Classification Term: 168803

Indolecarboxylic acids (ontology term: 6cef1d2b81bfcbb3566f436b9104293d)

found 34 associated metabolites at sub_class metabolite taxonomy ontology rank level.

Ancestor: Tryptophan alkaloids

Child Taxonomies: There is no child term of current ontology term.

Indolepyruvate

3-(1H-Indol-3-yl)-2-oxopropionic acid

C11H9NO3 (203.0582404)


The thiamin diphosphate (ThDP)-dependent enzyme indolepyruvate decarboxylase (IPDC) is involved in the biosynthetic pathway of the phytohormone 3-indoleacetic acid and catalyzes the nonoxidative decarboxylation of 3-indolepyruvate to 3-indoleacetaldehyde and carbon dioxide. (PMID:15835904)  In addition, the enzyme was compared with the phenylpyruvate decarboxylase from Azospirillum brasilense and the indolepyruvate decarboxylase from Enterobacter cloacae. (PMID:21501384) Indole-3-pyruvate is a microbial metabolite, urinary indole-3-pyruvate is produced by Clostridium sporogenes (PMID:29168502) and Trypanasoma brucei (PMID:27856732). Indolepyruvate, also known as indolepyruvic acid or (indol-3-yl)pyruvate, belongs to indolyl carboxylic acids and derivatives class of compounds. Those are compounds containing a carboxylic acid chain (of at least 2 carbon atoms) linked to an indole ring. Indolepyruvate is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Indolepyruvate can be found in a number of food items such as spelt, strawberry, gram bean, and oregon yampah, which makes indolepyruvate a potential biomarker for the consumption of these food products. Indolepyruvate exists in all eukaryotes, ranging from yeast to humans. D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014151 - Anti-Anxiety Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants D002491 - Central Nervous System Agents > D000927 - Anticonvulsants D000975 - Antioxidants > D016166 - Free Radical Scavengers D020011 - Protective Agents > D000975 - Antioxidants KEIO_ID I002

   

Indole-3-lactic acid

(AlphaS)-alpha-hydroxy-1H-indole-3-propanoic acid

C11H11NO3 (205.0738896)


Indolelactic acid (CAS: 1821-52-9) is a tryptophan metabolite found in human plasma, serum, and urine. Tryptophan is metabolized by two major pathways in humans, either through kynurenine or via a series of indoles, and some of its metabolites are known to be biologically active. Indolelactic acid is present in various amounts, significantly higher in umbilical fetal plasma than in maternal plasma in the protein-bound form (PMID 2361979, 1400722, 3597614, 11060358, 1400722). Indolelactic acid is also a microbial metabolite; urinary indole-3-lactate is produced by Clostridium sporogenes (PMID: 29168502). Indolelactic acid is a tryptophan metabolite found in human plasma and serum and normal urine. Tryptophan is metabolized by two major pathways in humans, either through kynurenine or via a series of indoles, and some of its metabolites are known to be biologically active. Indolelactic acid is present in various amounts, significantly higher in umbilical foetal plasma than in maternal plasma in the protein-bound form. (PMID 2361979, 1400722, 3597614, 11060358, 1400722) [HMDB] Indolelactic acid (Indole-3-lactic acid) is a tryptophan (Trp) catabolite in Azotobacter vinelandii cultures. Indolelactic acid has anti-inflammation and potential anti-viral activity[1][3][4].

   

Indole-3-carboxylic acid

1H-Indole-3-carboxylic acid

C9H7NO2 (161.0476762)


Indole-3-carboxylic acid, also known as 3-carboxyindole or 3-indolecarboxylate, belongs to the class of organic compounds known as indolecarboxylic acids and derivatives. Indolecarboxylic acids and derivatives are compounds containing a carboxylic acid group (or a derivative thereof) linked to an indole. Naphthylmethylindoles: Any compound containing a 1H-indol-3-yl-(1-naphthyl)methane structure with substitution at the nitrogen atom of the indole ring by an alkyl, haloalkyl, alkenyl, cycloalkylmethyl, cycloalkylethyl, 1-(N-methyl-2-piperidinyl)methyl, or 2-(4-morpholinyl)ethyl group whether or not further substituted in the indole ring to any extent and whether or not substituted in the naphthyl ring to any extent. One example given is JWH-250. Outside of the human body, indole-3-carboxylic acid has been detected, but not quantified in several different foods, such as brassicas, broccoli, pulses, common beets, and barley. This could make indole-3-carboxylic acid a potential biomarker for the consumption of these foods. Notice the pentyl group substituted onto the nitrogen atom of the indole ring. Note that this definition encompasses only those compounds that have OH groups attached to both the phenyl and the cyclohexyl rings, and so does not include compounds such as O-1871 which lacks the cyclohexyl OH group, or compounds such as JWH-337 or JWH-344 which lack the phenolic OH group. Present in plants, e.g. apple (Pyrus malus), garden pea (Pisum sativum) and brassicas Indole-3-carboxylic acid is a normal urinary indolic tryptophan metabolite and has been found elevated in patients with liver diseases[1][2]. Indole-3-carboxylic acid is a normal urinary indolic tryptophan metabolite and has been found elevated in patients with liver diseases[1][2].

   

Dolasetron

1H-Indole-3-carboxylic acid, (6R,9as)-octahydro-3-oxo-2,6-methano-2H-quinolizin-8-yl ester, rel-, methanesulfonate, hydrate (1:1:1)

C19H20N2O3 (324.147385)


Dolasetron is an antinauseant and antiemetic agent indicated for the prevention of nausea and vomiting associated with moderately-emetogenic cancer chemotherapy and for the prevention of postoperative nausea and vomiting. Dolasetron is a highly specific and selective serotonin 5-HT3 receptor antagonist. This drug has not shown to have activity at other known serotonin receptors, and has low affinity for dopamine receptors. D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D012702 - Serotonin Antagonists D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents D005765 - Gastrointestinal Agents > D000932 - Antiemetics D002491 - Central Nervous System Agents Dolasetron(MDL-73147) is a serotonin 5-HT3 receptor antagonist used to treat nausea and vomiting following chemotherapy.

   

Tropisetron

8-Methyl-8-azabicyclo[3.2.1]oct-3-yl 1H-indole-3-carboxylate

C17H20N2O2 (284.15247)


D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D012702 - Serotonin Antagonists D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents D005765 - Gastrointestinal Agents > D000932 - Antiemetics D002491 - Central Nervous System Agents A - Alimentary tract and metabolism > A04 - Antiemetics and antinauseants > A04A - Antiemetics and antinauseants > A04AA - Serotonin (5ht3) antagonists C78272 - Agent Affecting Nervous System > C66885 - Serotonin Antagonist > C94726 - 5-HT3 Receptor Antagonist C78272 - Agent Affecting Nervous System > C267 - Antiemetic Agent Same as: D02130 Tropisetron (SDZ-ICS-930 free base) is a selective 5-HT3 receptor antagonist and α7-nicotinic receptor agonist with an IC50 of 70.1 ± 0.9 nM for 5-HT3 receptor. IC50 value: 70.1 ± 0.9 nM [1] Target: 5-HT3 receptor in vitro: Tropisetron specifically inhibited both IL-2 gene transcription and IL-2 synthesis in stimulated T cells. tropisetron inhibited both the binding to DNA and the transcriptional activity of NFAT and AP-1. We also observed that tropisetron is a potent inhibitor of PMA plus ionomycin-induced NF-(kappa)B activation but in contrast TNF(alpha)-mediated NF-(kappa)B activation was not affected by this antagonist [2]. Tropisetron prevents the phosphorylation and thus activation of the p38 MAPK, which is involved in post-transcriptional regulation of various cytokines [3]. in vivo: Two different doses of tropisetron (5 and 10 mg/kg) or vehicle were administered intraperitoneally 30 min before pMCAO. Neurological deficit scores, mortality rate and infarct volume were determined 24 h after permanent focal cerebral ischemia [4].

   
   

5,6-Dihydroxyindole-2-carboxylic acid

5,6-Dihydroxy-1H-indole-2-carboxylic acid

C9H7NO4 (193.0375062)


5,6-Dihydroxyindole-2-carboxylic acid is an intermediate in the metabolism of Tyrosine. It is a substrate for Dopachrome tautomerase. [HMDB] 5,6-Dihydroxyindole-2-carboxylic acid is an intermediate in the metabolism of Tyrosine. It is a substrate for Dopachrome tautomerase.

   

Indol-3-ylacetyl-myo-inositol L-arabinoside

[(2S,3S,5R,6R)-2,3,5,6-tetrahydroxy-4-[(2S,3R,4S,5S)-3,4,5-trihydroxytetrahydropyran-2-yl]oxy-cyclohexyl] 2-(1H-indol-3-yl)acetate

C21H27NO11 (469.15840320000007)


   

Leucodopachrome

(2S)-5,6-dihydroxy-2,3-dihydro-1H-indole-2-carboxylic acid

C9H9NO4 (195.0531554)


Leucodopachrome is an indolic intermediate in the melanogenesis pathway, the non-enzymatically product of dopaquinone through cyclization in a reaction whose operation is determined by a pH greater than 4 (melanin synthesis in human pigment cell lysates is maximal at pH 6.8). Leucodopachrome participates in redox exchange with dopaquinone to give the eumelanin precursor dopachrome plus dopa. Dopaquinone (the quinone intermediate resulting from tyrosinase-mediated oxidation of tyrosine, monophenol dihydroxyphenylalanine:oxygen oxidoreductase, EC 1.14.18.1) could be a toxic metabolite in melanin biosynthesis. (PMID: 6807981, 1445949, 413870, 11461115, 11171088, 12755639) [HMDB]. Leucodopachrome is found in many foods, some of which are chives, saffron, leek, and red beetroot. Leucodopachrome is an indolic intermediate in the melanogenesis pathway, the non-enzymatic product of dopaquinone through cyclization in a reaction whose operation is determined by a pH greater than 4 (melanin synthesis in human pigment cell lysates is maximal at pH 6.8). Leucodopachrome participates in redox exchange with dopaquinone to give the eumelanin precursor dopachrome plus DOPA. Dopaquinone (the quinone intermediate resulting from tyrosinase-mediated oxidation of tyrosine, monophenol dihydroxyphenylalanine:oxygen oxidoreductase, EC 1.14.18.1) could be a toxic metabolite in melanin biosynthesis (PMID: 6807981, 1445949, 413870, 11461115, 11171088, 12755639).

   

Betanidin

(1E)-1-{2-[(4E)-2,6-dicarboxy-1,2,3,4-tetrahydropyridin-4-ylidene]ethylidene}-5,6-dihydroxy-2,3-dihydro-1H-1λ⁵-indol-1-ylium-2-carboxylate

C18H16N2O8 (388.0906616)


Minor congener of Betanidin. Isobetanidin is found in root vegetables. Isobetanidin is found in root vegetables. Minor congener of Betanidi

   

5,6-Indolequinone-2-carboxylic acid

5,6-Indolequinone-2-carboxylic acid

C9H5NO4 (191.021857)


   

3-Indolepropionic acid

Indole-3-propionic acid

C11H11NO2 (189.0789746)


3-Indolepropionic acid is shown to be a powerful antioxidant and has potential in the treatment for Alzheimer’s disease.

   

dolasetron

dolasetron

C19H20N2O3 (324.147385)


A - Alimentary tract and metabolism > A04 - Antiemetics and antinauseants > A04A - Antiemetics and antinauseants > A04AA - Serotonin (5ht3) antagonists C78272 - Agent Affecting Nervous System > C66885 - Serotonin Antagonist > C94726 - 5-HT3 Receptor Antagonist D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D012702 - Serotonin Antagonists D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents C78272 - Agent Affecting Nervous System > C267 - Antiemetic Agent D005765 - Gastrointestinal Agents > D000932 - Antiemetics D002491 - Central Nervous System Agents Dolasetron(MDL-73147) is a serotonin 5-HT3 receptor antagonist used to treat nausea and vomiting following chemotherapy.

   

alpha-Hydroxy-1-methyl-1H-indole-3-propanoic acid

2-hydroxy-3-(1-methyl-1H-indol-3-yl)propanoic acid

C12H13NO3 (219.0895388)


alpha-Hydroxy-1-methyl-1H-indole-3-propanoic acid is found in nuts. alpha-Hydroxy-1-methyl-1H-indole-3-propanoic acid is a constituent of the skins of peanuts (Arachis hypogaea). Constituent of the skins of peanuts (Arachis hypogaea). alpha-Hydroxy-1-methyl-1H-indole-3-propanoic acid is found in nuts.

   

Indole-5-carboxylic acid

1H-indole-5-carboxylic acid

C9H7NO2 (161.0476762)


   

3-Indolepropionic acid

3-Indolepropionic acid

C11H11NO2 (189.0789746)


3-Indolepropionic acid is shown to be a powerful antioxidant and has potential in the treatment for Alzheimer’s disease.

   

Indolelactic acid

DL-Indole-3-lactic acid

C11H11NO3 (205.0738896)


Indolelactic acid (Indole-3-lactic acid) is a tryptophan (Trp) catabolite in Azotobacter vinelandii cultures. Indolelactic acid has anti-inflammation and potential anti-viral activity[1][3][4].

   

Betanidin

Betanidin

C18H16N2O8 (388.0906616)


D004396 - Coloring Agents > D050859 - Betacyanins D004396 - Coloring Agents > D050858 - Betalains

   

Methyl indole-3-carboxylate

Methyl indole-3-carboxylate

C10H9NO2 (175.0633254)


The methyl ester of indole-3-carboxylic acid. Methyl indole-3-carboxylate is a natural product isolated from Sorangium cellulosum strain Soce895. Methyl indole-3-carboxylate shows a weak activity against the Gram-positive Nocardia sp with a MIC value of 33.33 μg/mL[1]. Methyl indole-3-carboxylate is a natural product isolated from Sorangium cellulosum strain Soce895. Methyl indole-3-carboxylate shows a weak activity against the Gram-positive Nocardia sp with a MIC value of 33.33 μg/mL[1].

   

Indolelactic acid

(2S)-2-Hydroxy-3-(1H-indol-3-yl)propanoic acid

C11H11NO3 (205.0738896)


   

Indole-3-carboxylic acid

Indole-3-carboxylic acid

C9H7NO2 (161.0476762)


MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; KMAKOBLIOCQGJP-UHFFFAOYSA-N_STSL_0237_Indole-3-carboxylic acid_4000fmol_190403_S2_LC02MS02_082; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I.

   

Indolepropionic acid

Indolepropionic acid

C11H11NO2 (189.0789746)


   

5-O-(indol-3-ylacetyl)-myo-inositol D-galactoside

5-O-(indol-3-ylacetyl)-myo-inositol D-galactoside

C22H29NO12 (499.16896740000004)


   

Indole-3-lactic Acid

DL-Indole-3-lactic acid

C11H11NO3 (205.0738896)


Indolelactic acid (Indole-3-lactic acid) is a tryptophan (Trp) catabolite in Azotobacter vinelandii cultures. Indolelactic acid has anti-inflammation and potential anti-viral activity[1][3][4].

   

5,6-dihydroxyindole-2-carboxylic acid

5,6-Dihydroxy-1H-indole-2-carboxylic acid

C9H7NO4 (193.0375062)


A dihydroxyindole that is indole-2-carboxylic acid substituted by hydroxy groups at positions 5 and 6.

   

Leucodopachrome

Leucodopachrome

C9H9NO4 (195.0531554)


Indoline substituted with hydroxy groups at C-5 and -6 and a carboxy group at C-2, and with S stereochemistry at C-2.

   

alpha-Hydroxy-1-methyl-1H-indole-3-propanoic acid

alpha-Hydroxy-1-methyl-1H-indole-3-propanoic acid

C12H13NO3 (219.0895388)


   

Dihydroxyindolecarboxylic acid

Dihydroxyindolecarboxylic acid

C9H7NO4 (193.0375062)


   
   

Indolequinonecarboxylic acid

Indolequinonecarboxylic acid

C9H5NO4 (191.021857)


   

O-Indolylacetyl-inositol galactoside

O-Indolylacetyl-inositol galactoside

C22H29NO12 (499.16896740000004)