Subcellular Location: Lipid-anchor, GPI-like-anchor

Found 72 associated metabolites.

4 associated genes. CD177, FOLR1, GBP5, PALM2AKAP2

Escin

(2S,3S,4S,5R,6R)-6-[[(3S,4S,4aR,6aR,6bS,8R,8aR,9R,10R,12aS,14aR,14bR)-9-acetyloxy-8-hydroxy-4,8a-bis(hydroxymethyl)-4,6a,6b,11,11,14b-hexamethyl-10-[(E)-2-methylbut-2-enoyl]oxy-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy]-4-hydroxy-3,5-bis[[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy]oxane-2-carboxylic acid

C55H86O24 (1130.5509)


Aescin is a triterpenoid saponin. escin Ib is a natural product found in Aesculus chinensis, Aesculus hippocastanum, and other organisms with data available. See also: Horse Chestnut (part of). D002317 - Cardiovascular Agents escin Ia is a natural product found in Aesculus chinensis and Aesculus hippocastanum with data available. See also: Horse Chestnut (part of). Escin, a natural compound of triterpenoid saponins isolated from horse chestnut (Aesculus hippocastanum) seeds, can be used as a vasoprotective anti-inflammatory, anti-edematous and anti-nociceptive agent[1]. Escin, a natural compound of triterpenoid saponins isolated from horse chestnut (Aesculus hippocastanum) seeds, can be used as a vasoprotective anti-inflammatory, anti-edematous and anti-nociceptive agent[1]. Escin IA is a triterpene saponin isolated from Aesculus hippocastanum, which inhibits HIV-1 protease with IC50 values of 35 μM. Escin IA has anti-TNBC metastasis activity, and its action mechanisms involved inhibition of epithelial-mesenchymal transition process by down-regulating LOXL2 expression[1][2]. Escin IA is a triterpene saponin isolated from Aesculus hippocastanum, which inhibits HIV-1 protease with IC50 values of 35 μM. Escin IA has anti-TNBC metastasis activity, and its action mechanisms involved inhibition of epithelial-mesenchymal transition process by down-regulating LOXL2 expression[1][2]. Escin IB is a saponin isolated from skin and the endosperm of seeds of horse chestnut (Aesculus hippocastanum). Escin IB shows inhibitory effect on pancreatic lipase activity[1][2]. Escin IB is a saponin isolated from skin and the endosperm of seeds of horse chestnut (Aesculus hippocastanum). Escin IB shows inhibitory effect on pancreatic lipase activity[1][2]. Escin IB is a saponin isolated from skin and the endosperm of seeds of horse chestnut (Aesculus hippocastanum). Escin IB shows inhibitory effect on pancreatic lipase activity[1][2].

   

Isoliquiritin

(E)-1-(2,4-Dihydroxyphenyl)-3-(4-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)phenyl)prop-2-en-1-one

C21H22O9 (418.1264)


Isoliquiritin is a monosaccharide derivative that is trans-chalcone substituted by hydroxy groups at positions 2 and 4 and a beta-D-glucopyranosyloxy group at position 4 respectively. It has a role as an antineoplastic agent and a plant metabolite. It is a member of chalcones, a member of resorcinols, a beta-D-glucoside and a monosaccharide derivative. It is functionally related to a trans-chalcone. Isoliquiritin is a natural product found in Allium chinense, Portulaca oleracea, and other organisms with data available. See also: Glycyrrhiza Glabra (part of). Isoliquiritin is found in fruits. Isoliquiritin is isolated from Glycyrrhiza specie Isolated from Glycyrrhiza subspecies Isoliquiritin is found in tea and fruits. Isoliquiritin, isolated from Licorice Root, inhibits angiogenesis and tube formation. Isoliquiritin also exhibits antidepressant-like effects and antifungal activity[1][2][3]. Isoliquiritin, isolated from Licorice Root, inhibits angiogenesis and tube formation. Isoliquiritin also exhibits antidepressant-like effects and antifungal activity[1][2][3].

   

Sinomenine

(1R,9S,10R)-3-Hydroxy-4,12-dimethoxy-17-methyl-17-azatetracyclo[7.5.3.01,10.02,7]heptadeca-2(7),3,5,11-tetraen-13-one

C19H23NO4 (329.1627)


Sinomenine is a morphinane alkaloid. Sinomenine is a natural product found in Sinomenium acutum, Stephania cephalantha, and other organisms with data available. Sinomenine is an alkaloid isolated from the root of Sinomenium acutum with immunomodulatory and potential anti-angiogenic and activities. Although the mechanism of action remains to be fully elucidated, sinomenine appears to inhibit endothelial proliferation mediated through basic fibroblast growth factor (bFGF), which may contribute to its anti-angiogenic effect. In Chinese medicine, this agent has a long track-record in treating arthritis, which is accounted by its ability to inhibit proliferation of synovial fibroblasts and lymphocytes. In addition, sinomenine has been shown to suppress expressions of genes involved in inflammation and apoptosis, such as interleukin-6, a pleiotropic inflammatory cytokine and JAK3 (Janus kinase 3), Daxx (death-associated protein 6), plus HSP27 (heat shock 27kDa protein 1), respectively. D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids C274 - Antineoplastic Agent > C1742 - Angiogenesis Inhibitor C308 - Immunotherapeutic Agent > C2139 - Immunostimulant D018501 - Antirheumatic Agents Annotation level-1 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.366 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.360 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.362 Sinomenine, an alkaloid extracted from?Sinomenium acutum, is a blocker of the NF-κB activation[1]. Sinomenine also is an activator of μ-opioid receptor[2]. Sinomenine, an alkaloid extracted from?Sinomenium acutum, is a blocker of the NF-κB activation[1]. Sinomenine also is an activator of μ-opioid receptor[2]. Sinomenine, an alkaloid extracted from?Sinomenium acutum, is a blocker of the NF-κB activation[1]. Sinomenine also is an activator of μ-opioid receptor[2].

   

Kaempferitrin

7-((6-deoxy-alpha-L-mannopyranosyl)oxy)-5-hydroxy-2-(4-hydroxyphenyl)-4-oxo-4H-1-benzopyran-3-yl 6-deoxy-alpha-L-mannopyranoside

C27H30O14 (578.1635)


Kaempferol 3,7-di-O-alpha-L-rhamnoside is a glycosyloxyflavone that is kaempferol attached to alpha-L-rhamnopyranosyl residues at positions 3 and 7 respectively via glycosidic linkages. It has been isolated from the aerial parts of Vicia faba and Lotus edulis. It has a role as a bone density conservation agent, a hypoglycemic agent, an immunomodulator, an anti-inflammatory agent, an antineoplastic agent, a plant metabolite, an apoptosis inducer and an antidepressant. It is an alpha-L-rhamnoside, a monosaccharide derivative, a dihydroxyflavone, a glycosyloxyflavone and a polyphenol. It is functionally related to a kaempferol. Kaempferitrin is a natural product found in Ficus septica, Cleome amblyocarpa, and other organisms with data available. See also: Selenicereus grandiflorus stem (part of). A glycosyloxyflavone that is kaempferol attached to alpha-L-rhamnopyranosyl residues at positions 3 and 7 respectively via glycosidic linkages. It has been isolated from the aerial parts of Vicia faba and Lotus edulis. Kaempferitrin is found in linden. Kaempferitrin is a chemical compound. It can be isolated from the leaves of Hedyotis verticillata. Kaempferitrin is a natural flavonoid, possesses antinociceptive, anti-inflammatory, anti-diabetic, antitumoral and chemopreventive effects, and activates insulin signaling pathway. Kaempferitrin is a natural flavonoid, possesses antinociceptive, anti-inflammatory, anti-diabetic, antitumoral and chemopreventive effects, and activates insulin signaling pathway.

   

Folic acid

FOLVITE(Thomson.Micromedex. Drug Information for the Health Care Professional. 24th ed. Volume 1. Plus Updates. Content Reviewed by the United States Pharmacopeial Convention, Inc. Greenwood Village, CO. 2004., p. 1422)

C19H19N7O6 (441.1397)


Folic acid appears as odorless orange-yellow needles or platelets. Darkens and chars from approximately 482 °F. Folic acid is an N-acyl-amino acid that is a form of the water-soluble vitamin B9. Its biologically active forms (tetrahydrofolate and others) are essential for nucleotide biosynthesis and homocysteine remethylation. It has a role as a human metabolite, a nutrient and a mouse metabolite. It is a member of folic acids and a N-acyl-amino acid. It is functionally related to a pteroic acid. It is a conjugate acid of a folate(2-). Folic acid, also known as folate or Vitamin B9, is a member of the B vitamin family and an essential cofactor for enzymes involved in DNA and RNA synthesis. More specifically, folic acid is required by the body for the synthesis of purines, pyrimidines, and methionine before incorporation into DNA or protein. Folic acid is particularly important during phases of rapid cell division, such as infancy, pregnancy, and erythropoiesis, and plays a protective factor in the development of cancer. As humans are unable to synthesize folic acid endogenously, diet and supplementation is necessary to prevent deficiencies. For example, folic acid is present in green vegetables, beans, avocado, and some fruits. In order to function within the body, folic acid must first be reduced by the enzyme dihydrofolate reductase (DHFR) into the cofactors dihydrofolate (DHF) and tetrahydrofolate (THF). This important pathway, which is required for de novo synthesis of nucleic acids and amino acids, is disrupted by anti-metabolite therapies such as [DB00563] as they function as DHFR inhibitors to prevent DNA synthesis in rapidly dividing cells, and therefore prevent the formation of DHF and THF. When used in high doses such as for cancer therapy, or in low doses such as for Rheumatoid Arthritis or psoriasis, [DB00563] impedes the bodys ability to create folic acid. This results in a deficiency of coenzymes and a resultant buildup of toxic substances that are responsible for numerous adverse side effects. As a result, supplementation with 1-5mg of folic acid is recommended to prevent deficiency and a number of side effects associated with MTX therapy including mouth ulcers and gastrointestinal irritation. [DB00650] (also known as folinic acid) supplementation is typically used for high-dose MTX regimens for the treatment of cancer. Levoleucovorin and leucovorin are analogs of tetrahydrofolate (THF) and are able to bypass DHFR reduction to act as a cellular replacement for the co-factor THF. There are also several antiepileptic drugs (AEDs) that are associated with reduced serum and red blood cell folate, including [DB00564] (CBZ), [DB00252] (PHT), or barbiturates. Folic acid is therefore often provided as supplementation to individuals using these medications, particularly to women of child-bearing age. Inadequate folate levels can result in a number of health concerns including cardiovascular disease, megaloblastic anemias, cognitive deficiencies, and neural tube defects (NTDs). Folic acid is typically supplemented during pregnancy to prevent the development of NTDs and in individuals with alcoholism to prevent the development of neurological disorders, for example. Folic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). CID 6037 is a natural product found in Beta vulgaris, Angelica sinensis, and other organisms with data available. Folic Acid is a collective term for pteroylglutamic acids and their oligoglutamic acid conjugates. As a natural water-soluble substance, folic acid is involved in carbon transfer reactions of amino acid metabolism, in addition to purine and pyrimidine synthesis, and is essential for hematopoiesis and red blood cell production. (NCI05) A member of the vitamin B family that stimulates the hematopoietic system. It is present in the liver and kidney and is found in mushrooms, spinach, yeast, green leaves, and grasses (POACEAE). Folic acid is used in the treat... Folic acid or folate, is a vitamin that belongs to the class of compounds known as pterins. Chemically, folate consists of three distinct chemical moieties linked together. A pterin (2-amino-4-hydroxy-pteridine) linked by a methylene bridge to a p-aminobenzoyl group that in turn is linked through an amide linkage to glutamic acid. It is a member of the vitamin B family and is primarily known as vitamin B9. Folate is required for the body to make DNA and RNA and metabolize amino acids necessary for cell division for the hematopoietic system. As humans cannot make folate, it is required in the diet, making it an essential nutrient (i.e. a vitamin). Folate occurs naturally in many foods including mushrooms, spinach, yeast, green leaves, and grasses (poaceae). Folic acid, being biochemically inactive, is converted to tetrahydrofolic acid and methyltetrahydrofolate by the enzyme known as dihydrofolate reductase. Tetrahydrofolate and methyltetrahydrofolate are transported across cells by receptor-mediated endocytosis where they are needed to maintain normal erythropoiesis, synthesize purine and thymidylate nucleic acids, interconvert amino acids and generate formic acid. Folic acid is used in the treatment and prevention of folate deficiencies and megaloblastic anemia. Folic acid is also used as a supplement by women during pregnancy to reduce the risk of neural tube defects (NTDs) in babies. Low levels in early pregnancy are believed to be the cause of more than half of babies born with NTDs (PMID: 28097362). Folic acid is also a microbial metabolite produced by Bifidobacterium and Lactobacillus (PMID: 22254078). An N-acyl-amino acid that is a form of the water-soluble vitamin B9. Its biologically active forms (tetrahydrofolate and others) are essential for nucleotide biosynthesis and homocysteine remethylation. B - Blood and blood forming organs > B03 - Antianemic preparations > B03B - Vitamin b12 and folic acid > B03BB - Folic acid and derivatives COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D006401 - Hematologic Agents > D006397 - Hematinics D018977 - Micronutrients > D014815 - Vitamins V - Various > V04 - Diagnostic agents Dietary supplement Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Formula(Parent): C19H19N7O6; Bottle Name:Folic acid ,approx; PRIME Parent Name:Folic acid; PRIME in-house No.:V0080; SubCategory_DNP: Pteridines and analogues, Pteridine alkaloids Acquisition and generation of the data is financially supported in part by CREST/JST. relative retention time with respect to 9-anthracene Carboxylic Acid is 0.543 CONFIDENCE standard compound; INTERNAL_ID 134 Folic acid (Vitamin B9) is a orally active essential nutrient from the B complex group of vitamins. Folic acid shows antidepressant-like effect. Folic acid sodium reduces the risk of neonatal neural tube defects. Folic acid can be used to the research of megaloblastic and macrocytic anemias due to folic deficiency[1][2][3][4]. Folic acid (Vitamin B9) is a orally active essential nutrient from the B complex group of vitamins. Folic acid shows antidepressant-like effect. Folic acid sodium reduces the risk of neonatal neural tube defects. Folic acid can be used to the research of megaloblastic and macrocytic anemias due to folic deficiency[1][2][3][4].

   

(6R)-Folinic acid

2-[(4-{[(2-amino-5-formyl-4-oxo-3,4,5,6,7,8-hexahydropteridin-6-yl)methyl]amino}phenyl)formamido]pentanedioic acid

C20H23N7O7 (473.1659)


The active metabolite of folic acid. Leucovorin is used principally as its calcium salt as an antidote to folic acid antagonists which block the conversion of folic acid to folinic acid. [HMDB] D020011 - Protective Agents > D000931 - Antidotes C2140 - Adjuvant > C2078 - Folic Acid Derivative Folinic acid (Leucovorin) is a biological folic acid and is generally administered along with Methotrexate (MTX) (HY-14519) as a rescue agent to decrease MTX-induced toxicity[1]. Folinic acid (Leucovorin) is a biological folic acid and is generally administered along with Methotrexate (MTX) (HY-14519) as a rescue agent to decrease MTX-induced toxicity[1].

   

4-Nitrocatechol

4-nitro-Pyrocatechol4-nitropyrocatechol NSC 80651

C6H5NO4 (155.0219)


4-Nitrocatechol is the by-product of the hydroxylation of 4-Nitrophenol by the human cytochrome P450 (CYP) 2E1. This reaction is a useful metabolic marker for the presence of functional cytochrome P450 2E1 in mammalian cell microsomes. Hepatic and extrahepatic microsomal cytochrome P450 isozymes further catalyze the reduction of p-nitrocatechol to p-aminophenol. (PMID: 8267647, 8214571, 8267647) [HMDB] 4-Nitrocatechol is the by-product of the hydroxylation of 4-nitrophenol by the human cytochrome P450 (CYP) 2E1. This reaction is a useful metabolic marker for the presence of functional cytochrome P450 2E1 in mammalian cell microsomes. Hepatic and extrahepatic microsomal cytochrome P450 isozymes further catalyze the reduction of p-nitrocatechol into p-aminophenol (PMID: 8267647, 8214571, 8267647). 4-Nitrocatechol is a potent lipoxygenase inhibitor[1]. 4-Nitrocatechol is a potent lipoxygenase inhibitor[1].

   

5-Methyltetrahydrofolic acid

(2R)-2-[(4-{[(2-amino-5-methyl-4-oxo-3,4,5,6,7,8-hexahydropteridin-6-yl)methyl]amino}phenyl)formamido]pentanedioic acid

C20H25N7O6 (459.1866)


5 methyltetrahydrofolic acid (5-MTHF) is the most biologically active form of the B-vitamin known as folic acid, also known generically as folate. 5-MTHF functions, in concert with vitamin B12, as a methyl-group donor involved in the conversion of the amino acid homocysteine to methionine. Methyl (CH3) group donation is vital to many bodily processes, including serotonin, melatonin, and DNA synthesis. Therapeutically, 5-MTHF is instrumental in reducing homocysteine levels, preventing neural tube defects, and improving vascular endothelial function. Research on folate supplementation suggests it plays a key role in preventing cervical dysplasia and protecting against neoplasia in ulcerative colitis. Folic acid also shows promise as part of a nutritional protocol to treat vitiligo, and may reduce inflammation of the gingiva. Furthermore, certain neurological, cognitive, and psychiatric presentations may be secondary to folate deficiency. Such presentations include depression, peripheral neuropathy, myelopathy, restless legs syndrome, insomnia, dementia, forgetfulness, irritability, endogenous depression, organic psychosis, and schizophrenia-like syndromes. After ingestion, the process of conversion of folic acid to the metabolically active coenzyme forms is relatively complex. Synthesis of the active forms of folic acid requires several enzymes, adequate liver and intestinal function, and adequate supplies of riboflavin (B2), niacin (B3), pyridoxine (B6), zinc, vitamin C, and serine. After formation of the coenzyme forms of the vitamin in the liver, these metabolically active compounds are secreted into the small intestine with bile (the folate enterohepatic cycle), where they are reabsorbed and distributed to tissues throughout the body. Human pharmacokinetic studies indicate folic acid has high bioavailability, with large oral doses of folic acid substantially raising plasma levels in healthy subjects in a time and dose dependent manner. Red blood cells (RBCs) appear to be the storage depot for folic acid, as RBC levels remain elevated for periods in excess of 40 days following discontinuation of supplementation. Folic acid is poorly transported to the brain and rapidly cleared from the central nervous system. The primary methods of elimination of absorbed folic acid are fecal (through bile) and urinary. Despite the biochemical complexity of this process, evidence suggests oral supplementation with folic acid increases the bodys pool of 5-MTHF in healthy individuals. However, enzyme defects, mal-absorption, digestive system pathology, and liver disease can result in impaired ability to activate folic acid. In fact, some individuals have a severe congenital deficiency of the enzyme Methyl tetrahydrofolate reductase (5-MTHFR), which is needed to convert folic acid to 5-MTHF. Milder forms of this enzyme defect likely interact with dietary folate status to determine risk for some disease conditions. In individuals with a genetic defect of this enzyme (whether mild or severe), supplementation with 5- MTHF might be preferable to folic acid supplementation. (PMID: 17176169). 5 methyltetrahydrofolic acid (5-MTHF) is the most biologically active form of the B-vitamin folic acid, also known generically as folate. 5-MTHF functions, in concert with vitamin B12, as a methyl-group donor involved in the conversion of the amino acid homocysteine to methionine. Methyl (CH3) group donation is vital to many bodily processes, including serotonin, melatonin, and DNA synthesis. Therapeutically, 5-MTHF is instrumental in reducing homocysteine levels, preventing neural tube defects, and improving vascular endothelial function. Research on folate supplementation suggests it plays a key role in preventing cervical dysplasia and protecting against neoplasia in ulcerative colitis. Folic acid also shows promise as part of a nutritional protocol to treat vitiligo, and may reduce inflammation of the gingiva. Furthermore, certain neurological, cognitive, and psychiatric presentations may be secondary to folate deficiency. Such presentations include depression, peripheral neuropathy, myelopathy, restless legs syndrome, insomnia, dementia, forgetfulness, irritability, endogenous depression, organic psychosis, and schizophrenia-like syndromes. After ingestion, the process of conversion of folic acid to the metabolically active coenzyme forms is relatively complex. Synthesis of the active forms of folic acid requires several enzymes, adequate liver and intestinal function, and adequate supplies of riboflavin (B2), niacin (B3), pyridoxine (B6), zinc, vitamin C, and serine. After formation of the coenzyme forms of the vitamin in the liver, these metabolically active compounds are secreted into the small intestine with bile (the folate enterohepatic cycle), where they are reabsorbed and distributed to tissues throughout the body. Human pharmacokinetic studies indicate folic acid has high bioavailability, with large oral doses of folic acid substantially raising plasma levels in healthy subjects in a time and dose dependent manner. Red blood cells (RBCs) appear to be the storage depot for folic acid, as RBC levels remain elevated for periods in excess of 40 days following discontinuation of supplementation. Folic acid is poorly transported to the brain and rapidly cleared from the central nervous system. The primary methods of elimination of absorbed folic acid are fecal (through bile) and urinary. Despite the biochemical complexity of this process, evidence suggests oral supplementation with folic acid increases the bodys pool of 5-MTHF in healthy individuals. However, enzyme defects, mal-absorption, digestive system pathology, and liver disease can result in impaired ability to activate folic acid. In fact, some individuals have a severe congenital deficiency of the enzyme Methyl tetrahydrofolate reductase (5-MTHFR), which is needed to convert folic acid to 5-MTHF. Milder forms of this enzyme defect likely interact with dietary folate status to determine risk for some disease conditions. In individuals with a genetic defect of this enzyme (whether mild or severe), supplementation with 5- MTHF might be preferable to folic acid supplementation. (PMID: 17176169) [HMDB] 5-Methyltetrahydrofolic acid (5-Methyl THF) is a biologically active form of folic acid. 5-Methyltetrahydrofolic acid is a methylated derivate of tetrahydrofolate. 5-Methyltetrahydrofolic acid is the predominant natural dietary folate and the principal form of folate in plasma and cerebrospinal fluid[1]. Levomefolic acid (5-MTHF) is an orally active, brain-penetrant natural active form of folic acid and is one of the most widely used folic acid food supplements[1][2].

   

Thymidine-5'-monophosphoric acid

{[(2R,3S,5R)-3-hydroxy-5-(5-methyl-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-1-yl)oxolan-2-yl]methoxy}phosphonic acid

C10H15N2O8P (322.0566)


5-Thymidylic acid (conjugate base thymidylate), also known as thymidine monophosphate (TMP), deoxythymidine monophosphate (dTMP), or deoxythymidylic acid (conjugate base deoxythymidylate), is a nucleotide that is used as a monomer in DNA. It is an ester of phosphoric acid with the nucleoside thymidine. dTMP consists of a phosphate group, the pentose sugar deoxyribose, and the nucleobase thymine. Unlike the other deoxyribonucleotides, thymidine monophosphate often does not contain the "deoxy" prefix in its name; nevertheless, its symbol often includes a "d" ("dTMP"). 5-Thymidylic acid belongs to the class of organic compounds known as pyrimidine 2-deoxyribonucleoside monophosphates. These are pyrimidine nucleotides with a monophosphate group linked to the ribose moiety lacking a hydroxyl group at position 2. The neutral species of 5-Thymidylic acid (2-deoxythymidine 5-monophosphate). 5-Thymidylic acid exists in all living species, ranging from bacteria to humans. Within humans, 5-thymidylic acid participates in a number of enzymatic reactions. In particular, 5-thymidylic acid and dihydrofolic acid can be biosynthesized from dUMP and 5,10-methylene-THF by the enzyme thymidylate synthase. In addition, 5-thymidylic acid can be converted into dTDP; which is catalyzed by the enzyme thymidylate synthase. In humans, 5-thymidylic acid is involved in pyrimidine metabolism. Outside of the human body, 5-Thymidylic acid has been detected, but not quantified in several different foods, such as common buckwheats, corn salad, garden cress, squashberries, and star fruits. 5-thymidylic acid, also known as thymidylate or thymidine 5-phosphate, is a member of the class of compounds known as pyrimidine 2-deoxyribonucleoside monophosphates. Pyrimidine 2-deoxyribonucleoside monophosphates are pyrimidine nucleotides with a monophosphate group linked to the ribose moiety lacking a hydroxyl group at position 2. 5-thymidylic acid is slightly soluble (in water) and a moderately acidic compound (based on its pKa). 5-thymidylic acid can be found in a number of food items such as burbot, enokitake, scarlet bean, and garland chrysanthemum, which makes 5-thymidylic acid a potential biomarker for the consumption of these food products. 5-thymidylic acid can be found primarily in feces, as well as in human fibroblasts tissue. 5-thymidylic acid exists in all living species, ranging from bacteria to humans. In humans, 5-thymidylic acid is involved in the pyrimidine metabolism. 5-thymidylic acid is also involved in few metabolic disorders, which include beta ureidopropionase deficiency, dihydropyrimidinase deficiency, MNGIE (mitochondrial neurogastrointestinal encephalopathy), and UMP synthase deficiency (orotic aciduria). Acquisition and generation of the data is financially supported in part by CREST/JST.

   

Oxcarbazepine

9-oxo-2-azatricyclo[9.4.0.0³,⁸]pentadeca-1(15),3,5,7,11,13-hexaene-2-carboxamide

C15H12N2O2 (252.0899)


Oxcarbazepine is structurally a derivative of carbamazepine, adding an extra oxygen atom to the benzylcarboxamide group. This difference helps reduce the impact on the liver of metabolizing the drug, and also prevents the serious forms of anemia occasionally associated with carbamazepine. Aside from this reduction in side effects, it is thought to have the same mechanism as carbamazepine - sodium channel inhibition - and is generally used to treat partial seizures in epileptic children and adults. D002317 - Cardiovascular Agents > D026941 - Sodium Channel Blockers > D061567 - Voltage-Gated Sodium Channel Blockers N - Nervous system > N03 - Antiepileptics > N03A - Antiepileptics > N03AF - Carboxamide derivatives D065693 - Cytochrome P-450 Enzyme Inducers > D065701 - Cytochrome P-450 CYP3A Inducers C78272 - Agent Affecting Nervous System > C264 - Anticonvulsant Agent D002491 - Central Nervous System Agents > D000927 - Anticonvulsants D049990 - Membrane Transport Modulators

   

Floxuridine

5-fluoro-1-[(2R,4S,5R)-4-hydroxy-5-(hydroxymethyl)oxolan-2-yl]-1,2,3,4-tetrahydropyrimidine-2,4-dione

C9H11FN2O5 (246.0652)


An antineoplastic antimetabolite that is metabolized to fluorouracil when administered by rapid injection. Floxuridine is available as a sterile, nonpyrogenic, lyophilized powder for reconstitution. When administered by slow, continuous, intra-arterial infusion, it is converted to floxuridine monophosphate. It has been used to treat hepatic metastases of gastrointestinal adenocarcinomas and for palliation in malignant neoplasms of the liver and gastrointestinal tract. [PubChem] L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01B - Antimetabolites > L01BC - Pyrimidine analogues C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C272 - Antimetabolite D009676 - Noxae > D000963 - Antimetabolites D000970 - Antineoplastic Agents Floxuridine (5-Fluorouracil 2'-deoxyriboside) is a?pyrimidine?analog?and known as an?oncology antimetabolite. Floxuridine inhibits Poly(ADP-Ribose) polymerase and induces DNA damage by activating the ATM and ATR checkpoint signaling pathways in vitro. Floxuridine is a extreamly potent inhibitor for S. aureus infection and induces cell apoptosis[1][2]. Floxuridine has antiviral effects against HSV and CMV[3].

   

2'-Deoxyuridine 5'-monophosphate disodium salt

{[(2R,3S,5R)-5-(2,4-dioxo-1,2,3,4-tetrahydropyrimidin-1-yl)-3-hydroxyoxolan-2-yl]methoxy}phosphonic acid

C9H13N2O8P (308.041)


Deoxyuridine monophosphate (dUMP), also known as deoxyuridylic acid or deoxyuridylate in its conjugate acid and conjugate base forms, respectively, is a deoxynucleotide. It belongs to the class of organic compounds known as pyrimidine 2-deoxyribonucleoside monophosphates. These are pyrimidine nucleotides with a monophosphate group linked to the ribose moiety lacking a hydroxyl group at position 2. dUMP exists in all living species, ranging from bacteria to humans. Within humans, dUMP participates in a number of enzymatic reactions. In particular, dUMP can be biosynthesized from dCMP through its interaction with the enzyme deoxycytidylate deaminase. In addition, dUMP can be biosynthesized from deoxyuridine; which is mediated by the enzyme thymidine kinase, cytosolic. In humans, dUMP is involved in pyrimidine metabolism. A pyrimidine 2-deoxyribonucleoside 5-monophosphate having uracil as the nucleobase. Outside of the human body, dUMP has been detected, but not quantified in several different foods, such as breadnut tree seeds, sea-buckthornberries, sour cherries, black walnuts, and common oregano. dUMP is formed by the reduction of ribonucleotides to deoxyribonucleotides by ribonucleoside diphosphate reductase [EC 1.17.4.1]. dUMP by the action of by thymidylate synthetase [EC 2.1.1.45] produces dTMP (5,10-Methylene-5,6,7,8-tetrahydrofolate is a cofactor for the reaction). The nuclear form of uracil-DNA glycosylase (UNG2), that its major role is to remove misincorporated dUMP residues (cells deficient in removal of misincorporated dUMP accumulate uracil residues). (PMID 11554311) [HMDB]. dUMP is found in many foods, some of which are ginger, evergreen huckleberry, vanilla, and common walnut. dUMP. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=964-26-1 (retrieved 2024-07-15) (CAS RN: 964-26-1). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Temazepam

7-chloro-3-hydroxy-1-methyl-5-phenyl-2,3-dihydro-1H-1,4-benzodiazepin-2-one

C16H13ClN2O2 (300.0666)


Temazepam is only found in individuals that have used or taken this drug. It is a benzodiazepine that acts as a gamma-aminobutyric acid modulator and anti-anxiety agent. [PubChem]Benzodiazepines bind nonspecifically to benzodiazepine receptors, which affects muscle relaxation, anticonvulsant activity, motor coordination, and memory. As benzodiazepine receptors are thought to be coupled to gamma-aminobutyric acid-A (GABAA) receptors, this enhances the effects of GABA by increasing GABA affinity for the GABA receptor. Binding of the inhibitory neurotransmitter GABA to the site opens the chloride channel, resulting in a hyperpolarized cell membrane that prevents further excitation of the cell. D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives N - Nervous system > N05 - Psycholeptics > N05C - Hypnotics and sedatives > N05CD - Benzodiazepine derivatives D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014151 - Anti-Anxiety Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic > C1012 - Benzodiazepine D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018757 - GABA Modulators C78272 - Agent Affecting Nervous System > C28197 - Antianxiety Agent

   

alpha-Solanine

alpha-Solanine

C45H73NO15 (867.498)


[Raw Data] CB083_Solanine_pos_30eV_isCID-10eV_rep000003.txt [Raw Data] CB083_Solanine_pos_40eV_isCID-10eV_rep000003.txt [Raw Data] CB083_Solanine_pos_50eV_isCID-10eV_rep000003.txt [Raw Data] CB083_Solanine_pos_20eV_isCID-10eV_rep000003.txt [Raw Data] CB083_Solanine_pos_10eV_isCID-10eV_rep000003.txt α-solanine, a bioactive component and one of the major steroidal glycoalkaloids in Solanum nigrum, has been observed to inhibit growth and induce apoptosis in cancer cells[1]. α-solanine, a bioactive component and one of the major steroidal glycoalkaloids in Solanum nigrum, has been observed to inhibit growth and induce apoptosis in cancer cells[1].

   

Microcystin LR

Cyanoginosin-LR;MC-LR;Toxin T 17 (Microcystis aeruginosa)

C49H74N10O12 (994.5487)


CONFIDENCE standard compound; UCHEM_ID 2992; NaToxAq - Natural Toxins and Drinking Water Quality - From Source to Tap (https://natoxaq.ku.dk) D009676 - Noxae > D002273 - Carcinogens > D052998 - Microcystins D009676 - Noxae > D011042 - Poisons > D008387 - Marine Toxins CONFIDENCE standard compound; EAWAG_UCHEM_ID 2992 D004791 - Enzyme Inhibitors

   

AICAR

{[(2R,3S,4R,5R)-5-(5-amino-4-carbamoyl-1H-imidazol-1-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}phosphonic acid

C9H15N4O8P (338.0627)


Aicar, also known as 5-phosphoribosyl-5-amino-4-imidazolecarboxamide or 5-aminoimidazole-4-carboxamide ribotide, is a member of the class of compounds known as 1-ribosyl-imidazolecarboxamides. 1-ribosyl-imidazolecarboxamides are organic compounds containing the imidazole ring linked to a ribose ring through a 1-2 bond. Aicar is slightly soluble (in water) and a moderately acidic compound (based on its pKa). Aicar can be found in a number of food items such as safflower, greenthread tea, common pea, and wild leek, which makes aicar a potential biomarker for the consumption of these food products. Aicar can be found primarily in saliva, as well as in human skeletal muscle tissue. Aicar exists in all living species, ranging from bacteria to humans. In humans, aicar is involved in few metabolic pathways, which include azathioprine action pathway, mercaptopurine action pathway, purine metabolism, and thioguanine action pathway. Aicar is also involved in several metabolic disorders, some of which include mitochondrial DNA depletion syndrome, purine nucleoside phosphorylase deficiency, xanthinuria type II, and gout or kelley-seegmiller syndrome. AICAR also known as ZMP is an analog of AMP that is capable of stimulating AMP-dependent protein kinase activity(AMPK). AICAR is an intermediate in the generation of inosine monophosphate. AICAR is being clinically used to treat and protect against cardiac ischemic injury. AICAR can enter cardiac cells to inhibit adenosine kinase and adenosine deaminase. It enhances the rate of nucleotide re-synthesis increasing adenosine generation from adenosine monophosphate only during conditions of myocardial ischemia. AICAR increases glucose uptake by inducing translocation of GLUT4 and/or by activating the p38 MAPK pathway. Acquisition and generation of the data is financially supported in part by CREST/JST. COVID info from COVID-19 Disease Map D007004 - Hypoglycemic Agents Corona-virus KEIO_ID A133 Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Zaleplon

N-(3-(3-Cyanopyrazolo(1,5-a)pyrimidin-7-yl)phenyl)-N-ethylacetamide

C17H15N5O (305.1277)


Zaleplon is a sedative/hypnotic, mainly used for insomnia. It is known as a nonbenzodiazepine hypnotic. Zaleplon interacts with the GABA receptor complex and shares some of the pharmacological properties of the benzodiazepines. Zaleplon is a schedule IV drug in the United States. D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives N - Nervous system > N05 - Psycholeptics > N05C - Hypnotics and sedatives > N05CF - Benzodiazepine related drugs D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018757 - GABA Modulators C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic D002491 - Central Nervous System Agents > D000927 - Anticonvulsants

   

Nitrobenzene

Hydroxy(phenyl)azane oxide (acd/name 4.0)

C6H5NO2 (123.032)


Approximately 95\\% of nitrobenzene is consumed in the production of aniline, which is a precursor to rubber chemicals, pesticides, dyes, explosives, and pharmaceuticals. Nitrobenzene is an organic compound with the chemical formula C6H5NO2. It is a water-insoluble pale yellow oil with an almond-like odor. It freezes to give greenish-yellow crystals. It is produced on a large scale from benzene as a precursor to aniline. In the laboratory, it is occasionally used as a solvent, especially for electrophilic reagents. Nitrobenzene is prepared by nitration of benzene with a mixture of concentrated sulfuric acid, water, and nitric acid. This mixture is sometimes called mixed acid. The production of nitrobenzene is one of the most dangerous processes conducted in the chemical industry because of the exothermicity of the reaction ( delta H = 117 kJ/mol).

   

Pentazocine

(1R,9R,13R)-1,13-dimethyl-10-(3-methylbut-2-en-1-yl)-10-azatricyclo[7.3.1.0²,⁷]trideca-2,4,6-trien-4-ol

C19H27NO (285.2093)


Pentazocine is only found in individuals that have used or taken this drug. It is the first mixed agonist-antagonist analgesic to be marketed. It is an agonist at the kappa and sigma opioid receptors and has a weak antagonist action at the mu receptor. (From AMA Drug Evaluations Annual, 1991, p97)The preponderance of evidence suggests that pentazocine antagonizes the opioid effects by competing for the same receptor sites, especially the opioid mu receptor. D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids N - Nervous system > N02 - Analgesics > N02A - Opioids > N02AD - Benzomorphan derivatives D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist D002491 - Central Nervous System Agents > D009292 - Narcotic Antagonists D002491 - Central Nervous System Agents > D000700 - Analgesics

   

Guanosine monophosphate

{[(2R,3S,4R,5R)-5-(2-amino-6-oxo-6,9-dihydro-1H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}phosphonic acid

C10H14N5O8P (363.058)


Guanosine monophosphate (GMP), also known as 5′-guanidylic acid or guanylic acid (conjugate base guanylate), is a nucleotide that is used as a monomer in RNA. It is an ester of phosphoric acid with the nucleoside guanosine. GMP consists of the phosphate group, the pentose sugar ribose, and the nucleobase guanine; hence it is a ribonucleoside monophosphate. Guanosine monophosphate is commercially produced by microbial fermentation. Guanosine monophosphate, also known as guanylic acid or 5-GMP, belongs to the class of organic compounds known as purine ribonucleoside monophosphates. These are nucleotides consisting of a purine base linked to a ribose to which one monophosphate group is attached. A guanine nucleotide containing one phosphate group esterified to the sugar moiety and found widely in nature. Guanosine monophosphate exists in all living species, ranging from bacteria to humans. Within humans, guanosine monophosphate participates in a number of enzymatic reactions. In particular, guanosine triphosphate and guanosine monophosphate can be biosynthesized from diguanosine tetraphosphate through its interaction with the enzyme bis(5-nucleosyl)-tetraphosphatase [asymmetrical]. In addition, guanosine monophosphate can be biosynthesized from guanosine diphosphate; which is mediated by the enzyme ectonucleoside triphosphate diphosphohydrolase 5. In humans, guanosine monophosphate is involved in the metabolic disorder called the lesch-nyhan syndrome (lns) pathway. Outside of the human body, guanosine monophosphate has been detected, but not quantified in several different foods, such as common cabbages, tea, winter squash, spearmints, and sugar apples. Guanosine-5-monophosphate, also known as 5-gmp or guanylic acid, is a member of the class of compounds known as purine ribonucleoside monophosphates. Purine ribonucleoside monophosphates are nucleotides consisting of a purine base linked to a ribose to which one monophosphate group is attached. Guanosine-5-monophosphate is slightly soluble (in water) and a moderately acidic compound (based on its pKa). Guanosine-5-monophosphate can be found in a number of food items such as mustard spinach, swiss chard, watercress, and colorado pinyon, which makes guanosine-5-monophosphate a potential biomarker for the consumption of these food products. Guanosine-5-monophosphate can be found primarily in blood and saliva, as well as throughout most human tissues. Guanosine-5-monophosphate exists in all living species, ranging from bacteria to humans. In humans, guanosine-5-monophosphate is involved in several metabolic pathways, some of which include clarithromycin action pathway, erythromycin action pathway, minocycline action pathway, and tetracycline action pathway. Guanosine-5-monophosphate is also involved in several metabolic disorders, some of which include gout or kelley-seegmiller syndrome, xanthine dehydrogenase deficiency (xanthinuria), aICA-Ribosiduria, and molybdenum cofactor deficiency. Guanosine monophosphate is known as E number reference E626.[7] In the form of its salts, such as disodium guanylate (E627), dipotassium guanylate (E628) and calcium guanylate (E629), are food additives used as flavor enhancers to provide the umami taste.[7] It is often used in synergy with disodium inosinate; the combination is known as disodium 5′-ribonucleotides. Disodium guanylate is often found in instant noodles, potato chips and snacks, savoury rice, tinned vegetables, cured meats, and packet soup. As it is a fairly expensive additive, it is usually not used independently of glutamic acid or monosodium glutamate (MSG), which also contribute umami. If inosinate and guanylate salts are present in a list of ingredients but MSG does not appear to be, the glutamic acid is likely provided as part of another ingredient, such as a processed soy protein complex (hydrolyzed soy protein), autolyzed yeast, or soy sauce. 5'-Guanylic acid (5'-GMP) is involved in several metabolic disorders, including the AICA-ribosiduria pathway, adenosine deaminase deficiency, adenine phosphoribosyltransferase deficiency (aprt), and the 2-hydroxyglutric aciduria pathway. 5'-Guanylic acid (5'-GMP) is involved in several metabolic disorders, including the AICA-ribosiduria pathway, adenosine deaminase deficiency, adenine phosphoribosyltransferase deficiency (aprt), and the 2-hydroxyglutric aciduria pathway.

   

Raltitrexed

(2S)-2-[(5-{methyl[(2-methyl-4-oxo-1,4-dihydroquinazolin-6-yl)methyl]amino}thiophen-2-yl)formamido]pentanedioic acid

C21H22N4O6S (458.126)


Raltitrexed is only found in individuals that have used or taken this drug. It is a chemotherapy drug manufactured AstraZeneca Company, is an antimetabolite used in chemotherapy. It is an inhibitor of thymidylate synthase.Raltitrexed is an antineoplastic Agents and folic acid antagonists. Raltitrexed inhibits thymidylate synthase (TS) leading to DNA fragmentation and cell death. It is transported into cells via a reduced folate carrier. Inside the cell Raltitrexed is extensively polyglutamated, which enhances thymidylate synthase inhibitory power and duration. Inhibition of this enzyme results in decreased synthesis of thymidine triphosphate which is required for DNA synthesis. L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01B - Antimetabolites > L01BA - Folic acid analogues C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C272 - Antimetabolite C471 - Enzyme Inhibitor > C2021 - Thymidylate Synthase Inhibitor D004791 - Enzyme Inhibitors > D005493 - Folic Acid Antagonists D009676 - Noxae > D000963 - Antimetabolites D000970 - Antineoplastic Agents Same as: D01064

   

Cupressuflavone

8-[5,7-dihydroxy-2-(4-hydroxyphenyl)-4-oxochromen-8-yl]-5,7-dihydroxy-2-(4-hydroxyphenyl)chromen-4-one

C30H18O10 (538.09)


Cupressuflavone is a biflavonoid that is obtained by oxidative coupling of two molecules of apigenin resulting in a bond between positions C-8 of the two chromene rings respectively. Isolated from Cupressus sempervirens and Juniperus occidentalis, it exhibits free radical scavenging and antielastase activities. It has a role as an EC 3.4.21.37 (leukocyte elastase) inhibitor, a radical scavenger and a metabolite. It is a biflavonoid, a hydroxyflavone and a ring assembly. Cupressuflavone is a natural product found in Fitzroya cupressoides, Juniperus drupacea, and other organisms with data available. A biflavonoid that is obtained by oxidative coupling of two molecules of apigenin resulting in a bond between positions C-8 of the two chromene rings respectively. Isolated from Cupressus sempervirens and Juniperus occidentalis, it exhibits free radical scavenging and antielastase activities.

   

Actinonin

(2R)-N'-hydroxy-N-[(2S)-1-[(2S)-2-(hydroxymethyl)pyrrolidin-1-yl]-3-methyl-1-oxobutan-2-yl]-2-pentylbutanediamide

C19H35N3O5 (385.2577)


D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents Actinonin ((-)-Actinonin) is a naturally occurring antibacterial agent produced by Actinomyces. Actinonin inhibits aminopeptidase M, aminopeptidase N and leucine aminopeptidase. Actinonin is a potent reversible peptide deformylase (PDF) inhibitor with a Ki of 0.28 nM. Actinonin also inhibits MMP-1, MMP-3, MMP-8, MMP-9, and hmeprin α with Ki values of 300 nM, 1,700 nM, 190 nM, 330 nM, and 20 nM, respectively. Actinonin is an apoptosis inducer. Actinonin has antiproliferative and antitumor activities[1][2][3][4][5].

   

m-Cresol

3-Cresol, calcium salt(1:2)

C7H8O (108.0575)


m-Cresol is an isomer of p-cresol and o-cresol. Cresols are organic compounds which are methylphenols. They are a widely occurring natural and manufactured group of aromatic organic compounds which are categorized as phenols (sometimes called phenolics). Depending on the temperature, cresols can be solid or liquid because they have melting points not far from room temperature. Like other types of phenols, they are slowly oxidized by long exposure to air and the impurities often give cresols a yellowish to brownish red tint. Cresols have an odor characteristic to that of other simple phenols, reminiscent to some of a "medicine" smell. Cresol solutions are used as household cleaners and disinfectants, perhaps most famously under the trade name Lysol. In the past, cresol solutions have been used as antiseptics in surgery, but they have been largely displaced in this role by less toxic compounds. Lysol was also advertised as a disinfecting vaginal douche in mid-twentieth century America. Cresols are found in many foods and in wood and tobacco smoke, crude oil, coal tar, and in brown mixtures such as creosote and cresylic acids, which are wood preservatives. Small organisms in soil and water produce cresols when they break down materials in the environment. Most exposures to cresols are at very low levels that are not harmful. When cresols are breathed, ingested, or applied to the skin at very high levels, they can be very harmful. Effects observed in people include irritation and burning of skin, eyes, mouth, and throat; abdominal pain and vomiting; heart damage; anemia; liver and kidney damage; facial paralysis; coma; and death. Breathing high levels of cresols for a short time results in irritation of the nose and throat. Aside from these effects, very little is known about the effects of breathing cresols, for example, at lower levels over longer times. Ingesting high levels results in kidney problems, mouth and throat burns, abdominal pain, vomiting, and effects on the blood and nervous system. Skin contact with high levels of cresols can burn the skin and damage the kidneys, liver, blood, brain, and lungs. m-Cresol is a microbial metabolite that can be found in Lysinibacillus. Flavouring ingredient. 3-Methylphenol is found in asparagus, tea, and arabica coffee.

   

3-Nitrophenol

1-Hydroxy-3-nitrobenzene

C6H5NO3 (139.0269)


   

Tetrahydrofolic acid

2-{[4-({[(6S)-4-hydroxy-2-imino-5,6,7,8-tetrahydro-1H-pteridin-6-yl]methyl}amino)phenyl]formamido}pentanedioic acid

C19H23N7O6 (445.171)


Tetrahydrofolate is a soluble coenzyme (vitamin B9) that is synthesized de novo by plants and microorganisms, and absorbed from the diet by animals. It is composed of three distinct parts: a pterin ring, a p-ABA (p-aminobenzoic acid) and a polyglutamate chain with a number of residues varying between 1 and 8. Only the tetra-reduced form of the molecule serves as a coenzyme for C1 transfer reactions. In biological systems, the C1-units exist under various oxidation states and the different tetrahydrofolate derivatives constitute a family of related molecules named indistinctly under the generic term folate. (PMID 16042593). Folate is important for cells and tissues that rapidly divide. Cancer cells divide rapidly, and drugs that interfere with folate metabolism are used to treat cancer. Methotrexate is a drug often used to treat cancer because it inhibits the production of the active form, tetrahydrofolate. Unfortunately, methotrexate can be toxic, producing side effects such as inflammation in the digestive tract that make it difficult to eat normally. -- Wikipedia; Signs of folic acid deficiency are often subtle. Diarrhea, loss of appetite, and weight loss can occur. Additional signs are weakness, sore tongue, headaches, heart palpitations, irritability, and behavioral disorders. Women with folate deficiency who become pregnant are more likely to give birth to low birth weight and premature infants, and infants with neural tube defects. In adults, anemia is a sign of advanced folate deficiency. In infants and children, folate deficiency can slow growth rate. Some of these symptoms can also result from a variety of medical conditions other than folate deficiency. It is important to have a physician evaluate these symptoms so that appropriate medical care can be given. -- Wikipedia; Folinic acid is a form of folate that can help rescue or reverse the toxic effects of methotrexate. Folinic acid is not the same as folic acid. Folic acid supplements have little established role in cancer chemotherapy. There have been cases of severe adverse effects of accidental substitution of folic acid for folinic acid in patients receiving methotrexate cancer chemotherapy. It is important for anyone receiving methotrexate to follow medical advice on the use of folic or folinic acid supplements. -- Wikipedia. Low concentrations of folate, vitamin B12, or vitamin B6 may increase the level of homocysteine, an amino acid normally found in blood. There is evidence that an elevated homocysteine level is an independent risk factor for heart disease and stroke. The evidence suggests that high levels of homocysteine may damage coronary arteries or make it easier for blood clotting cells called platelets to clump together and form a clot. However, there is currently no evidence available to suggest that lowering homocysteine with vitamins will reduce your risk of heart disease. Clinical intervention trials are needed to determine whether supplementation with folic acid, vitamin B12 or vitamin B6 can lower your risk of developing coronary heart disease. -- Wikipedia. Tetrahydrofolate is a soluble coenzyme (vitamin B9) that is synthesized de novo by plants and microorganisms, and absorbed from the diet by animals. It is composed of three distinct parts: a pterin ring, a p-ABA (p-aminobenzoic acid) and a polyglutamate chain with a number of residues varying between 1 and 8. Only the tetra-reduced form of the molecule serves as a coenzyme for C1 transfer reactions. In biological systems, the C1-units exist under various oxidation states and the different tetrahydrofolate derivatives constitute a family of related molecules named indistinctly under the generic term folate. (PMID 16042593)

   

Sphinganine 1-phosphate

(2S,3R)-2-Amino-3-hydroxyoctadecyl dihydrogen phosphoric acid

C18H40NO5P (381.2644)


Sphinganine 1-phosphate is an intermediate in the metabolism of Glycosphingolipids and sphingolipids. It is a substrate for Sphingosine kinase 1, Lipid phosphate phosphohydrolase 2, Sphingosine kinase 2, Sphingosine-1-phosphate lyase 1, Lipid phosphate phosphohydrolase 1 and Lipid phosphate phosphohydrolase 3. [HMDB]. Sphinganine 1-phosphate is found in many foods, some of which are winter squash, chicory roots, star fruit, and butternut squash. Sphinganine 1-phosphate is an intermediate in the metabolism of Glycosphingolipids and sphingolipids. It is a substrate for Sphingosine kinase 1, Lipid phosphate phosphohydrolase 2, Sphingosine kinase 2, Sphingosine-1-phosphate lyase 1, Lipid phosphate phosphohydrolase 1 and Lipid phosphate phosphohydrolase 3.

   

5-Fluorodeoxyuridine monophosphate

{[(2R,3S,5R)-5-(5-fluoro-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-1-yl)-3-hydroxyoxolan-2-yl]methoxy}phosphonic acid

C9H12FN2O8P (326.0315)


5-Fluorodeoxyuridine monophosphate is a metabolite of floxuridine. Floxuridine (also 5-fluorodeoxyuridine) is an oncology drug that belongs to the class known as antimetabolites. The drug is most often used in the treatment of colorectal cancer. (Wikipedia)

   

Robustaflavone

Robustaflavone

C30H18O10 (538.09)


A biflavonoid that is obtained by oxidative coupling of two molecules of apigenin resulting in a bond between positions C-3 of the hydroxyphenyl ring and C-6 of the chromene ring. Isolated from Thuja orientalis and Rhus succedanea it exhibits antioxidant, cytotoxic and anti-hepatitis B activity.

   

Maytansine

[(16Z,18E)-11-chloro-21-hydroxy-12,20-dimethoxy-2,5,9,16-tetramethyl-8,23-dioxo-4,24-dioxa-9,22-diazatetracyclo[19.3.1.110,14.03,5]hexacosa-10,12,14(26),16,18-pentaen-6-yl] 2-[acetyl(methyl)amino]propanoate

C34H46ClN3O10 (691.2872)


D050258 - Mitosis Modulators > D050256 - Antimitotic Agents > D050257 - Tubulin Modulators D000970 - Antineoplastic Agents > D050256 - Antimitotic Agents C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C273 - Antimitotic Agent C274 - Antineoplastic Agent > C1931 - Antineoplastic Plant Product C1907 - Drug, Natural Product Same as: D04864 Maytansine is a highly potent microtubule-targeted compound that induces mitotic arrest and kills tumor cells at subnanomolar concentrations[1].

   

Trimetrexate

5-methyl-6-{[(3,4,5-trimethoxyphenyl)amino]methyl}quinazoline-2,4-diamine

C19H23N5O3 (369.1801)


A nonclassical folic acid inhibitor through its inhibition of the enzyme dihydrofolate reductase. It is being tested for efficacy as an antineoplastic agent and as an antiparasitic agent against pneumocystis pneumonia in AIDS patients. Myelosuppression is its dose-limiting toxic effect. [PubChem] P - Antiparasitic products, insecticides and repellents > P01 - Antiprotozoals > P01A - Agents against amoebiasis and other protozoal diseases C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C272 - Antimetabolite C471 - Enzyme Inhibitor > C2153 - Dihydrofolate Reductase Inhibitor D004791 - Enzyme Inhibitors > D005493 - Folic Acid Antagonists D000890 - Anti-Infective Agents > D000935 - Antifungal Agents D009676 - Noxae > D000963 - Antimetabolites D000970 - Antineoplastic Agents Same as: D06238

   

Sulfobromophthalein

Sulfobromophthalein

C20H10Br4O10S2 (789.6449)


V - Various > V04 - Diagnostic agents > V04C - Other diagnostic agents > V04CE - Tests for liver functional capacity D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D010635 - Phenolphthaleins D004396 - Coloring Agents Same as: D08548

   

CB3717

10-Propargyl-5,8-dideazafolic acid

C24H23N5O6 (477.1648)


D004791 - Enzyme Inhibitors > D005493 - Folic Acid Antagonists D000970 - Antineoplastic Agents

   

Epo A

Epothilone A

C26H39NO6S (493.2498)


C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C273 - Antimitotic Agent D050258 - Mitosis Modulators > D050256 - Antimitotic Agents > D050257 - Tubulin Modulators D000970 - Antineoplastic Agents > D050256 - Antimitotic Agents Epothilone A is a competitive inhibitor of the binding of [3H] paclitaxel to tubulin polymers, with a Ki of 0.6-1.4 μM.

   

Pyricarbate

N-methyl[(6-{[(methyl-C-hydroxycarbonimidoyl)oxy]methyl}pyridin-2-yl)methoxy]carboximidic acid

C11H15N3O4 (253.1063)


C78276 - Agent Affecting Digestive System or Metabolism > C29703 - Antilipidemic Agent D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Same as: D01396

   

Betadex

5,10,15,20,25,30,35-Heptakis(hydroxymethyl)-2,4,7,9,12,14,17,19,22,24,27,29,32,34-tetradecaoxaoctacyclo[31.2.2.23,6.28,11.213,16.218,21.223,26.228,31]nonatetracontane-36,37,38,39,40,41,42,43,44,45,46,47,48,49-tetradecol

C42H70O35 (1134.3697)


Betadex has GRAS (Generally Recognized As Safe) status for use as a flavour carrier or protectant in food D000074385 - Food Ingredients > D005503 - Food Additives D064449 - Sequestering Agents Same as: D02401 β-Cyclodextrin is a cyclic polysaccharide composed of seven units of glucose (α-D-glucopyranose) linked by α-(1,4) type bonds. β-Cyclodextrin has often been used to enhance the solubility of agents. β-Cyclodextrin has anti-influenza virus H1N1 activities.

   

halichondrin B

halichondrin B

C60H86O19 (1110.5763)


D050258 - Mitosis Modulators > D050256 - Antimitotic Agents > D050257 - Tubulin Modulators D000970 - Antineoplastic Agents > D050256 - Antimitotic Agents

   

Folinic acid

(2S)-2-{[4-({[(6S)-2-amino-5-formyl-4-oxo-1,4,5,6,7,8-hexahydropteridin-6-yl]methyl}amino)phenyl]formamido}pentanedioic acid

C20H23N7O7 (473.1659)


(6S)-5-formyltetrahydrofolic acid is the pharmacologically active (6S)-stereoisomer of 5-formyltetrahydrofolic acid. It has a role as an antineoplastic agent and a metabolite. It is a conjugate acid of a (6S)-5-formyltetrahydrofolate(2-). Levoleucovorin is the enantiomerically active form of Folinic Acid (also known as 5-formyl tetrahydrofolic acid or leucovorin). Commercially available leucovorin is composed of a 1:1 racemic mixture of the dextrorotary and levorotary isomers, while levoleucovorin contains only the pharmacologically active levo-isomer. In vitro, the levo-isomer has been shown to be rapidly converted to the biologically available methyl-tetrahydrofolate form while the dextro form is slowly excreted by the kidneys. Despite this difference in activity, the two commercially available forms have been shown to be pharmacokinetically identical and may be used interchangeably with limited differences in efficacy or side effects (Kovoor et al, 2009). As folate analogs, levoleucovorin and leucovorin are both used to counteract the toxic effects of folic acid antagonists, such as methotrexate, which act by inhibiting the enzyme dihydrofolate reductase (DHFR). They are indicated for use as rescue therapy following use of high-dose methotrexate in the treatment of osteosarcoma or for diminishing the toxicity associated with inadvertent overdosage of folic acid antagonists. Levoleucovorin, as the product Fusilev (FDA), has an additional indication for use in combination chemotherapy with 5-fluorouracil in the palliative treatment of patients with advanced metastatic colorectal cancer. Folic acid is an essential B vitamin required by the body for the synthesis of purines, pyrimidines, and methionine before incorporation into DNA or protein. However, in order to function in this role, it must first be reduced by the enzyme dihydrofolate reductase (DHFR) into the cofactors dihydrofolate (DHF) and tetrahydrofolate (THF). This important pathway, which is required for de novo synthesis of nucleic acids and amino acids, is disrupted when high-dose methotrexate is used for cancer therapy. As methotrexate functions as a DHFR inhibitor to prevent DNA synthesis in rapidly dividing cells, it also prevents the formation of DHF and THF. This results in a deficiency of coenzymes and a resultant buildup of toxic substances that are responsible for numerous adverse side effects of methotrexate therapy. As levoleucovorin and leucovorin are analogs of tetrahydrofolate (THF), they are able to bypass DHFR reduction and act as a cellular replacement for the co-factor THF, thereby preventing these toxic side effects. Levoleucovorin is a Folate Analog. Levoleucovorin is a natural product found in Homo sapiens with data available. Levoleucovorin is the active l-isomer of the racemic mixture of the 5-formyl derivative of tetrahydrofolic acid. Metabolically active, l-leucovorin, also known levoleucovorin, does not require bioactivation by dihydrofolate reductase, an enzyme inhibited by folic acid antagonists. This agent may enhance the effects of fluoropyrimidines by stabilizing their binding to the enzyme thymidylate synthase. (NCI04) 5-Formyltetrahydrofolic acid is a metabolite found in or produced by Saccharomyces cerevisiae. A folate analog consisting of the pharmacologically active isomer of LEUCOVORIN. See also: Levoleucovorin Calcium (active moiety of); Levoleucovorin disodium (active moiety of). Folinic acid (CAS: 58-05-9), also known as leucovorin, is a medication used to decrease the toxic effects of methotrexate (a chemotherapy agent and immune system suppressant) and pyrimethamine (Wikipedia). Folinic acid is the active metabolite of folic acid. Leucovorin is used principally as its calcium salt as an antidote to folic acid antagonists which block the conversion of folic acid to folinic acid. D020011 - Protective Agents > D000931 - Antidotes C2140 - Adjuvant > C2078 - Folic Acid Derivative Folinic acid (Leucovorin) is a biological folic acid and is generally administered along with Methotrexate (MTX) (HY-14519) as a rescue agent to decrease MTX-induced toxicity[1]. Folinic acid (Leucovorin) is a biological folic acid and is generally administered along with Methotrexate (MTX) (HY-14519) as a rescue agent to decrease MTX-induced toxicity[1].

   

5,6,7,8-Tetrahydrofolic acid

2-[(4-{[(4-hydroxy-2-imino-5,6,7,8-tetrahydro-1H-pteridin-6-yl)methyl]amino}phenyl)formamido]pentanedioic acid

C19H23N7O6 (445.171)


Tetrahydrofolate is a soluble coenzyme (vitamin B9) that is synthesized de novo by plants and microorganisms, and absorbed from the diet by animals. It is composed of three distinct parts: a pterin ring, a p-ABA (p-aminobenzoic acid) and a polyglutamate chain with a number of residues varying between 1 and 8. Only the tetra-reduced form of the molecule serves as a coenzyme for C1 transfer reactions. In biological systems, the C1-units exist under various oxidation states and the different tetrahydrofolate derivatives constitute a family of related molecules named indistinctly under the generic term folate. (PMID 16042593)

   

Aescin

6-{[9-(acetyloxy)-8-hydroxy-4,8a-bis(hydroxymethyl)-4,6a,6b,11,11,14b-hexamethyl-10-[(2-methylbut-2-enoyl)oxy]-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-icosahydropicen-3-yl]oxy}-4-hydroxy-3,5-bis({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy})oxane-2-carboxylic acid

C55H86O24 (1130.5509)


   

Maitansine

11-Chloro-21,23-dihydroxy-12,20-dimethoxy-2,5,9,16-tetramethyl-8-oxo-4,24-dioxa-9,22-diazatetracyclo[19.3.1.1¹⁰,¹⁴.0³,⁵]hexacosa-10,12,14(26),16,18,22-hexaen-6-yl 2-(N-methylacetamido)propanoic acid

C34H46ClN3O10 (691.2872)


   

Microcystin-LR

15-{3-[(diaminomethylidene)amino]propyl}-18-(6-methoxy-3,5-dimethyl-7-phenylhepta-1,3-dien-1-yl)-1,5,12,19-tetramethyl-2-methylidene-8-(2-methylpropyl)-3,6,9,13,16,20,25-heptaoxo-1,4,7,10,14,17,21-heptaazacyclopentacosane-11,22-dicarboxylic acid

C49H74N10O12 (994.5487)


   

Lespedin

5-hydroxy-2-(4-hydroxyphenyl)-3,7-bis[[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyl-tetrahydropyran-2-yl]oxy]chromen-4-one

C27H30O14 (578.1635)


Annotation level-1 Acquisition and generation of the data is financially supported in part by CREST/JST. Kaempferitrin is a natural flavonoid, possesses antinociceptive, anti-inflammatory, anti-diabetic, antitumoral and chemopreventive effects, and activates insulin signaling pathway. Kaempferitrin is a natural flavonoid, possesses antinociceptive, anti-inflammatory, anti-diabetic, antitumoral and chemopreventive effects, and activates insulin signaling pathway.

   

Maitansine

N-Acetyl-N-methyl-L-alanine(1S-(1R*,2S*,3R*,5R*,6R*,16E,18E,20S*,21R*))-11-chloro-21-hydroxy-12,20-dimethoxy-2,5,9,16-tetramethy-8,23-dioxo-4,24-dioxa-9,22-diazatetracyclo(19.3.1.1(sup 10,14).0(sup 3,5))hexacosa-10,12,14(26),16,18-pentaen-6-yl ester

C34H46ClN3O10 (691.2872)


Maytansine is an organic heterotetracyclic compound and 19-membered macrocyclic lactam antibiotic originally isolated from the Ethiopian shrub Maytenus serrata but also found in other Maytenus species. It exhibits cytotoxicity against many tumour cell lines. It has a role as a plant metabolite, an antimicrobial agent, an antineoplastic agent, a tubulin modulator and an antimitotic. It is an epoxide, a carbamate ester, an organochlorine compound, an alpha-amino acid ester, an organic heterotetracyclic compound and a maytansinoid. Maytansine is a natural product found in Putterlickia verrucosa and Gymnosporia diversifolia with data available. Maytansine is an ansamycin antibiotic originally isolated from the Ethiopian shrub Maytenus serrata. Maytansine binds to tubulin at the rhizoxin binding site, thereby inhibiting microtubule assembly, inducing microtubule disassembly, and disrupting mitosis. Maytansine exhibits cytotoxicity against many tumor cell lines and may inhibit tumor growth in vivo. (NCI04) An ansa macrolide isolated from the MAYTENUS genus of East African shrubs. An organic heterotetracyclic compound and 19-membered macrocyclic lactam antibiotic originally isolated from the Ethiopian shrub Maytenus serrata but also found in other Maytenus species. It exhibits cytotoxicity against many tumour cell lines. C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C273 - Antimitotic Agent D050258 - Mitosis Modulators > D050256 - Antimitotic Agents > D050257 - Tubulin Modulators C274 - Antineoplastic Agent > C1931 - Antineoplastic Plant Product D000970 - Antineoplastic Agents > D050256 - Antimitotic Agents C1907 - Drug, Natural Product Same as: D04864 Maytansine is a highly potent microtubule-targeted compound that induces mitotic arrest and kills tumor cells at subnanomolar concentrations[1].

   

temazepam

temazepam

C16H13ClN2O2 (300.0666)


D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives N - Nervous system > N05 - Psycholeptics > N05C - Hypnotics and sedatives > N05CD - Benzodiazepine derivatives D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014151 - Anti-Anxiety Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic > C1012 - Benzodiazepine D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018757 - GABA Modulators C78272 - Agent Affecting Nervous System > C28197 - Antianxiety Agent CONFIDENCE standard compound; INTERNAL_ID 1557 CONFIDENCE standard compound; INTERNAL_ID 8605

   

Guanosine monophosphate

Guanosine-5-monophosphate disodium salt hydrate from Yeast

C10H14N5O8P (363.058)


COVID info from COVID-19 Disease Map, PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS relative retention time with respect to 9-anthracene Carboxylic Acid is 0.057 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.058 5'-Guanylic acid (5'-GMP) is involved in several metabolic disorders, including the AICA-ribosiduria pathway, adenosine deaminase deficiency, adenine phosphoribosyltransferase deficiency (aprt), and the 2-hydroxyglutric aciduria pathway. 5'-Guanylic acid (5'-GMP) is involved in several metabolic disorders, including the AICA-ribosiduria pathway, adenosine deaminase deficiency, adenine phosphoribosyltransferase deficiency (aprt), and the 2-hydroxyglutric aciduria pathway.

   

OXCARBAZEPINE

2-Hydroxycarbamazepine

C15H12N2O2 (252.0899)


D002317 - Cardiovascular Agents > D026941 - Sodium Channel Blockers > D061567 - Voltage-Gated Sodium Channel Blockers N - Nervous system > N03 - Antiepileptics > N03A - Antiepileptics > N03AF - Carboxamide derivatives D065693 - Cytochrome P-450 Enzyme Inducers > D065701 - Cytochrome P-450 CYP3A Inducers C78272 - Agent Affecting Nervous System > C264 - Anticonvulsant Agent D002491 - Central Nervous System Agents > D000927 - Anticonvulsants D049990 - Membrane Transport Modulators CONFIDENCE standard compound; INTERNAL_ID 8583

   

Aica ribonucleotide

5-Aminoimidazole-4-carboxamide-1-beta-D-ribofuranosyl 5-monophosphate

C9H15N4O8P (338.0627)


A 1-(phosphoribosyl)imidazolecarboxamide that is acadesine in which the hydroxy group at the 5 position has been converted to its monophosphate derivative. COVID info from COVID-19 Disease Map D007004 - Hypoglycemic Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

5-Thymidylic acid

Thymidine-5-monophosphate

C10H15N2O8P (322.0566)


   

Folic acid

Folic acid ,approx

C19H19N7O6 (441.1397)


CONFIDENCE standard compound; INTERNAL_ID 452; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2727; ORIGINAL_PRECURSOR_SCAN_NO 2725 B - Blood and blood forming organs > B03 - Antianemic preparations > B03B - Vitamin b12 and folic acid > B03BB - Folic acid and derivatives COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D006401 - Hematologic Agents > D006397 - Hematinics D018977 - Micronutrients > D014815 - Vitamins V - Various > V04 - Diagnostic agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS CONFIDENCE standard compound; INTERNAL_ID 452; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2742; ORIGINAL_PRECURSOR_SCAN_NO 2740 CONFIDENCE standard compound; INTERNAL_ID 452; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2705; ORIGINAL_PRECURSOR_SCAN_NO 2702 CONFIDENCE standard compound; INTERNAL_ID 452; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2726; ORIGINAL_PRECURSOR_SCAN_NO 2724 CONFIDENCE standard compound; INTERNAL_ID 452; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2724; ORIGINAL_PRECURSOR_SCAN_NO 2722 CONFIDENCE standard compound; INTERNAL_ID 452; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2722; ORIGINAL_PRECURSOR_SCAN_NO 2720 CONFIDENCE standard compound; INTERNAL_ID 452; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5826; ORIGINAL_PRECURSOR_SCAN_NO 5821 CONFIDENCE standard compound; INTERNAL_ID 452; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5819; ORIGINAL_PRECURSOR_SCAN_NO 5814 Folic acid (Vitamin B9) is a orally active essential nutrient from the B complex group of vitamins. Folic acid shows antidepressant-like effect. Folic acid sodium reduces the risk of neonatal neural tube defects. Folic acid can be used to the research of megaloblastic and macrocytic anemias due to folic deficiency[1][2][3][4]. Folic acid (Vitamin B9) is a orally active essential nutrient from the B complex group of vitamins. Folic acid shows antidepressant-like effect. Folic acid sodium reduces the risk of neonatal neural tube defects. Folic acid can be used to the research of megaloblastic and macrocytic anemias due to folic deficiency[1][2][3][4].

   

m-cresol

m-cresol

C7H8O (108.0575)


A cresol with the methyl substituent at position 3. It is a minor urinary metabolite of toluene.

   

Raltitrexed

Raltitrexed

C21H22N4O6S (458.126)


L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01B - Antimetabolites > L01BA - Folic acid analogues C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C272 - Antimetabolite C471 - Enzyme Inhibitor > C2021 - Thymidylate Synthase Inhibitor D004791 - Enzyme Inhibitors > D005493 - Folic Acid Antagonists D009676 - Noxae > D000963 - Antimetabolites D000970 - Antineoplastic Agents

   

Zaleplon

Zaleplon

C17H15N5O (305.1277)


D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives N - Nervous system > N05 - Psycholeptics > N05C - Hypnotics and sedatives > N05CF - Benzodiazepine related drugs D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018757 - GABA Modulators C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic D002491 - Central Nervous System Agents > D000927 - Anticonvulsants

   

4-nitrocatechol

4-nitrocatechol

C6H5NO4 (155.0219)


A member of the class of catechols that is benzene-1,2-diol substituted by a nitro group at position 4.It is the by-product of the hydroxylation of p-nitrophenol. 4-Nitrocatechol is a potent lipoxygenase inhibitor[1]. 4-Nitrocatechol is a potent lipoxygenase inhibitor[1].

   

2-Deoxyuridine 5-monophosphate

2-Deoxyuridine 5-monophosphate

C9H13N2O8P (308.041)


   

kukoline

Sinomenine

C19H23NO4 (329.1627)


Origin: Plant; Formula(Parent): C19H23NO4; Bottle Name:Sinomenine; PRIME Parent Name:Sinomenine; PRIME in-house No.:V0298; SubCategory_DNP: Isoquinoline alkaloids, Morphine alkaloids D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids C274 - Antineoplastic Agent > C1742 - Angiogenesis Inhibitor C308 - Immunotherapeutic Agent > C2139 - Immunostimulant D018501 - Antirheumatic Agents Sinomenine, an alkaloid extracted from?Sinomenium acutum, is a blocker of the NF-κB activation[1]. Sinomenine also is an activator of μ-opioid receptor[2]. Sinomenine, an alkaloid extracted from?Sinomenium acutum, is a blocker of the NF-κB activation[1]. Sinomenine also is an activator of μ-opioid receptor[2]. Sinomenine, an alkaloid extracted from?Sinomenium acutum, is a blocker of the NF-κB activation[1]. Sinomenine also is an activator of μ-opioid receptor[2].

   

Sphinganine 1-phosphate

Sphinganine 1-phosphate

C18H40NO5P (381.2644)


A sphingoid 1-phosphate that is the monophosphorylated derivative of sphinganine.

   

10-Propargyl-5,8-dideazafolic acid

N-(4-(N-((2-amino-3,4-dihydro-4-oxo-6-quinazolinyl)methyl)-N-prop-2-ynylamino)benzoyl)glutamic acid

C24H23N5O6 (477.1648)


D004791 - Enzyme Inhibitors > D005493 - Folic Acid Antagonists D000970 - Antineoplastic Agents

   

trimetrexate

trimetrexate

C19H23N5O3 (369.1801)


P - Antiparasitic products, insecticides and repellents > P01 - Antiprotozoals > P01A - Agents against amoebiasis and other protozoal diseases C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C272 - Antimetabolite C471 - Enzyme Inhibitor > C2153 - Dihydrofolate Reductase Inhibitor D004791 - Enzyme Inhibitors > D005493 - Folic Acid Antagonists D000890 - Anti-Infective Agents > D000935 - Antifungal Agents D009676 - Noxae > D000963 - Antimetabolites D000970 - Antineoplastic Agents Same as: D06238

   

Pyricarbate

Pyridinol carbamate

C11H15N3O4 (253.1063)


C78276 - Agent Affecting Digestive System or Metabolism > C29703 - Antilipidemic Agent D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Same as: D01396

   

CPD-112

Celcure Dry Mix (chemicals for wood preserving)

C7H8O (108.0575)


   

3952-18-9

8-[5,7-dihydroxy-2-(4-hydroxyphenyl)-4-oxo-chromen-8-yl]-5,7-dihydroxy-2-(4-hydroxyphenyl)chromen-4-one

C30H18O10 (538.09)


   

CID 10079877

CID 10079877

C60H86O19 (1110.5763)


D050258 - Mitosis Modulators > D050256 - Antimitotic Agents > D050257 - Tubulin Modulators D000970 - Antineoplastic Agents > D050256 - Antimitotic Agents

   

Isoliquiritin

(E)-1-(2,4-Dihydroxyphenyl)-3-(4-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)phenyl)prop-2-en-1-one

C21H22O9 (418.1264)


Isoliquiritin is a monosaccharide derivative that is trans-chalcone substituted by hydroxy groups at positions 2 and 4 and a beta-D-glucopyranosyloxy group at position 4 respectively. It has a role as an antineoplastic agent and a plant metabolite. It is a member of chalcones, a member of resorcinols, a beta-D-glucoside and a monosaccharide derivative. It is functionally related to a trans-chalcone. Isoliquiritin is a natural product found in Allium chinense, Portulaca oleracea, and other organisms with data available. See also: Glycyrrhiza Glabra (part of). A monosaccharide derivative that is trans-chalcone substituted by hydroxy groups at positions 2 and 4 and a beta-D-glucopyranosyloxy group at position 4 respectively. Isoliquiritin, isolated from Licorice Root, inhibits angiogenesis and tube formation. Isoliquiritin also exhibits antidepressant-like effects and antifungal activity[1][2][3]. Isoliquiritin, isolated from Licorice Root, inhibits angiogenesis and tube formation. Isoliquiritin also exhibits antidepressant-like effects and antifungal activity[1][2][3].

   

NITROBENZENE

NITROBENZENE

C6H5NO2 (123.032)


   

5-Methyltetrahydrofolic acid

(2R)-2-[(4-{[(2-amino-5-methyl-4-oxo-3,4,5,6,7,8-hexahydropteridin-6-yl)methyl]amino}phenyl)formamido]pentanedioic acid

C20H25N7O6 (459.1866)


5-Methyltetrahydrofolic acid (5-Methyl THF) is a biologically active form of folic acid. 5-Methyltetrahydrofolic acid is a methylated derivate of tetrahydrofolate. 5-Methyltetrahydrofolic acid is the predominant natural dietary folate and the principal form of folate in plasma and cerebrospinal fluid[1]. Levomefolic acid (5-MTHF) is an orally active, brain-penetrant natural active form of folic acid and is one of the most widely used folic acid food supplements[1][2].

   

5-Fluoro-2-deoxyuridine-5-monophosphate

5-Fluoro-2-deoxyuridine-5-monophosphate

C9H12FN2O8P (326.0315)


   

Tomudex

Raltitrexed

C21H22N4O6S (458.126)


L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01B - Antimetabolites > L01BA - Folic acid analogues C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C272 - Antimetabolite C471 - Enzyme Inhibitor > C2021 - Thymidylate Synthase Inhibitor D004791 - Enzyme Inhibitors > D005493 - Folic Acid Antagonists D009676 - Noxae > D000963 - Antimetabolites D000970 - Antineoplastic Agents Same as: D01064

   

3-Nitrophenol

m-Hydroxynitrobenzene

C6H5NO3 (139.0269)


   

Talwin

Talwin

C19H27NO (285.2093)


D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D009292 - Narcotic Antagonists D002491 - Central Nervous System Agents > D000700 - Analgesics

   

5-Fluoro-2-deoxyuridine

5-Fluoro-2-deoxyuridine

C9H11FN2O5 (246.0652)


   

Epothilone A

Epothilone A

C26H39NO6S (493.2498)


An epithilone that is epothilone C in which the double bond in the macrocyclic lactone ring has been oxidised to the corresponding epoxide (the 13R,14S diastereoisomer). C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C273 - Antimitotic Agent D050258 - Mitosis Modulators > D050256 - Antimitotic Agents > D050257 - Tubulin Modulators D000970 - Antineoplastic Agents > D050256 - Antimitotic Agents Epothilone A is a competitive inhibitor of the binding of [3H] paclitaxel to tubulin polymers, with a Ki of 0.6-1.4 μM.