:
10.1038/s41467-023-40552-y
. [PMID: 37591886] - Jie Chen, Yueqi Zhang, Huanran Yin, Wei Liu, Xin Hu, Dongqin Li, Caixia Lan, Lifeng Gao, Zhonghu He, Fa Cui, Alisdair R Fernie, Wei Chen. The pathway of melatonin biosynthesis in common wheat (Triticum aestivum).
Journal of pineal research.
2023 Mar; 74(2):e12841. doi:
10.1111/jpi.12841
. [PMID: 36396897] - Fateme Zohairi, Himanshu Khandelia, Ali Asghar Hakami Zanjani. Interaction of psychedelic tryptamine derivatives with a lipid bilayer.
Chemistry and physics of lipids.
2023 Mar; 251(?):105279. doi:
10.1016/j.chemphyslip.2023.105279
. [PMID: 36627076] - Marcus Daniel Brandbjerg Bohn Lorensen, Nanna Bjarnholt, Benoit St-Pierre, Vincent Courdavault, Sarah Heinicke, Sarah O'Connor, Christian Janfelt. Spatial localization of monoterpenoid indole alkaloids in Rauvolfia tetraphylla by high resolution mass spectrometry imaging.
Phytochemistry.
2023 Feb; ?(?):113620. doi:
10.1016/j.phytochem.2023.113620
. [PMID: 36863602] - Lea Wagmann, Sascha K Manier, Markus R Meyer. Can the Intake of a Synthetic Tryptamine be Detected Only by Blood Plasma Analysis? A Clinical Toxicology Case Involving 4-HO-MET.
Journal of analytical toxicology.
2022 May; 46(5):567-572. doi:
10.1093/jat/bkab062
. [PMID: 34100553] - Rajasree G Krishnan, Beena Saraswathyamma. Murexide-derived in vitro electrochemical sensor for the simultaneous determination of neurochemicals.
Analytical and bioanalytical chemistry.
2021 Nov; 413(27):6803-6812. doi:
10.1007/s00216-021-03282-y
. [PMID: 33774711] - Jiahui Shao, Yucong Li, Zunfeng Li, Zhihui Xu, Weibing Xun, Nan Zhang, Haichao Feng, Youzhi Miao, Qirong Shen, Ruifu Zhang. Participating mechanism of a major contributing gene ysnE for auxin biosynthesis in Bacillus amyloliquefaciens SQR9.
Journal of basic microbiology.
2021 Jun; 61(6):569-575. doi:
10.1002/jobm.202100098
. [PMID: 33914927] - Mark J Henderson, Kathleen A Trychta, Shyh-Ming Yang, Susanne Bäck, Adam Yasgar, Emily S Wires, Carina Danchik, Xiaokang Yan, Hideaki Yano, Lei Shi, Kuo-Jen Wu, Amy Q Wang, Dingyin Tao, Gergely Zahoránszky-Kőhalmi, Xin Hu, Xin Xu, David Maloney, Alexey V Zakharov, Ganesha Rai, Fumihiko Urano, Mikko Airavaara, Oksana Gavrilova, Ajit Jadhav, Yun Wang, Anton Simeonov, Brandon K Harvey. A target-agnostic screen identifies approved drugs to stabilize the endoplasmic reticulum-resident proteome.
Cell reports.
2021 04; 35(4):109040. doi:
10.1016/j.celrep.2021.109040
. [PMID: 33910017] - Sascha K Manier, Christina Felske, Josef Zapp, Niels Eckstein, Markus R Meyer. Studies on the In Vitro and In Vivo Metabolic Fate of the New Psychoactive Substance N-Ethyl-N-Propyltryptamine for Analytical Purposes.
Journal of analytical toxicology.
2021 Feb; 45(2):195-202. doi:
10.1093/jat/bkaa060
. [PMID: 32507893] - Peisen Su, Lanfei Zhao, Wen Li, Jinxiao Zhao, Jun Yan, Xin Ma, Anfei Li, Hongwei Wang, Lingrang Kong. Integrated metabolo-transcriptomics and functional characterization reveals that the wheat auxin receptor TIR1 negatively regulates defense against Fusarium graminearum.
Journal of integrative plant biology.
2021 Feb; 63(2):340-352. doi:
10.1111/jipb.12992
. [PMID: 32678930] - Dagang Tian, Fang Yang, Yuqing Niu, Yan Lin, Zaijie Chen, Gang Li, Qiong Luo, Feng Wang, Mo Wang. Loss function of SL (sekiguchi lesion) in the rice cultivar Minghui 86 leads to enhanced resistance to (hemi)biotrophic pathogens.
BMC plant biology.
2020 Nov; 20(1):507. doi:
10.1186/s12870-020-02724-6
. [PMID: 33148178] - Analía A Gomez, Zareath P Terán Baptista, Tsvetelina Mandova, Angeliki Barouti, Marina Kritsanida, Raphaël Grougnet, Marta A Vattuone, Diego A Sampietro. Antifungal and antimycotoxigenic metabolites from native plants of northwest Argentina: isolation, identification and potential for control of Aspergillus species.
Natural product research.
2020 Nov; 34(22):3299-3302. doi:
10.1080/14786419.2018.1560286
. [PMID: 30663391] - Jyoti Singh Jadaun, Amit Kumar Kushwaha, Neelam S Sangwan, Lokesh Kumar Narnoliya, Smrati Mishra, Rajender Singh Sangwan. WRKY1-mediated regulation of tryptophan decarboxylase in tryptamine generation for withanamide production in Withania somnifera (Ashwagandha).
Plant cell reports.
2020 Nov; 39(11):1443-1465. doi:
10.1007/s00299-020-02574-4
. [PMID: 32789542] - Janis Fricke, Robert Kargbo, Lars Regestein, Claudius Lenz, Gundela Peschel, Miriam A Rosenbaum, Alexander Sherwood, Dirk Hoffmeister. Scalable Hybrid Synthetic/Biocatalytic Route to Psilocybin.
Chemistry (Weinheim an der Bergstrasse, Germany).
2020 Jul; 26(37):8281-8285. doi:
10.1002/chem.202000134
. [PMID: 32101345] - Hana Leontovyčová, Lucie Trdá, Petre Ivanov Dobrev, Vladimír Šašek, Elise Gay, Marie-Hélène Balesdent, Lenka Burketová. Auxin biosynthesis in the phytopathogenic fungus Leptosphaeria maculans is associated with enhanced transcription of indole-3-pyruvate decarboxylase LmIPDC2 and tryptophan aminotransferase LmTAM1.
Research in microbiology.
2020 Jul; 171(5-6):174-184. doi:
10.1016/j.resmic.2020.05.001
. [PMID: 32540203] - Xiaohong Fan, Junfang Li, Xuemei Deng, Yingmei Lu, Yiyue Feng, Shumeng Ma, Huaixiu Wen, Quanyi Zhao, Wen Tan, Tao Shi, Zhen Wang. Design, synthesis and bioactivity study of N-salicyloyl tryptamine derivatives as multifunctional agents for the treatment of neuroinflammation.
European journal of medicinal chemistry.
2020 May; 193(?):112217. doi:
10.1016/j.ejmech.2020.112217
. [PMID: 32182488] - Xiwen Tong, Yundan Wang, Pengcheng Yang, Chengshu Wang, Le Kang. Tryptamine accumulation caused by deletion of MrMao-1 in Metarhizium genome significantly enhances insecticidal virulence.
PLoS genetics.
2020 04; 16(4):e1008675. doi:
10.1371/journal.pgen.1008675
. [PMID: 32271756] - Brian G O'Flynn, Eric M Lewandowski, Karin Claire Prins, Gabriela Suarez, Angelica N McCaskey, Nasha M Rios-Guzman, Ryan L Anderson, Britney A Shepherd, Ioannis Gelis, James W Leahy, Yu Chen, David J Merkler. Characterization of Arylalkylamine N-Acyltransferase from Tribolium castaneum: An Investigation into a Potential Next-Generation Insecticide Target.
ACS chemical biology.
2020 02; 15(2):513-523. doi:
10.1021/acschembio.9b00973
. [PMID: 31967772] - Jakub Staroń, Rafał Kurczab, Dawid Warszycki, Grzegorz Satała, Martyna Krawczyk, Ryszard Bugno, Tomasz Lenda, Piotr Popik, Adam S Hogendorf, Agata Hogendorf, Krzysztof Dubiel, Mikołaj Matłoka, Rafał Moszczyński-Pętkowski, Jerzy Pieczykolan, Maciej Wieczorek, Paweł Zajdel, Andrzej J Bojarski. Virtual screening-driven discovery of dual 5-HT6/5-HT2A receptor ligands with pro-cognitive properties.
European journal of medicinal chemistry.
2020 Jan; 185(?):111857. doi:
10.1016/j.ejmech.2019.111857
. [PMID: 31734022] - Yang Yu, Mei-Fen Bao, Jing Wu, Jing Chen, Yu-Rong Yang, Johann Schinnerl, Xiang-Hai Cai. Tabernabovines A-C: Three Monoterpenoid Indole Alkaloids from the Leaves of Tabernaemontana bovina.
Organic letters.
2019 08; 21(15):5938-5942. doi:
10.1021/acs.orglett.9b02060
. [PMID: 31294995] - Alma Vázquez-Luna, Fabio García-García, Diana I Caudillo Contreras, Eduardo Rivadeneyra-Domínguez, Rafael Díaz-Sobac. Effect of orange juice and tryptamine on the behavior and c-fos expression of Wistar rats.
Metabolic brain disease.
2019 04; 34(2):519-525. doi:
10.1007/s11011-018-0365-5
. [PMID: 30604026] - Mauro Commisso, Stefano Negri, Martino Bianconi, Sofia Gambini, Sara Avesani, Stefania Ceoldo, Linda Avesani, Flavia Guzzo. Untargeted and Targeted Metabolomics and Tryptophan Decarboxylase In Vivo Characterization Provide Novel Insight on the Development of Kiwifruits (Actinidia deliciosa).
International journal of molecular sciences.
2019 Feb; 20(4):. doi:
10.3390/ijms20040897
. [PMID: 30791398] - Tiantian Ye, Xiaoming Yin, Lei Yu, Shu-Jian Zheng, Wen-Jing Cai, Yan Wu, Yu-Qi Feng. Metabolic analysis of the melatonin biosynthesis pathway using chemical labeling coupled with liquid chromatography-mass spectrometry.
Journal of pineal research.
2019 Jan; 66(1):e12531. doi:
10.1111/jpi.12531
. [PMID: 30299556] - Brian Torres, James S Tyler, Kenneth A Satyshur, Arnold E Ruoho. Human indole(ethyl)amine-N-methyltransferase (hINMT) catalyzed methylation of tryptamine, dimethylsulfide and dimethylselenide is enhanced under reducing conditions - A comparison between 254C and 254F, two common hINMT variants.
PloS one.
2019; 14(7):e0219664. doi:
10.1371/journal.pone.0219664
. [PMID: 31310642] - Felix Blei, Janis Fricke, Jonas Wick, Jason C Slot, Dirk Hoffmeister. Iterative l-Tryptophan Methylation in Psilocybe Evolved by Subdomain Duplication.
Chembiochem : a European journal of chemical biology.
2018 10; 19(20):2160-2166. doi:
10.1002/cbic.201800336
. [PMID: 30098085] - Geofrey Sing'ombe Ombiro, Taku Sawai, Yoshiteru Noutoshi, Yuta Nishina, Hidenori Matsui, Mikihiro Yamamoto, Kazuhiro Toyoda, Yuki Ichinose. Specific growth inhibitors of Ralstonia solanacearum, Xanthomonas oryzae pv. oryzae, X. campestris pv. campestris, and Clavibacter michiganensis subsp. michiganensis.
Microbiological research.
2018 Oct; 215(?):29-35. doi:
10.1016/j.micres.2018.06.005
. [PMID: 30172306] - Desiree Pressnitz, Eva-Maria Fischereder, Jakob Pletz, Christina Kofler, Lucas Hammerer, Katharina Hiebler, Horst Lechner, Nina Richter, Elisabeth Eger, Wolfgang Kroutil. Asymmetric Synthesis of (R)-1-Alkyl-Substituted Tetrahydro-ß-carbolines Catalyzed by Strictosidine Synthases.
Angewandte Chemie (International ed. in English).
2018 08; 57(33):10683-10687. doi:
10.1002/anie.201803372
. [PMID: 29852524] - Yang Yu, Yan Lv, Yana Shi, Tao Li, Yanchun Chen, Dake Zhao, Zhiwei Zhao. The Role of Phyto-Melatonin and Related Metabolites in Response to Stress.
Molecules (Basel, Switzerland).
2018 Jul; 23(8):. doi:
10.3390/molecules23081887
. [PMID: 30060559] - Yogesh Bhattarai, Brianna B Williams, Eric J Battaglioli, Weston R Whitaker, Lisa Till, Madhusudan Grover, David R Linden, Yasutada Akiba, Karunya K Kandimalla, Nicholas C Zachos, Jonathan D Kaunitz, Justin L Sonnenburg, Michael A Fischbach, Gianrico Farrugia, Purna C Kashyap. Gut Microbiota-Produced Tryptamine Activates an Epithelial G-Protein-Coupled Receptor to Increase Colonic Secretion.
Cell host & microbe.
2018 06; 23(6):775-785.e5. doi:
10.1016/j.chom.2018.05.004
. [PMID: 29902441] - Chris Dockendorff, Disha M Gandhi, Ian H Kimball, Kenneth S Eum, Radda Rusinova, Helgi I Ingólfsson, Ruchi Kapoor, Thasin Peyear, Matthew W Dodge, Stephen F Martin, Richard W Aldrich, Olaf S Andersen, Jon T Sack. Synthetic Analogues of the Snail Toxin 6-Bromo-2-mercaptotryptamine Dimer (BrMT) Reveal That Lipid Bilayer Perturbation Does Not Underlie Its Modulation of Voltage-Gated Potassium Channels.
Biochemistry.
2018 05; 57(18):2733-2743. doi:
10.1021/acs.biochem.8b00292
. [PMID: 29616558] - Smitha Krishnan, Yufang Ding, Nima Saedi, Maria Choi, Gautham V Sridharan, David H Sherr, Martin L Yarmush, Robert C Alaniz, Arul Jayaraman, Kyongbum Lee. Gut Microbiota-Derived Tryptophan Metabolites Modulate Inflammatory Response in Hepatocytes and Macrophages.
Cell reports.
2018 04; 23(4):1099-1111. doi:
10.1016/j.celrep.2018.03.109
. [PMID: 29694888] - Jan Honegr, Rafael Dolezal, David Malinak, Marketa Benkova, Ondrej Soukup, Joyce S F D de Almeida, Tanos C C Franca, Kamil Kuca, Roman Prymula. Rational Design of a New Class of Toll-Like Receptor 4 (TLR4) Tryptamine Related Agonists by Means of the Structure- and Ligand-Based Virtual Screening for Vaccine Adjuvant Discovery.
Molecules (Basel, Switzerland).
2018 Jan; 23(1):. doi:
10.3390/molecules23010102
. [PMID: 29300367] - Achim T Caspar, Jonas B Gaab, Julian A Michely, Simon D Brandt, Markus R Meyer, Hans H Maurer. Metabolism of the tryptamine-derived new psychoactive substances 5-MeO-2-Me-DALT, 5-MeO-2-Me-ALCHT, and 5-MeO-2-Me-DIPT and their detectability in urine studied by GC-MS, LC-MSn , and LC-HR-MS/MS.
Drug testing and analysis.
2018 Jan; 10(1):184-195. doi:
10.1002/dta.2197
. [PMID: 28342193] - Abhishek Sharma, Priyanka Verma, Archana Mathur, Ajay Kumar Mathur. Genetic engineering approach using early Vinca alkaloid biosynthesis genes led to increased tryptamine and terpenoid indole alkaloids biosynthesis in differentiating cultures of Catharanthus roseus.
Protoplasma.
2018 Jan; 255(1):425-435. doi:
10.1007/s00709-017-1151-7
. [PMID: 28808798] - Andreas Berger, Elias Tanuhadi, Lothar Brecker, Johann Schinnerl, Karin Valant-Vetschera. Chemodiversity of tryptamine-derived alkaloids in six Costa Rican Palicourea species (Rubiaceae-Palicoureeae).
Phytochemistry.
2017 Nov; 143(?):124-131. doi:
10.1016/j.phytochem.2017.07.016
. [PMID: 28806604] - G D'Andrea, G Bussone, P Di Fiore, F Perini, A Gucciardi, A Bolner, M Aguggia, G Saracco, E Galloni, G Giordano, A Leon. Pathogenesis of chronic cluster headache and bouts: role of tryptamine, arginine metabolism and α1-agonists.
Neurological sciences : official journal of the Italian Neurological Society and of the Italian Society of Clinical Neurophysiology.
2017 May; 38(Suppl 1):37-43. doi:
10.1007/s10072-017-2862-4
. [PMID: 28527056] - Luigi De Masi, Domenico Castaldo, Domenico Pignone, Luigi Servillo, Angelo Facchiano. Experimental Evidence and In Silico Identification of Tryptophan Decarboxylase in Citrus Genus.
Molecules (Basel, Switzerland).
2017 Feb; 22(2):. doi:
10.3390/molecules22020272
. [PMID: 28208655] - Lily A Arya. Rationale for Investigating Stool Metabolites and Microbiota in Women With Fecal Incontinence.
Diseases of the colon and rectum.
2017 Feb; 60(2):249-252. doi:
10.1097/dcr.0000000000000751
. [PMID: 28059923] - Sabine Fräbel, Markus Krischke, Agata Staniek, Heribert Warzecha. Recombinant flavin-dependent halogenases are functional in tobacco chloroplasts without co-expression of flavin reductase genes.
Biotechnology journal.
2016 Dec; 11(12):1586-1594. doi:
10.1002/biot.201600337
. [PMID: 27687297] - Katherine C Faulkner, Katherine A Hurley, Douglas B Weibel. 5-Alkyloxytryptamines are membrane-targeting, broad-spectrum antibiotics.
Bioorganic & medicinal chemistry letters.
2016 11; 26(22):5539-5544. doi:
10.1016/j.bmcl.2016.10.004
. [PMID: 27765507] - Somandla Ncube, Anna Poliwoda, Hlanganani Tutu, Piotr Wieczorek, Luke Chimuka. Multivariate optimization of the hollow fibre liquid phase microextraction of muscimol in human urine samples.
Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.
2016 Oct; 1033-1034(?):372-381. doi:
10.1016/j.jchromb.2016.09.008
. [PMID: 27631575] - Kun Luo, Hélène Rocheleau, Peng-Fei Qi, You-Liang Zheng, Hui-Yan Zhao, Thérèse Ouellet. Indole-3-acetic acid in Fusarium graminearum: Identification of biosynthetic pathways and characterization of physiological effects.
Fungal biology.
2016 09; 120(9):1135-45. doi:
10.1016/j.funbio.2016.06.002
. [PMID: 27567719] - Bing-Huo Zhang, Zhang-Gui Ding, Han-Quan Li, Xiao-Zhen Mou, Yu-Qin Zhang, Jian-Yuan Yang, En-Min Zhou, Wen-Jun Li. Algicidal Activity of Streptomyces eurocidicus JXJ-0089 Metabolites and Their Effects on Microcystis Physiology.
Applied and environmental microbiology.
2016 09; 82(17):5132-43. doi:
10.1128/aem.01198-16
. [PMID: 27316950] - Linda D Simmler, Danièle Buchy, Sylvie Chaboz, Marius C Hoener, Matthias E Liechti. In Vitro Characterization of Psychoactive Substances at Rat, Mouse, and Human Trace Amine-Associated Receptor 1.
The Journal of pharmacology and experimental therapeutics.
2016 Apr; 357(1):134-44. doi:
10.1124/jpet.115.229765
. [PMID: 26791601] - Jinhong Gao, Ouyang Zhang, Jing Ren, Chuanliu Wu, Yibing Zhao. Aromaticity/Bulkiness of Surface Ligands to Promote the Interaction of Anionic Amphiphilic Gold Nanoparticles with Lipid Bilayers.
Langmuir : the ACS journal of surfaces and colloids.
2016 Feb; 32(6):1601-10. doi:
10.1021/acs.langmuir.6b00035
. [PMID: 26794292] - Qi-Ci Wu, Dong-Qiang Lin, Wei Shi, Qi-Lei Zhang, Shan-Jing Yao. A mixed-mode resin with tryptamine ligand for human serum albumin separation.
Journal of chromatography. A.
2016 Jan; 1431(?):145-153. doi:
10.1016/j.chroma.2015.12.066
. [PMID: 26772961] - Kangjiang Liang, Xu Deng, Xiaogang Tong, Dashan Li, Ming Ding, Ankun Zhou, Chengfeng Xia. Copper-mediated dimerization to access 3a,3a'-bispyrrolidinoindoline: diastereoselective synthesis of (+)-WIN 64821 and (-)-ditryptophenaline.
Organic letters.
2015 Jan; 17(2):206-9. doi:
10.1021/ol5032365
. [PMID: 25565384] - P A Levashov, E D Ovchinnikova, M I Afanasjev, D A Fried, A A Azmuko, I Yu Adamova, S N Pokrovsky. [Tyramine and tryptamine as ligands for medical and biotechnological affinity sorbents].
Bioorganicheskaia khimiia.
2015 Jan; 41(1):23-30. doi:
10.1134/s1068162015010112
. [PMID: 26050468] - Giovanni D'Andrea, Domenico D'Amico, Gennaro Bussone, Andrea Bolner, Marco Aguggia, Maria Gabriella Saracco, Elisabetta Galloni, Valentina De Riva, Antonello D'Arrigo, Davide Colavito, Alberta Leon, Francesco Perini. Tryptamine levels are low in plasma of chronic migraine and chronic tension-type headache.
Neurological sciences : official journal of the Italian Neurological Society and of the Italian Society of Clinical Neurophysiology.
2014 Dec; 35(12):1941-5. doi:
10.1007/s10072-014-1867-5
. [PMID: 25016960] - Piotr Luliński, Monika Sobiech, Teresa Zołek, Dorota Maciejewska. A separation of tyramine on a 2-(4-methoxyphenyl)ethylamine imprinted polymer: an answer from theoretical and experimental studies.
Talanta.
2014 Nov; 129(?):155-64. doi:
10.1016/j.talanta.2014.05.029
. [PMID: 25127579] - Yeong Byeon, Sangkyu Park, Hyoung Yool Lee, Young-Soon Kim, Kyoungwhan Back. Elevated production of melatonin in transgenic rice seeds expressing rice tryptophan decarboxylase.
Journal of pineal research.
2014 Apr; 56(3):275-82. doi:
10.1111/jpi.12120
. [PMID: 24433490] - Rahul S Pawar, Erich Grundel, Ali Reza Fardin-Kia, Jeanne I Rader. Determination of selected biogenic amines in Acacia rigidula plant materials and dietary supplements using LC-MS/MS methods.
Journal of pharmaceutical and biomedical analysis.
2014 Jan; 88(?):457-66. doi:
10.1016/j.jpba.2013.09.012
. [PMID: 24176750] - Ji-Bei Liang, Zhong-Duo Yang, Zong-Mei Shu, Cheng-Cheng Yu. A rapid thin-layer chromatography bioautographic method for detecting the monoamine oxidase inhibitors in plants.
Natural product research.
2014; 28(17):1318-21. doi:
10.1080/14786419.2014.901322
. [PMID: 24673426] - Markus R Meyer, Achim Caspar, Simon D Brandt, Hans H Maurer. A qualitative/quantitative approach for the detection of 37 tryptamine-derived designer drugs, 5 β-carbolines, ibogaine, and yohimbine in human urine and plasma using standard urine screening and multi-analyte approaches.
Analytical and bioanalytical chemistry.
2014 Jan; 406(1):225-37. doi:
10.1007/s00216-013-7425-9
. [PMID: 24173660] - Joseph G Dubouzet, Fumio Matsuda, Atsushi Ishihara, Hisashi Miyagawa, Kyo Wakasa. Production of indole alkaloids by metabolic engineering of the tryptophan pathway in rice.
Plant biotechnology journal.
2013 Dec; 11(9):1103-11. doi:
10.1111/pbi.12105
. [PMID: 23980801] - Elena L Paley, George Perry, Olga Sokolova. Tryptamine induces axonopathy and mitochondriopathy mimicking neurodegenerative diseases via tryptophanyl-tRNA deficiency.
Current Alzheimer research.
2013 Nov; 10(9):987-1004. doi:
10.2174/15672050113106660164
. [PMID: 24117115] - Sangkyu Park, Yeong Byeon, Kyoungwhan Back. Transcriptional suppression of tryptamine 5-hydroxylase, a terminal serotonin biosynthetic gene, induces melatonin biosynthesis in rice (Oryza sativa L.).
Journal of pineal research.
2013 Sep; 55(2):131-7. doi:
10.1111/jpi.12053
. [PMID: 23521226] - John M Corkery, Emma Durkin, Simon Elliott, Fabrizio Schifano, A Hamid Ghodse. The recreational tryptamine 5-MeO-DALT (N,N-diallyl-5-methoxytryptamine): a brief review.
Progress in neuro-psychopharmacology & biological psychiatry.
2012 Dec; 39(2):259-62. doi:
10.1016/j.pnpbp.2012.05.022
. [PMID: 22683457] - Warunya Arunotayanun, Simon Gibbons. Natural product 'legal highs'.
Natural product reports.
2012 Nov; 29(11):1304-16. doi:
10.1039/c2np20068f
. [PMID: 22930322] - Tadashi Hayama, Yohei Sakaguchi, Hideyuki Yoshida, Miki Itoyama, Kenichiro Todoroki, Masatoshi Yamaguchi, Hitoshi Nohta. Binary fluorous alkylation of biogenic primary amines with perfluorinated aldehyde followed by fluorous liquid chromatography-tandem mass spectrometry analysis.
Analytical chemistry.
2012 Oct; 84(19):8407-14. doi:
10.1021/ac3020092
. [PMID: 22950579] - Luigi Servillo, Alfonso Giovane, Maria Luisa Balestrieri, Domenico Cautela, Domenico Castaldo. N-methylated tryptamine derivatives in citrus genus plants: identification of N,N,N-trimethyltryptamine in bergamot.
Journal of agricultural and food chemistry.
2012 Sep; 60(37):9512-8. doi:
10.1021/jf302767e
. [PMID: 22957740] - M Soledade C Pedras, Vijay K Sarma-Mamillapalle. Metabolism and metabolites of dithiocarbamates in the plant pathogenic fungus Leptosphaeria maculans.
Journal of agricultural and food chemistry.
2012 Aug; 60(32):7792-8. doi:
10.1021/jf302038a
. [PMID: 22823278] - Yeong Byeon, Sangkyu Park, Young-Soon Kim, Don-Hee Park, Sungbeom Lee, Kyoungwhan Back. Light-regulated melatonin biosynthesis in rice during the senescence process in detached leaves.
Journal of pineal research.
2012 Aug; 53(1):107-11. doi:
10.1111/j.1600-079x.2012.00976.x
. [PMID: 22289080] - Wanhong Liu, Rong Chen, Min Chen, Haoxing Zhang, Meifang Peng, Chunxian Yang, Xingjia Ming, Xiaozhong Lan, Zhihua Liao. Tryptophan decarboxylase plays an important role in ajmalicine biosynthesis in Rauvolfia verticillata.
Planta.
2012 Jul; 236(1):239-50. doi:
10.1007/s00425-012-1608-z
. [PMID: 22331368] - Huiyong Wang, Erin J Walaszczyk, Ke Li, Yu-Wen Chung-Davidson, Weiming Li. High-performance liquid chromatography with fluorescence detection and ultra-performance liquid chromatography with electrospray tandem mass spectrometry method for the determination of indoleamine neurotransmitters and their metabolites in sea lamprey plasma.
Analytica chimica acta.
2012 Apr; 721(?):147-53. doi:
10.1016/j.aca.2012.01.025
. [PMID: 22405313] - M E Neganova, S V Afanas'eva, S G Klochkov, E F Shevtsova. Mechanisms of antioxidant effect of natural sesquiterpene lactone and alkaloid derivatives.
Bulletin of experimental biology and medicine.
2012 Apr; 152(6):720-2. doi:
10.1007/s10517-012-1615-x
. [PMID: 22803173] - Parawee Kanjanaphachoat, Bi-Yin Wei, Shuen-Fang Lo, I-Wen Wang, Chang-Sheng Wang, Su-May Yu, Ming-Liang Yen, Sheng-Hsien Chiu, Chien-Chen Lai, Liang-Jwu Chen. Serotonin accumulation in transgenic rice by over-expressing tryptophan decarboxylase results in a dark brown phenotype and stunted growth.
Plant molecular biology.
2012 Apr; 78(6):525-43. doi:
10.1007/s11103-012-9882-5
. [PMID: 22297847] - Dimas M Ribeiro, Wagner L Araújo, Alisdair R Fernie, Jos H M Schippers, Bernd Mueller-Roeber. Translatome and metabolome effects triggered by gibberellins during rosette growth in Arabidopsis.
Journal of experimental botany.
2012 Apr; 63(7):2769-86. doi:
10.1093/jxb/err463
. [PMID: 22291129] - Serhat Ozdoğan, Dilara Kaman, Bengü Çobanoğlu Simşek. Effects of coenzyme Q10 and α-lipoic acid supplementation in fructose fed rats.
Journal of clinical biochemistry and nutrition.
2012 Mar; 50(2):145-51. doi:
10.3164/jcbn.11-47
. [PMID: 22448096] - Sangkyu Park, Kyungjin Lee, Young-Soon Kim, Kyoungwhan Back. Tryptamine 5-hydroxylase-deficient Sekiguchi rice induces synthesis of 5-hydroxytryptophan and N-acetyltryptamine but decreases melatonin biosynthesis during senescence process of detached leaves.
Journal of pineal research.
2012 Mar; 52(2):211-6. doi:
10.1111/j.1600-079x.2011.00930.x
. [PMID: 21884550] - Mari Gabrielsen, Aina Westrheim Ravna, Kurt Kristiansen, Ingebrigt Sylte. Substrate binding and translocation of the serotonin transporter studied by docking and molecular dynamics simulations.
Journal of molecular modeling.
2012 Mar; 18(3):1073-85. doi:
10.1007/s00894-011-1133-1
. [PMID: 21670993] - Chinmay Pal, Samik Bindu, Sumanta Dey, Athar Alam, Manish Goyal, Mohd Shameel Iqbal, Souvik Sarkar, Rahul Kumar, Kamal Krishna Halder, Mita Chatterjee Debnath, Susanta Adhikari, Uday Bandyopadhyay. Tryptamine-gallic acid hybrid prevents non-steroidal anti-inflammatory drug-induced gastropathy: correction of mitochondrial dysfunction and inhibition of apoptosis in gastric mucosal cells.
The Journal of biological chemistry.
2012 Jan; 287(5):3495-509. doi:
10.1074/jbc.m111.307199
. [PMID: 22157011] - Ming-Mu Hsieh, En-Ping Lin, Shiou-Wen Huang. On-line concentration and separation of cationic and anionic neurochemicals by capillary electrophoresis with UV absorption detection.
Talanta.
2012 Jan; 88(?):638-45. doi:
10.1016/j.talanta.2011.11.050
. [PMID: 22265552] - Meng Xiang-Cai, Yang Guo-Hui, Sun Hui, Yu Dong-Mei, Wang Xi-Jun, Wang Ping, Niu Yi-Min. Effects of H(2)O(2), paraquat, and ethephon on herbal drug quality of Schiandra chinensis based on reactive oxygen species system.
Pharmacognosy magazine.
2012 Jan; 8(29):54-9. doi:
10.4103/0973-1296.93325
. [PMID: 22438664] - Md Sarfaraj Hussain, Sheeba Fareed, Saba Ansari, Md Akhlaquer Rahman, Iffat Zareen Ahmad, Mohd Saeed. Current approaches toward production of secondary plant metabolites.
Journal of pharmacy & bioallied sciences.
2012 Jan; 4(1):10-20. doi:
10.4103/0975-7406.92725
. [PMID: 22368394] - Simon Gibbons. 'Legal highs'--novel and emerging psychoactive drugs: a chemical overview for the toxicologist.
Clinical toxicology (Philadelphia, Pa.).
2012 Jan; 50(1):15-24. doi:
10.3109/15563650.2011.645952
. [PMID: 22248120] - Elisa Mitiko Kawamoto, Carmen Vivar, Simonetta Camandola. Physiology and pathology of calcium signaling in the brain.
Frontiers in pharmacology.
2012; 3(?):61. doi:
10.3389/fphar.2012.00061
. [PMID: 22518105] - Steven Maranz. An alternative paradigm for the role of antimalarial plants in Africa.
TheScientificWorldJournal.
2012; 2012(?):978913. doi:
10.1100/2012/978913
. [PMID: 22593717] - Sarah E O'Connor. Strategies for engineering plant natural products: the iridoid-derived monoterpene indole alkaloids of Catharanthus roseus.
Methods in enzymology.
2012; 515(?):189-206. doi:
10.1016/b978-0-12-394290-6.00009-4
. [PMID: 22999175] - Xiaoning Chen, Kara J Margolis, Michael D Gershon, Gary J Schwartz, Ji Y Sze. Reduced serotonin reuptake transporter (SERT) function causes insulin resistance and hepatic steatosis independent of food intake.
PloS one.
2012; 7(3):e32511. doi:
10.1371/journal.pone.0032511
. [PMID: 22412882] - Weslee S Glenn, Ezekiel Nims, Sarah E O'Connor. Reengineering a tryptophan halogenase to preferentially chlorinate a direct alkaloid precursor.
Journal of the American Chemical Society.
2011 Dec; 133(48):19346-9. doi:
10.1021/ja2089348
. [PMID: 22050348] - Elena L Paley. Chaperon-like Activation of Serum-Inducible Tryptophanyl-tRNA Synthetase Phosphorylation through Refolding as a Tool for Analysis of Clinical Samples.
Translational oncology.
2011 Dec; 4(6):377-89. doi:
10.1593/tlo.11220
. [PMID: 22191002] - Nitima Suttipanta, Sitakanta Pattanaik, Manish Kulshrestha, Barunava Patra, Sanjay K Singh, Ling Yuan. The transcription factor CrWRKY1 positively regulates the terpenoid indole alkaloid biosynthesis in Catharanthus roseus.
Plant physiology.
2011 Dec; 157(4):2081-93. doi:
10.1104/pp.111.181834
. [PMID: 21988879] - Yongzhen Sun, Hongmei Luo, Ying Li, Chao Sun, Jingyuan Song, Yunyun Niu, Yingjie Zhu, Liang Dong, Aiping Lv, Enzo Tramontano, Shilin Chen. Pyrosequencing of the Camptotheca acuminata transcriptome reveals putative genes involved in camptothecin biosynthesis and transport.
BMC genomics.
2011 Oct; 12(?):533. doi:
10.1186/1471-2164-12-533
. [PMID: 22035094] - Guozhong Dong, Shimin Liu, Yongxia Wu, Chunlong Lei, Jun Zhou, Sen Zhang. Diet-induced bacterial immunogens in the gastrointestinal tract of dairy cows: impacts on immunity and metabolism.
Acta veterinaria Scandinavica.
2011 Aug; 53(?):48. doi:
10.1186/1751-0147-53-48
. [PMID: 21824438] - Christian Landmann, Stefanie Hücherig, Barbara Fink, Thomas Hoffmann, Daniela Dittlein, Heather A Coiner, Wilfried Schwab. Substrate promiscuity of a rosmarinic acid synthase from lavender (Lavandula angustifolia L.).
Planta.
2011 Aug; 234(2):305-20. doi:
10.1007/s00425-011-1400-5
. [PMID: 21424826] - Ying-Hua Su, Yu-Bo Liu, Xian-Sheng Zhang. Auxin-cytokinin interaction regulates meristem development.
Molecular plant.
2011 Jul; 4(4):616-25. doi:
10.1093/mp/ssr007
. [PMID: 21357646] - Marino Expósito-Rodríguez, Andrés A Borges, Andrés Borges-Pérez, José A Pérez. Gene structure and spatiotemporal expression profile of tomato genes encoding YUCCA-like flavin monooxygenases: the ToFZY gene family.
Plant physiology and biochemistry : PPB.
2011 Jul; 49(7):782-91. doi:
10.1016/j.plaphy.2011.02.022
. [PMID: 21435892] - Naga Kavitha, S Manohar Babu, M E Bhanoji Rao. Influence of Momordica charantia on oxidative stress-induced perturbations in brain monoamines and plasma corticosterone in albino rats.
Indian journal of pharmacology.
2011 Jul; 43(4):424-8. doi:
10.4103/0253-7613.83114
. [PMID: 21844998] - Ming J Jin, Changbae Jin, Jin Y Kim, Moon K In, Oh S Kwon, Hye H Yoo. A quantitative method for simultaneous determination of 5-methoxy-N,N-diisopropyltryptamine and its metabolites in urine using liquid chromatography-electrospray ionization-tandem mass spectrometry.
Journal of forensic sciences.
2011 Jul; 56(4):1044-8. doi:
10.1111/j.1556-4029.2011.01753.x
. [PMID: 21418218] - Jeong Im Kim, Angus S Murphy, Dongwon Baek, Shin-Woo Lee, Dae-Jin Yun, Ray A Bressan, Meena L Narasimhan. YUCCA6 over-expression demonstrates auxin function in delaying leaf senescence in Arabidopsis thaliana.
Journal of experimental botany.
2011 Jul; 62(11):3981-92. doi:
10.1093/jxb/err094
. [PMID: 21511905] - Archana P Raina, Renu Khatri. Quantitative Determination of L-DOPA in Seeds of Mucuna Pruriens Germplasm by High Performance Thin Layer Chromatography.
Indian journal of pharmaceutical sciences.
2011 Jul; 73(4):459-62. doi:
10.4103/0250-474x.95651
. [PMID: 22707835] - Ardiansyah, Hitoshi Shirakawa, Yuto Inagawa, Takuya Koseki, Michio Komai. Regulation of blood pressure and glucose metabolism induced by L-tryptophan in stroke-prone spontaneously hypertensive rats.
Nutrition & metabolism.
2011 Jun; 8(1):45. doi:
10.1186/1743-7075-8-45
. [PMID: 21831334] - Arturo A Vitale, Alicia B Pomilio, Carlos O Cañellas, Martín G Vitale, Eva Maria Putz, Jorge Ciprian-Ollivier. In vivo long-term kinetics of radiolabeled n,n-dimethyltryptamine and tryptamine.
Journal of nuclear medicine : official publication, Society of Nuclear Medicine.
2011 Jun; 52(6):970-7. doi:
10.2967/jnumed.110.083246
. [PMID: 21622895] - Eduardo Alves de Almeida, Paolo Di Mascio, Tatsuo Harumi, D Warren Spence, Adam Moscovitch, Rüdiger Hardeland, Daniel P Cardinali, Gregory M Brown, S R Pandi-Perumal. Measurement of melatonin in body fluids: standards, protocols and procedures.
Child's nervous system : ChNS : official journal of the International Society for Pediatric Neurosurgery.
2011 Jun; 27(6):879-91. doi:
10.1007/s00381-010-1278-8
. [PMID: 21104186] - Yong-Guy Kim, Jin-Hyung Lee, Moo Hwan Cho, Jintae Lee. Indole and 3-indolylacetonitrile inhibit spore maturation in Paenibacillus alvei.
BMC microbiology.
2011 May; 11(?):119. doi:
10.1186/1471-2180-11-119
. [PMID: 21619597] - Miyako Kusano, Mayumi Tabuchi, Atsushi Fukushima, Kazuhiro Funayama, Céline Diaz, Makoto Kobayashi, Naomi Hayashi, Yumiko N Tsuchiya, Hideki Takahashi, Atsuko Kamata, Tomoyuki Yamaya, Kazuki Saito. Metabolomics data reveal a crucial role of cytosolic glutamine synthetase 1;1 in coordinating metabolic balance in rice.
The Plant journal : for cell and molecular biology.
2011 May; 66(3):456-66. doi:
10.1111/j.1365-313x.2011.04506.x
. [PMID: 21255162]