Classification Term: 4193
Non-metal superoxides (ontology term: CHEMONTID:0001079)
Inorganic non-metallic compounds containing a superoxide as its largest oxoanion." []
found 1 associated metabolites at sub_class
metabolite taxonomy ontology rank level.
Ancestor: Non-metal oxoanionic compounds
Child Taxonomies: There is no child term of current ontology term.
Superoxide
Superoxide is the anionic form O2. It is important as the product of the one-electron reduction of dioxygen (oxygen gas), which occurs widely in nature. With one unpaired electron, the superoxide ion is a free radical. It is also paramagnetic. The biological toxicity of superoxide is due to its capacity to inactivate iron-sulfur cluster containing enzymes (which are critical in a wide variety of metabolic pathways), thereby liberating free iron in the cell, which can undergo fenton-chemistry and generate the highly reactive hydroxyl radical. In its HO2 form, superoxide can also initiate lipid peroxidation of polyunsaturated fatty acids. It also reacts with carbonyl compounds and halogenated carbons to create toxic peroxy radicals. As such, superoxide is a main cause of oxidative stress. Highly reactive compounds produced when oxygen is reduced by a single electron. In biological systems, they may be generated during the normal catalytic function of a number of enzymes and during the oxidation of hemoglobin to Methemoglobin. Because superoxide is toxic, nearly all organisms living in the presence of oxygen contain isoforms of the superoxide scavenging enzyme, superoxide dismutase, or SOD. SOD is an extremely efficient enzyme; it catalyzes the neutralization of superoxide nearly as fast as the two can diffuse together spontaneously in solution. Genetic inactivation ("knockout") of SOD produces deleterious phenotypes in organisms ranging from bacteria to mice. The latter species dies around 21 days after birth if the mitochondrial variant of SOD (Mn-SOD) is inactivated, and suffers from multiple pathologies, including reduced lifespan, liver cancer, muscle atrophy, cataracts and female infertility when the cytoplasmic (Cu, Zn -SOD) variant is inactivated. With one unpaired electron, the superoxide ion is a free radical and therefore paramagnetic. In living organisms, superoxide dismutase protects the cell from the deleterious effects of superoxides. Superoxide is the anionic form O2. It is important as the product of the one-electron reduction of dioxygen (oxygen gas), which occurs widely in nature. With one unpaired electron, the superoxide ion is a free radical. It is also paramagnetic. The biological toxicity of superoxide is due to its capacity to inactivate iron-sulfur cluster containing enzymes (which are critical in a wide variety of metabolic pathways), thereby liberating free iron in the cell, which can undergo fenton-chemistry and generate the highly reactive hydroxyl radical. In its HO2 form, superoxide can also initiate lipid peroxidation of polyunsaturated fatty acids. It also reacts with carbonyl compounds and halogenated carbons to create toxic peroxy radicals. As such, superoxide is a main cause of oxidative stress.; Highly reactive compounds produced when oxygen is reduced by a single electron. In biological systems, they may be generated during the normal catalytic function of a number of enzymes and during the oxidation of hemoglobin to Methemoglobin. D009676 - Noxae > D016877 - Oxidants > D013481 - Superoxides D009676 - Noxae > D016877 - Oxidants > D010545 - Peroxides