Classification Term: 3753
Hexose phosphates (ontology term: CHEMONTID:0002260)
Carbohydrate derivatives containing a hexose substituted by one or more phosphate groups." []
found 24 associated metabolites at no_class-level_7
metabolite taxonomy ontology rank level.
Ancestor: Hexoses
Child Taxonomies: There is no child term of current ontology term.
Glucose 6-phosphate
Glucose 6 phosphate (alpha-D-glucose 6 phosphate or G6P) is the alpha-anomer of glucose-6-phosphate. There are two anomers of glucose 6 phosphate, the alpha anomer and the beta anomer. Glucose 6 phosphate is an ester of glucose with phosphoric acid, made in the course of glucose metabolism by mammalian and other cells. It is a normal constituent of resting muscle and probably is in constant equilibrium with fructose-6-phosphate. (Stedman, 26th ed). Glucose-6-phosphate is a phosphorylated glucose molecule on carbon 6. When glucose enters a cell, it is immediately phosphorylated to G6P. This is catalyzed with hexokinase enzymes, thus consuming one ATP. A major reason for immediate phosphorylation of the glucose is so that it cannot diffuse out of the cell. The phosphorylation adds a charged group so the G6P cannot easily cross cell membranes. G6P can travel down two metabolic pathways, glycolysis and the pentose phosphate pathway. In addition to the metabolic pathways, G6P can also be stored as glycogen in the liver if blood glucose levels are high. If the body needs energy or carbon skeletons for syntheses, G6P can be isomerized to Fructose-6-phosphate and then phosphorylated to Fructose-1,6-bisphosphate. Note, the molecule now has 2 phosphoryl groups attached. The addition of the 2nd phosphoryl group is an irreversible step, so once this happens G6P will enter glycolysis and be turned into pyruvate (ATP production occurs). If blood glucose levels are high, the body needs a way to store the excess glucose. After being converted to G6P, phosphoglucose mutase (isomerase) can turn the molecule into glucose-1-phosphate. Glucose-1-phosphate can then be combined with uridine triphosphate (UTP) to form UDP-glucose. This reaction is driven by the hydrolysis of pyrophosphate that is released in the reaction. Now, the activated UDP-glucose can add to a growing glycogen molecule with the help of glycogen synthase. This is a very efficient storage mechanism for glucose since it costs the body only 1 ATP to store the 1 glucose molecule and virtually no energy to remove it from storage. It is important to note that glucose-6-phosphate is an allosteric activator of glycogen synthase, which makes sense because when the level of glucose is high the body should store the excess glucose as glycogen. On the other hand, glycogen synthase is inhibited when it is phosphorylated by protein kinase a during times of high stress or low blood glucose levels. -- Wikipedia [HMDB] Glucose 6-phosphate (G6P, sometimes called the Robison ester) is a glucose sugar phosphorylated at the hydroxy group on carbon 6. Glucose 6-phosphate (G6P) has two anomers: the alpha anomer and the beta anomer. Glucose 6-phosphate is an ester of glucose with phosphoric acid, made in the course of glucose metabolism by mammalian and other cells. It is a normal constituent of resting muscle and probably is in constant equilibrium with fructose 6-phosphate (Stedman, 26th ed). When glucose enters a cell, it is immediately phosphorylated to G6P. This is catalyzed with hexokinase enzymes, thus consuming one ATP. A major reason for immediate phosphorylation of the glucose is so that it cannot diffuse out of the cell. The phosphorylation adds a charged group so the G6P cannot easily cross cell membranes. G6P can travel down two metabolic pathways: glycolysis and the pentose phosphate pathway. In addition to the metabolic pathways, G6P can also be stored as glycogen in the liver if blood glucose levels are high. If the body needs energy or carbon skeletons for syntheses, G6P can be isomerized to fructose 6-phosphate and then phosphorylated to fructose 1,6-bisphosphate. Note, the molecule now has 2 phosphoryl groups attached. The addition of the 2nd phosphoryl group is an irreversible step, so once this happens G6P will enter glycolysis and be turned into pyruvate (ATP production occurs). If blood glucose levels are high, the body needs a way to store the excess glucose. After being converted to G6P, phosphoglucose mutase (an isomerase) can turn the molecule into glucose 1-phosphate. Glucose 1-phosphate can then be combined with uridine triphosphate (UTP) to form UDP-glucose. This reaction is driven by the hydrolysis of pyrophosphate that is released in the reaction. Now, the activated UDP-glucose can add to a growing glycogen molecule with the help of glycogen synthase. This is a very efficient storage mechanism for glucose since it costs the body only 1 ATP to store the 1 glucose molecule and virtually no energy to remove it from storage. It is important to note that glucose 6-phosphate is an allosteric activator of glycogen synthase, which makes sense because when the level of glucose is high the body should store the excess glucose as glycogen. On the other hand, glycogen synthase is inhibited when it is phosphorylated by protein kinase during times of high stress or low blood glucose levels. Acquisition and generation of the data is financially supported in part by CREST/JST. CONFIDENCE standard compound; INTERNAL_ID 237 KEIO_ID G003; [MS2] KO009109 KEIO_ID G003
alpha-D-Glucose 1,6-bisphosphate
Glucose 1,6-diphosphate (G-1,6-P2) is considered to be a major regulator of carbohydrate metabolism. It has been demonstrated that G-1,6-P2 is a potent activator (deinhibitor) of skeletal muscle phosphofructokinase (PFK) and phosphoglucomutase, while being an inhibitor of hexokinase (see Ref. 2). In addition, G-1,6-P2 has been shown to inhibit 6-phosphogluconate dehydrogenase in various rat tissues and fructose 1,6-bisphosphatase in bovine liver. Various factors and conditions affect the tissue content of G-1,6-P2. Specifically, anoxia induces a rapid fall in the content of G-l,6-P2 in the brain. Glucose 1,6-diphosphate has been recognized as a regulatory signal implicated in the control of metabolism, oxygen affinity of red cells, and other cellular functions. The levels of G 1,6-P2 are reduced in the liver and in the muscle of rats with experimentally induced diabetes. In muscle of genetically dystrophic mice, a decrease in the levels of G 1,6-P2 has been found, probably resulting from enhancement of glucose 1,6-P2 phosphatase activity. G 1,6-P2 is an inhibitor of hexokinase and its level is increased significantly after 5 min of exercise (~25\\%) and then decreased continuously. G 1,6-P2 is a potent allosteric activator of phosphofructokinase, and is markedly decreased in muscles of patients with glycogenosis type VII (muscle phosphofructokinase deficiency) and type V (muscle phosphorylase deficiency). Chronic alcohol intake produces an increase in the concentration of G 1,6-P2 in human muscle before the first sign of myopathy appears. When myopathy is present the level decreases to be similar to healthy humans. These changes could contribute to the decline in skeletal muscle performance (PMID:1449560, 2018547, 2003594, 3407759). Glucose 1,6-diphosphate is considered to be a major regulator of carbohydrate metabolism. It has been demonstrated that G-1,6-P2 is a potent activator (deinhibitor) of skeletal muscle phosphofructokinase (PFK) and phosphoglucomutase, while being an inhibitor of hexokinase (see Ref. 2). In addition, G-1,6 P2 has been shown to inhibit 6-phosphogluconate dehydrogenase in various rat tissues and fructose 1,6-bisphosphatase in bovine liver. Various factors and conditions affect the tissue content of G-1,6-P2. Specifically, anoxia induce a rapid fall in the content of G-l,6-P2 in brain. Glucose 1,6-diphosphate (G 1,6-P2 )have been recognized as a regulatory signal implicated in the control of metabolism, oxygen affinity of red cells and other cellular functions. The levels of G 1,6-P2 are reduced in the liver and in the muscle of rats with experimentally induced diabetes. In muscle of genetically dystrophic mice a decrease in the levels of G 1,6-P2 has been found, probably resulting from enhancement of glucose 1,6-P2 phosphatase activity. G 1,6-P2 is an inhibitor of hexokinase and its level is increased significantly after 5 min of exercise (~ 25\\%) and then decreased continuously. G 1,6-P2 is a potent allosteric activator of phosphofructokinase, and is markedly decreased in muscles of patients with glycogenosis type VII (muscle phosphofructokinase deficiency) and type V (muscle phosphorylase deficiency). Acquisition and generation of the data is financially supported in part by CREST/JST.
Glucosamine 6-phosphate
Glucosamine 6-phosphate (CAS: 3616-42-0) is normally produced in endothelial cells via de novo glucosamine synthesis by the enzyme fructose-6-phosphate amidotransferase and the modulation of this pathway by hyperglycemia and glutamine. Glutamine-fructose-6-phosphate amidotransferase (GFAT) catalyzes the first committed step in the pathway for biosynthesis of hexosamines in mammals.It is a member of the N-terminal nucleophile class of amidotransferases, GFAT transfers the amino group from the L-glutamine amide to D-fructose 6-phosphate, producing glutamic acid and glucosamine 6-phosphate. As glucosamine inhibits endothelial nitric oxide synthesis it has important implications for impaired endothelium-dependent relaxation and vascular dysfunction in diabetes mellitus (PMID:11270676, 11842094). Glucosamine 6-phosphate is normally produced in endothelial cells via the de novo glucosamine synthesis by the enzyme fructose-6-phosphate amidotransferase and the modulation of this pathway by hyperglycemia and glutamine. glutamine-fructose-6-phosphate amidotransferase (GFAT) catalyzes the first committed step in the pathway for biosynthesis of hexosamines in mammals. A member of the N-terminal nucleophile class of amidotransferases, GFAT transfers the amino group from the L-glutamine amide to D-fructose 6-phosphate, producing glutamic acid and glucosamine 6-phosphate. As glucosamine inhibits endothelial nitric oxide synthesis it has important implications for impaired endothelium-dependent relaxation and vascular dysfunction in diabetes mellitus. (PMID 11270676, 11842094) [HMDB] Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID G021; [MS2] KO008968 KEIO_ID G021
Fructose 1,6-bisphosphate
D002491 - Central Nervous System Agents > D018696 - Neuroprotective Agents D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents C - Cardiovascular system > C01 - Cardiac therapy D007155 - Immunologic Factors D020011 - Protective Agents KEIO_ID F008
β-D-Fructose 6-phosphate
Fructose 6-phosphate (F6P) belongs to the class of organic compounds known as hexose phosphates. These are carbohydrate derivatives containing a hexose substituted by one or more phosphate groups. F6P is a derivative of fructose, which has been phosphorylated at the 6-hydroxy group. Fructose 6-phosphate is a fundamental metabolite and exists in all living species, ranging from bacteria to plants to humans. The great majority of glucose is converted to fructose 6-phosphate as part of the glycolytic metabolic pathway (glycolysis). Specifically, F6P is produce is produced by the isomerisation of glucose 6-phosphate via the enzyme phosphoglucose isomerase. F6P is in turn further phosphorylated to fructose-1,6-bisphosphate by the enzyme phosphofructokinase-1. Glycolysis is the metabolic pathway that converts glucose into pyruvic acid. The free energy released in this process is used to form ATP and reduced nicotinamide adenine dinucleotide (NADH). In addition to its key involvement in glycolysis, fructose 6-phosphate can also be biosynthesized from glucosamine 6-phosphate via the enzyme glucosamine-6-phosphate isomerase 1. In addition, fructose 6-phosphate and L-glutamine can be converted into glucosamine 6-phosphate and L-glutamic acid through the action of the enzyme glutamine--fructose-6-phosphate aminotransferase. An important intermediate in the Carbohydrates pathway. The interconversion of glucose-6-phosphate and fructose-6-phosphate, the second step of the Embden-Meyerhof glycolytic pathway, is catalyzed by the enzyme phosphoglucose isomerase (PGI). In gluconeogenesis, fructose-6-phosphate is the immediate precursor of glucose-6-phosphate (wikipedia) [HMDB] Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID F001
Fructose 1-phosphate
Fructose 1-phosphate, also known as D-fructose-1-p, belongs to the class of organic compounds known as hexose phosphates. These are carbohydrate derivatives containing a hexose substituted by one or more phosphate groups. Metabolism of fructose thus essentially results in intermediates of glycolysis. The final product of glycolysis (pyruvate) may then undergo gluconeogenesis, enter the TCA cycle or be stored as fatty acids. Fructose 1-phosphate exists in all living organisms, ranging from bacteria to humans. Within humans, fructose 1-phosphate participates in a number of enzymatic reactions. In particular, fructose 1-phosphate can be biosynthesized from D-fructose through the action of the enzyme ketohexokinase. In addition, fructose 1-phosphate can be converted into dihydroxyacetone phosphate and glyceraldehyde; which is catalyzed by the enzyme fructose-bisphosphate aldolase a. Because fructokinase has a high Vmax fructose entering cells is quickly phosphorylated to fructose 1-phosphate. In humans, fructose 1-phosphate is involved in fructose intolerance, hereditary. Hypoglycemia results from inhibition of glycogenolysis and gluconeogenesis. It is generated mainly by hepatic fructokinase but is also generated in smaller amounts in the small intestinal mucosa and proximal epithelium of the renal tubule. Aldolase B converts it into glyceraldehyde and dihydroxyacetone phosphate (DHAP). Symptoms of hereditary fructose intolerance are apathy, drowsiness, sweatiness and tremulousness. Fructose 1-phosphate is an intermediate metabolite in the Fructose and mannose metabolism pathway. [HMDB] KEIO_ID F009
6-Phosphonoglucono-D-lactone
6-phosphonoglucono-d-lactone, also known as D-glucono-1,5-lactone 6-phosphate or 6-pgdl, is a member of the class of compounds known as hexose phosphates. Hexose phosphates are carbohydrate derivatives containing a hexose substituted by one or more phosphate groups. 6-phosphonoglucono-d-lactone is soluble (in water) and a moderately acidic compound (based on its pKa). 6-phosphonoglucono-d-lactone can be found in a number of food items such as chicory leaves, pepper (c. chinense), opium poppy, and green bell pepper, which makes 6-phosphonoglucono-d-lactone a potential biomarker for the consumption of these food products. 6-phosphonoglucono-d-lactone can be found primarily in cellular cytoplasm. 6-phosphonoglucono-d-lactone exists in all living species, ranging from bacteria to humans. In humans, 6-phosphonoglucono-d-lactone is involved in warburg effect, which is a metabolic disorder. 6-phosphoglucono-delta-lactone (d-6PGL) is the immediate product of the Glucose-6-phosphate dehydrogenase (G-6-PD), the first enzyme of the hexose monophosphate pathway. (PMID 3711719). The pentose-phosphate pathway provides reductive power and nucleotide precursors to the cell through oxidative and nonoxidative branches. 6-Phosphogluconolactonase is the second enzyme of the oxidative branch and catalyzes the hydrolysis of 6-phosphogluconolactones, the products of glucose 6-phosphate oxidation by glucose-6-phosphate dehydrogenase. By efficiently catalyzing the hydrolysis of d-6PGL, 6-phosphogluconolactonase prevents the reaction between d-6PGL and intracellular nucleophiles; such a reaction would interrupt the functioning of the pentose-phosphate pathway. (PMID 11457850).
2-O-(6-Phospho-alpha-mannosyl)-D-glycerate
2-O-(6-Phospho-alpha-mannosyl)-D-glycerate is an alpha-D-mannosylglycerate (MG) that is an intermediate in 2-O-alpha-mannosyl-D-glycerate degradation. It can be generated from 2-O-alpha-mannosyl-D-glycerate via the enzyme 2-O-alpha-mannosyl-D-glycerate transporting phosphotransferase system (mngA). 2-O-Alpha-mannosyl-D-glycerate is a natural extremolyte identified in microorganisms growing under extremely high temperatures up to 100 oC, and had been shown to protect proteins against various stress conditions such as heat, freezing, thawing, and drying. MG that is naturally occurring hyperthermophilic osmolytes, could be potential drug candidates or lead compounds against alpha,beta aggregation associated with Alzheimers disease(PMID: 18304694). In most organisms MG is produced from guanosine pyrophosphate mannose (GDP-alpha-D-mannose) via mannosyl-3-phosphoglycerate in two steps, catalyzed by the enzymes mannosyl-3-phosphoglycerate synthase and mannosyl-3-phosphoglycerate phosphatase. [HMDB] 2-O-(6-Phospho-alpha-mannosyl)-D-glycerate is an alpha-D-mannosylglycerate (MG) that is an intermediate in 2-O-alpha-mannosyl-D-glycerate degradation. It can be generated from 2-O-alpha-mannosyl-D-glycerate via the enzyme 2-O-alpha-mannosyl-D-glycerate transporting phosphotransferase system (mngA). 2-O-Alpha-mannosyl-D-glycerate is a natural extremolyte identified in microorganisms growing under extremely high temperatures up to 100 oC, and had been shown to protect proteins against various stress conditions such as heat, freezing, thawing, and drying. MG that is naturally occurring hyperthermophilic osmolytes, could be potential drug candidates or lead compounds against alpha,beta aggregation associated with Alzheimers disease(PMID: 18304694). In most organisms MG is produced from guanosine pyrophosphate mannose (GDP-alpha-D-mannose) via mannosyl-3-phosphoglycerate in two steps, catalyzed by the enzymes mannosyl-3-phosphoglycerate synthase and mannosyl-3-phosphoglycerate phosphatase.
Mannose 6-phosphate
Mannose 6-phosphate, also known as alpha-D-mannose-6-p or man-6-p, belongs to the class of organic compounds known as hexose phosphates. These are carbohydrate derivatives containing a hexose substituted by one or more phosphate groups. Mannose 6-phosphate exists in all eukaryotes, ranging from yeast to humans. Within humans, mannose 6-phosphate participates in a number of enzymatic reactions. In particular, mannose 6-phosphate can be converted into fructose 6-phosphate through its interaction with the enzyme mannose-6-phosphate isomerase. In addition, mannose 6-phosphate can be biosynthesized from D-mannose through the action of the enzyme hexokinase-1. Mannose 6-phosphate is a potent competitive inhibitor of pinocytosis of human platelet beta-glucuronidase and it is a necessary component of the recognition marker on the enzyme for pinocytosis by human fibroblasts as well (PMID 908752). In humans, mannose 6-phosphate is involved in fructose intolerance, hereditary. Mannose-6-phosphate is a potent competitive inhibitor of pinocytosis of human platelet beta-glucuronidase and it is a necessary component of the recognition marker on the enzyme for pinocytosis by human fibroblasts as well (PMID 908752). [HMDB] Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID M008
beta-D-Glucose 6-phosphate
beta-D-Glucose 6 phosphate (b-G6P) is the beta-anomer of glucose-6-phosphate. There are two anomers of glucose 6 phosphate: the alpha anomer and the beta anomer. Specifically, beta-D-Glucose 6-phosphate is glucose sugar phosphorylated on carbon 6. It is a very common metabolite in cells as the vast majority of glucose entering a cell will become phosphorylated in this way. The primary reason for the immediate phosphorylation of glucose is to prevent diffusion out of the cell. The phosphorylation adds a charged phosphate group so the glucose 6-phosphate cannot easily cross the cell membrane. b-G6P is involved in glycolysis, gluconeogenesis, pentose phosphate, and glycogen and sucrose metabolic pathways. beta-D-Glucose 6 phosphate can be generated through beta-D-fructose phosphate or alpha-D-glucose 6 phosphate (via glucose-6-phosphate isomerase) or beta-D glucose (via hexokinase). It can then be sent off to the pentose phosphate pathway which generates the useful cofactor NADPH as well as ribulose 5-phosphate, a carbon source for the synthesis of other molecules. Alternately, if the cell needs energy or carbon skeletons for synthesis then glucose 6-phosphate is targeted for glycolysis. A third route is to have glucose 6 phosphate stored or converted into glycogen, especially if blood glucose levels are high. Beta-d-glucose 6-phosphate, also known as B-D-glucose 6-(dihydrogen phosphoric acid) or 6-O-phosphono-beta-D-glucopyranose, is a member of the class of compounds known as hexose phosphates. Hexose phosphates are carbohydrate derivatives containing a hexose substituted by one or more phosphate groups. Beta-d-glucose 6-phosphate is soluble (in water) and a moderately acidic compound (based on its pKa). Beta-d-glucose 6-phosphate can be found in a number of food items such as sapodilla, hickory nut, atlantic herring, and swede, which makes beta-d-glucose 6-phosphate a potential biomarker for the consumption of these food products. Beta-d-glucose 6-phosphate exists in all living species, ranging from bacteria to humans. In humans, beta-d-glucose 6-phosphate is involved in several metabolic pathways, some of which include glycolysis, glycogenosis, type IC, glycogenosis, type IB, and trehalose degradation. Beta-d-glucose 6-phosphate is also involved in several metabolic disorders, some of which include glucose-6-phosphate dehydrogenase deficiency, warburg effect, fanconi-bickel syndrome, and transaldolase deficiency.
D-Tagatose 1,6-bisphosphate
D-Tagatose 1,6-bisphosphate is an intermediate in galactose metabolism. [HMDB] D-Tagatose 1,6-bisphosphate is an intermediate in galactose metabolism.
[(2R,3R,4S,5S)-3,4,5,6-Tetrahydroxyoxan-2-yl]methyl dihydrogen phosphate
3a,6b,7a,12a-Tetrahydroxy-5b-cholanoic acid
3a,6b,7a,12a-Tetrahydroxy-5b-cholanoic acid is a bile acid. Bile acids are steroid acids found predominantly in bile of mammals. The distinction between different bile acids is minute, depends only on presence or absence of hydroxyl groups on positions 3, 7, and 12. 3 alpha,6 alpha,7 alpha,12 alpha-Tetrahydroxy-5 beta-cholan-24-oic acid has been identified from human meconium and healthy neonatal urine. (PMID 2743505).
D-Mannose 1,6-bisphosphate
This compound belongs to the family of Hexose Phosphates. These are carbohydrate derivatives containing an hexose substituted by one or more phosphate groups.
6-O-phosphonato-D-glucono-1,5-lactone(2-)
6-O-phosphonato-D-glucono-1,5-lactone(2-) is also known as 6-phosphonoglucono-delta-Lactone or 6-PGDL. 6-O-phosphonato-D-glucono-1,5-lactone(2-) is considered to be soluble (in water) and acidic
1,6-Di-O-phosphono-D-fructose
Fructose-1,6-diphosphate
Glucose-6-phosphate lactate
[(2R,3R)-2,3,5-Trihydroxy-4-oxo-6-phosphonooxyhexyl] dihydrogen phosphate
D-fructose 6-phosphate
D-fructose 6-phosphate is a member of the class of compounds known as hexose phosphates. Hexose phosphates are carbohydrate derivatives containing a hexose substituted by one or more phosphate groups. D-fructose 6-phosphate is soluble (in water) and a moderately acidic compound (based on its pKa). D-fructose 6-phosphate can be found in a number of food items such as roselle, cashew nut, red bell pepper, and cucumber, which makes D-fructose 6-phosphate a potential biomarker for the consumption of these food products.
D-mannose 6-phosphate
D-mannose 6-phosphate, also known as mannose-6-phosphate disodium salt, is a member of the class of compounds known as hexose phosphates. Hexose phosphates are carbohydrate derivatives containing a hexose substituted by one or more phosphate groups. D-mannose 6-phosphate is soluble (in water) and a moderately acidic compound (based on its pKa). D-mannose 6-phosphate can be found in a number of food items such as bog bilberry, wild celery, common pea, and breadnut tree seed, which makes D-mannose 6-phosphate a potential biomarker for the consumption of these food products. D-mannose 6-phosphate may be a unique S.cerevisiae (yeast) metabolite. The M6P-tagged lysosomal enzymes are shipped to the late endosomes via vesicular transport. Enzyme replacement therapy (ERT) for several lysosomal storage diseases relies on this pathway to efficiently direct synthetic enzymes to the lysosome where each can metabolize its particular substrate. The pH in the late endosome can reach 6.0, which causes dissociation of M6P from its receptor. Upon release, the enzymes are ferried to their final destination in the lysosomes. The MPRs are packed into vesicles that bud off the late endosome and return to the "trans"-Golgi network. In this way, the MPRs can be recycled . D-mannose 6-phosphate, also known as mannose-6-phosphate disodium salt, is a member of the class of compounds known as hexose phosphates. Hexose phosphates are carbohydrate derivatives containing a hexose substituted by one or more phosphate groups. D-mannose 6-phosphate is soluble (in water) and a moderately acidic compound (based on its pKa). D-mannose 6-phosphate can be found in a number of food items such as bog bilberry, wild celery, common pea, and breadnut tree seed, which makes D-mannose 6-phosphate a potential biomarker for the consumption of these food products. D-mannose 6-phosphate may be a unique S.cerevisiae (yeast) metabolite. The M6P-tagged lysosomal enzymes are shipped to the late endosomes via vesicular transport. Enzyme replacement therapy (ERT) for several lysosomal storage diseases relies on this pathway to efficiently direct synthetic enzymes to the lysosome where each can metabolize its particular substrate. The pH in the late endosome can reach 6.0, which causes dissociation of M6P from its receptor. Upon release, the enzymes are ferried to their final destination in the lysosomes. The MPRs are packed into vesicles that bud off the late endosome and return to the "trans"-Golgi network. In this way, the MPRs can be recycled.
alpha-D-glucose 6-phosphate
Mannose 6-phosphate, also known as mannose 6-phosphoric acid, is a member of the class of compounds known as hexose phosphates. Hexose phosphates are carbohydrate derivatives containing a hexose substituted by one or more phosphate groups. Mannose 6-phosphate is soluble (in water) and a moderately acidic compound (based on its pKa). Mannose 6-phosphate can be found in a number of food items such as japanese chestnut, rubus (blackberry, raspberry), allium (onion), and nanking cherry, which makes mannose 6-phosphate a potential biomarker for the consumption of these food products. Mannose 6-phosphate may be a unique E.coli metabolite. The M6P-tagged lysosomal enzymes are shipped to the late endosomes via vesicular transport. Enzyme replacement therapy (ERT) for several lysosomal storage diseases relies on this pathway to efficiently direct synthetic enzymes to the lysosome where each can metabolize its particular substrate. The pH in the late endosome can reach 6.0, which causes dissociation of M6P from its receptor. Upon release, the enzymes are ferried to their final destination in the lysosomes. The MPRs are packed into vesicles that bud off the late endosome and return to the "trans"-Golgi network. In this way, the MPRs can be recycle.