Chrysin (BioDeep_00000002144)
human metabolite PANOMIX_OTCML-2023 natural product BioNovoGene_Lab2019
代谢物信息卡片
化学式: C15H10O4 (254.057906)
中文名称: 5,7-二羟黄酮, 金合欢素, 白杨素
谱图信息:
最多检出来源 Viridiplantae(plant) 2.13%
Last reviewed on 2024-07-29.
Cite this Page
Chrysin. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China.
https://query.biodeep.cn/s/chrysin (retrieved
2024-11-08) (BioDeep RN: BioDeep_00000002144). Licensed
under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
分子结构信息
SMILES: c1(cc(c2c(c1)oc(cc2=O)c1ccccc1)O)O
InChI: InChI=1S/C15H10O4/c16-10-6-11(17)15-12(18)8-13(19-14(15)7-10)9-4-2-1-3-5-9/h1-8,16-17H
描述信息
Chrysin is a dihydroxyflavone in which the two hydroxy groups are located at positions 5 and 7. It has a role as an anti-inflammatory agent, an antineoplastic agent, an antioxidant, a hepatoprotective agent, an EC 2.7.11.18 (myosin-light-chain kinase) inhibitor and a plant metabolite. It is a dihydroxyflavone and a 7-hydroxyflavonol.
Chrysin is a natural product found in Scutellaria amoena, Lonicera japonica, and other organisms with data available.
5,7-Dihydroxyflavone is found in carrot. Chrysin is a naturally occurring flavone chemically extracted from the blue passion flower (Passiflora caerulea). Honeycomb also contains small amounts. It is also reported in Oroxylum indicum or Indian trumpetflower. (Wikipedia).
Chrysin is a naturally occurring flavone chemically extracted from the blue passion flower (Passiflora caerulea). Honeycomb also contains small amounts. It is also reported in Oroxylum indicum or Indian trumpetflower. [Wikipedia]. Chrysin is found in many foods, some of which are sour cherry, carrot, wild carrot, and sweet orange.
5,7-Dihydroxyflavone is found in carrot. Chrysin is a naturally occurring flavone chemically extracted from the blue passion flower (Passiflora caerulea). Honeycomb also contains small amounts. It is also reported in Oroxylum indicum or Indian trumpetflower. (Wikipedia).
A dihydroxyflavone in which the two hydroxy groups are located at positions 5 and 7.
CONFIDENCE standard compound; INTERNAL_ID 804; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4420; ORIGINAL_PRECURSOR_SCAN_NO 4416
CONFIDENCE standard compound; INTERNAL_ID 804; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4423; ORIGINAL_PRECURSOR_SCAN_NO 4419
CONFIDENCE standard compound; INTERNAL_ID 804; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9217; ORIGINAL_PRECURSOR_SCAN_NO 9215
ORIGINAL_ACQUISITION_NO 4462; CONFIDENCE standard compound; INTERNAL_ID 804; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_PRECURSOR_SCAN_NO 4458
CONFIDENCE standard compound; INTERNAL_ID 804; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4462; ORIGINAL_PRECURSOR_SCAN_NO 4458
CONFIDENCE standard compound; INTERNAL_ID 804; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7989; ORIGINAL_PRECURSOR_SCAN_NO 7985
CONFIDENCE standard compound; INTERNAL_ID 804; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4441; ORIGINAL_PRECURSOR_SCAN_NO 4440
CONFIDENCE standard compound; INTERNAL_ID 804; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7956; ORIGINAL_PRECURSOR_SCAN_NO 7952
CONFIDENCE standard compound; INTERNAL_ID 804; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7917; ORIGINAL_PRECURSOR_SCAN_NO 7913
CONFIDENCE standard compound; INTERNAL_ID 804; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4472; ORIGINAL_PRECURSOR_SCAN_NO 4469
CONFIDENCE standard compound; INTERNAL_ID 804; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7978; ORIGINAL_PRECURSOR_SCAN_NO 7973
CONFIDENCE standard compound; INTERNAL_ID 804; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4441; ORIGINAL_PRECURSOR_SCAN_NO 4438
CONFIDENCE standard compound; INTERNAL_ID 804; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7907; ORIGINAL_PRECURSOR_SCAN_NO 7904
[Raw Data] CB007_Chrysin_pos_20eV_CB000007.txt
[Raw Data] CB007_Chrysin_pos_30eV_CB000007.txt
[Raw Data] CB007_Chrysin_pos_40eV_CB000007.txt
[Raw Data] CB007_Chrysin_pos_10eV_CB000007.txt
[Raw Data] CB007_Chrysin_pos_50eV_CB000007.txt
[Raw Data] CB007_Chrysin_neg_10eV_000007.txt
[Raw Data] CB007_Chrysin_neg_30eV_000007.txt
[Raw Data] CB007_Chrysin_neg_40eV_000007.txt
[Raw Data] CB007_Chrysin_neg_50eV_000007.txt
[Raw Data] CB007_Chrysin_neg_20eV_000007.txt
Chrysin is one of the most well known estrogen blockers.
Chrysin is one of the most well known estrogen blockers.
同义名列表
55 个代谢物同义名
5,7-Dihydroxy-2-phenyl-4H-1-benzopyran-4-one, 9CI; 4H-1-Benzopyran-4-one, 5,7-dihydroxy-2-phenyl-; 5,7-Dihydroxy-2-phenyl-4H-benzo(b)pyran-4-one; 5,7-dihydroxy-2-phenyl-4H-benzo[b]pyran-4-one; 5-18-04-00076 (Beilstein Handbook Reference); 5,7-Dihydroxy-2-phenyl-4H-1-benzopyran-4-one; 4H-1-Benzopyran-4-one,7-dihydroxy-2-phenyl-; 5,7-Dihydroxy-2-phenyl-4H-chromen-4-one #; 5,7-Dihydroxy-2-phenyl-4H-chromen-4-one; 5,7-Dihydroxy-2-phenyl-chromen-4-one; 34B3B4AD-EEDD-4943-A1C6-8857D2FAA8E0; 5,7-dihydroxy-2-phenylchromen-4-one; Chrysin, analytical standard; FLAVONE, 5,7-DIHYDROXY-; 5, 7-Dihydroxyflavone; 5,7-dihydroxy-flavone; 5,7-dihydroxyflavone; Flavone,7-dihydroxy-; Prestwick3_000889; Prestwick1_000889; Prestwick0_000889; Prestwick2_000889; Spectrum2_000753; Spectrum3_001399; 5,7-diOH-Flavone; Spectrum4_000780; Spectrum5_001503; UNII-3CN01F5ZJ5; Chrysinic acid; CHRYSIN [INCI]; BPBio1_000746; MEGxp0_001416; Oprea1_045160; Chrysin, 97\\%; DivK1c_000614; KBio2_003293; ACon1_000087; KBio3_002238; Tox21_302335; KBio2_000725; KBio1_000614; NCI60_003886; CHRYSIN [MI]; KBio2_005861; SMP1_000070; Chrysin,(S); IDI1_000614; 3CN01F5ZJ5; chrysine; Chrysin; Crysin; Ois 3; 3ebo; 4des; 57D
数据库引用编号
45 个数据库交叉引用编号
- ChEBI: CHEBI:75095
- KEGG: C10028
- PubChem: 5281607
- HMDB: HMDB0036619
- Metlin: METLIN44046
- DrugBank: DB15581
- ChEMBL: CHEMBL117
- Wikipedia: Chrysin
- LipidMAPS: LMPK12110189
- MeSH: chrysin
- ChemIDplus: 0000480400
- MetaCyc: CPD-8184
- KNApSAcK: C00003794
- foodb: FDB015535
- chemspider: 4444926
- CAS: 480-40-0
- MoNA: FIO00025
- MoNA: LU080454
- MoNA: FIO00029
- MoNA: FIO00031
- MoNA: FIO00030
- MoNA: FIO00026
- MoNA: LU080402
- MoNA: LU080452
- MoNA: FIO00024
- MoNA: LU080405
- MoNA: LU080403
- MoNA: LU080406
- MoNA: LU080456
- MoNA: FIO00028
- MoNA: LU080401
- MoNA: FIO00023
- MoNA: LU080404
- MoNA: FIO00032
- MoNA: LU080455
- MoNA: LU080453
- MoNA: LU080451
- MoNA: FIO00027
- medchemexpress: HY-14589
- PMhub: MS000001951
- MetaboLights: MTBLC75095
- PDB-CCD: 57D
- 3DMET: B03471
- NIKKAJI: J1.544J
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-683
分类词条
相关代谢途径
Reactome(0)
BioCyc(0)
代谢反应
47 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(0)
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(47)
- chrysin biosynthesis:
(2S)-pinocembrin + 2-oxoglutarate + O2 ⟶ CO2 + H2O + chrysin + succinate
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- baicalein metabolism:
UDP-α-D-glucose + baicalein ⟶ H+ + UDP + baicalein 7-O-β-D-glucoside
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- baicalein metabolism:
H+ + NADPH + O2 + chrysin ⟶ H2O + NADP+ + baicalein
- baicalein metabolism:
H+ + NADPH + O2 + chrysin ⟶ H2O + NADP+ + baicalein
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
122 个相关的物种来源信息
- 3808 - Acacia: 10.3892/IJO_00000748
- 138511 - Acacia aulacocarpa: 10.1016/S0031-9422(00)82416-4
- 306521 - Aglaia cucullata: 10.1248/CPB.58.1116
- 109058 - Alnus cordata: 10.1246/BCSJ.44.2761
- 253221 - Alnus sieboldiana: 10.1246/BCSJ.44.2761
- 1873154 - Ambrosia salsola: 10.1515/ZNC-1983-7-826
- 235716 - Anaxagorea luzonensis:
- 7459 - Apis:
- 7460 - Apis mellifera:
- 2906878 - Aria edulis: 10.1248/CPB.39.199
- 588669 - Aster tataricus:
- 143174 - Atractylis carduus: 10.1016/J.PHYTOL.2012.10.004
- 427666 - Baccharis salicifolia: 10.1515/ZNC-1986-1-214
- 3806 - Bauhinia purpurea: 10.1002/JCCS.200200042
- 1550831 - Brickellia laciniata: 10.1016/S0031-9422(00)98080-4
- 516985 - Bulbophyllum odoratissimum: 10.1016/0031-9422(91)85078-E
- 49799 - Calicotome villosa: 10.1016/S0367-326X(03)00061-3
- 634949 - Centaurea pseudoscabiosa: 10.1016/S0031-9422(02)00229-7
- 38033 - Chaetomium globosum: 10.1038/S41598-020-72497-3
- 54466 - Colebrookea oppositifolia: 10.1016/0031-9422(95)00975-2
- 53046 - Cypripedium macranthos: 10.1016/J.PHYTOCHEM.2007.03.006
- 4039 - Daucus carota: 10.1016/0031-9422(93)85092-6
- 431188 - Dendrobium candidum: 10.1248/CPB.56.1477
- 142614 - Dendrobium moniliforme: 10.1248/CPB.56.1477
- 1202408 - Desmos cochinchinensis: 10.1016/J.PHYTOCHEM.2011.07.002
- 1072218 - Dysphania graveolens: 10.1016/S0031-9422(00)81509-5
- 1072223 - Dysphania multifida: 10.1016/S0031-9422(00)81509-5
- 1874228 - Elsholtzia bodinieri: -
- 1874228 - Elsholtzia bodinieri: 10.1248/CPB.56.592
- 4132 - Eriodictyon californicum: 10.1021/NP50081A012
- 79350 - Eriodictyon sessilifolium: 10.1515/ZNC-1988-5-603
- 270993 - Erythranthe moschata: 10.1515/ZNC-2000-1-203
- 66386 - Ficus pumila: 10.1016/S0305-1978(99)00064-2
- 2604033 - Flourensia laurifolia: 10.1007/BF00630627
- 2604127 - Fridericia samydoides: 10.1590/S0100-40422003000500003
- 1108060 - Gaga kaulfussii:
- 3311 - Ginkgo biloba:
- 1671336 - Gutenbergia cordifolia: 10.17660/ACTAHORTIC.1992.306.10
- 43493 - Haldina cordifolia:
- 365472 - Halostachys belangeriana: 10.3390/MOLECULES15117933
- 282322 - Halostachys caspica: 10.3390/MOLECULES15117933
- 110723 - Hedychium spicatum: 10.1016/J.BMCL.2009.09.032
- 2306373 - Helichrysum kraussii: 10.1016/0031-9422(89)80195-5
- 630330 - Helichrysum platypterum: 10.1016/S0031-9422(00)81569-1
- 9606 - Homo sapiens: -
- 2039844 - Lagochilus leiacanthus: 10.1248/CPB.59.1535
- 190524 - Laguncularia racemosa: 10.1016/J.PHYTOCHEM.2009.11.008
- 99070 - Leucanthemella serotina: 10.1016/S0305-1978(02)00184-9
- 99072 - Leucanthemum vulgare: 10.1007/BF00636588
- 105884 - Lonicera japonica: 10.1016/J.PHYTOCHEM.2005.10.002
- 594549 - Lychnophora ericoides: 10.1002/(SICI)1099-1565(200003/04)11:2<69::AID-PCA499>3.0.CO;2-Y
- 106551 - Malus doumeri: 10.1248/BPB.29.740
- 174966 - Melodorum fruticosum:
- 1686255 - Mikania hirsutissima: 10.1248/CPB.47.1436
- 45164 - Muntingia calabura:
- 451087 - Notholaena aschenborniana: 10.1021/NP50020A019
- 672159 - Ononis angustissima: 10.1007/S10600-010-9482-Z
- 83951 - Oroxylum indicum:
- 1479707 - Oxytropis falcata: 10.1007/S10600-009-9291-4
- 159428 - Passiflora caerulea:
- 231192 - Passiflora serratodigitata: 10.1016/S0031-9422(00)82434-6
- 1417776 - Pelargonium crispum: 10.1016/S0031-9422(97)00514-1
- 993104 - Picea abies var. abies: 10.3891/ACTA.CHEM.SCAND.03-1375
- 123602 - Picea smithiana: 10.1515/ZNC-1988-1-202
- 88733 - Pinus armandii: 10.1016/0031-9422(88)80201-2
- 3345 - Pinus monticola: 10.3891/ACTA.CHEM.SCAND.03-1147
- 139307 - Pinus morrisonicola:
- 71644 - Pinus parviflora: 10.1016/0031-9422(88)80201-2
- 62752 - Pinus sibirica: 10.1007/BF00571144
- 33090 - Plants: -
- 359571 - Podocytisus caramanicus: 10.1055/S-2007-990248
- 487757 - Polygonum cognatum: 10.1016/0031-9422(90)85309-4
- 43335 - Populus alba: 10.1515/ZNC-1997-7-817
- 73824 - Populus balsamifera:
- 1616482 - Populus candicans:
- 688333 - Populus cathayana: 10.1515/ZNC-1992-3-423
- 3696 - Populus deltoides:
- 1085088 - Populus koreana: 10.1515/ZNC-1992-3-424
- 113624 - Populus laurifolia:
- 75703 - Populus maximowiczii: 10.1515/ZNC-1992-3-424
- 3691 - Populus nigra:
- 2570303 - Populus pseudosimonii: 10.1515/ZNC-1997-7-817
- 295327 - Populus simonii: 10.1515/ZNC-1992-0624
- 245546 - Populus suaveolens: 10.1515/ZNC-1992-3-424
- 179740 - Populus szechuanica: 10.1515/ZNC-1992-3-423
- 118781 - Populus tomentosa: 10.1515/ZNC-1997-7-817
- 242124 - Populus yunnanensis: 10.1515/ZNC-1992-0624
- 931589 - Propolis:
- 140311 - Prunus cerasus: 10.1021/JF980936F
- 3760 - Prunus persica: 10.1021/JF980936F
- 193309 - Pyracantha coccinea: 10.1016/0031-9422(93)85108-4
- 880079 - Rhododendron dauricum: 10.1016/J.JCHROMB.2004.06.048
- 2802329 - Scutellaria adenostegia: 10.1007/BF00631041
- 2858891 - Scutellaria adsurgens: 10.1007/BF00630019
- 53167 - Scutellaria alpina: 10.1248/CPB.39.199
- 1052904 - Scutellaria amoena:
- 65409 - Scutellaria baicalensis:
- 65409 - Scutellaria baicalensis Georgi: -
- 2858894 - Scutellaria comosa:
- 1383557 - Scutellaria discolor:
- 2802335 - Scutellaria glabrata: 10.1007/BF00630555
- 2858926 - Scutellaria grossa:
- 2721167 - Scutellaria immaculata: 10.1007/S10600-005-0068-0
- 233892 - Scutellaria indica: 10.1248/CPB.37.794
- 233893 - Scutellaria lateriflora:
- 53170 - Scutellaria orientalis:
- 2499938 - Scutellaria ovata: 10.1021/JF00108A021
- 2858946 - Scutellaria prostrata: 10.1248/CPB.39.1047
- 2802346 - Scutellaria scandens: 10.1248/CPB.36.2371
- 2200806 - Scutellaria squarrosa: 10.1007/BF00599011
- 1986532 - Scutellaria strigillosa:
- 49843 - Spartium junceum: 10.1016/S0031-9422(00)80175-2
- 334483 - Syzygium jambos: 10.1002/(SICI)1099-1565(199707)8:4<176::AID-PCA351>3.0.CO;2-K
- 121718 - Tilia tomentosa: 10.1016/0378-8741(94)90098-1
- 174962 - Uvaria dulcis: 10.1016/S0031-9422(98)00646-3
- 1603844 - Uvaria macrophylla: 10.3987/COM-11-12354
- 174968 - Uvaria siamensis:
- 138020 - Vachellia constricta:
- 519526 - Vachellia vernicosa: 10.1016/S0031-9422(00)82416-4
- 751879 - Ziziphora clinopodioides: 10.1016/J.FITOTE.2011.11.023
- 33090 - 木蝴蝶: -
- 569774 - 金线莲: -
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Jinfeng Shang, Jiakang Jiao, Jingyi Wang, Mingxue Yan, Qiannan Li, Lizha Shabuerjiang, Guijinfeng Huang, Qi Song, Yinlian Wen, Xiaolu Zhang, Kai Wu, Yiran Cui, Xin Liu. Chrysin inhibits ferroptosis of cerebral ischemia/reperfusion injury via regulating HIF-1α/CP loop.
Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.
2024 May; 174(?):116500. doi:
10.1016/j.biopha.2024.116500
. [PMID: 38555815] - Sibel Çiğdem Tuncer, Sefa Küçükler, Cihan Gür, Serpil Aygörmez, Fatih Mehmet Kandemir. Effects of chrysin in cadmium-induced testicular toxicity in the rat; role of multi-pathway regulation.
Molecular biology reports.
2023 Aug; ?(?):. doi:
10.1007/s11033-023-08715-8
. [PMID: 37592178] - Xue Gao, Ruiquan Qi, Ye Cheng, Junliang Chen, Yin He, Yitong Mao, Xiangyu Cao. Investigation of the binding interactions mechanism between zein with chrysin by multispectroscopic techniques.
Journal of molecular recognition : JMR.
2023 08; 36(8):e3046. doi:
10.1002/jmr.3046
. [PMID: 37455320] - Hasan Şimşek, Nurhan Akaras, Cihan Gür, Sefa Küçükler, Fatih Mehmet Kandemir. Beneficial effects of Chrysin on Cadmium-induced nephrotoxicity in rats: Modulating the levels of Nrf2/HO-1, RAGE/NLRP3, and Caspase-3/Bax/Bcl-2 signaling pathways.
Gene.
2023 May; 875(?):147502. doi:
10.1016/j.gene.2023.147502
. [PMID: 37224935] - Chuanyue Gao, Huan Zhang, Lulin Nie, Kaiwu He, Peimao Li, Xingxing Wang, Zaijun Zhang, Yongmei Xie, Shupeng Li, Gongping Liu, Xinfeng Huang, Huiping Deng, Jianjun Liu, Xifei Yang. Chrysin prevents inflammation-coinciding liver steatosis via AMPK signalling.
The Journal of pharmacy and pharmacology.
2023 May; ?(?):. doi:
10.1093/jpp/rgad041
. [PMID: 37167529] - Jinfeng Shang, Jiakang Jiao, Mingxue Yan, Jingyi Wang, Qiannan Li, Lizha Shabuerjiang, Yinghui Lu, Qi Song, Lei Bi, Guijinfeng Huang, Xiaolu Zhang, Yinlian Wen, Yiran Cui, Kai Wu, Gongyu Li, Peng Wang, Xin Liu. Chrysin protects against cerebral ischemia-reperfusion injury in hippocampus via restraining oxidative stress and transition elements.
Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.
2023 May; 161(?):114534. doi:
10.1016/j.biopha.2023.114534
. [PMID: 36933376] - Afnan Afnan, Ammara Saleem, Muhammad Furqan Akhtar. Chrysin, a 5,7-dihydroxyflavone restrains inflammatory arthritis in rats via subsiding oxidative stress biomarkers and inflammatory cytokines.
Inflammopharmacology.
2023 Apr; ?(?):. doi:
10.1007/s10787-023-01229-6
. [PMID: 37083920] - Huixin Tan, Fenghe Wang, Jiahuan Hu, Xiaoyan Duan, Wanting Bai, Xinbo Wang, Baolian Wang, Yan Su, Jinping Hu. Inhibitory interaction of flavonoids with organic cation transporter 2 and their structure-activity relationships for predicting nephroprotective effects.
Journal of applied toxicology : JAT.
2023 Apr; ?(?):. doi:
10.1002/jat.4474
. [PMID: 37057715] - Yu Cheng, Bing-Hao Hou, Gui-Lin Xie, Ya-Ting Shao, Jie Yang, Chen Xu. Transient inhibition of mitochondrial function by chrysin and apigenin prolong longevity via mitohormesis in C. elegans.
Free radical biology & medicine.
2023 Apr; ?(?):. doi:
10.1016/j.freeradbiomed.2023.03.264
. [PMID: 37023934] - Jin-Feng Shang, Jia-Kang Jiao, Qian-Nan Li, Ying-Hui Lu, Jing-Yi Wang, Ming-Xue Yan, Yin-Lian Wen, Gui-Jin-Feng Huang, Xiao-Lu Zhang, Xin Liu. [Chrysin alleviates cerebral ischemia-reperfusion injury by inhibiting ferroptosis in rats].
Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica.
2023 Mar; 48(6):1597-1605. doi:
10.19540/j.cnki.cjcmm.20221201.705
. [PMID: 37005848] - Ghaleb Oriquat, Inas M Masoud, Maher A Kamel, Hebatallah Mohammed Aboudeya, Marwa B Bakir, Sara A Shaker. The Anti-Obesity and Anti-Steatotic Effects of Chrysin in a Rat Model of Obesity Mediated through Modulating the Hepatic AMPK/mTOR/lipogenesis Pathways.
Molecules (Basel, Switzerland).
2023 Feb; 28(4):. doi:
10.3390/molecules28041734
. [PMID: 36838721] - Chang Liu, Jianhua Wu, Chengting Hu, Aihong Yang, Rui Shen, Xiaodi Kou. Synthesis, single crystal characterization and anti-AD activities of a novel complex of Cu(II) with in situ formed protonated chrysin derivative ligand.
Journal of inorganic biochemistry.
2023 02; 239(?):112086. doi:
10.1016/j.jinorgbio.2022.112086
. [PMID: 36495657] - Amin Farhadi, Masoud Homayouni Tabrizi, Soroush Sadeghi, Danial Vala, Tina Khosravi. Targeted delivery and anticancer effects of Chrysin-loaded chitosan-folic acid coated solid lipid nanoparticles in pancreatic malignant cells.
Journal of biomaterials science. Polymer edition.
2023 Feb; 34(3):315-333. doi:
10.1080/09205063.2022.2121589
. [PMID: 36063019] - Pigi Glykofridi, Vassiliki-Eleni Tziouri, Konstantinos Xanthopoulos, Maria-Eirini Vlachou, Susana Correia, Anna-Lisa Fischer, Katrin Thüne, Antonios Hatzidimitriou, Inga Zerr, Matthias Schmitz, Theodoros Sklaviadis, Dimitra Hadjipavlou-Litina, Dionysia Papagiannopoulou. Synthesis, structural characterization and study of antioxidant and anti-PrPSc properties of flavonoids and their rhenium(I)-tricarbonyl complexes.
Journal of biological inorganic chemistry : JBIC : a publication of the Society of Biological Inorganic Chemistry.
2023 Jan; ?(?):. doi:
10.1007/s00775-022-01986-9
. [PMID: 36695886] - Ahmad Salimi, Mohammad Shabani, Hossein Mohammadi, Vahid Sudi. Intraperitoneal pretreatment of ellagic acid and chrysin alleviate ifosfamide-induced neurotoxicity, but betanin induces death in male wistar rats.
Human & experimental toxicology.
2023 Jan; 42(?):9603271221147883. doi:
10.1177/09603271221147883
. [PMID: 36951984] - Wan Yin Tew, Chu Shan Tan, Chong Seng Yan, Hui Wei Loh, Xu Wen, Xu Wei, Mun Fei Yam. Evaluation of vasodilatory effect and antihypertensive effect of chrysin through in vitro and sub-chronic in vivo study.
Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.
2023 Jan; 157(?):114020. doi:
10.1016/j.biopha.2022.114020
. [PMID: 36469968] - Yingjun Zhou, Heng Tao, Nuo Xu, Shichun Zhou, Yuke Peng, Jianxiang Zhu, Shaowei Liu, Yaning Chang. Chrysin improves diabetic nephropathy by regulating the AMPK-mediated lipid metabolism in HFD/STZ-induced DN mice.
Journal of food biochemistry.
2022 12; 46(12):e14379. doi:
10.1111/jfbc.14379
. [PMID: 35976957] - Muhammet Yasin Tekeli, Latife Çakır Bayram, Gökhan Eraslan, Zeynep Soyer Sarıca. The protective effect of chrysin against oxidative stress and organ toxicity in rats exposed to propetamphos.
Drug and chemical toxicology.
2022 Nov; 45(6):2664-2677. doi:
10.1080/01480545.2021.1981479
. [PMID: 34587847] - Subramani Yuvaraj, Sundrasen Sasikumar, Shanavas Syed Mohamed Puhari, Tharmarajan Ramprasath, Nagarethinam Baskaran, Varadaraj Vasudevan, Govindan Sadasivam Selvam. Chrysin reduces hypercholesterolemia-mediated atherosclerosis through modulating oxidative stress, microflora, and apoptosis in experimental rats.
Journal of food biochemistry.
2022 11; 46(11):e14349. doi:
10.1111/jfbc.14349
. [PMID: 35892244] - Cordelia Mano John, Sumathy Arockiasamy. Enhanced Inhibition of Adipogenesis by Chrysin via Modification in Redox Balance, Lipogenesis, and Transcription Factors in 3T3-L1 Adipocytes in Comparison with Hesperidin.
Journal of the American Nutrition Association.
2022 Nov; 41(8):758-770. doi:
10.1080/07315724.2021.1961641
. [PMID: 34459715] - Qingchen Wang, Zhiping Yang, Xintong Wu, Xiao Zhang, Feng Geng, Qiaoyun Wang, Zikai Geng, Chen Yu, Zhipeng Li. Chrysin alleviates lipopolysaccharide-induced neuron damage and behavioral deficits in mice through inhibition of Fyn.
International immunopharmacology.
2022 Oct; 111(?):109118. doi:
10.1016/j.intimp.2022.109118
. [PMID: 35963156] - Ahsas Goyal, Geetanjali Singh, Aanchal Verma. A Comprehensive Review on Therapeutic Potential of Chrysin in Brain Related Disorders.
CNS & neurological disorders drug targets.
2022 Jun; ?(?):. doi:
10.2174/1871527321666220602111935
. [PMID: 35657041] - Aihong Yang, Chang Liu, Hongwei Zhang, Jianhua Wu, Rui Shen, Xiaodi Kou. A multifunctional anti-AD approach: Design, synthesis, X-ray crystal structure, biological evaluation and molecular docking of chrysin derivatives.
European journal of medicinal chemistry.
2022 Apr; 233(?):114216. doi:
10.1016/j.ejmech.2022.114216
. [PMID: 35227980] - Nada Oršolić, Johann Nemrava, Željko Jeleč, Marina Kukolj, Dyana Odeh, Boris Jakopović, Maja Jazvinšćak Jembrek, Tomica Bagatin, Rajko Fureš, Dinko Bagatin. Antioxidative and Anti-Inflammatory Activities of Chrysin and Naringenin in a Drug-Induced Bone Loss Model in Rats.
International journal of molecular sciences.
2022 Mar; 23(5):. doi:
10.3390/ijms23052872
. [PMID: 35270014] - Behzad Shahbazi, Ladan Mafakher, Ladan Teimoori-Toolabi. Different compounds against Angiotensin-Converting Enzyme 2 (ACE2) receptor potentially containing the infectivity of SARS-CoV-2: an in silico study.
Journal of molecular modeling.
2022 Mar; 28(4):82. doi:
10.1007/s00894-022-05059-1
. [PMID: 35249180] - Bin Ye, Wenchao Ling, Yinhua Wang, Amit Jaisi, Opeyemi Joshua Olatunji. Protective Effects of Chrysin against Cyclophosphamide-Induced Cardiotoxicity in Rats: A Biochemical and Histopathological Approach.
Chemistry & biodiversity.
2022 Mar; 19(3):e202100886. doi:
10.1002/cbdv.202100886
. [PMID: 35014174] - Tuba Parlak Ak, Pinar Tatli Seven, Seyfettin Gur, Burcu Gul, Mine Yaman, Ismail Seven. Chrysin and flunixin meglumine mitigate overloaded copper-induced testicular and spermatological damages via modulation of oxidative stress and apoptosis in rats.
Andrologia.
2022 Mar; 54(2):e14327. doi:
10.1111/and.14327
. [PMID: 34817900] - Sukhen Bhowmik, Pragya Anand, Riyanki Das, Tirtharaj Sen, Yusuf Akhter, Manash C Das, Utpal C De. Synthesis of new chrysin derivatives with substantial antibiofilm activity.
Molecular diversity.
2022 Feb; 26(1):137-156. doi:
10.1007/s11030-020-10162-7
. [PMID: 33438129] - Mohammad Amir Siddiqui, Badruddeen, Juber Akhtar, Shahab Uddin, Sidda Madappa Chandrashekharan, Mohammad Ahmad, Mohammad Irfan Khan, Mohammad Khalid. Chrysin modulates protein kinase IKKε/TBK1, insulin sensitivity and hepatic fatty infiltration in diet-induced obese mice.
Drug development research.
2022 02; 83(1):194-207. doi:
10.1002/ddr.21859
. [PMID: 34350600] - Rui Huang, Zizuo Zhao, Xujie Jiang, Weiwei Li, Lidan Zhang, Bin Wang, Hongtao Tie. Liposomal chrysin attenuates hepatic ischaemia-reperfusion injury: possible mechanism via inhibiting NLRP3 inflammasome.
The Journal of pharmacy and pharmacology.
2022 Feb; 74(2):216-226. doi:
10.1093/jpp/rgab153
. [PMID: 34791354] - Hericles Mesquita Campos, Michael da Costa, Lorrane Kelle da Silva Moreira, Hiasmin Franciely da Silva Neri, Cinthia Rio Branco da Silva, Letizia Pruccoli, Fernanda Cristina Alcantara Dos Santos, Elson Alves Costa, Andrea Tarozzi, Paulo César Ghedini. Protective effects of chrysin against the neurotoxicity induced by aluminium: In vitro and in vivo studies.
Toxicology.
2022 01; 465(?):153033. doi:
10.1016/j.tox.2021.153033
. [PMID: 34774662] - Luciana G Naso, Juan J Martínez Medina, Nora B Okulik, Evelina G Ferrer, Patricia A M Williams. Study on the cytotoxic, antimetastatic and albumin binding properties of the oxidovanadium(IV) chrysin complex. Structural elucidation by computational methodologies.
Chemico-biological interactions.
2022 Jan; 351(?):109750. doi:
10.1016/j.cbi.2021.109750
. [PMID: 34813780] - Szabolcs Mayer, Nóra Nagy, Péter Keglevich, Áron Szigetvári, Miklós Dékány, Csaba Szántay Junior, László Hazai. Synthesis of Novel Vindoline-Chrysin Hybrids.
Chemistry & biodiversity.
2022 Jan; 19(1):e202100725. doi:
10.1002/cbdv.202100725
. [PMID: 34874114] - Rita Marleta Dewi, Megawati Megawati, Lucia Dwi Antika. Antidiabetic Properties of Dietary Chrysin: A Cellular Mechanism Review.
Mini reviews in medicinal chemistry.
2022; 22(10):1450-1457. doi:
10.2174/1389557521666211101162449
. [PMID: 34720081] - Hala Attia, Norah Albekairi, Layal Albdeirat, Arwa Soliman, Reem Rajab, Hend Alotaibi, Rehab Ali, Amira Badr. Chrysin Attenuates Fructose-Induced Nonalcoholic Fatty Liver in Rats via Antioxidant and Anti-Inflammatory Effects: The Role of Angiotensin-Converting Enzyme 2/Angiotensin (1-7)/Mas Receptor Axis.
Oxidative medicine and cellular longevity.
2022; 2022(?):9479456. doi:
10.1155/2022/9479456
. [PMID: 35720181] - Anuj Garg, Shashank Chaturvedi. A Comprehensive Review on Chrysin: Emphasis on Molecular Targets, Pharmacological Actions and Bio-pharmaceutical Aspects.
Current drug targets.
2022; 23(4):420-436. doi:
10.2174/1389450122666210824141044
. [PMID: 34431464] - Weihao Rong, Nanyan Wan, Xian Zheng, Gaofeng Shi, Cuihua Jiang, Ke Pan, Meng Gao, Zhiqi Yin, Ze-Jun Gao, Jian Zhang. Chrysin inhibits hepatocellular carcinoma progression through suppressing programmed death ligand 1 expression.
Phytomedicine : international journal of phytotherapy and phytopharmacology.
2022 Jan; 95(?):153867. doi:
10.1016/j.phymed.2021.153867
. [PMID: 34923234] - Vandreza Cardoso Bortolotto, Stífani Machado Araujo, Franciane Cabral Pinheiro, Márcia Rósula Poetini, Luana Barreto Meichtry, Mariana G Fronza, Silvana Peterini Boeira, Lucielli Savegnago, Marina Prigol. Chrysin restores memory deficit in hypothyroidism mice: Behavioral, neurochemical and computational approaches involving the neurotrophinergic system.
Journal of psychiatric research.
2021 12; 144(?):225-233. doi:
10.1016/j.jpsychires.2021.10.018
. [PMID: 34700210] - Saeed Mehrzadi, Mehdi Goudarzi, Iman Fatemi, Zahra Basir, Alireza Malayeri, Hamidreza Khalili. Chrysin attenuates sodium arsenite-induced nephrotoxicity in rats by suppressing oxidative stress and inflammation.
Tissue & cell.
2021 Dec; 73(?):101657. doi:
10.1016/j.tice.2021.101657
. [PMID: 34628213] - H C Nwankwo, A A Idowu, A Muhammad, A D Waziri, Y S Abubakar, M Bashir, O L Erukainure. Antisickling effect of chrysin is associated with modulation of oxygenated and deoxygenated haemoglobin via alteration of functional chemistry and metabolic pathways of human sickle erythrocytes.
Human & experimental toxicology.
2021 Dec; 40(12_suppl):S108-S124. doi:
10.1177/09603271211025599
. [PMID: 34151613] - Sadiyat O Ibrahim, Sanusi B Mada, Musa M Abarshi, Muhammad S Tanko, Sanusi Babangida. Chrysin alleviates alteration of bone-remodeling markers in ovariectomized rats and exhibits estrogen-like activity in silico.
Human & experimental toxicology.
2021 Dec; 40(12_suppl):S125-S136. doi:
10.1177/09603271211033777
. [PMID: 34289748] - Chang Liu, Xiaodi Kou, Xi Wang, Jianhua Wu, Aihong Yang, Rui Shen. Novel chrysin derivatives as hidden multifunctional agents for anti-Alzheimer's disease: design, synthesis and in vitro evaluation.
European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.
2021 Nov; 166(?):105976. doi:
10.1016/j.ejps.2021.105976
. [PMID: 34419572] - Wei Yao, Junmei Cheng, Amit D Kandhare, Anwesha A Mukherjee-Kandhare, Subhash L Bodhankar, Gang Lu. Toxicological evaluation of a flavonoid, chrysin: morphological, behavioral, biochemical and histopathological assessments in rats.
Drug and chemical toxicology.
2021 Nov; 44(6):601-612. doi:
10.1080/01480545.2019.1687510
. [PMID: 31724432] - Ling Zhou, Chen Yang, Weilan Zhong, Qiaoyun Wang, Daolai Zhang, Jiayu Zhang, Shuyang Xie, Maolei Xu. Chrysin induces autophagy-dependent ferroptosis to increase chemosensitivity to gemcitabine by targeting CBR1 in pancreatic cancer cells.
Biochemical pharmacology.
2021 11; 193(?):114813. doi:
10.1016/j.bcp.2021.114813
. [PMID: 34673014] - Shaimaa S Ibrahim, Omar G Abo Elseoud, Mohamed H Mohamedy, Mohamed M Amer, Youssef Y Mohamed, Shehab A Elmansy, Mohamed M Kadry, Ahmed A Attia, Ragy A Fanous, Mahmoud S Kamel, Youssef A Solyman, Mazen S Shehata, Mina Y George. Nose-to-brain delivery of chrysin transfersomal and composite vesicles in doxorubicin-induced cognitive impairment in rats: Insights on formulation, oxidative stress and TLR4/NF-kB/NLRP3 pathways.
Neuropharmacology.
2021 10; 197(?):108738. doi:
10.1016/j.neuropharm.2021.108738
. [PMID: 34339751] - Pallavi Shyam Kaparekar, Nidhi Poddar, Suresh Kumar Anandasadagopan. Fabrication and characterization of Chrysin - A plant polyphenol loaded alginate -chitosan composite for wound healing application.
Colloids and surfaces. B, Biointerfaces.
2021 Oct; 206(?):111922. doi:
10.1016/j.colsurfb.2021.111922
. [PMID: 34157519] - Rohan Reddy Nagavally, Siddharth Sunilkumar, Mumtaz Akhtar, Louis D Trombetta, Sue M Ford. Chrysin Ameliorates Cyclosporine-A-Induced Renal Fibrosis by Inhibiting TGF-β1-Induced Epithelial-Mesenchymal Transition.
International journal of molecular sciences.
2021 Sep; 22(19):. doi:
10.3390/ijms221910252
. [PMID: 34638597] - Burcu Gul Baykalir, Aslihan Sur Arslan, Seda Iflazoglu Mutlu, Tuba Parlak Ak, Ismail Seven, Pinar Tatli Seven, Mine Yaman, Huseyin Fatih Gul. The protective effect of chrysin against carbon tetrachloride-induced kidney and liver tissue damage in rats.
International journal for vitamin and nutrition research. Internationale Zeitschrift fur Vitamin- und Ernahrungsforschung. Journal international de vitaminologie et de nutrition.
2021 Sep; 91(5-6):427-438. doi:
10.1024/0300-9831/a000653
. [PMID: 32349632] - Rajashri R Naik, Ashok K Shakya, Ghaleb A Oriquat, Shankar Katekhaye, Anant Paradkar, Hugo Fearnley, James Fearnley. Fatty Acid Analysis, Chemical Constituents, Biological Activity and Pesticide Residues Screening in Jordanian Propolis.
Molecules (Basel, Switzerland).
2021 Aug; 26(16):. doi:
10.3390/molecules26165076
. [PMID: 34443664] - Halil Ibrahim Guler, Gizem Tatar, Oktay Yildiz, Ali Osman Belduz, Sevgi Kolayli. Investigation of potential inhibitor properties of ethanolic propolis extracts against ACE-II receptors for COVID-19 treatment by molecular docking study.
Archives of microbiology.
2021 Aug; 203(6):3557-3564. doi:
10.1007/s00203-021-02351-1
. [PMID: 33950349] - Wenlong Sun, Panpan Liu, Bendong Yang, Meng Wang, Tianqi Wang, Wenbo Sun, Xudong Wang, Weilong Zheng, Xinhua Song, Jingda Li. A network pharmacology approach: Inhibition of the NF-κB signaling pathway contributes to the NASH preventative effect of an Oroxylum indicum seed extract in oleic acid-stimulated HepG2 cells and high-fat diet-fed rats.
Phytomedicine : international journal of phytotherapy and phytopharmacology.
2021 Jul; 88(?):153498. doi:
10.1016/j.phymed.2021.153498
. [PMID: 33640247] - Seong-Ryeol Kim, Myeong-Seon Jeong, Seo-Hyeon Mun, Jaewon Cho, Min-Duk Seo, Hyoungsu Kim, Jooeun Lee, Jae-Hyoung Song, Hyun-Jeong Ko. Antiviral Activity of Chrysin against Influenza Virus Replication via Inhibition of Autophagy.
Viruses.
2021 07; 13(7):. doi:
10.3390/v13071350
. [PMID: 34372556] - Subramani Yuvaraj, Tharmarajan Ramprasath, Balakrishnan Saravanan, Varadaraj Vasudevan, Sundaresan Sasikumar, Govindan Sadasivam Selvam. Chrysin attenuates high-fat-diet-induced myocardial oxidative stress via upregulating eNOS and Nrf2 target genes in rats.
Molecular and cellular biochemistry.
2021 Jul; 476(7):2719-2727. doi:
10.1007/s11010-021-04105-5
. [PMID: 33677805] - Ahmad Salimi, Niloufar Hashemidanesh, Enayatollah Seydi, Elahe Baghal, Farzad Khodaparast, Hassan Ghobadi. Restoration and stabilization of acrylamide-induced DNA, mitochondrial damages and oxidative stress by chrysin in human lymphocyte.
Expert opinion on drug metabolism & toxicology.
2021 Jul; 17(7):857-865. doi:
10.1080/17425255.2021.1940951
. [PMID: 34102941] - Ying-Jun Zhou, Nuo Xu, Xiao-Chen Zhang, Yu-Yan Zhu, Shao-Wei Liu, Ya-Ning Chang. Chrysin Improves Glucose and Lipid Metabolism Disorders by Regulating the AMPK/PI3K/AKT Signaling Pathway in Insulin-Resistant HepG2 Cells and HFD/STZ-Induced C57BL/6J Mice.
Journal of agricultural and food chemistry.
2021 May; 69(20):5618-5627. doi:
10.1021/acs.jafc.1c01109
. [PMID: 33979145] - Sefa Kucukler, Fulya Benzer, Serkan Yildirim, Cihan Gur, Fatih Mehmet Kandemir, Aydin Sukru Bengu, Adnan Ayna, Cuneyt Caglayan, Muhammet Bahaeddin Dortbudak. Protective Effects of Chrysin Against Oxidative Stress and Inflammation Induced by Lead Acetate in Rat Kidneys: a Biochemical and Histopathological Approach.
Biological trace element research.
2021 Apr; 199(4):1501-1514. doi:
10.1007/s12011-020-02268-8
. [PMID: 32613487] - Ankur Kumar Tanwar, Neha Dhiman, Amit Kumar, Vikas Jaitak. Engagement of phytoestrogens in breast cancer suppression: Structural classification and mechanistic approach.
European journal of medicinal chemistry.
2021 Mar; 213(?):113037. doi:
10.1016/j.ejmech.2020.113037
. [PMID: 33257172] - Jie Mei, Rong Yang, Qiaohong Yang, Wencheng Wan, Xiaoyong Wei. Proteomic screening identifies the direct targets of chrysin anti-lipid depot in adipocytes.
Journal of ethnopharmacology.
2021 Mar; 267(?):113361. doi:
10.1016/j.jep.2020.113361
. [PMID: 32891819] - Li-Fei Liu, Hui-Hui Sun, Jian-Bing Tan, Qi Huang, Fei Cheng, Kang-Ping Xu, Zhen-Xing Zou, Gui-Shan Tan. New cytotoxic biflavones from Selaginella doederleinii.
Natural product research.
2021 Mar; 35(6):930-936. doi:
10.1080/14786419.2019.1611813
. [PMID: 31109181] - Iman Fatemi, Hamidreza Khalili, Saeed Mehrzadi, Zahra Basir, Alireza Malayeri, Mehdi Goudarzi. Mechanisms involved in the possible protective effect of chrysin against sodium arsenite-induced liver toxicity in rats.
Life sciences.
2021 Feb; 267(?):118965. doi:
10.1016/j.lfs.2020.118965
. [PMID: 33383050] - Ying Zhang, Jing Zhao, Obaid Afzal, Imran Kazmi, Fahad A Al-Abbasi, Abdulmalik S A Altamimi, Zhen Yang. Neuroprotective role of chrysin-loaded poly(lactic-co-glycolic acid) nanoparticle against kindling-induced epilepsy through Nrf2/ARE/HO-1 pathway.
Journal of biochemical and molecular toxicology.
2021 Feb; 35(2):e22634. doi:
10.1002/jbt.22634
. [PMID: 32991785] - Sharat Sarmah, Somdev Pahari, Sourav Das, Vinay Kumar Belwal, Madhurima Jana, Atanu Singha Roy. Non-enzymatic glycation of human serum albumin modulates its binding efficacy towards bioactive flavonoid chrysin: A detailed study using multi-spectroscopic and computational methods.
Journal of biomolecular structure & dynamics.
2021 Feb; 39(2):476-492. doi:
10.1080/07391102.2019.1711196
. [PMID: 31900044] - Mustafa Ileriturk, Fulya Benzer, Emrah Hicazi Aksu, Serkan Yildirim, Fatih Mehmet Kandemir, Tuba Dogan, Muhammet Bahaeddin Dortbudak, Aydin Genc. Chrysin protects against testicular toxicity caused by lead acetate in rats with its antioxidant, anti-inflammatory, and antiapoptotic properties.
Journal of food biochemistry.
2021 02; 45(2):e13593. doi:
10.1111/jfbc.13593
. [PMID: 33368351] - Shabir Ahmad Ganai, Farooq Ahmad Sheikh, Zahoor Ahmad Baba. Plant flavone Chrysin as an emerging histone deacetylase inhibitor for prosperous epigenetic-based anticancer therapy.
Phytotherapy research : PTR.
2021 Feb; 35(2):823-834. doi:
10.1002/ptr.6869
. [PMID: 32930436] - Mohammad Samini, Tahereh Farkhondeh, Mohsen Azimi-Nezhad, Saeed Samarghandian. Chrysin's Impact on Oxidative and Inflammation Damages in the Liver of Aged Male Rats.
Endocrine, metabolic & immune disorders drug targets.
2021; 21(4):743-748. doi:
10.2174/1871530320666200717162304
. [PMID: 32679027] - Yun-Mei Liu, Yang Li, Rong-Fang Liu, Jie Xiao, Bin-Ning Zhou, Qi-Zhi Zhang, Jian-Xin Song. Synthesis, characterization and preliminary biological evaluation of chrysin amino acid derivatives that induce apoptosis and EGFR downregulation.
Journal of Asian natural products research.
2021 Jan; 23(1):39-54. doi:
10.1080/10286020.2019.1702028
. [PMID: 31833411] - Aïcha Sassi, Jihed Boubaker, Amira Loussaief, Khaoula Jomaa, Kamel Ghedira, Leila Chekir-Ghedira. Protective Effect of Chrysin, a Dietary Flavone against Genotoxic and Oxidative Damage Induced by Mitomycin C in Balb/C Mice.
Nutrition and cancer.
2021; 73(2):329-338. doi:
10.1080/01635581.2020.1749289
. [PMID: 32270711] - Teenu Sharma, O P Katare, Atul Jain, Sanyog Jain, Dasharath Chaudhari, Bonita Borges, Bhupinder Singh. QbD-Steered Development of Biotin-Conjugated Nanostructured Lipid Carriers for Oral Delivery of Chrysin: Role of Surface Modification for Improving Biopharmaceutical Performance.
Colloids and surfaces. B, Biointerfaces.
2021 Jan; 197(?):111429. doi:
10.1016/j.colsurfb.2020.111429
. [PMID: 33130524] - Sonia S Pandey, Farhinbanu I Shaikh, Arti R Gupta, Rutvi J Vaidya. Mannosylated Solid Lipid Nanocarriers of Chrysin to Target Gastric Cancer: Optimization and Cell Line Study.
Current drug delivery.
2021; 18(10):1574-1584. doi:
10.2174/1567201818666210319142206
. [PMID: 33745434] - Sharat Sarmah, Sourav Das, Atanu Singha Roy. Protective actions of bioactive flavonoids chrysin and luteolin on the glyoxal induced formation of advanced glycation end products and aggregation of human serum albumin: In vitro and molecular docking analysis.
International journal of biological macromolecules.
2020 Dec; 165(Pt B):2275-2285. doi:
10.1016/j.ijbiomac.2020.10.023
. [PMID: 33058977] - Hamit Çelik, Sefa Kucukler, Selim Çomaklı, Cuneyt Caglayan, Selçuk Özdemir, Ahmet Yardım, Muhammet Karaman, Fatih Mehmet Kandemir. Neuroprotective effect of chrysin on isoniazid-induced neurotoxicity via suppression of oxidative stress, inflammation and apoptosis in rats.
Neurotoxicology.
2020 12; 81(?):197-208. doi:
10.1016/j.neuro.2020.10.009
. [PMID: 33121995] - Yongjian Wen, Chenxia Han, Tingting Liu, Rui Wang, Wenhao Cai, Jingyu Yang, Ge Liang, Linbo Yao, Na Shi, Xianghui Fu, Lihui Deng, Robert Sutton, John A Windsor, Jiwon Hong, Anthony R Phillips, Dan Du, Wei Huang, Qing Xia. Chaiqin chengqi decoction alleviates severity of acute pancreatitis via inhibition of TLR4 and NLRP3 inflammasome: Identification of bioactive ingredients via pharmacological sub-network analysis and experimental validation.
Phytomedicine : international journal of phytotherapy and phytopharmacology.
2020 Dec; 79(?):153328. doi:
10.1016/j.phymed.2020.153328
. [PMID: 33007730] - Mohammed O Kseibati, Maha H Sharawy, Hatem A Salem. Chrysin mitigates bleomycin-induced pulmonary fibrosis in rats through regulating inflammation, oxidative stress, and hypoxia.
International immunopharmacology.
2020 Dec; 89(Pt A):107011. doi:
10.1016/j.intimp.2020.107011
. [PMID: 33045575] - Seong-Min Kim, Jee-Young Imm. The Effect of Chrysin-Loaded Phytosomes on Insulin Resistance and Blood Sugar Control in Type 2 Diabetic db/db Mice.
Molecules (Basel, Switzerland).
2020 Nov; 25(23):. doi:
10.3390/molecules25235503
. [PMID: 33255372] - Saheli Roy, Krishnendu Manna, Tarun Jha, Krishna Das Saha. Chrysin-loaded PLGA attenuates OVA-induced allergic asthma by modulating TLR/NF-κB/NLRP3 axis.
Nanomedicine : nanotechnology, biology, and medicine.
2020 11; 30(?):102292. doi:
10.1016/j.nano.2020.102292
. [PMID: 32853785] - Adnan Ayna, Seda Nur Özbolat, Ekrem Darendelioglu. Quercetin, chrysin, caffeic acid and ferulic acid ameliorate cyclophosphamide-induced toxicities in SH-SY5Y cells.
Molecular biology reports.
2020 Nov; 47(11):8535-8543. doi:
10.1007/s11033-020-05896-4
. [PMID: 33040267] - Saleh Khezri, Towhid Sabzalipour, Asal Jahedsani, Sepideh Azizian, Saman Atashbar, Ahmad Salimi. Chrysin ameliorates aluminum phosphide-induced oxidative stress and mitochondrial damages in rat cardiomyocytes and isolated mitochondria.
Environmental toxicology.
2020 Oct; 35(10):1114-1124. doi:
10.1002/tox.22947
. [PMID: 32432806] - Saadet Belhan, Mustafa Özkaraca, Uğur Özdek, Ahmet Ufuk Kömüroğlu. Protective role of chrysin on doxorubicin-induced oxidative stress and DNA damage in rat testes.
Andrologia.
2020 Oct; 52(9):e13747. doi:
10.1111/and.13747
. [PMID: 32672853] - Feride Koc, Muhammet Yasin Tekeli, Murat Kanbur, Mehmet Önder Karayigit, Bilal Cem Liman. The effects of chrysin on lipopolysaccharide-induced sepsis in rats.
Journal of food biochemistry.
2020 09; 44(9):e13359. doi:
10.1111/jfbc.13359
. [PMID: 32614079] - Wen-Hui Zhang, Shuang Chen, Xiong-Li Liu, Bing-Lin, Xiong-Wei Liu, Ying Zhou. Study on antitumor activities of the chrysin-chromene-spirooxindole on Lewis lung carcinoma C57BL/6 mice in vivo.
Bioorganic & medicinal chemistry letters.
2020 09; 30(17):127410. doi:
10.1016/j.bmcl.2020.127410
. [PMID: 32738990] - Vandreza Cardoso Bortolotto, Stífani Machado Araujo, Franciane Cabral Pinheiro, Márcia Rósula Poetini, Mariane Trindade de Paula, Luana Barreto Meichtry, Francielli Polet de Almeida, Elize Aparecida Santos Musachio, Gustavo Petri Guerra, Marina Prigol. Modulation of glutamate levels and Na+,K+-ATPase activity contributes to the chrysin memory recovery in hypothyroidism mice.
Physiology & behavior.
2020 08; 222(?):112892. doi:
10.1016/j.physbeh.2020.112892
. [PMID: 32302609] - Joana B Ferrado, Adrián A Perez, Maria C Ruiz, Ignacio E León, Liliana G Santiago. Chrysin-loaded bovine serum albumin particles as bioactive nanosupplements.
Food & function.
2020 Jul; 11(7):6007-6019. doi:
10.1039/d0fo00299b
. [PMID: 32697250] - Renata Giacomeli, Marcelo Gomes de Gomes, Jéssica Brandão Reolon, Sandra Elisa Haas, Letícia Marques Colomé, Cristiano Ricardo Jesse. Chrysin loaded lipid-core nanocapsules ameliorates neurobehavioral alterations induced by β-amyloid1-42 in aged female mice.
Behavioural brain research.
2020 07; 390(?):112696. doi:
10.1016/j.bbr.2020.112696
. [PMID: 32417280] - Yun-Mei Liu, Yang Li, Jie Xiao, Qi-Zhi Zhang, Jian-Xin Song. Design, synthesis, and preliminary biological evaluation of chrysin amino acid derivatives that induce apoptosis and suppress cell migration.
Journal of Asian natural products research.
2020 Jun; 22(6):547-561. doi:
10.1080/10286020.2019.1597056
. [PMID: 30938545] - Samira Khaledi, Sevda Jafari, Samin Hamidi, Ommoleila Molavi, Soodabeh Davaran. Preparation and characterization of PLGA-PEG-PLGA polymeric nanoparticles for co-delivery of 5-Fluorouracil and Chrysin.
Journal of biomaterials science. Polymer edition.
2020 06; 31(9):1107-1126. doi:
10.1080/09205063.2020.1743946
. [PMID: 32249693] - Ni Chen, Ru Wang, Liu-Jun Lu, Li-Jian Yan, Li-Li Bai, Yan Fu, Ying Wang, De-Qian Peng, Xun Chen, Can-Hong Wang, Juan Li, Ke Zhao. Synthesis of chrysin derivatives and screening of antitumor activity.
Journal of Asian natural products research.
2020 May; 22(5):444-451. doi:
10.1080/10286020.2019.1586677
. [PMID: 30887830] - Ekrem Darendelioglu. Neuroprotective Effects of Chrysin on Diclofenac-Induced Apoptosis in SH-SY5Y Cells.
Neurochemical research.
2020 May; 45(5):1064-1071. doi:
10.1007/s11064-020-02982-8
. [PMID: 32040722] - Hui-Juan Wang, Yan-You Zhou, Xiong-Li Liu, Wen-Hui Zhang, Shuang Chen, Xiong-Wei Liu, Ying Zhou. Regioselective synthesis and evaluation of 2-amino 3-cyano chromene-chrysin hybrids as potential anticancer agents.
Bioorganic & medicinal chemistry letters.
2020 05; 30(9):127087. doi:
10.1016/j.bmcl.2020.127087
. [PMID: 32160978] - A Muhammad, A D Waziri, G E Forcados, B Sanusi, H Sani, I Malami, I B Abubakar, A Muhammad, R A Muhammad, H A Mohammed. Sickling-suppressive effects of chrysin may be associated with sequestration of deoxy-haemoglobin, 2,3-bisphosphoglycerate mutase, alteration of redox homeostasis and functional chemistry of sickle erythrocytes.
Human & experimental toxicology.
2020 Apr; 39(4):537-546. doi:
10.1177/0960327119895815
. [PMID: 31876182] - Yusuf Temel, Sefa Kucukler, Serkan Yıldırım, Cuneyt Caglayan, Fatih Mehmet Kandemir. Protective effect of chrysin on cyclophosphamide-induced hepatotoxicity and nephrotoxicity via the inhibition of oxidative stress, inflammation, and apoptosis.
Naunyn-Schmiedeberg's archives of pharmacology.
2020 03; 393(3):325-337. doi:
10.1007/s00210-019-01741-z
. [PMID: 31620822] - Gasper Maeda, Joan J E Munissi, Sofia Lindblad, Sandra Duffy, Jerry Pelletier, Vicky M Avery, Stephen S Nyandoro, Máté Erdélyi. A Meroisoprenoid, Heptenolides, and C-Benzylated Flavonoids from Sphaerocoryne gracilis ssp. gracilis.
Journal of natural products.
2020 02; 83(2):316-322. doi:
10.1021/acs.jnatprod.9b00721
. [PMID: 32067457] - Hsin-Ju Li, Nan-Lin Wu, Chi-Ming Pu, Chien-Yu Hsiao, Der-Chen Chang, Chi-Feng Hung. Chrysin alleviates imiquimod-induced psoriasis-like skin inflammation and reduces the release of CCL20 and antimicrobial peptides.
Scientific reports.
2020 02; 10(1):2932. doi:
10.1038/s41598-020-60050-1
. [PMID: 32076123] - Nelson Andrade, Sara Andrade, Claúdia Silva, Ilda Rodrigues, Luísa Guardão, João T Guimarães, Elisa Keating, Fátima Martel. Chronic consumption of the dietary polyphenol chrysin attenuates metabolic disease in fructose-fed rats.
European journal of nutrition.
2020 Feb; 59(1):151-165. doi:
10.1007/s00394-019-01895-9
. [PMID: 30631887] - Felipe Leonardo Fagundes, Graziele de Morais Piffer, Larissa Lucena Périco, Vinicius Peixoto Rodrigues, Clélia Akiko Hiruma-Lima, Raquel de Cássia Dos Santos. Chrysin Modulates Genes Related to Inflammation, Tissue Remodeling, and Cell Proliferation in the Gastric Ulcer Healing.
International journal of molecular sciences.
2020 Jan; 21(3):. doi:
10.3390/ijms21030760
. [PMID: 31979417] - Taiyang Liao, Liang Ding, Peng Wu, Li Zhang, Xiaochen Li, Bo Xu, Haosheng Zhang, Zhenyuan Ma, Yancheng Xiao, Peimin Wang. Chrysin Attenuates the NLRP3 Inflammasome Cascade to Reduce Synovitis and Pain in KOA Rats.
Drug design, development and therapy.
2020; 14(?):3015-3027. doi:
10.2147/dddt.s261216
. [PMID: 32801641] - Qing Niu, Yumei Gao, Pinghuai Liu. Optimization of microwave-assisted extraction, antioxidant capacity, and characterization of total flavonoids from the leaves of Alpinia oxyphylla Miq.
Preparative biochemistry & biotechnology.
2020; 50(1):82-90. doi:
10.1080/10826068.2019.1663535
. [PMID: 31545661] - Tahereh Farkhondeh, Sediqeh Jalali, Milad Ashrafizadeh, Saeed Samarghandian, Fariborz Samini. Effects of Chrysin on Serum Corticosterone Levels and Brain Oxidative Damages Induced by Immobilization in Rat.
Cardiovascular & hematological disorders drug targets.
2020; 20(1):47-53. doi:
10.2174/1871529x19666190618144440
. [PMID: 31237217] - Sarayu A Pai, Renuka P Munshi, Falguni H Panchal, Ila-Shruti Gaur, Archana R Juvekar. Chrysin ameliorates nonalcoholic fatty liver disease in rats.
Naunyn-Schmiedeberg's archives of pharmacology.
2019 12; 392(12):1617-1628. doi:
10.1007/s00210-019-01705-3
. [PMID: 31372694] - Arezoo Mohammadi, Sohrab Kazemi, Mohammad Hosseini, Hoseyn Najafzadeh Varzi, Farideh Feyzi, Payam Morakabati, Ali Akbar Moghadamnia. Chrysin Effect in Prevention of Acetaminophen-Induced Hepatotoxicity in Rat.
Chemical research in toxicology.
2019 11; 32(11):2329-2337. doi:
10.1021/acs.chemrestox.9b00332
. [PMID: 31625388]