Subcellular Location: sperm fibrous sheath

Found 57 associated metabolites.

7 associated genes. AKAP3, AKAP4, CABYR, FSCB, GSTM3, PGK2, SPA17

Adenosine

(2R,3R,4S,5R)-2-(6-amino-9H-purin-9-yl)-5-(hydroxymethyl)oxolane-3,4-diol

C10H13N5O4 (267.0967)


Adenosine is a ribonucleoside composed of a molecule of adenine attached to a ribofuranose moiety via a beta-N(9)-glycosidic bond. It has a role as an anti-arrhythmia drug, a vasodilator agent, an analgesic, a human metabolite and a fundamental metabolite. It is a purines D-ribonucleoside and a member of adenosines. It is functionally related to an adenine. The structure of adenosine was first described in 1931, though the vasodilating effects were not described in literature until the 1940s. Adenosine is indicated as an adjunct to thallium-201 in myocardial perfusion scintigraphy, though it is rarely used in this indication, having largely been replaced by [dipyridamole] and [regadenson]. Adenosine is also indicated in the treatment of supraventricular tachycardia. Adenosine was granted FDA approval on 30 October 1989. Adenosine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Adenosine is an Adenosine Receptor Agonist. The mechanism of action of adenosine is as an Adenosine Receptor Agonist. Adenosine is a natural product found in Smilax bracteata, Mikania laevigata, and other organisms with data available. Adenosine is a ribonucleoside comprised of adenine bound to ribose, with vasodilatory, antiarrhythmic and analgesic activities. Phosphorylated forms of adenosine play roles in cellular energy transfer, signal transduction and the synthesis of RNA. Adenosine is a nucleoside that is composed of adenine and d-ribose. Adenosine or adenosine derivatives play many important biological roles in addition to being components of DNA and RNA. For instance, adenosine plays an important role in energy transfer - as adenosine triphosphate (ATP) and adenosine diphosphate (ADP). It also plays a role in signal transduction as cyclic adenosine monophosphate, cAMP. Adenosine itself is both a neurotransmitter and potent vasodilator. When administered intravenously, adenosine causes transient heart block in the AV node. Because of the effects of adenosine on AV node-dependent supraventricular tachycardia, adenosine is considered a class V antiarrhythmic agent. Adenosine is a metabolite found in or produced by Saccharomyces cerevisiae. A nucleoside that is composed of adenine and d-ribose. Adenosine or adenosine derivatives play many important biological roles in addition to being components of DNA and RNA. Adenosine itself is a neurotransmitter. See also: Adenosine; Niacinamide (component of); Adenosine; Glycerin (component of); Adenosine; ginsenosides (component of) ... View More ... Adenosine is a nucleoside that is composed of adenine and D-ribose. Adenosine or adenosine derivatives play many important biological roles in addition to being components of DNA and RNA. For instance, adenosine plays an important role in energy transfer as adenosine triphosphate (ATP) and adenosine diphosphate (ADP). It also plays a role in signal transduction as cyclic adenosine monophosphate (cAMP). Adenosine itself is both a neurotransmitter and potent vasodilator. When administered intravenously adenosine causes transient heart block in the AV node. Due to the effects of adenosine on AV node-dependent supraventricular tachycardia, adenosine is considered a class V antiarrhythmic agent. Overdoses of adenosine intake (as a drug) can lead to several side effects including chest pain, feeling faint, shortness of breath, and tingling of the senses. Serious side effects include a worsening dysrhythmia and low blood pressure. When present in sufficiently high levels, adenosine can act as an immunotoxin and a metabotoxin. An immunotoxin disrupts, limits the function, or destroys immune cells. A metabotoxin is an endogenous metabolite that causes adverse health effects at chronically high levels. Chronically high levels of adenosine are associated with adenosine deaminase deficiency. Adenosine is a precursor to deoxyadenosine, which is a precursor to dATP. A buildup of dATP in cells inhibits ribonucleotide reductase and prevents DNA synthesis, so cells are unable to divide. Since developing T cells and B cells are some of the most mitotically active cells, they are unable to divide and propagate to respond to immune challenges. High levels of deoxyadenosine also lead to an increase in S-adenosylhomocysteine, which is toxic to immature lymphocytes. Adenosine is a nucleoside composed of a molecule of adenine attached to a ribose sugar molecule (ribofuranose) moiety via a beta-N9-glycosidic bond. [Wikipedia]. Adenosine is found in many foods, some of which are borage, japanese persimmon, nuts, and barley. COVID info from PDB, Protein Data Bank, COVID-19 Disease Map, clinicaltrial, clinicaltrials, clinical trial, clinical trials A ribonucleoside composed of a molecule of adenine attached to a ribofuranose moiety via a beta-N(9)-glycosidic bond. Adenosine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=58-61-7 (retrieved 2024-06-29) (CAS RN: 58-61-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Adenosine (Adenine riboside), a ubiquitous endogenous autacoid, acts through the enrollment of four G protein-coupled receptors: A1, A2A, A2B, and A3. Adenosine affects almost all aspects of cellular physiology, including neuronal activity, vascular function, platelet aggregation, and blood cell regulation[1][2]. Adenosine (Adenine riboside), a ubiquitous endogenous autacoid, acts through the enrollment of four G protein-coupled receptors: A1, A2A, A2B, and A3. Adenosine affects almost all aspects of cellular physiology, including neuronal activity, vascular function, platelet aggregation, and blood cell regulation[1][2]. Adenosine (Adenine riboside), a ubiquitous endogenous autacoid, acts through the enrollment of four G protein-coupled receptors: A1, A2A, A2B, and A3. Adenosine affects almost all aspects of cellular physiology, including neuronal activity, vascular function, platelet aggregation, and blood cell regulation[1][2].

   

Scopolin

6-methoxy-7-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxychromen-2-one

C16H18O9 (354.0951)


Scopolin is a member of the class of coumarins that is scopoletin attached to a beta-D-glucopyranosyl residue at position 7 via a glycosidic linkage. It has a role as a plant metabolite. It is a monosaccharide derivative, a member of coumarins and a beta-D-glucoside. It is functionally related to a scopoletin. Scopolin is a natural product found in Artemisia ordosica, Astragalus onobrychis, and other organisms with data available. See also: Chamaemelum nobile flower (part of). A member of the class of coumarins that is scopoletin attached to a beta-D-glucopyranosyl residue at position 7 via a glycosidic linkage. Scopolin is a coumarin isolated from Arabidopsis thaliana (Arabidopsis) roots[1]. Scopolin attenuated hepatic steatosis through activation of SIRT1-mediated signaling cascades[2]. Scopolin is a coumarin isolated from Arabidopsis thaliana (Arabidopsis) roots[1]. Scopolin attenuated hepatic steatosis through activation of SIRT1-mediated signaling cascades[2]. Scopolin is a coumarin isolated from Arabidopsis thaliana (Arabidopsis) roots[1]. Scopolin attenuated hepatic steatosis through activation of SIRT1-mediated signaling cascades[2].

   

Paraxanthine

3,7-Dihydro-1,7-dimethyl-1H-purine-2,6-dione

C7H8N4O2 (180.0647)


Paraxanthine, also known as p-xanthine, belongs to the class of organic compounds known as xanthines. These are purine derivatives with a ketone group conjugated at carbons 2 and 6 of the purine moiety. Paraxanthine exists in all living organisms, ranging from bacteria to humans. Within humans, paraxanthine participates in a number of enzymatic reactions. In particular, paraxanthine and formaldehyde can be biosynthesized from caffeine; which is catalyzed by the enzyme cytochrome P450 1A2. In addition, paraxanthine and acetyl-CoA can be converted into 5-acetylamino-6-formylamino-3-methyluracil through its interaction with the enzyme arylamine N-acetyltransferase 2. In humans, paraxanthine is involved in caffeine metabolism. 1,7-dimethylxanthine (paraxanthine) is the preferential path of caffeine metabolism in humans. Acquisition and generation of the data is financially supported in part by CREST/JST. Paraxanthine, a caffeine metabolite, provides protection against Dopaminergic cell death via stimulation of Ryanodine Receptor Channels.

   

1,7-dimethylurate

2,8-dihydroxy-1,7-dimethyl-6,7-dihydro-1H-purin-6-one

C7H8N4O3 (196.0596)


1,7 dimethyluric acid is the major urinary caffeine metabolites that is produced in the human body. 1,7 dimethyluric acid is formed during metabolism of caffeine and the process is catalyzed primarily by CYP2A6. (PMID: 18715882) [HMDB] 1,7-Dimethyluric acid is the major urinary caffeine metabolite that is produced in the human body. 1,7-Dimethyluric acid is formed during caffeine metabolism and the process is catalyzed primarily by CYP2A6 (PMID: 18715882).

   

Metolachlor

2-chloro-N-(2-ethyl-6-methylphenyl)-N-(1-methoxypropan-2-yl)acetamide

C15H22ClNO2 (283.1339)


CONFIDENCE standard compound; INTERNAL_ID 988; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9405; ORIGINAL_PRECURSOR_SCAN_NO 9403 CONFIDENCE standard compound; INTERNAL_ID 988; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9416; ORIGINAL_PRECURSOR_SCAN_NO 9412 CONFIDENCE standard compound; INTERNAL_ID 988; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9435; ORIGINAL_PRECURSOR_SCAN_NO 9432 CONFIDENCE standard compound; INTERNAL_ID 988; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9411; ORIGINAL_PRECURSOR_SCAN_NO 9409 CONFIDENCE standard compound; INTERNAL_ID 988; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9432; ORIGINAL_PRECURSOR_SCAN_NO 9430 CONFIDENCE standard compound; INTERNAL_ID 988; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9555; ORIGINAL_PRECURSOR_SCAN_NO 9554 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 1082 CONFIDENCE standard compound; EAWAG_UCHEM_ID 268 CONFIDENCE standard compound; INTERNAL_ID 4040 CONFIDENCE standard compound; INTERNAL_ID 8418 CONFIDENCE standard compound; INTERNAL_ID 3556 D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals

   

1-Methylxanthine

2-hydroxy-1-methyl-6,9-dihydro-1H-purin-6-one

C6H6N4O2 (166.0491)


1-Methylxanthine is one of the major metabolites of caffeine in humans. The oxidation of 1-methylxanthine to 1-methyluric acid occurs so rapidly that the parent compound could not be detected in plasma, and only low concentrations could be detected in the brain (PMID: 28863020). 1-methylxanthine is the major metabolites of caffeine in the human. The oxidation of 1-methylxanthine to 1-methyluric acid occurred so rapidly that the parent compound could not be detected in plasma, and only low concentrations could be detected in brain. (PMID: 28863020 [HMDB] 1-Methylxanthine, a caffeine derivative, is an essential human urinary metabolite of caffeine and theophylline (1,3-dimethylxanthine, TP)[1]. 1-Methylxanthine enhances the radiosensitivity of tumor cells[2]. 1-Methylxanthine, a caffeine derivative, is an essential human urinary metabolite of caffeine and theophylline (1,3-dimethylxanthine, TP)[1]. 1-Methylxanthine enhances the radiosensitivity of tumor cells[2].

   

D-Glycerate 3-phosphate

(2R)-2-Hydroxy-3-(phosphonatooxy)propanoic acid

C3H7O7P (185.9929)


3-phospho-d-glyceric acid, also known as 3-phosphoglycerate or D-glycerate 3-phosphate, belongs to sugar acids and derivatives class of compounds. Those are compounds containing a saccharide unit which bears a carboxylic acid group. 3-phospho-d-glyceric acid is soluble (in water) and a moderately acidic compound (based on its pKa). 3-phospho-d-glyceric acid can be found in a number of food items such as towel gourd, orange mint, guava, and mulberry, which makes 3-phospho-d-glyceric acid a potential biomarker for the consumption of these food products. 3-phospho-d-glyceric acid can be found primarily in saliva. 3-phospho-d-glyceric acid exists in all living species, ranging from bacteria to humans. (2R)-2-Hydroxy-3-(phosphonatooxy)propanoate, also known as 3-phospho-(R)-glycerate or D-glycerate 3-phosphate, belongs to the class of organic compounds known as sugar acids and derivatives. Sugar acids and derivatives are compounds containing a saccharide unit which bears a carboxylic acid group (2R)-2-Hydroxy-3-(phosphonatooxy)propanoate is a drug (2R)-2-hydroxy-3-(phosphonatooxy)propanoate has been detected, but not quantified, in several different foods, such as poppies, small-leaf lindens, lupines, pomegranates, and kombus. These are compounds containing a saccharide unit which bears a carboxylic acid group.

   

Orotidylic acid

3-[(2R,3R,4S,5R)-3,4-dihydroxy-5-[(phosphonooxy)methyl]oxolan-2-yl]-2,6-dioxo-1,2,3,6-tetrahydropyrimidine-4-carboxylic acid

C10H13N2O11P (368.0257)


Orotidylic acid, also known as 5-(dihydrogen phosphate)orotidine or omp, is a member of the class of compounds known as pyrimidine ribonucleoside monophosphates. Pyrimidine ribonucleoside monophosphates are pyrimidine ribobucleotides with monophosphate group linked to the ribose moiety. Orotidylic acid is slightly soluble (in water) and a moderately acidic compound (based on its pKa). Orotidylic acid can be found in a number of food items such as coriander, summer savory, oriental wheat, and sourdough, which makes orotidylic acid a potential biomarker for the consumption of these food products. Orotidylic acid can be found primarily in prostate Tissue, as well as in human prostate tissue. Orotidylic acid exists in all living species, ranging from bacteria to humans. In humans, orotidylic acid is involved in a couple of metabolic pathways, which include glycine and serine metabolism and pyrimidine metabolism. Orotidylic acid is also involved in several metabolic disorders, some of which include dihydropyrimidinase deficiency, dihydropyrimidine dehydrogenase deficiency (DHPD), 3-phosphoglycerate dehydrogenase deficiency, and non ketotic hyperglycinemia. Moreover, orotidylic acid is found to be associated with prostate cancer. Orotidylic acid (OMP), is a pyrimidine nucleotide which is the last intermediate in the biosynthesis of uridine monophosphate. Decarboxylation by Orotidylate decarboxylase affords Uridine 5-phosphate which is the route to Uridine and its derivatives de novo and consequently one of the most important processes in nucleic acid synthesis (Dictionary of Organic Compounds). In humans, the enzyme UMP synthase converts OMP into uridine 5- monophosphate. If UMP synthase is defective, orotic aciduria can result. (Wikipedia). KEIO_ID O015; [MS2] KO009132 KEIO_ID O015

   

Nitrofurazone

[(E)-[(5-nitrofuran-2-yl)methylidene]amino]urea

C6H6N4O4 (198.0389)


Nitrofurazone is only found in individuals that have used or taken this drug. It is a topical anti-infective agent effective against gram-negative and gram-positive bacteria. It is used for superficial wounds, burns, ulcers, and skin infections. Nitrofurazone has also been administered orally in the treatment of trypanosomiasis. [PubChem]The exact mechanism of action is unknown. Nitrofurazone inhibits several bacterial enzymes, especially those involved in the aerobic and anaerobic degradation of glucose and pyruvate. This activity is believed also to affect pyruvate dehydrogenase, citrate synthetase, malate dehydrogenase, glutathione reductase, and pyruvate decarboxylase. P - Antiparasitic products, insecticides and repellents > P01 - Antiprotozoals > P01C - Agents against leishmaniasis and trypanosomiasis > P01CC - Nitrofuran derivatives B - Blood and blood forming organs > B05 - Blood substitutes and perfusion solutions > B05C - Irrigating solutions > B05CA - Antiinfectives D - Dermatologicals > D08 - Antiseptics and disinfectants > D08A - Antiseptics and disinfectants > D08AF - Nitrofuran derivatives D - Dermatologicals > D09 - Medicated dressings > D09A - Medicated dressings > D09AA - Medicated dressings with antiinfectives S - Sensory organs > S02 - Otologicals > S02A - Antiinfectives > S02AA - Antiinfectives C78272 - Agent Affecting Nervous System > C29698 - Antispasmodic Agent S - Sensory organs > S01 - Ophthalmologicals > S01A - Antiinfectives D000890 - Anti-Infective Agents

   

Orphenadrine

N,N-Dimethyl-2-[(O-methyl-alpha-phenylbenzyl)oxy]ethylamine

C18H23NO (269.178)


Orphenadrine is only found in individuals that have used or taken this drug. It is a muscarinic antagonist used to treat drug-induced parkinsonism and to relieve pain from muscle spasm. [PubChem]Orphenadrine binds and inhibits both histamine H1 receptors and NMDA receptors. It restores the motor disturbances induced by neuroleptics, in particular the hyperkinesia. The dopamine deficiency in the striatum increases the stimulating effects of the cholinergic system. This stimulation is counteracted by the anticholinergic effect of orphenadrine. It may have a relaxing effect on skeletal muscle spasms and it has a mood elevating effect. D004791 - Enzyme Inhibitors > D065607 - Cytochrome P-450 Enzyme Inhibitors > D065686 - Cytochrome P-450 CYP2B6 Inhibitors D002491 - Central Nervous System Agents > D018726 - Anti-Dyskinesia Agents > D000978 - Antiparkinson Agents C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C29704 - Antimuscarinic Agent D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D010276 - Parasympatholytics D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists D018373 - Peripheral Nervous System Agents > D009465 - Neuromuscular Agents C78281 - Agent Affecting Musculoskeletal System > C29696 - Muscle Relaxant CONFIDENCE standard compound; EAWAG_UCHEM_ID 3276

   

4,4'-Diphenylmethane diisocyanate

1-isocyanato-4-[(4-isocyanatophenyl)methyl]benzene

C15H10N2O2 (250.0742)


COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

7-Methylguanine

2-Amino-1,7-dihydroxy-7-methyl-6H-purine-6-one

C6H7N5O (165.0651)


7-Methylguanine is a metabolite of DNA methylation and depurination observed in normal human biofluids; however, it has been found significantly higher in the urine of smokers than in nonsmokers. (PMID 16059882). 7-Methylguanine has been identified in the human placenta (PMID: 32033212). 7-Methylguanine is a metabolite of DNA methylation and depurination observed in normal human biofluids; however, it has been found significantly higher in the urine of smokers than in nonsmokers. (PMID 16059882) [HMDB] KEIO_ID M043

   

methapyrilene

N-[2-(dimethylamino)ethyl]-N-[(thiophen-2-yl)methyl]pyridin-2-amine

C14H19N3S (261.13)


R - Respiratory system > R06 - Antihistamines for systemic use > R06A - Antihistamines for systemic use > R06AC - Substituted ethylene diamines D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists C308 - Immunotherapeutic Agent > C29578 - Histamine-1 Receptor Antagonist D018926 - Anti-Allergic Agents

   

Chelidonine

(1S,12S,13R)-24-methyl-5,7,18,20-tetraoxa-24-azahexacyclo[11.11.0.02,10.04,8.014,22.017,21]tetracosa-2,4(8),9,14(22),15,17(21)-hexaen-12-ol

C20H19NO5 (353.1263)


Chelidonine is an alkaloid fundamental parent, a benzophenanthridine alkaloid and an alkaloid antibiotic. Chelidonine is a natural product found in Sarcocapnos baetica, Sarcocapnos saetabensis, and other organisms with data available. Chelidonine is an isolate of Papaveraceae with acetylcholinesterase and butyrylcholinesterase inhibitory activity. See also: Chelidonium majus flowering top (part of). CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2255 Chelidonine, an isoquinoline alkaloid, can be isolated from Chelidonium majus L.. Chelidonine causes G2/M arrest and induces caspase-dependent and caspase-independent apoptosis, and prevents cell cycle progression of stem cells in Dugesia japonica. Chelidonine has cytotoxic activity against melanoma cell lines. with anticancer and antiviral activity[1][2][3]. Chelidonine, an isoquinoline alkaloid, can be isolated from Chelidonium majus L.. Chelidonine causes G2/M arrest and induces caspase-dependent and caspase-independent apoptosis, and prevents cell cycle progression of stem cells in Dugesia japonica. Chelidonine has cytotoxic activity against melanoma cell lines. with anticancer and antiviral activity[1][2][3].

   

Adrenosterone

(1S,2R,10S,11S,15S)-2,15-dimethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadec-6-ene-5,14,17-trione

C19H24O3 (300.1725)


Adrenosterone is a steroid hormone with weak androgenic effect. It was first isolated in 1936 from the adrenal cortex by Tadeus Reichstein at the Pharmaceutical Institute in the University of Basel. Originally, adrenosterone was called Reichsteins substance G.(Wikipedia). Andrenosterone is created from androst-4-ene-3,17-dione by the work of two enzymes, CYP11B (E1.14.15.4) and 11beta-hydroxysteroid dehydrogenase [EC:1.1.1.146]. Adrenosterone is a steroid hormone with weak androgenic effect. It was first isolated in 1936 from the adrenal cortex by Tadeus Reichstein at the Pharmaceutical Institute in the University of Basel. Originally, adrenosterone was called Reichsteins substance G. Adrenosterone ((+)-Adrenosterone) is a competitive hydroxysteroid (11-beta) dehydrogenase 1 (HSD11β1) inhibitor. Adrenosterone is a steroid hormone with weak androgenic effect. Adrenosterone is a dietary supplement that can decrease fat and increase muscle mass. Adrenosterone acts as a suppressor of metastatic progression of human cancer cells[1][2][3].

   

Aminomethylphosphonic acid

aminomethylphosphonic acid

CH6NO3P (111.0085)


Aminomethylphosphonic acid, also known as AMPA, belongs to the class of organic compounds known as organic phosphonic acids. These are organic compounds containing phosphonic acid. Based on a literature review a significant number of articles have been published on Aminomethylphosphonic acid. (aminomethyl)phosphonic acid is a member of the class of phosphonic acids that is phosphonic acid substituted by an aminomethyl group. It is a metabolite of the herbicide glyphosate. It is a one-carbon compound and a member of phosphonic acids. It is functionally related to a phosphonic acid. It is a conjugate acid of an (aminomethyl)phosphonate(1-). (Aminomethyl)phosphonic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=1066-51-9 (retrieved 2024-10-30) (CAS RN: 1066-51-9). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

2-Amino-3,8-dimethyl-3H-imidazo[4,5-f]quinoxaline

2-Amino-3,8-dimethylimidazo-[4,5-f]quinoxaline (MeIQx)

C11H11N5 (213.1014)


2-Amino-3,8-dimethyl-3H-imidazo[4,5-f]quinoxaline is found in animal foods. 2-Amino-3,8-dimethyl-3H-imidazo[4,5-f]quinoxaline is a food-related mutagen isolated from cooked meats (especially grilled/barbecued Food-related mutagen isolated from cooked meats (especies grilled/barbecued). 2-Amino-3,8-dimethyl-3H-imidazo[4,5-f]quinoxaline is found in animal foods. CONFIDENCE standard compound; INTERNAL_ID 2292 CONFIDENCE standard compound; INTERNAL_ID 6 D009676 - Noxae > D002273 - Carcinogens D009676 - Noxae > D009153 - Mutagens

   

1-Chloro-2,4-dinitrobenzene

1,3-Dinitro-4-chlorobenzene

C6H3ClN2O4 (201.9781)


Dinitrochlorobenzene, also known as 4-chloro-1,3-dinitrobenzene or cdnb, is a member of the class of compounds known as nitrobenzenes. Nitrobenzenes are compounds containing a nitrobenzene moiety, which consists of a benzene ring with a carbon bearing a nitro group. Dinitrochlorobenzene is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Dinitrochlorobenzene can be found in a number of food items such as black radish, american butterfish, hedge mustard, and other cereal product, which makes dinitrochlorobenzene a potential biomarker for the consumption of these food products. Dinitrochlorobenzene is produced commercially by the nitration of p-nitrochlorobenzene with a mixture of nitric and sulfuric acids. Other methods afford the compound less efficiently include the chlorination of dinitrobenzene, nitration of o-nitrochlorobenzene and the dinitration of chlorobenzene . D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents C308 - Immunotherapeutic Agent > C2139 - Immunostimulant CONFIDENCE standard compound; INTERNAL_ID 41 D009676 - Noxae > D007509 - Irritants

   

Glyceric acid 1,3-biphosphate

(R)-2-Hydroxy-3-(phosphonooxy)-1-monoanhydride with phosphoric propanoic acid

C3H8O10P2 (265.9593)


Glyceric acid 1,3-biphosphate (CAS: 1981-49-3), also known as 1,3-bisphosphoglycerate (1,3BPG) or PGAP, is a 3-carbon organic molecule present in most, if not all living creatures. It primarily exists as a metabolic intermediate in glycolysis during respiration. 1,3BPG has been recognized as regulatory signal implicated in the control of metabolism, oxygen affinity of red cells, and other cellular functions. 1,3BPG concentration in erythrocytes changes in a number of pathological conditions, such as inherited phosphoglycerate kinase deficiency in erythrocytes (involved in the synthesis and breakdown of 1,3BPG) (PMID: 3555887). Glyceric acid 1,3-biphosphate is phosphorylated at the number 1 and 3 carbons. The result of this phosphorylation gives 1,3BPG important biological properties such as the ability to phosphorylate ADP to form the energy storage molecule ATP (Wikipedia). 3-phospho-d-glyceroyl phosphate, also known as 1,3-bisphospho-D-glycerate or D-glycerate 1,3-diphosphate, is a member of the class of compounds known as acyl monophosphates. Acyl monophosphates are organic compounds containing a monophosphate linked to an acyl group. They have the general structure R-CO-P(O)(O)OH, R=H or organyl. 3-phospho-d-glyceroyl phosphate is slightly soluble (in water) and a moderately acidic compound (based on its pKa). 3-phospho-d-glyceroyl phosphate can be found in a number of food items such as tamarind, narrowleaf cattail, mustard spinach, and cereals and cereal products, which makes 3-phospho-d-glyceroyl phosphate a potential biomarker for the consumption of these food products. 3-phospho-d-glyceroyl phosphate exists in E.coli (prokaryote) and yeast (eukaryote).

   

Sphinganine 1-phosphate

(2S,3R)-2-Amino-3-hydroxyoctadecyl dihydrogen phosphoric acid

C18H40NO5P (381.2644)


Sphinganine 1-phosphate is an intermediate in the metabolism of Glycosphingolipids and sphingolipids. It is a substrate for Sphingosine kinase 1, Lipid phosphate phosphohydrolase 2, Sphingosine kinase 2, Sphingosine-1-phosphate lyase 1, Lipid phosphate phosphohydrolase 1 and Lipid phosphate phosphohydrolase 3. [HMDB]. Sphinganine 1-phosphate is found in many foods, some of which are winter squash, chicory roots, star fruit, and butternut squash. Sphinganine 1-phosphate is an intermediate in the metabolism of Glycosphingolipids and sphingolipids. It is a substrate for Sphingosine kinase 1, Lipid phosphate phosphohydrolase 2, Sphingosine kinase 2, Sphingosine-1-phosphate lyase 1, Lipid phosphate phosphohydrolase 1 and Lipid phosphate phosphohydrolase 3.

   

Trithionate

Trithionate

O6S3-2 (191.8857)


   

1,2-Epoxy-3-(p-nitrophenoxy)propane

1,2-Epoxy-3-(4-nitrophenoxy)propane

C9H9NO4 (195.0532)


D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors

   

Prostaglandin G2

(5Z)-7-[(1R,4S,5R,6R)-6-[(1E,3S)-3-hydroperoxyoct-1-en-1-yl]-2,3-dioxabicyclo[2.2.1]heptan-5-yl]hept-5-enoic acid

C20H32O6 (368.2199)


Prostaglandin G2 (PGG2) is synthesized from arachidonic acid on a cyclooxygenase (COX) metabolic pathway as a primary step; the COX biosynthesis of prostaglandin (PG) begins with the highly specific oxygenation of arachidonic acid in the 11R configuration and ends with a 15S oxygenation to form PGG2. The COX site activity that catalyzes the conversion of arachidonic acid to PGG2 is the target for nonsteroidal antiinflammatory drugs (NSAIDs). The peroxidase site activity catalyzes the two-electron reduction of the hydroperoxide bond of PGG2 to yield the corresponding alcohol prostaglandin H2 (PGH2). The formation of a phenoxyl radical on Tyr385 couples the activities of the two sites. The Tyr385 radical is produced via oxidation by compound I, an oxoferryl porphyrin -cation radical, which is generated by reaction of the hemin resting state with PGG2 or other hydroperoxides. The tyrosyl radical homolytically abstracts the 13proS hydrogen atom of arachidonic acid which initiates a radical cascade that ends with the stereoselective formation of PGG2. PGG2 then migrates from the cyclooxygenase (COX) site to the peroxidase (POX) site where it reacts with the hemin group to generate PGH2 and compound I. The heterolytic oxygen-oxygen bond cleavage is assisted by the conserved distal residues His207 and Gln203, mutation of which has been shown to severely impair enzyme activity. Compound I, upon reaction with Tyr385, gives compound II, which in turn is reduced to the hemin resting state by one-electron oxidation of reducing cosubstrates or undergoes reactions that result in enzyme self-inactivation. Prostaglandin endoperoxide H synthase (PGHS) 1 is a bifunctional membrane enzyme of the endoplasmic reticulum that converts arachidonic acid into prostaglandin H2 (PGH2), the precursor of all prostaglandins, thromboxanes, and prostacyclins. These lipid mediators are intricately involved in normal physiology, namely, in mitogenesis, fever generation, pain response, lymphocyte chemotaxis, fertility, and contradictory stimuli such as vasoconstriction and vasodilatation, as well as platelet aggregation and quiescence. PGHS is implicated in numerous pathologies, including inflammation, cancers of the colon, lung, and breast, Alzheimers disease, Parkinsons disease, and numerous cardiovascular diseases including atherosclerosis, thrombosis, myocardial infarction, and stroke. (PMID: 14594816, 16552393, 16411757). Prostaglandins are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent, able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis, through receptor-mediated G-protein linked signalling pathways. Prostaglandin G2 (PGG2) is synthesized from arachidonic acid on a cyclooxygenase (COX) metabolic pathway as a primary step; the COX biosynthesis of prostaglandin (PG) begins with the highly specific oxygenation of arachidonic acid in the 11R configuration and ends with a 15S oxygenation to form PGG2. D009676 - Noxae > D016877 - Oxidants > D010545 - Peroxides

   

Busulfan

4-(methanesulfonyloxy)butyl methanesulfonate

C6H14O6S2 (246.0232)


An alkylating agent having a selective immunosuppressive effect on bone marrow. It has been used in the palliative treatment of chronic myeloid leukemia (myeloid leukemia, chronic), but although symptomatic relief is provided, no permanent remission is brought about. According to the Fourth Annual Report on Carcinogens (NTP 85-002, 1985), busulfan is listed as a known carcinogen. [PubChem] L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01A - Alkylating agents > L01AB - Alkyl sulfonates C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent D000970 - Antineoplastic Agents > D019653 - Myeloablative Agonists D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents D009676 - Noxae > D000477 - Alkylating Agents

   

Cyhalothrin

Cyclopropanecarboxylicacid, 3-[(1Z)-2-chloro-3,3,3-trifluoro-1-propen-1-yl]-2,2-dimethyl-,(S)-cyano(3-phenoxyphenyl)methyl ester, (1R,3R)-

C23H19ClF3NO3 (449.1005)


D010575 - Pesticides > D007306 - Insecticides > D011722 - Pyrethrins D016573 - Agrochemicals Same as: D07762

   

1,2-Dibromoethane

alpha,Omega-dibromoethane

C2H4Br2 (185.868)


1,2-Dibromoethane, also known as ethylene dibromide or DBE, belongs to the class of organic compounds known as organobromides. Organobromides are compounds containing a chemical bond between a carbon atom and a bromine atom. 1,2-Dibromoethane is possibly neutral. Trace amounts of 1,2-dibromoethane occur naturally in the ocean, where it is formed probably by algae and kelp. 1,2-Dibromoethane is formally rated as a probable carcinogen (by IARC 2A) and is also a potentially toxic compound. Breathing high levels may cause depression and collapse. 1,2-Dibromoethane is rapidly absorbed by ingestion, inhalation, and dermal routes, then distributed mainly to the kidneys, liver, and spleen. It can be metabolized by either the cytochrome P-450 system or the glutathione S-transferase system. These metabolites may be further broken down and excreted in the urine. The metabolite 2-bromoacetaldehyde produces liver damage by binding to cellular proteins. Long term exposure can result in liver, kidney, and reproductive system damage. 1,2-Dibromoethane is also known to have adverse effects on the brain. S-(2-bromoethyl)glutathione, another metabolite, exerts genotoxic and carcinogenic effects by binding to DNA.

   

Methyloxirane

(R)-(+)-Propylene oxide

C3H6O (58.0419)


D009676 - Noxae > D002273 - Carcinogens

   

5-Acetylamino-6-formylamino-3-methyluracil

N-(6-formamido-3-methyl-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-5-yl)acetamide

C8H10N4O4 (226.0702)


5-Acetylamino-6-formylamino-3-methyluracil participates in Caffeine metabolism. 5-Acetylamino-6-formylamino-3-methyluracil is converted from paraxanthine via arylamine N-acetyltransferase [EC:2.3.1.5] [HMDB] 5-Acetylamino-6-formylamino-3-methyluracil participates in Caffeine metabolism. 5-Acetylamino-6-formylamino-3-methyluracil is converted from paraxanthine via arylamine N-acetyltransferase [EC:2.3.1.5].

   

Methyloxirane

3-Methyl-1,2-epoxypropane

C3H6O (58.0419)


Methyloxirane, also known as 2,3-epoxypropane or propylene oxide, belongs to the class of organic compounds known as epoxides. Epoxides are compounds containing a cyclic ether with three ring atoms(one oxygen and two carbon atoms). Methyloxirane is a sweet and ethereal tasting compound. Methyloxirane is a potentially toxic compound. D009676 - Noxae > D002273 - Carcinogens Same as: D09803

   

3-phosphoglycerate

3-Phosphoglyceric acid

C3H7O7P (185.9929)


A monophosphoglyceric acid having the phospho group at the 3-position. It is an intermediate in metabolic pathways like glycolysis and calvin cycle.

   

Chelidonin

Chelidonine

C20H19NO5 (353.1263)


Annotation level-1 http://casmi-contest.org/examples.shtml; CASMI2012 Example 1 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.627 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.621 Acquisition and generation of the data is financially supported by the Max-Planck-Society IPB_RECORD: 2461; CONFIDENCE confident structure IPB_RECORD: 921; CONFIDENCE confident structure Chelidonine, an isoquinoline alkaloid, can be isolated from Chelidonium majus L.. Chelidonine causes G2/M arrest and induces caspase-dependent and caspase-independent apoptosis, and prevents cell cycle progression of stem cells in Dugesia japonica. Chelidonine has cytotoxic activity against melanoma cell lines. with anticancer and antiviral activity[1][2][3]. Chelidonine, an isoquinoline alkaloid, can be isolated from Chelidonium majus L.. Chelidonine causes G2/M arrest and induces caspase-dependent and caspase-independent apoptosis, and prevents cell cycle progression of stem cells in Dugesia japonica. Chelidonine has cytotoxic activity against melanoma cell lines. with anticancer and antiviral activity[1][2][3].

   

busulfan

"Busulfan (Myleran, Busulfex)"

C6H14O6S2 (246.0232)


L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01A - Alkylating agents > L01AB - Alkyl sulfonates C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent D000970 - Antineoplastic Agents > D019653 - Myeloablative Agonists D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents D009676 - Noxae > D000477 - Alkylating Agents

   

paraxanthine

1,7-Dimethylxanthine

C7H8N4O2 (180.0647)


A dimethylxanthine having the two methyl groups located at positions 1 and 7. It is a metabolite of caffeine and theobromine in animals. MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; QUNWUDVFRNGTCO-UHFFFAOYSA-N_STSL_0243_Paraxanthine_1000fmol_190413_S2_LC02MS02_060; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. Paraxanthine, a caffeine metabolite, provides protection against Dopaminergic cell death via stimulation of Ryanodine Receptor Channels.

   

3-Phosphoglyceric acid

3-Phospho-D-glyceric acid

C3H7O7P (185.9929)


The D-enantiomer of 3-phosphoglyceric acid

   

7-Methylguanine

7-Methylguanine

C6H7N5O (165.0651)


   

1,7-Dimethyluric acid

1,7-Dimethyluric acid

C7H8N4O3 (196.0596)


An oxopurine that is 7,9-dihydro-1H-purine-2,6,8(3H)-trione substituted by methyl groups at N-1 and N-7. It is a metabolite of caffeine and is often found in human urine samples.

   

Adrenosterone

4-Androstenl-3,11,17-trione

C19H24O3 (300.1725)


A 3-oxo Delta(4)-steroid that is androst-4-ene carrying three oxo-substituents at positions 3, 11 and 17. Adrenosterone ((+)-Adrenosterone) is a competitive hydroxysteroid (11-beta) dehydrogenase 1 (HSD11β1) inhibitor. Adrenosterone is a steroid hormone with weak androgenic effect. Adrenosterone is a dietary supplement that can decrease fat and increase muscle mass. Adrenosterone acts as a suppressor of metastatic progression of human cancer cells[1][2][3].

   

1-Methylxanthine

1-Methylxanthine

C6H6N4O2 (166.0491)


MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; MVOYJPOZRLFTCP-UHFFFAOYSA-N_STSL_0033_1-Methylxanthine_0500fmol_180410_S2_LC02_MS02_41; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. 1-Methylxanthine, a caffeine derivative, is an essential human urinary metabolite of caffeine and theophylline (1,3-dimethylxanthine, TP)[1]. 1-Methylxanthine enhances the radiosensitivity of tumor cells[2]. 1-Methylxanthine, a caffeine derivative, is an essential human urinary metabolite of caffeine and theophylline (1,3-dimethylxanthine, TP)[1]. 1-Methylxanthine enhances the radiosensitivity of tumor cells[2].

   

Nitrofurazone

Nitrofurazone-13C,15N2

C6H6N4O4 (198.0389)


P - Antiparasitic products, insecticides and repellents > P01 - Antiprotozoals > P01C - Agents against leishmaniasis and trypanosomiasis > P01CC - Nitrofuran derivatives B - Blood and blood forming organs > B05 - Blood substitutes and perfusion solutions > B05C - Irrigating solutions > B05CA - Antiinfectives D - Dermatologicals > D08 - Antiseptics and disinfectants > D08A - Antiseptics and disinfectants > D08AF - Nitrofuran derivatives D - Dermatologicals > D09 - Medicated dressings > D09A - Medicated dressings > D09AA - Medicated dressings with antiinfectives S - Sensory organs > S02 - Otologicals > S02A - Antiinfectives > S02AA - Antiinfectives C78272 - Agent Affecting Nervous System > C29698 - Antispasmodic Agent S - Sensory organs > S01 - Ophthalmologicals > S01A - Antiinfectives D000890 - Anti-Infective Agents CONFIDENCE standard compound; INTERNAL_ID 1286; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2678; ORIGINAL_PRECURSOR_SCAN_NO 2674 CONFIDENCE standard compound; INTERNAL_ID 1286; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2695; ORIGINAL_PRECURSOR_SCAN_NO 2692 CONFIDENCE standard compound; INTERNAL_ID 1286; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2685; ORIGINAL_PRECURSOR_SCAN_NO 2682 CONFIDENCE standard compound; INTERNAL_ID 1286; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2680; ORIGINAL_PRECURSOR_SCAN_NO 2676 CONFIDENCE standard compound; INTERNAL_ID 1286; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2704; ORIGINAL_PRECURSOR_SCAN_NO 2701 CONFIDENCE standard compound; INTERNAL_ID 1286; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2698; ORIGINAL_PRECURSOR_SCAN_NO 2695

   

Sphinganine 1-phosphate

Sphinganine 1-phosphate

C18H40NO5P (381.2644)


A sphingoid 1-phosphate that is the monophosphorylated derivative of sphinganine.

   

Prostaglandin G2

9S,11R-epidioxy-15S-hydroperoxy-5Z,13E-prostadienoic acid

C20H32O6 (368.2199)


D009676 - Noxae > D016877 - Oxidants > D010545 - Peroxides

   

2-(6-Aminopurin-9-yl)-5-(hydroxymethyl)oxolane-3,4-diol

2-(6-Aminopurin-9-yl)-5-(hydroxymethyl)oxolane-3,4-diol

C10H13N5O4 (267.0967)


   

epoxypropane

1,2-Propylene oxide

C3H6O (58.0419)


D009676 - Noxae > D002273 - Carcinogens Same as: D09803

   

4,4-Diphenylmethane diisocyanate

4,4-methylenebis(phenyl isocyanate)

C15H10N2O2 (250.0742)


COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

orphenadrine

orphenadrine

C18H23NO (269.178)


D004791 - Enzyme Inhibitors > D065607 - Cytochrome P-450 Enzyme Inhibitors > D065686 - Cytochrome P-450 CYP2B6 Inhibitors D002491 - Central Nervous System Agents > D018726 - Anti-Dyskinesia Agents > D000978 - Antiparkinson Agents C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C29704 - Antimuscarinic Agent D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D010276 - Parasympatholytics D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists D018373 - Peripheral Nervous System Agents > D009465 - Neuromuscular Agents C78281 - Agent Affecting Musculoskeletal System > C29696 - Muscle Relaxant

   

MeIQx

MeIQx

C11H11N5 (213.1014)


D009676 - Noxae > D002273 - Carcinogens D009676 - Noxae > D009153 - Mutagens

   

Orotidine-5-monophosphate

Orotidine-5-monophosphate

C10H13N2O11P (368.0257)


   

2-[(4-Nitrophenoxy)methyl]oxirane

1,2-Epoxy-3-(p-nitrophenoxy)propane

C9H9NO4 (195.0532)


D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors

   

3-phospho-D-glyceroyl dihydrogen phosphate

3-phospho-D-glyceroyl dihydrogen phosphate

C3H8O10P2 (265.9593)


The (R)-enantiomer of 3-phosphoglyceroyl dihydrogen phosphate.

   

Dinitrochlorobenzene

1-chloro-2,4-dinitrobenzene

C6H3ClN2O4 (201.9781)


D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents C308 - Immunotherapeutic Agent > C2139 - Immunostimulant D009676 - Noxae > D007509 - Irritants

   

methapyrilene

methapyrilene

C14H19N3S (261.13)


R - Respiratory system > R06 - Antihistamines for systemic use > R06A - Antihistamines for systemic use > R06AC - Substituted ethylene diamines D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists C308 - Immunotherapeutic Agent > C29578 - Histamine-1 Receptor Antagonist D018926 - Anti-Allergic Agents

   

Ethylene dibromide

Ethylene dibromide

C2H4Br2 (185.868)


A bromoalkane that is ethane carrying bromo substituents at positions 1 and 2. It is produced by marine algae.

   

metolachlor

metolachlor [ANSI, WSSA]

C15H22ClNO2 (283.1339)


D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals

   

Aminomethylphosphonate

1-Aminomethylphosphonic acid

CH6NO3P (111.0085)


   

AFMU

5-Acetylamino-6-formylamino-3-methyluracil

C8H10N4O4 (226.0702)


   

λ-Cyhalothrin

Cyclopropanecarboxylicacid, 3-[(1Z)-2-chloro-3,3,3-trifluoro-1-propen-1-yl]-2,2-dimethyl-,(S)-cyano(3-phenoxyphenyl)methyl ester, (1R,3R)-

C23H19ClF3NO3 (449.1005)


D010575 - Pesticides > D007306 - Insecticides > D011722 - Pyrethrins D016573 - Agrochemicals

   

Glyceric acid 1,3-biphosphate

phosphono 2-hydroxy-3-phosphonooxypropanoate

C3H8O10P2 (265.9593)


1,3-Bisphosphoglycerate. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=1981-49-3 (retrieved 2024-10-16) (CAS RN: 1981-49-3). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).