Classification Term: 167940

吡啶生物碱 (ontology term: 696f336fafddacdf61cf5d854681241f)

吡啶生物碱

found 63 associated metabolites at sub_class metabolite taxonomy ontology rank level.

Ancestor: 生物碱

Child Taxonomies: 吡啶类生物碱N-氧化合物

Harman

1-methyl-9H-pyrido[3,4-b]indole

C12H10N2 (182.084394)


Harman is an indole alkaloid fundamental parent with a structure of 9H-beta-carboline carrying a methyl substituent at C-1. It has been isolated from the bark of Sickingia rubra, Symplocus racemosa, Passiflora incarnata, Peganum harmala, Banisteriopsis caapi and Tribulus terrestris, as well as from tobacco smoke. It is a specific, reversible inhibitor of monoamine oxidase A. It has a role as an anti-HIV agent, a plant metabolite and an EC 1.4.3.4 (monoamine oxidase) inhibitor. It is an indole alkaloid, an indole alkaloid fundamental parent and a harmala alkaloid. Harman is a natural product found in Ophiopogon, Strychnos johnsonii, and other organisms with data available. An indole alkaloid fundamental parent with a structure of 9H-beta-carboline carrying a methyl substituent at C-1. It has been isolated from the bark of Sickingia rubra, Symplocus racemosa, Passiflora incarnata, Peganum harmala, Banisteriopsis caapi and Tribulus terrestris, as well as from tobacco smoke. It is a specific, reversible inhibitor of monoamine oxidase A. Isolated from roots of Panax ginseng and Codonopsis lanceolata (todok). Struct. has now been shown to be identical with 1-Acetyl-b-carboline CHK59-M Harman is found in chicory. Harman is an alkaloid from the may pop (Passiflora incarnata, Passifloraceae) and many other Passiflora sp [Raw Data] CB042_Harman_pos_30eV_CB000019.txt [Raw Data] CB042_Harman_pos_20eV_CB000019.txt [Raw Data] CB042_Harman_pos_40eV_CB000019.txt [Raw Data] CB042_Harman_pos_10eV_CB000019.txt [Raw Data] CB042_Harman_pos_50eV_CB000019.txt [Raw Data] CB042_Harman_neg_50eV_000012.txt [Raw Data] CB042_Harman_neg_30eV_000012.txt [Raw Data] CB042_Harman_neg_40eV_000012.txt [Raw Data] CB042_Harman_neg_20eV_000012.txt [Raw Data] CB042_Harman_neg_10eV_000012.txt Harman. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=486-84-0 (retrieved 2024-06-29) (CAS RN: 486-84-0). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Harmane, a β-Carboline alkaloid (BCA), is a potent neurotoxin that causes severe action tremors and psychiatric manifestations. Harmane shows 1000-fold selectivity for I1-Imidazoline receptor (IC50=30 nM) over α2-adrenoceptor (IC50=18 μM). Harmane is also a potent and selective inhibitor of monoamine oxidase (MAO) (IC50s=0.5 and 5 μM for human MAO A/B, respectively). Harmane exhibits comutagenic effect[1][2][3][4]. Harmane, a β-Carboline alkaloid (BCA), is a potent neurotoxin that causes severe action tremors and psychiatric manifestations. Harmane shows 1000-fold selectivity for I1-Imidazoline receptor (IC50=30 nM) over α2-adrenoceptor (IC50=18 μM). Harmane is also a potent and selective inhibitor of monoamine oxidase (MAO) (IC50s=0.5 and 5 μM for human MAO A/B, respectively). Harmane exhibits comutagenic effect[1][2][3][4]. Harmane, a β-Carboline alkaloid (BCA), is a potent neurotoxin that causes severe action tremors and psychiatric manifestations. Harmane shows 1000-fold selectivity for I1-Imidazoline receptor (IC50=30 nM) over α2-adrenoceptor (IC50=18 μM). Harmane is also a potent and selective inhibitor of monoamine oxidase (MAO) (IC50s=0.5 and 5 μM for human MAO A/B, respectively). Harmane exhibits comutagenic effect[1][2][3][4].

   

Huperzine

1H-5,10b-Propeno-1,7-phenanthrolin-8(7H)-one, 2,3,4,4a,5,6-hexahydro-12-methyl-, [4aR-(4aalpha,5alpha,10balpha)]-

C16H20N2O (256.157555)


Huperzine b is a phenanthrol. Huperzine B is a novel acetylcholinesterase inhibitor. Huperzine b is a natural product found in Huperzia quasipolytrichoides, Huperzia herteriana, and other organisms with data available. Huperzine B is a Lycopodium alkaloid isolated from Huperzia serrata and a highly selective acetylcholinesterase (AChE) inhibitor. Huperzine B can be uesd to can be used to improve Alzheimer's disease[1][2]. Huperzine B is a Lycopodium alkaloid isolated from Huperzia serrata and a highly selective acetylcholinesterase (AChE) inhibitor. Huperzine B can be uesd to can be used to improve Alzheimer's disease[1][2].

   

Galantamine

(1S,12S,14R)-9-methoxy-4-methyl-11-oxa-4-azatetracyclo[8.6.1.01,12.06,17]heptadeca-6(17),7,9,15-tetraen-14-ol

C17H21NO3 (287.1521356)


Galanthamine is a benzazepine alkaloid isolated from certain species of daffodils. It has a role as an antidote to curare poisoning, an EC 3.1.1.7 (acetylcholinesterase) inhibitor, a cholinergic drug, an EC 3.1.1.8 (cholinesterase) inhibitor and a plant metabolite. It is an organic heterotetracyclic compound, a tertiary amino compound, a benzazepine alkaloid and a benzazepine alkaloid fundamental parent. It is a conjugate base of a galanthamine(1+). Galantamine is a tertiary alkaloid and reversible, competitive inhibitor of the acetylcholinesterase (AChE) enzyme, which is a widely studied therapeutic target used in the treatment of Alzheimers disease. First characterized in the early 1950s, galantamine is a tertiary alkaloid that was extracted from botanical sources, such as Galanthus nivalis. Galantamine was first studied in paralytic and neuropathic conditions, such as myopathies and postpolio paralytic conditions, and for reversal of neuromuscular blockade. Following the discovery of its AChE-inhibiting properties, the cognitive effects of galantamine were studied in a wide variety of psychiatric disorders such as mild cognitive impairment, cognitive impairment in schizophrenia and bipolar disorder, and autism; however, re-development of the drug for Alzheimer’s disease did not commence until the early 1990s due to difficulties in extraction and synthesis. Galantamine blocks the breakdown of acetylcholine in the synaptic cleft, thereby increasing acetylcholine neurotransmission. It also acts as an allosteric modulator of the nicotinic receptor, giving its dual mechanism of action clinical significance. The drug was approved by the FDA in 2001 for the treatment of mild to moderate dementia of the Alzheimers type. As Alzheimers disease is a progressive neurodegenerative disorder, galantamine is not known to alter the course of the underlying dementing process. Galantamine works to block the enzyme responsible for the breakdown of acetylcholine in the synaptic cleft, thereby enhancing cholinergic neuron function and signalling. Under this hypothesized mechanism of action, the therapeutic effects of galantamine may decrease as the disease progression advances and fewer cholinergic neurons remain functionally intact. It is therefore not considered to be a disease-modifying drug. Galantamine is marketed under the brand name Razadyne, and is available as oral immediate- and extended-release tablets and solution. Galantamine is a Cholinesterase Inhibitor. The mechanism of action of galantamine is as a Cholinesterase Inhibitor. Galantamine is an oral acetylcholinesterase inhibitor used for therapy of Alzheimer disease. Galantamine is associated with a minimal rate of serum enzyme elevations during therapy and has not been implicated as a cause of clinically apparent liver injury. Galantamine is a natural product found in Pancratium trianthum, Lycoris sanguinea, and other organisms with data available. A benzazepine derived from norbelladine. It is found in GALANTHUS and other AMARYLLIDACEAE. It is a cholinesterase inhibitor that has been used to reverse the muscular effects of GALLAMINE TRIETHIODIDE and TUBOCURARINE and has been studied as a treatment for ALZHEIMER DISEASE and other central nervous system disorders. See also: Galantamine Hydrobromide (active moiety of). A benzazepine derived from norbelladine. It is found in galanthus and other amaryllidaceae. Galantamine is a cholinesterase inhibitor that has been used to reverse the muscular effects of gallamine triethiodide and tubocurarine, and has been studied as a treatment for Alzheimers disease and other central nervous system disorders. [PubChem] D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D010277 - Parasympathomimetics D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors N - Nervous system > N06 - Psychoanaleptics > N06D - Anti-dementia drugs > N06DA - Anticholinesterases D002491 - Central Nervous System Agents > D018697 - Nootropic Agents A benzazepine alkaloid isolated from certain species of daffodils. C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor D004791 - Enzyme Inhibitors Galanthamine is a potent acetylcholinesterase (AChE) inhibitor with an IC50 of 500 nM. Galanthamine is a potent acetylcholinesterase (AChE) inhibitor with an IC50 of 500 nM.

   

febrifugine

3-[[(3aS,7aS)-2-hydroxy-3a,4,5,6,7,7a-hexahydro-3H-furo[3,2-b]pyridin-2-yl]methyl]quinazolin-4-one

C16H19N3O3 (301.1426344)


Isofebrifugine is a member of quinazolines. Isofebrifugine is a natural product found in Hydrangea febrifuga and Hydrangea macrophylla with data available. Febrifugine is a quinazolinone alkaloid found in the roots and leaves of Dichroa febrifuga, with antimalarial activity [1]. Febrifugine is a quinazolinone alkaloid found in the roots and leaves of Dichroa febrifuga, with antimalarial activity [1].

   

Alstonine

Oxayohimbanium, 3,4,5,6,16,17-hexadehydro-16-(methoxycarbonyl)-19-methyl-, inner salt, (19α,20α)-

C21H20N2O3 (348.147385)


Alstonine is an indole alkaloid with formula C21H20N2O3, isolated from several Rauvolfia species and exhibits antipsychotic activity. It has a role as an antipsychotic agent. It is a methyl ester, an organic heteropentacyclic compound, a zwitterion and an indole alkaloid. It is a conjugate base of an alstonine(1+). Alstonine is a natural product found in Alstonia constricta, Rauvolfia vomitoria, and other organisms with data available. An indole alkaloid with formula C21H20N2O3, isolated from several Rauvolfia species and exhibits antipsychotic activity. Oxayohimbanium, 3,4,5,6,16,17-hexadehydro-16-(methoxycarbonyl)-19-methyl-, inner salt, (19α,20α)-. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=642-18-2 (retrieved 2024-07-04) (CAS RN: 642-18-2). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Anagyrine

7,14-Methano-4H,6H-dipyrido(1,2-a:1,2-e)(1,5)diazocin-4-one, 7,7a,8,9,10,11,13,14-octahydro-, (7R-(7alpha,7aalpha,14alpha))-

C15H20N2O (244.157555)


Anagyrine is an alkaloid. Anagyrine is a natural product found in Daphniphyllum oldhamii, Ormosia fordiana, and other organisms with data available. Thermospine is a natural product found in Platycelyphium voense, Thermopsis mongolica, and other organisms with data available. Thermopsine is a quinolizidine alkaloid isolated from the fruits and pods and stem bark of Sophora velutina subsp. Thermopsine has antibacterial activity[1].

   

Trigonelline (N'-methylnicotinate)

Pyridinium, 3-carboxy-1-methyl-, hydroxide, inner salt

C7H7NO2 (137.0476762)


Trigonelline, also known as caffearin or gynesine, belongs to the class of organic compounds known as alkaloids and derivatives. These are naturally occurring chemical compounds that contain mostly basic nitrogen atoms. This group also includes some related compounds with neutral and even weakly acidic properties. Also some synthetic compounds of similar structure are attributed to alkaloids. In addition to carbon, hydrogen and nitrogen, alkaloids may also contain oxygen, sulfur and more rarely other elements such as chlorine, bromine, and phosphorus. It is also found in coffee, where it may help to prevent dental caries by preventing the bacteria Streptococcus mutans from adhering to teeth. Trigonelline is an alkaloid with chemical formula C7H7NO2 and CAS number 535-83-1. Trigonelline is a product of the metabolism of niacin (vitamin B3) which is excreted in the urine. High amounts of trigonelline have been found in arabica coffee, fenugreeks, and common peas. Another foods such as yellow bell peppers, orange bellpeppers and muskmelons also contain trigonelline but in lower concentrations. Trigonelline has also been detected but not quantified in several different foods, such as rices, triticales, alfalfa, cereals and cereal products, and ryes. Trigonelline in the urine is a biomarker for the consumption of coffee, legumes and soy products. Alkaloid from fenugreek (Trigonella foenum-graecum) (Leguminosae), and very many other subspecies; also present in coffee beans and many animals. Trigonelline is an alkaloid with chemical formula C7H7NO2 and CAS number 535-83-1. It is found in coffee, where it may help to prevent dental caries by preventing the bacteria Streptococcus mutans from adhering to teeth.; Trigonelline is an alkaloid with chemical formula C7H7NO2. It is an inner salt formed by the addition of a methyl group to the nitrogen atom of niacin. Trigonelline is a product of the metabolism of niacin (vitamin B3) which is excreted in the urine. Trigonelline in the urine is a biomarker for the consumption of coffee, legumes and soy products. N-methylnicotinate is an iminium betaine that is the conjugate base of N-methylnicotinic acid, arising from deprotonation of the carboxy group. It has a role as a plant metabolite, a food component and a human urinary metabolite. It is an iminium betaine and an alkaloid. It is functionally related to a nicotinate. It is a conjugate base of a N-methylnicotinic acid. Trigonelline is a natural product found in Hypoestes phyllostachya, Schumanniophyton magnificum, and other organisms with data available. See also: Fenugreek seed (part of). Acquisition and generation of the data is financially supported in part by CREST/JST. CONFIDENCE standard compound; ML_ID 52 KEIO_ID T060 Trigonelline is an alkaloid with potential antidiabetic activity that can be isolated from Trigonella foenum-graecum L or Leonurus artemisia. Trigonelline is a potent Nrf2 inhibitor that blocks Nrf2-dependent proteasome activity, thereby enhancing apoptosis in pancreatic cancer cells. Trigonelline also has anti-HSV-1, antibacterial, and antifungal activity and induces ferroptosis. Trigonelline is an alkaloid with potential antidiabetic activity that can be isolated from Trigonella foenum-graecum L or Leonurus artemisia. Trigonelline is a potent Nrf2 inhibitor that blocks Nrf2-dependent proteasome activity, thereby enhancing apoptosis in pancreatic cancer cells. Trigonelline also has anti-HSV-1, antibacterial, and antifungal activity and induces ferroptosis.

   

β-Obscurine

(1R,9S,10R,16R)-14,16-dimethyl-6,14-diazatetracyclo[7.5.3.0(1,10).0(2,7)]heptadeca-2(7),3-dien-5-one

C17H24N2O (272.18885339999997)


Beta-obscurine is a quinoline alkaloid and an organic heterotetracyclic compound. beta-Obscurine is a natural product found in Diphasiastrum digitatum, Dendrolycopodium dendroideum, and other organisms with data available.

   

Methyl nigakinone

3,4-dimethoxy-1,6-diazatetracyclo[7.6.1.0^{5,16.0^{10,15]hexadeca-3,5(16),6,8,10,12,14-heptaen-2-one

C16H12N2O3 (280.0847882)


Methyl nigakinone is a member of beta-carbolines. 4,5-Dimethoxycanthin-6-one is a natural product found in Alangium chinense, Picrasma quassioides, and Eurycoma longifolia with data available. 4,5-Dimethoxycanthin-6-one is a potent and uncompetitive inhibitor of CYP1A2-mediated phenacetin O-deethylation with an IC50 value of 1.7μM and a Ki value of 2.6 μM. 4,5-Dimethoxycanthin-6-one, as an alkaloid, is isolated from the wood of Picrasma quassioides BENNET (Simaroubaceae)[1][2]. 4,5-Dimethoxycanthin-6-one is a potent and uncompetitive inhibitor of CYP1A2-mediated phenacetin O-deethylation with an IC50 value of 1.7μM and a Ki value of 2.6 μM. 4,5-Dimethoxycanthin-6-one, as an alkaloid, is isolated from the wood of Picrasma quassioides BENNET (Simaroubaceae)[1][2].

   

Sophoramine

(1S,9S,17S)-7,13-diazatetracyclo[7.7.1.0?,?.0??,??]heptadeca-2,4-dien-6-one

C15H20N2O (244.157555)


Sophoramine is a naphthyridine derivative. Sophoramine is a natural product found in Sophora viciifolia, Sophora pachycarpa, and other organisms with data available.

   

Cytisine

Cytisine

C11H14N2O (190.1106074)


N - Nervous system > N07 - Other nervous system drugs > N07B - Drugs used in addictive disorders > N07BA - Drugs used in nicotine dependence C78272 - Agent Affecting Nervous System > C47796 - Cholinergic Agonist > C73579 - Nicotinic Agonist relative retention time with respect to 9-anthracene Carboxylic Acid is 0.054 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.052 Cytisinicline (Cytisine) is an alkaloid. Cytisinicline (Cytisine) is a partial agonist of α4β2 nAChRs[1], and partial to full agonist at β4 containing receptors and α7 receptors[2]. Has been used medically to help with smoking cessation[3]. Cytisinicline (Cytisine) is an alkaloid. Cytisinicline (Cytisine) is a partial agonist of α4β2 nAChRs[1], and partial to full agonist at β4 containing receptors and α7 receptors[2]. Has been used medically to help with smoking cessation[3]. Cytisinicline (Cytisine) is an alkaloid. Cytisinicline (Cytisine) is a partial agonist of α4β2 nAChRs[1], and partial to full agonist at β4 containing receptors and α7 receptors[2]. Has been used medically to help with smoking cessation[3].

   

Oxymatrine

1H,5H,10H-Dipyrido(2,1-f:3,2,1-ij)(1,6)naphthyridin-10-one, dodecahydro-, 4-oxide, (4R,7aS,13aR,13bR,13cS)-

C15H24N2O2 (264.18376839999996)


Ammothamnine is an alkaloid and a tertiary amine oxide. Oxymatrine is a natural product found in Sophora pachycarpa, Sophora chrysophylla, and other organisms with data available. D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D000890 - Anti-Infective Agents > D000998 - Antiviral Agents Origin: Plant; SubCategory_DNP: Alkaloids derived from lysine, Quinolizidine alkaloids, Sophora alkaloid Oxymatrine is under investigation in clinical trial NCT02202473 (Oxymatrine Plus Lamivudine Combination Therapy Versus Lamivudine Monotherapy for Chronic Hepatitis B Infected Subjects). Matrine oxide is a natural product found in Daphniphyllum oldhamii, Sophora viciifolia, and other organisms with data available. Oxymatrine, an alkaloid from Sophora flavescens Alt. with anti-inflammatory, antifibrosis, and antitumor effects, inhibits the iNOS expression and TGF-β/Smad pathway. Oxymatrine inhibits bocavirus minute virus of canines (MVC) replication, reduces viral gene expression and decreases apoptosis induced by viral infection. Oxymatrine, an alkaloid from Sophora flavescens Alt. with anti-inflammatory, antifibrosis, and antitumor effects, inhibits the iNOS expression and TGF-β/Smad pathway. Oxymatrine inhibits bocavirus minute virus of canines (MVC) replication, reduces viral gene expression and decreases apoptosis induced by viral infection. Oxysophoridine (Sophoridine N-oxide) is a bioactive alkaloid extracted from the Sophora alopecuroides Linn. Oxysophoridine (Sophoridine N-oxide) shows anti inflammatory, anti oxidative stress and anti apoptosis effects[1][2]. Oxysophoridine (Sophoridine N-oxide) is a bioactive alkaloid extracted from the Sophora alopecuroides Linn. Oxysophoridine (Sophoridine N-oxide) shows anti inflammatory, anti oxidative stress and anti apoptosis effects[1][2].

   

1-Methylnicotinamide

N(1)-Methylnicotinamide iodide, 3-(aminocarbonyl-13C)-labeled

[C7H9N2O]+ (137.0714844)


1-Methylnicotinamide is a metabolite of nicotinamide and is produced primarily in the liver. It has anti-inflammatory properties (PMID 16197374). It is a product of nicotinamide N-methyltransferase [EC 2.1.1.1] in the pathway of nicotinate and nicotinamide metabolism (KEGG). 1-Methylnicotinamide may be an endogenous activator of prostacyclin production and thus may regulate thrombotic as well as inflammatory processes in the cardiovascular system (PMID: 17641676). [HMDB] 1-Methylnicotinamide is a metabolite of nicotinamide and is produced primarily in the liver. It has anti-inflammatory properties (PMID 16197374). It is a product of nicotinamide N-methyltransferase [EC 2.1.1.1] in the pathway of nicotinate and nicotinamide metabolism (KEGG). 1-Methylnicotinamide may be an endogenous activator of prostacyclin production and thus may regulate thrombotic as well as inflammatory processes in the cardiovascular system (PMID: 17641676). 1-Methylnicotinamide. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=3106-60-3 (retrieved 2024-08-06) (CAS RN: 3106-60-3). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Securinine

6,10-METHANOPYRIDO(1,2-A)AZEPINE-.GAMMA.9(6H),.ALPHA.-ACETIC ACID,1,2,3,4,10,10A-HEXAHYDRO-10-HYDROXY-, .GAMMA.-LACTONE

C13H15NO2 (217.110273)


Securinine is a member of indolizines. Securinine is a natural product found in Flueggea suffruticosa, Flueggea virosa, and other organisms with data available. See also: Phyllanthus amarus top (part of). relative retention time with respect to 9-anthracene Carboxylic Acid is 0.053 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.052 (-)-Securinine is plant-derived alkaloid and also a GABAA receptor antagonist. (-)-Securinine is plant-derived alkaloid and also a GABAA receptor antagonist. (-)-Securinine is plant-derived alkaloid and also a GABAA receptor antagonist. (-)-Securinine is plant-derived alkaloid and also a GABAA receptor antagonist. (-)-Securinine is plant-derived alkaloid and also a GABAA receptor antagonist. (-)-Securinine is plant-derived alkaloid and also a GABAA receptor antagonist. Allosecurinine (Phyllochrysine) is a Securinega alkaloid isolated from Phyllanthus glaucus [1].

   

Matrine

1H,5H,10H-DIPYRIDO(2,1-F:3,2,1-IJ)(1,6)NAPHTHYRIDIN-10-ONE, DODECAHYDRO-, (7AR-(7A.ALPHA.,13A.ALPHA.,13B.BETA.,13C.BETA.))-

C15H24N2O (248.18885339999997)


Matrine is an alkaloid. Matrine is a natural product found in Daphniphyllum oldhamii, Sophora viciifolia, and other organisms with data available. Matrine is an alkaloid found in plants from the Sophora genus. It has a variety of pharmacological effects, including anti-cancer effects, and action as a kappa opioid receptor and μ-receptor agonist. Tetracyclic bis-quinolizidine alkaloids found in the family LEGUMINOSAE, mainly in the genus SOPHORA. See also: Matrine; salicylic acid (component of). Annotation level-1 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.230 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.224 Sophoridine is a natural product found in Sophora viciifolia, Leontice leontopetalum, and other organisms with data available. Tetracyclic bis-quinolizidine alkaloids found in the family LEGUMINOSAE, mainly in the genus SOPHORA. INTERNAL_ID 2268; CONFIDENCE Reference Standard (Level 1) CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2268 Matrine (Matridin-15-one) is an alkaloid found in plants from the Sophora genus that can act as a kappa opioid receptor and u-receptor agonist. Matrine has a variety of pharmacological effects, including anti-cancer, anti-oxidative stress, anti-inflammation and anti-apoptosis effects. Matrine is potential in the research of disease like human non-small cell lung cancer, hepatoma, papillary thyroid cancer and acute kidney injury (AKI)[1][2][3][4][5]. Matrine (Matridin-15-one) is an alkaloid found in plants from the Sophora genus that can act as a kappa opioid receptor and u-receptor agonist. Matrine has a variety of pharmacological effects, including anti-cancer, anti-oxidative stress, anti-inflammation and anti-apoptosis effects. Matrine is potential in the research of disease like human non-small cell lung cancer, hepatoma, papillary thyroid cancer and acute kidney injury (AKI)[1][2][3][4][5]. Matrine (Matridin-15-one) is an alkaloid found in plants from the Sophora genus that can act as a kappa opioid receptor and u-receptor agonist. Matrine has a variety of pharmacological effects, including anti-cancer, anti-oxidative stress, anti-inflammation and anti-apoptosis effects. Matrine is potential in the research of disease like human non-small cell lung cancer, hepatoma, papillary thyroid cancer and acute kidney injury (AKI)[1][2][3][4][5]. Sophoridine is a quinolizidine alkaloid isolated from Leguminous plant Sophora flavescens. Sophoridine induces apoptosis. Sophoridine has the potential to be a novel, potent and selective antitumor agent candidate for pancreatic cancer with well-tolerated toxicity[1]. Sophoridine is a quinolizidine alkaloid isolated from Leguminous plant Sophora flavescens. Sophoridine induces apoptosis. Sophoridine has the potential to be a novel, potent and selective antitumor agent candidate for pancreatic cancer with well-tolerated toxicity[1].

   

Arecaidine

3-Pyridinecarboxylic acid, 1,2,5,6-tetrahydro-1-methyl-

C7H11NO2 (141.0789746)


Arecaidine is found in nuts. Arecaidine is an alkaloid from nuts of Areca catechu (betel nuts Arecaidine is a citraconoyl group. Arecaidine, a pyridine alkaloid, is a potent GABA uptake inhibitor. Arecaidine is a substrate of H+-coupled amino acid transporter 1 (PAT1, SLC36A1) and competitively inhibits L-proline uptake[1][2]. Arecaidine, a pyridine alkaloid, is a potent GABA uptake inhibitor. Arecaidine is a substrate of H+-coupled amino acid transporter 1 (PAT1, SLC36A1) and competitively inhibits L-proline uptake[1][2]. Arecaidine, a pyridine alkaloid, is a potent GABA uptake inhibitor. Arecaidine is a substrate of H+-coupled amino acid transporter 1 (PAT1, SLC36A1) and competitively inhibits L-proline uptake[1][2].

   

Caulophylline

(-)-N-methylcytisine

C12H16N2O (204.12625659999998)


N-Methylcytisine (Caulophylline), a tricyclic quinolizidine alkaloid, exerts hypoglycaemic, analgesic and anti-inflammatory activities. N-methylcytisine is a selective ligand of nicotinic receptors of acetylcholine in the central nervous system and has a high affinity (Kd = 50 nM) to nicotinic acetylcholine receptors (nAChR) from squid optical ganglia[1][2]. N-Methylcytisine (Caulophylline), a tricyclic quinolizidine alkaloid, exerts hypoglycaemic, analgesic and anti-inflammatory activities. N-methylcytisine is a selective ligand of nicotinic receptors of acetylcholine in the central nervous system and has a high affinity (Kd = 50 nM) to nicotinic acetylcholine receptors (nAChR) from squid optical ganglia[1][2]. N-Methylcytisine (Caulophylline), a tricyclic quinolizidine alkaloid, exerts hypoglycaemic, analgesic and anti-inflammatory activities. N-methylcytisine is a selective ligand of nicotinic receptors of acetylcholine in the central nervous system and has a high affinity (Kd = 50 nM) to nicotinic acetylcholine receptors (nAChR) from squid optical ganglia[1][2].

   

Cyclopamine

Spiro[9H-benzo[a]fluorene-9,2(3H)-furo[3,2-b]pyridin]-3-ol, 1,2,3,3a,4,4,5,6,6,6a,6b,7,7,7a,8,11,11a,11b-octadecahydro-3,6,10,11b-tetramethyl-, (2R,3S,3R,3aS,6S,6aS,6bS,7aR,11aS,11bR)- (9CI)

C27H41NO2 (411.31371260000003)


Cyclopamine is a member of piperidines. It has a role as a glioma-associated oncogene inhibitor. Cyclopamine is a natural product found in Veratrum grandiflorum, Veratrum dahuricum, and Veratrum californicum with data available. Cyclopamine is a naturally occurring chemical that belongs to the group of steroidal jerveratrum alkaloids. It is a teratogen isolated from the corn lily (Veratrum californicum) that causes usually fatal birth defects. It can prevent the fetal brain from dividing into two lobes (holoprosencephaly) and cause the development of a single eye (cyclopia). It does so by inhibiting the hedgehog signaling pathway (Hh). Cyclopamine is useful in studying the role of Hh in normal development, and as a potential treatment for certain cancers in which Hh is overexpressed. D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents > D014704 - Veratrum Alkaloids CONFIDENCE standard compound; INTERNAL_ID 654; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7995; ORIGINAL_PRECURSOR_SCAN_NO 7993 CONFIDENCE standard compound; INTERNAL_ID 654; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8002; ORIGINAL_PRECURSOR_SCAN_NO 8001 CONFIDENCE standard compound; INTERNAL_ID 654; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8041; ORIGINAL_PRECURSOR_SCAN_NO 8038 CONFIDENCE standard compound; INTERNAL_ID 654; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8047; ORIGINAL_PRECURSOR_SCAN_NO 8046 CONFIDENCE standard compound; INTERNAL_ID 654; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8048; ORIGINAL_PRECURSOR_SCAN_NO 8045 CONFIDENCE standard compound; INTERNAL_ID 654; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7958; ORIGINAL_PRECURSOR_SCAN_NO 7956 Data obtained from a cyclopamine standard purchased from Logan Natural Products, Logan, Utah USA. Cyclopamine is a Hedgehog (Hh) pathway antagonist with an IC50 of 46 nM in the Hh cell assay. Cyclopamine is also a selective Smo inhibitor. Cyclopamine is a Hedgehog (Hh) pathway antagonist with an IC50 of 46 nM in the Hh cell assay. Cyclopamine is also a selective Smo inhibitor.

   

Isoandrocymbine

(1R,10S)-5-hydroxy-3,4,14-trimethoxy-18-methyl-18-azatetracyclo[8.5.3.01,11.02,7]octadeca-2,4,6,11,14-pentaen-13-one

C21H25NO5 (371.173264)


Isoandrocymbine is an isoquinoline alkaloid. Isoandrocymbine has been reported in Colchicum autumnale

   

O-methylandrocymbine

(1R,10S)-3,4,5,14-tetramethoxy-18-methyl-18-azatetracyclo[8.5.3.01,11.02,7]octadeca-2,4,6,11,14-pentaen-13-one

C22H27NO5 (385.1889132)


O-Methylandrocymbine is an isoquinoline alkaloid. O-methylandrocymbine has been reported in Colchicum ritchii, Colchicum schimperi, and Colchicum szovitsii

   

(+)-Nicotine

(±)-3-(1-Methyl-2-pyrrolidinyl)pyridine

C10H14N2 (162.1156924)


Chemical Structure of (+)-Nicotine: (+)-Nicotine, also known as d-nicotine, has a complex chemical structure that consists of a pyridine ring with a methyl group at position 3 and a pyrrolidine ring at position 2. The molecular formula of nicotine is C10H14N2. The presence of a nitrogen-containing pyridine ring and a pyrrolidine ring makes nicotine a type of alkaloid. The (+) sign indicates that this is the dextrorotatory isomer, meaning it rotates plane-polarized light to the right. The chemical structure can be described as follows: A six-membered pyridine ring, which is a nitrogen-containing aromatic heterocycle. A methyl group (-CH3) attached to the pyridine ring at the 3-position. A five-membered pyrrolidine ring, which is a saturated nitrogen-containing heterocycle, fused to the pyridine ring at the 2-position. The pyrrolidine ring contains a secondary amine group (-NH-), which is part of the ring structure. Biological Functions of (+)-Nicotine: Neurotransmitter Mimic: (+)-Nicotine acts as an agonist at nicotinic acetylcholine receptors (nAChRs), which are ligand-gated ion channels found in both the central and peripheral nervous systems. By binding to these receptors, nicotine mimics the action of the neurotransmitter acetylcholine, leading to the release of various neurotransmitters and hormones. Central Nervous System Stimulation: When (+)-nicotine binds to nAChRs in the brain, it can increase the release of dopamine, a neurotransmitter associated with reward and pleasure. This effect contributes to the addictive properties of nicotine. Cardiovascular Effects: (+)-Nicotine can have various effects on the cardiovascular system, including increasing heart rate and blood pressure due to the stimulation of nAChRs on adrenergic neurons, which leads to the release of catecholamines (e.g., adrenaline). Metabolic Effects: Nicotine can increase metabolic rate and decrease appetite, which can lead to weight loss in some individuals. Insecticide: (+)-Nicotine has insecticidal properties and has been used historically as a pesticide. It acts by binding to nAChRs in insects, causing paralysis and death. Therapeutic Uses: (+)-Nicotine is used in nicotine replacement therapies (NRT), such as patches, gum, lozenges, and inhalers, to help smokers reduce withdrawal symptoms and quit smoking. It is also being investigated for its potential therapeutic effects in neurological disorders like Alzheimer’s disease and Parkinson’s disease. Toxicity: At high doses, (+)-nicotine can be toxic, leading to nausea, vomiting, dizziness, and in severe cases, respiratory failure and death due to its paralytic effects on the respiratory center. (+)-Nicotine, also known as nikotin or L-nicotine, belongs to the class of organic compounds known as pyrrolidinylpyridines. Pyrrolidinylpyridines are compounds containing a pyrrolidinylpyridine ring system, which consists of a pyrrolidine ring linked to a pyridine ring (+)-Nicotine is a primary metabolite. Primary metabolites are metabolically or physiologically essential metabolites. They are directly involved in an organism’s growth, development or reproduction. Based on a literature review a significant number of articles have been published on (+)-Nicotine. This compound has been identified in human blood as reported by (PMID: 31557052 ). (+)-nicotine is not a naturally occurring metabolite and is only found in those individuals exposed to this compound or its derivatives. Technically (+)-Nicotine is part of the human exposome. The exposome can be defined as the collection of all the exposures of an individual in a lifetime and how those exposures relate to health. An individual's exposure begins before birth and includes insults from environmental and occupational sources.

   

Ginkgotoxin

5-Hydroxy-4-(methoxymethyl)-6-methyl-3-pyridinemethanol, 9CI

C9H13NO3 (183.0895388)


Ginkgotoxin is a member of pyridines. 5-(Hydroxymethyl)-4-(methoxymethyl)-2-methylpyridin-3-ol is a natural product found in Ginkgo biloba with data available. Ginkgotoxin is found in fats and oils. Ginkgotoxin is isolated from seeds of maidenhair tree Ginkgo bilob 4'-O-Methylpyridoxine, a natural compound, possesses antioxidant activity[1]. 4'-O-Methylpyridoxine, a natural compound, possesses antioxidant activity[1].

   

5-Methoxycanthin-6-one

3-methoxy-1,6-diazatetracyclo[7.6.1.0^{5,16}.0^{10,15}]hexadeca-3,5(16),6,8,10,12,14-heptaen-2-one

C15H10N2O2 (250.07422400000002)


5-Methoxycanthin-6-one is an alkaloid and an organic heterotetracyclic compound. 5-Methoxycanthin-6-one is a natural product found in Zanthoxylum caribaeum, Fagaropsis angolensis, and other organisms with data available. 5-Methoxycanthin-6-one is an alkaloid from the wood of Picrasma excelsa (Jamaican quassiawood

   

Viadent

24-methyl-5,7,18,20-tetraoxa-24-azoniahexacyclo[11.11.0.0^{2,10.0^{4,8.0^{14,22.0^{17,21]tetracosa-1(24),2,4(8),9,11,13,15,17(21),22-nonaene;chloride

C20H14NO4+.Cl- (367.0611314000001)


Sanguinarine (Sanguinarin) chloride, a benzophenanthridine alkaloid derived from the root of Sanguinaria Canadensis, can stimulate apoptosis via activating the production of reactive oxygen species (ROS). Sanguinarine-induced apoptosis is associated with the activation of JNK and NF-κB. Sanguinarine (Sanguinarin) chloride, a benzophenanthridine alkaloid derived from the root of Sanguinaria Canadensis, can stimulate apoptosis via activating the production of reactive oxygen species (ROS). Sanguinarine-induced apoptosis is associated with the activation of JNK and NF-κB.

   

Tomatidine

5 alpha,20 beta(F),22 alpha(F),25 beta(F),27- azaspirostan-3 beta-ol

C27H45NO2 (415.345011)


Tomatidine is a 3beta-hydroxy steroid resulting from the substitution of the 3beta-hydrogen of tomatidane by a hydroxy group. It is an azaspiro compound, an oxaspiro compound and a 3beta-hydroxy steroid. It is a conjugate base of a tomatidine(1+). It derives from a hydride of a tomatidane. Tomatidine is a natural product found in Solanum dunalianum, Solanum kieseritzkii, and other organisms with data available. CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 20 Tomatidine acts as an anti-inflammatory agent by blocking NF-κB and JNK signaling[1]. Tomatidine activates autophagy either in mammal cells or C elegans[2]. Tomatidine acts as an anti-inflammatory agent by blocking NF-κB and JNK signaling[1]. Tomatidine activates autophagy either in mammal cells or C elegans[2].

   

Harmol

1-Methyl-9H-pyrido[3,4-b]indol-7-ol Monohydrochloride Dihydrate

C12H10N2O (198.079309)


Harmol is a 9H-beta-carboline carrying a methyl substituent at C-1 and a hydroxy group at C-7; major microspecies at pH 7.3. It has a role as an antifungal agent, an apoptosis inducer and an autophagy inducer. It is a harmala alkaloid and an indole alkaloid. It is functionally related to a beta-carboline. Harmol is a natural product found in Fontinalis squamosa, Passiflora foetida, and other organisms with data available. Annotation level-1 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.454 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.443 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.442 Harmol categorized as a β-carboline alkaloid. Harmol is a potent MAO inhibitor used as an analytical reference standard[1]. Harmol categorized as a β-carboline alkaloid. Harmol is a potent MAO inhibitor used as an analytical reference standard[1].

   

Trigonelline

Pyridinium, 3-carboxy-1-methyl-, chloride (1:1); 3-Carboxy-1-methylpyridinium chloride (7CI); Pyridinium, 3-carboxy-1-methyl-, chloride (8CI,9CI); Trigonelline, chloride (6CI); N-Methyl-3-carboxypyridinium chloride; Trigonelline hydrochloride

C7H7NO2.HCl (173.0243538)


Trigonelline chloride is an alkaloid with potential antidiabetic activity that can be isolated from Trigonella foenum-graecum L or Leonurus artemisia. Trigonelline chloride is a potent Nrf2 inhibitor that blocks Nrf2-dependent proteasome activity, thereby enhancing apoptosis in pancreatic cancer cells. Trigonelline chloride also has anti-HSV-1, antibacterial, and antifungal activity, and induces ferroptosis. Trigonelline chloride is an alkaloid with potential antidiabetic activity that can be isolated from Trigonella foenum-graecum L or Leonurus artemisia. Trigonelline chloride is a potent Nrf2 inhibitor that blocks Nrf2-dependent proteasome activity, thereby enhancing apoptosis in pancreatic cancer cells. Trigonelline chloride also has anti-HSV-1, antibacterial, and antifungal activity, and induces ferroptosis.

   

Cotinine

(5S)-1-methyl-5-pyridin-3-ylpyrrolidin-2-one

C10H12N2O (176.09495819999998)


(-)-cotinine is an N-alkylpyrrolidine that consists of N-methylpyrrolidinone bearing a pyridin-3-yl substituent at position C-5 (the 5S-enantiomer). It is an alkaloid commonly found in Nicotiana tabacum. It has a role as a biomarker, an antidepressant, a plant metabolite and a human xenobiotic metabolite. It is a N-alkylpyrrolidine, a member of pyridines, a pyrrolidine alkaloid and a member of pyrrolidin-2-ones. Cotinine is a natural product found in Haloxylon persicum and Nicotiana tabacum with data available. Cotinine is the major metabolite of nicotine. The N-glucuronide conjugate of cotinine is a major urinary metabolite of NICOTINE. It thus serves as a biomarker of exposure to tobacco SMOKING. It has CNS stimulating properties. An N-alkylpyrrolidine that consists of N-methylpyrrolidinone bearing a pyridin-3-yl substituent at position C-5 (the 5S-enantiomer). It is an alkaloid commonly found in Nicotiana tabacum. C78272 - Agent Affecting Nervous System > C47796 - Cholinergic Agonist > C73579 - Nicotinic Agonist D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents CONFIDENCE standard compound; INTERNAL_ID 511; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 1258; ORIGINAL_PRECURSOR_SCAN_NO 1257 CONFIDENCE standard compound; INTERNAL_ID 511; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 1284; ORIGINAL_PRECURSOR_SCAN_NO 1280 CONFIDENCE standard compound; INTERNAL_ID 511; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 1276; ORIGINAL_PRECURSOR_SCAN_NO 1275 CONFIDENCE standard compound; INTERNAL_ID 511; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 1277; ORIGINAL_PRECURSOR_SCAN_NO 1275 CONFIDENCE standard compound; INTERNAL_ID 511; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 1282; ORIGINAL_PRECURSOR_SCAN_NO 1281 CONFIDENCE standard compound; INTERNAL_ID 511; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 1264; ORIGINAL_PRECURSOR_SCAN_NO 1263 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 68 CONFIDENCE standard compound; INTERNAL_ID 2283 CONFIDENCE standard compound; INTERNAL_ID 8694 CONFIDENCE standard compound; INTERNAL_ID 8184 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.270 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.268 CONFIDENCE standard compound; INTERNAL_ID 4130 CONFIDENCE standard compound; EAWAG_UCHEM_ID 3282 Cotinine ((-)-Cotinine), an alkaloid in tobacco and a major metabolite of nicotine, is used as a biological indicator to measure the composition of tobacco smoke[1]

   
   

euonine

(19,20,22,23,25-Pentaacetyloxy-26-hydroxy-3,15,26-trimethyl-6,16-dioxo-2,5,17-trioxa-11-azapentacyclo[16.7.1.01,21.03,24.07,12]hexacosa-7(12),8,10-trien-21-yl)methyl acetate

C38H47NO18 (805.2793002000001)


(19,20,22,23,25-Pentaacetyloxy-26-hydroxy-3,15,26-trimethyl-6,16-dioxo-2,5,17-trioxa-11-azapentacyclo[16.7.1.01,21.03,24.07,12]hexacosa-7(12),8,10-trien-21-yl)methyl acetate is a natural product found in Plenckia populnea, Tripterygium hypoglaucum, and Tripterygium wilfordii with data available.

   

Scutebarbatine A

[(1R,2S,3R,4R,4aS,8aR)-3-hydroxy-3,4,8,8a-tetramethyl-4-[(E)-2-(5-oxo-2H-furan-3-yl)ethenyl]-2-(pyridine-3-carbonyloxy)-2,4a,5,6-tetrahydro-1H-naphthalen-1-yl] pyridine-3-carboxylate

C32H34N2O7 (558.2365894)


Scutebarbatine A is a natural product found in Scutellaria barbata with data available.

   

Hypoglaunine A

(18,19,21,22,24-Pentaacetyloxy-14,25-dihydroxy-3,13,14,25-tetramethyl-6,15-dioxo-2,5,16-trioxa-9-azapentacyclo[15.7.1.01,20.03,23.07,12]pentacosa-7(12),8,10-trien-20-yl)methyl furan-3-carboxylate

C41H47NO20 (873.2691302000001)


   

Gelsempervine A

methyl (1S,14S,15E,18R)-15-ethylidene-18-(hydroxymethyl)-17-methyl-12-oxo-10,17-diazatetracyclo[12.3.1.03,11.04,9]octadeca-3(11),4,6,8-tetraene-18-carboxylate

C22H26N2O4 (382.18924760000004)


   

1-Hydroxycanthin-6-one

1-Hydroxycanthin-6-one

C14H8N2O2 (236.0585748)


   

3-Hydroxy-2-methylpyridine

3-Hydroxy-2-methylpyridine

C6H7NO (109.0527612)


3-Hydroxy-2-methylpyridine, isolated from alkaline extracts of cocoa, is used in the synthesis of pyrimidine[1]. 3-Hydroxy-2-methylpyridine, isolated from alkaline extracts of cocoa, is used in the synthesis of pyrimidine[1].

   

Huperzine A

(1R,9S,13Z)-1-amino-13-ethylidene-11-methyl-6-azatricyclo[7.3.1.02,7]trideca-2(7),3,10-trien-5-one

C15H18N2O (242.1419058)


D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors D002491 - Central Nervous System Agents > D018696 - Neuroprotective Agents Origin: Plant; SubCategory_DNP: Sesquiterpenoids D020011 - Protective Agents D004791 - Enzyme Inhibitors (-)-Huperzine A (Huperzine A) is an alkaloid isolated from Huperzia serrata, with neuroprotective activity. (-)-Huperzine A is a potent, highly specific, reversible and blood-brain barrier penetrant inhibitor of acetylcholinesterase (AChE), with an IC50 of 82 nM. (-)-Huperzine A also is non-competitive antagonist of N-methyl-D-aspartate glutamate (NMDA) receptor. (-)-Huperzine A is developed for the research of neurodegenerative diseases, including Alzheimer’s disease[1][2][3][4][5]. (-)-Huperzine A (Huperzine A) is an alkaloid isolated from Huperzia serrata, with neuroprotective activity. (-)-Huperzine A is a potent, highly specific, reversible and blood-brain barrier penetrant inhibitor of acetylcholinesterase (AChE), with an IC50 of 82 nM. (-)-Huperzine A also is non-competitive antagonist of N-methyl-D-aspartate glutamate (NMDA) receptor. (-)-Huperzine A is developed for the research of neurodegenerative diseases, including Alzheimer’s disease[1][2][3][4][5]. (-)-Huperzine A (Huperzine A) is an alkaloid isolated from Huperzia serrata, with neuroprotective activity. (-)-Huperzine A is a potent, highly specific, reversible and blood-brain barrier penetrant inhibitor of acetylcholinesterase (AChE), with an IC50 of 82 nM. (-)-Huperzine A also is non-competitive antagonist of N-methyl-D-aspartate glutamate (NMDA) receptor. (-)-Huperzine A is developed for the research of neurodegenerative diseases, including Alzheimer’s disease[1][2][3][4][5]. (-)-Huperzine A (Huperzine A) is an alkaloid isolated from Huperzia serrata, with neuroprotective activity. (-)-Huperzine A is a potent, highly specific, reversible and blood-brain barrier penetrant inhibitor of acetylcholinesterase (AChE), with an IC50 of 82 nM. (-)-Huperzine A also is non-competitive antagonist of N-methyl-D-aspartate glutamate (NMDA) receptor. (-)-Huperzine A is developed for the research of neurodegenerative diseases, including Alzheimer’s disease[1][2][3][4][5]. (-)-Huperzine A (Huperzine A) is an alkaloid isolated from Huperzia serrata, with neuroprotective activity. (-)-Huperzine A is a potent, highly specific, reversible and blood-brain barrier penetrant inhibitor of acetylcholinesterase (AChE), with an IC50 of 82 nM. (-)-Huperzine A also is non-competitive antagonist of N-methyl-D-aspartate glutamate (NMDA) receptor. (-)-Huperzine A is developed for the research of neurodegenerative diseases, including Alzheimer’s disease[1][2][3][4][5]. (-)-Huperzine A (Huperzine A) is an alkaloid isolated from Huperzia serrata, with neuroprotective activity. (-)-Huperzine A is a potent, highly specific, reversible and blood-brain barrier penetrant inhibitor of acetylcholinesterase (AChE), with an IC50 of 82 nM. (-)-Huperzine A also is non-competitive antagonist of N-methyl-D-aspartate glutamate (NMDA) receptor. (-)-Huperzine A is developed for the research of neurodegenerative diseases, including Alzheimer’s disease[1][2][3][4][5]. (±)-Huperzine A, an active Lycopodium alkaloid extracted from traditional Chinese herb, is a potent, selective and reversible acetylcholinesterase (AChE) inhibitor and has been widely used in China for the treatment of Alzheimer's disease (AD). IC50 value: Target: AChE (±)-Huperzine A exhibited protective effects against d-gal-induced hepatotoxicity and inflamm-aging by inhibiting AChE activity and via the activation of the cholinergic anti-inflammatory pathway. The (±)-Huperzine A mechanism might be involved in the inhibition of DAMPs-mediated NF-κB nuclear localization and activation. (±)-Huperzine A is a potential therapeutic agent for Alzheimer's disease. (±)-Huperzine A, an active Lycopodium alkaloid extracted from traditional Chinese herb, is a potent, selective and reversible acetylcholinesterase (AChE) inhibitor and has been widely used in China for the treatment of Alzheimer's disease (AD). IC50 value: Target: AChE (±)-Huperzine A exhibited protective effects against d-gal-induced hepatotoxicity and inflamm-aging by inhibiting AChE activity and via the activation of the cholinergic anti-inflammatory pathway. The (±)-Huperzine A mechanism might be involved in the inhibition of DAMPs-mediated NF-κB nuclear localization and activation. (±)-Huperzine A is a potential therapeutic agent for Alzheimer's disease.

   

Aurantiamide benzoate

Aurantiamide benzoate

C32H30N2O4 (506.220546)


Aurantiamide benzoate is a natural product found in Dendroviguiera sylvatica with data available.

   

Euphorbia factor L8

[(1R,3Z,5R,7S,11R,12R,13S,14S)-1,11-diacetyloxy-3,6,6,14-tetramethyl-10-methylidene-2-oxo-13-tricyclo[10.3.0.05,7]pentadec-3-enyl] pyridine-3-carboxylate

C30H37NO7 (523.2569892)


   

Euojaponine D

19,22,23-Tris(acetyloxy)-21-[(acetyloxy)methyl]-25,26-dihydroxy-3,15,26-trimethyl-6,16-dioxo-2,5,17-trioxa-11-azapentacyclo[16.7.1.0~1,21~.0~3,24~.0~7,12~]hexacosa-7,9,11-trien-20-yl benzoate

C41H47NO17 (825.2843852000001)


   
   

Wilfortrine

3-Furancarboxylic acid, (8R,9R,10R,11S,12R,13R,14R,15S,21S,22S,23R)-10,13,22,23-tetrakis(acetyloxy)-12-[(acetyloxy)methyl]-7,8,9,10,12,13,14,15,17,18,19,20-dodecahydro-18,21-dihydroxy-8,18,21- trimethyl-5,17-dioxo-8,11-epoxy-9,12-ethano-11,15-methano-5H,11H-[1,9]dioxacyclooctadecino[4,3-b]pyridin-14-yl ester

C41H47NO20 (873.2691302000001)


CID 73321 is a natural product found in Tripterygium hypoglaucum and Tripterygium wilfordii with data available.

   

Dehydrocrenatidine

1-Vinyl-4,8-dimethoxy-beta-carboline; 4,8-Dimethoxy-1-vinyl-beta-carboline; 4,8-Dimethoxy-1-vinylnorharman; 8-O-Methylpicrasidine I; Dehydrocrenatidine; Kumujian G

C15H14N2O2 (254.1055224)


Dehydrocrenatidine is a natural product found in Picrasma quassioides with data available.

   

Scutebarbatine B

[(1R,2S,3R,4S,4aS,8aR)-2-benzoyloxy-3-hydroxy-3,4,8,8a-tetramethyl-4-[(E)-2-(5-oxo-2H-furan-3-yl)ethenyl]-2,4a,5,6-tetrahydro-1H-naphthalen-1-yl] pyridine-3-carboxylate

C33H35NO7 (557.24134)


   

guvacine

1,2,5,6-tetrahydro-3-pyridinecarboxylic acid, hydrochloride salt

C6H10ClNO2 (163.040003)


Guvacine hydrochloride is an alkaloid from the nut of Areca catechu, acts as an inhibitor of GABA transporter, and dispalys modest selectivity for cloned GABA transporters with IC50s of 14 μM (human GAT-1), 39 μM (rat GAT-1), 58 μM (rat GAT-2), 119 μM (human GAT-3), 378 μM (rat GAT-3), and 1870 μM (human BGT-3). Guvacine hydrochloride is an alkaloid from the nut of Areca catechu, acts as an inhibitor of GABA transporter, and dispalys modest selectivity for cloned GABA transporters with IC50s of 14 μM (human GAT-1), 39 μM (rat GAT-1), 58 μM (rat GAT-2), 119 μM (human GAT-3), 378 μM (rat GAT-3), and 1870 μM (human BGT-3). Guvacine hydrochloride is an alkaloid from the nut of Areca catechu, acts as an inhibitor of GABA transporter, and dispalys modest selectivity for cloned GABA transporters with IC50s of 14 μM (human GAT-1), 39 μM (rat GAT-1), 58 μM (rat GAT-2), 119 μM (human GAT-3), 378 μM (rat GAT-3), and 1870 μM (human BGT-3).

   

Bantron

Ethanone, 2-(6-(2-hydroxy-2-phenylethyl)-1-methyl-2-piperidinyl)-1-phenyl-, (2theta-(2alpha,6alpha(S)))-, sulfate (2:1) (salt)

C44H56N2O8S (772.3757176000001)


An alkaloid that has actions similar to NICOTINE on nicotinic cholinergic receptors but is less potent. It has been proposed for a variety of therapeutic uses including in respiratory disorders, peripheral vascular disorders, insomnia, and smoking cessation.

   

Zoolobelin

alpha-Lobeline hydrochloride;Lobeline HCl;(c) paragraph sign-Lobeline hydrochloride; L-Lobeline hydrochloride

C22H28ClNO2 (373.18084580000004)


Lobeline (α-Lobeline) hydrochloride is a brain-penetrant nicotinic receptor agonist. Lobeline hydrochloride increases dopamine (DA) release by inhibiting DA uptake into synaptic vesicles, and altering presynaptic DA storage. Lobeline hydrochloride is effective in smoking cessation[1][2]. Lobeline hydrochloride, a nicotinic receptor agonist, acting as a potent antagonist at both α3β2 and α4β2 neuronal nicotinic receptor subtypes.

   

1-Methoxymethyl-β-carboline

1-(methoxymethyl)-9H-pyrido[3,4-b]indole

C13H12N2O (212.09495819999998)


1-(methoxymethyl)-9H-pyrido[3,4-b]indole is a natural product found in Eurycoma longifolia with data available.

   

TOB-5

9H-Pyrido(3,4-b)indole-1-carboxylic acid, methyl ester

C13H10N2O2 (226.07422400000002)


methyl 9H-pyrido[3,4-b]indole-1-carboxylate is a natural product found in Lycium chinense, Alstonia constricta, and other organisms with data available.

   

TTP6QLQ4M8

3-PYRIDINECARBOXYLIC ACID, 1,2,5,6-TETRAHYDRO-1-METHYL-, HYDROCHLORIDE (1:1)

C7H12ClNO2 (177.0556522)


Arecaidine hydrochloride, a pyridine alkaloid, is a potent GABA uptake inhibitor. Arecaidine hydrochloride is a substrate of H+-coupled amino acid transporter 1 (PAT1, SLC36A1) and competitively inhibits L-proline uptake[1][2]. Arecaidine hydrochloride, a pyridine alkaloid, is a potent GABA uptake inhibitor. Arecaidine hydrochloride is a substrate of H+-coupled amino acid transporter 1 (PAT1, SLC36A1) and competitively inhibits L-proline uptake[1][2]. Arecaidine hydrochloride, a pyridine alkaloid, is a potent GABA uptake inhibitor. Arecaidine hydrochloride is a substrate of H+-coupled amino acid transporter 1 (PAT1, SLC36A1) and competitively inhibits L-proline uptake[1][2].

   

Febrifuginedihydrochloride

4(3H)-Quinazolinone, 3-(3-((2R,3S)-3-hydroxy-2-piperidinyl)-2-oxopropyl)-, hydrochloride (1:2)

C16H21Cl2N3O3 (373.09598960000005)


Febrifugine dihydrochloride is a quinazolinone alkaloid found in the roots and leaves of Dichroa febrifuga, with antimalarial activity[1].

   

harmalol

1-Methyl-2,3,4,9-tetrahydro-7H-pyrido[3,4-b]indol-7-one--hydrogen chloride (1/1)

C12H13ClN2O (236.0716358)


Harmalol hydrochloride, a beta carboline alkaloid, presents in several medicinal plants such as Peganum harmala. Harmalol hydrochloride, main metabolite of Harmaline, significantly inhibits the dioxin-mediated induction of CYP1A1 at the transcriptional and posttranslational levels. Harmalol hydrochloride possesses antioxidant and hydroxyl radical-scavenging properties[1]. Harmalol hydrochloride, a beta carboline alkaloid, presents in several medicinal plants such as Peganum harmala. Harmalol hydrochloride, main metabolite of Harmaline, significantly inhibits the dioxin-mediated induction of CYP1A1 at the transcriptional and posttranslational levels. Harmalol hydrochloride possesses antioxidant and hydroxyl radical-scavenging properties[1].

   

hyponin D

Hyponine D

C47H50N2O18 (930.305848)


Hyponine D is a sesquiterpene alkaloid that is isolated from Tripterygium hypoglaucum. It has a role as a plant metabolite. It is an acetate ester, a benzoate ester, a dihydroagarofuran sesquiterpenoid, a macrolide, a pyridine alkaloid and a sesquiterpene alkaloid. It is functionally related to a nicotinic acid. Hyponine D is a natural product found in Tripterygium wilfordii with data available. A sesquiterpene alkaloid that is isolated from Tripterygium hypoglaucum.

   

hyponin E

7-(nicotinoyloxy)-O(5)-furanoyl-O(5)-deacetyl-7-deoxo-evonine

C45H48N2O19 (920.2851138000001)


Hyponine E is a sesquiterpene alkaloid that is isolated from Tripterygium hypoglaucum. It has a role as a plant metabolite. It is a 2-furoate ester, an acetate ester, a dihydroagarofuran sesquiterpenoid, a macrolide, a pyridine alkaloid and a sesquiterpene alkaloid. It is functionally related to a nicotinic acid. A sesquiterpene alkaloid that is isolated from Tripterygium hypoglaucum.

   
   

Guvacoline hydrochloride

3-Pyridinecarboxylic acid, 1,2,5,6-tetrahydro-, methyl ester, hydrochloride

C7H12ClNO2 (177.0556522)


Guvacoline hydrochloride, a pyridine alkaloid found in Areca triandra, can act as a weak full agonist of atrial and ileal muscarinic receptors[1][2]. Guvacoline hydrochloride, a pyridine alkaloid found in Areca triandra, can act as a weak full agonist of atrial and ileal muscarinic receptors[1][2]. Guvacoline hydrochloride, a pyridine alkaloid found in Areca triandra, can act as a weak full agonist of atrial and ileal muscarinic receptors[1][2].

   

ervine

12-hydroxy-1,6-diazatetracyclo[7.6.1.0?,??.0??,??]hexadeca-3,5,7,9(16),10(15),11,13-heptaen-2-one

C14H8N2O2 (236.0585748)


10-hydroxycanthin-6-one is an indole alkaloid that is canthin-6-one substituted by a hydroxy group at position 10. Isolated from Simaba multiflora, it exhibits antineoplastic activity. It has a role as a metabolite and an antineoplastic agent. It is an indole alkaloid and an organic heterotetracyclic compound. It is functionally related to a canthin-6-one. 10-Hydroxycanthin-6-one is a natural product found in Vinca major, Eurycoma longifolia, and Vinca minor with data available. An indole alkaloid that is canthin-6-one substituted by a hydroxy group at position 10. Isolated from Simaba multiflora, it exhibits antineoplastic activity.

   

Guvacine ethyl ester

3-Pyridinecarboxylic acid, 1,2,5,6-tetrahydro-, ethyl ester

C8H13NO2 (155.0946238)


   

Methyl 5-hydroxypicolinate

5-hydroxy-pyridine-2-carboxylic acid methyl ester, AldrichCPR

C7H7NO3 (153.0425912)


Methyl 5-hydroxypyridine-2-carboxylate is a phenolic acid that can found in the stems of Mahonia fortune. Methyl 5-hydroxypyridine-2-carboxylate exhibits NO inhibitory effects in vitro[1].

   

2-Pyridinemethanol,5-hydroxy-(6CI,9CI)

2-Pyridinemethanol,5-hydroxy-(6CI,9CI)

C6H7NO2 (125.0476762)


6-(Hydroxymethyl)pyridin-3-ol is a natural product found in Codonopsis pilosula with data available. 2-Hydroxymethyl-5-hydroxypyridine is isolated from the the matured, ripened and dried seeds of S. lychnophora. 2-Hydroxymethyl-5-hydroxypyridine is isolated from the the matured, ripened and dried seeds of S. lychnophora.

   

2-propylpiperidine HCl

( inverted exclamation markA)-Coniine (hydrochloride)

C8H18ClN (163.1127698)


(±)-Coniine hydrochloride (2-Propylpiperidine hydrochloride) is a potent nAChR agonist with an EC50 value of 0.3 mM. (±)-Coniine hydrochloride shows acute toxicity with an LD50 value of 7.7 mg/kg[1].

   

nicotinate ribose

1-((2R,3R,4S,5R)-3,4-Dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)pyridin-1-ium-3-carboxylate

C11H13NO6 (255.07428380000002)


D-ribosylnicotinate is conjugate base of D-ribosylnicotinic acid. It has a role as a human metabolite. It is a conjugate base of a D-ribosylnicotinic acid. Nicotinic acid riboside is a natural product found in Vitis vinifera, Saccharomyces cerevisiae, and Homo sapiens with data available. Conjugate base of D-ribosylnicotinic acid. Nicotinic acid riboside is a NAD+ precursor in human cells. Nicotinic acid riboside is an authentic intermediate of human NAD+ metabolism[1][2].

   

Ricinine

Ricinine

C8H8N2O2 (164.0585748)


relative retention time with respect to 9-anthracene Carboxylic Acid is 0.377 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.369

   

Piplartine

Piperlongumine

C17H19NO5 (317.1263164)


Piperlongumine is a alkaloid[1], possesses ant-inflammatory, antibacterial, antiangiogenic, antioxidant, antitumor, and antidiabetic activities[2]. Piperlongumine induces ROS, and induces apoptosis in cancer cell lines[1]. Piperlongumine shows anti-cardiac fibrosis activity, suppresses myofibroblast transformation via suppression of the ERK1/2 signaling pathway. Piperlongumin could be used in the study of migrasome[2][3]. Piperlongumine is a alkaloid[1], possesses ant-inflammatory, antibacterial, antiangiogenic, antioxidant, antitumor, and antidiabetic activities[2]. Piperlongumine induces ROS, and induces apoptosis in cancer cell lines[1]. Piperlongumine shows anti-cardiac fibrosis activity, suppresses myofibroblast transformation via suppression of the ERK1/2 signaling pathway. Piperlongumin could be used in the study of migrasome[2][3]. Piperlongumine is a alkaloid[1], possesses ant-inflammatory, antibacterial, antiangiogenic, antioxidant, antitumor, and antidiabetic activities[2]. Piperlongumine induces ROS, and induces apoptosis in cancer cell lines[1]. Piperlongumine shows anti-cardiac fibrosis activity, suppresses myofibroblast transformation via suppression of the ERK1/2 signaling pathway. Piperlongumin could be used in the study of migrasome[2][3].