NCBI Taxonomy: 748792

Lepidaploinae (ncbi_taxid: 748792)

found 243 associated metabolites at subtribe taxonomy rank level.

Ancestor: Vernonieae

Child Taxonomies: Lepidaploa, Chrysolaena, Lessingianthus

Scopoletin

7-hydroxy-6-methoxy-2H-chromen-2-one

C10H8O4 (192.0422568)


Scopoletin is a hydroxycoumarin that is umbelliferone bearing a methoxy substituent at position 6. It has a role as a plant growth regulator and a plant metabolite. It is functionally related to an umbelliferone. Scopoletin is a natural product found in Ficus auriculata, Haplophyllum cappadocicum, and other organisms with data available. Scopoletin is a coumarin compound found in several plants including those in the genus Scopolia and the genus Brunfelsia, as well as chicory (Cichorium), redstem wormwood (Artemisia scoparia), stinging nettle (Urtica dioica), passion flower (Passiflora), noni (Morinda citrifolia fruit) and European black nightshade (Solanum nigrum) that is comprised of umbelliferone with a methoxy group substituent at position 6. Scopoletin is used to standardize and establish pharmacokinetic properties for products derived from the plants that produce it, such as noni extract. Although the mechanism(s) of action have not yet been established, this agent has potential antineoplastic, antidopaminergic, antioxidant, anti-inflammatory and anticholinesterase effects. Plant growth factor derived from the root of Scopolia carniolica or Scopolia japonica. See also: Arnica montana Flower (part of); Lycium barbarum fruit (part of); Viburnum opulus root (part of). Isolated from Angelica acutiloba (Dong Dang Gui). Scopoletin is found in many foods, some of which are lambsquarters, lemon, sunflower, and sherry. Scopoletin is found in anise. Scopoletin is isolated from Angelica acutiloba (Dong Dang Gui A hydroxycoumarin that is umbelliferone bearing a methoxy substituent at position 6. Acquisition and generation of the data is financially supported in part by CREST/JST. [Raw Data] CBA72_Scopoletin_pos_20eV.txt [Raw Data] CBA72_Scopoletin_pos_40eV.txt [Raw Data] CBA72_Scopoletin_neg_30eV.txt [Raw Data] CBA72_Scopoletin_neg_50eV.txt [Raw Data] CBA72_Scopoletin_pos_50eV.txt [Raw Data] CBA72_Scopoletin_pos_10eV.txt [Raw Data] CBA72_Scopoletin_neg_40eV.txt [Raw Data] CBA72_Scopoletin_neg_10eV.txt [Raw Data] CBA72_Scopoletin_pos_30eV.txt [Raw Data] CBA72_Scopoletin_neg_20eV.txt Scopoletin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=92-61-5 (retrieved 2024-07-12) (CAS RN: 92-61-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Scopoletin is an inhibitor of acetylcholinesterase (AChE). Scopoletin is an inhibitor of acetylcholinesterase (AChE).

   

Protocatechuic acid

3,4-dihydroxybenzoic acid

C7H6O4 (154.0266076)


Protocatechuic acid, also known as protocatechuate or 3,4-dihydroxybenzoate, belongs to the class of organic compounds known as hydroxybenzoic acid derivatives. Hydroxybenzoic acid derivatives are compounds containing a hydroxybenzoic acid (or a derivative), which is a benzene ring bearing a carboxyl and a hydroxyl groups. The enzyme protocatechuate 3,4-dioxygenase uses 3,4-dihydroxybenzoate and O2 to produce 3-carboxy-cis,cis-muconate. Protocatechuic acid is a drug. In the analogous hardening of the cockroach ootheca, the phenolic substance concerned is protocatechuic acid. Protocatechuic acid is a mild, balsamic, and phenolic tasting compound. Outside of the human body, protocatechuic acid is found, on average, in the highest concentration in a few different foods, such as garden onions, cocoa powders, and star anises and in a lower concentration in lentils, liquors, and red raspberries. Protocatechuic acid has also been detected, but not quantified in several different foods, such as cloud ear fungus, american pokeweeds, common mushrooms, fruits, and feijoa. This could make protocatechuic acid a potential biomarker for the consumption of these foods. It is also found in Allium cepa (17,540 ppm). It is a major metabolite of antioxidant polyphenols found in green tea. Similarly, PCA was reported to increase proliferation and inhibit apoptosis of neural stem cells. In vitro testing documented antioxidant and anti-inflammatory activity of PCA, while liver protection in vivo was measured by chemical markers and histological assessment. 3,4-dihydroxybenzoic acid, also known as protocatechuic acid or 4-carboxy-1,2-dihydroxybenzene, belongs to hydroxybenzoic acid derivatives class of compounds. Those are compounds containing a hydroxybenzoic acid (or a derivative), which is a benzene ring bearing a carboxyl and a hydroxyl groups. 3,4-dihydroxybenzoic acid is soluble (in water) and a weakly acidic compound (based on its pKa). 3,4-dihydroxybenzoic acid can be synthesized from benzoic acid. 3,4-dihydroxybenzoic acid is also a parent compound for other transformation products, including but not limited to, methyl 3,4-dihydroxybenzoate, ethyl 3,4-dihydroxybenzoate, and 1-(3,4-dihydroxybenzoyl)-beta-D-glucopyranose. 3,4-dihydroxybenzoic acid is a mild, balsamic, and phenolic tasting compound and can be found in a number of food items such as white mustard, grape wine, abalone, and asian pear, which makes 3,4-dihydroxybenzoic acid a potential biomarker for the consumption of these food products. 3,4-dihydroxybenzoic acid can be found primarily in blood, feces, and urine, as well as in human fibroblasts and testes tissues. 3,4-dihydroxybenzoic acid exists in all eukaryotes, ranging from yeast to humans. Protocatechuic acid (PCA) is a dihydroxybenzoic acid, a type of phenolic acid. It is a major metabolite of antioxidant polyphenols found in green tea. It has mixed effects on normal and cancer cells in in vitro and in vivo studies . 3,4-dihydroxybenzoic acid is a dihydroxybenzoic acid in which the hydroxy groups are located at positions 3 and 4. It has a role as a human xenobiotic metabolite, a plant metabolite, an antineoplastic agent, an EC 1.1.1.25 (shikimate dehydrogenase) inhibitor and an EC 1.14.11.2 (procollagen-proline dioxygenase) inhibitor. It is a member of catechols and a dihydroxybenzoic acid. It is functionally related to a benzoic acid. It is a conjugate acid of a 3,4-dihydroxybenzoate. 3,4-Dihydroxybenzoic acid is a natural product found in Visnea mocanera, Amomum subulatum, and other organisms with data available. Protocatechuic acid is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Black Cohosh (part of); Vaccinium myrtillus Leaf (part of); Menyanthes trifoliata leaf (part of) ... View More ... A dihydroxybenzoic acid in which the hydroxy groups are located at positions 3 and 4. Protocatechuic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=99-50-3 (retrieved 2024-06-29) (CAS RN: 99-50-3). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Protocatechuic acid is a phenolic compound which exhibits neuroprotective effect. Protocatechuic acid is a phenolic compound which exhibits neuroprotective effect.

   

Luteolin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-4H-chromen-4-one

C15H10O6 (286.047736)


Luteolin is a naturally occurring flavonoid. (PMID:17168665). The flavonoids are polyphenolic compounds found as integral components of the human diet. They are universally present as constituents of flowering plants, particularly of food plants. The flavonoids are phenyl substituted chromones (benzopyran derivatives) consisting of a 15-carbon basic skeleton (C6-C3-C6), composed of a chroman (C6-C3) nucleus (the benzo ring A and the heterocyclic ring C), also shared by the tocopherols, with a phenyl (the aromatic ring B) substitution usually at the 2-position. Different substitutions can typically occur in the rings, A and B. Several plants and spices containing flavonoid derivatives have found application as disease preventive and therapeutic agents in traditional medicine in Asia for thousands of years. The selection of a particular food plant, plant tissue or herb for its potential health benefits appears to mirror its flavonoid composition. The much lower risk of colon, prostate and breast cancers in Asians, who consume more vegetables, fruits and tea than populations in the Western hemisphere do, raises the question of whether flavonoid components mediate the protective effects of diets rich in these foodstuffs by acting as natural chemopreventive and anticancer agents. An impressive body of information exists on the antitumoral action of plant flavonoids. In vitro work has concentrated on the direct and indirect actions of flavonoids on tumor cells, and has found a variety of anticancer effects such as cell growth and kinase activity inhibition, apoptosis induction, suppression of the secretion of matrix metalloproteinases and of tumor invasive behavior. Furthermore, some studies have reported the impairment of in vivo angiogenesis by dietary flavonoids. Experimental animal studies indicate that certain dietary flavonoids possess antitumoral activity. The hydroxylation pattern of the B ring of the flavones and flavonols, such as luteolin seems to critically influence their activities, especially the inhibition of protein kinase activity and antiproliferation. The different mechanisms underlying the potential anticancer action of plant flavonoids await further elucidation. Certain dietary flavonols and flavones targeting cell surface signal transduction enzymes, such as protein tyrosine and focal adhesion kinases, and the processes of angiogenesis appear to be promising candidates as anticancer agents. Further in vivo studies of these bioactive constituents is deemed necessary in order to develop flavonoid-based anticancer strategies. In view of the increasing interest in the association between dietary flavonoids and cancer initiation and progression, this important field is likely to witness expanded effort and to attract and stimulate further vigorous investigations (PMID:16097445). Luteolin is a tetrahydroxyflavone in which the four hydroxy groups are located at positions 3, 4, 5 and 7. It is thought to play an important role in the human body as an antioxidant, a free radical scavenger, an anti-inflammatory agent and an immune system modulator as well as being active against several cancers. It has a role as an EC 2.3.1.85 (fatty acid synthase) inhibitor, an antineoplastic agent, a vascular endothelial growth factor receptor antagonist, a plant metabolite, a nephroprotective agent, an angiogenesis inhibitor, a c-Jun N-terminal kinase inhibitor, an anti-inflammatory agent, an apoptosis inducer, a radical scavenger and an immunomodulator. It is a 3-hydroxyflavonoid and a tetrahydroxyflavone. It is a conjugate acid of a luteolin-7-olate. Luteolin is a natural product found in Verbascum lychnitis, Carex fraseriana, and other organisms with data available. Luteolin is a naturally-occurring flavonoid, with potential anti-oxidant, anti-inflammatory, apoptosis-inducing and chemopreventive activities. Upon administration, luteolin scavenges free radicals, protects cells from reactive oxygen species (ROS)-induced damage and induces direct cell cycle arrest and apoptosis in tumor cells. This inhibits tumor cell proliferation and suppresses metastasis. 5,7,3,4-tetrahydroxy-flavone, one of the FLAVONES. See also: Chamomile (part of); Cannabis sativa subsp. indica top (part of); Fenugreek seed (part of). A tetrahydroxyflavone in which the four hydroxy groups are located at positions 3, 4, 5 and 7. It is thought to play an important role in the human body as an antioxidant, a free radical scavenger, an anti-inflammatory agent and an immune system modulator as well as being active against several cancers. Flavone v. widespread in plant world; found especies in celery, peppermint, rosemary, thyme and Queen Annes Lace leaves (wild carrot). Potential nutriceutical. Luteolin is found in many foods, some of which are soy bean, ginger, abalone, and swiss chard. Acquisition and generation of the data is financially supported in part by CREST/JST. IPB_RECORD: 361; CONFIDENCE confident structure CONFIDENCE standard compound; INTERNAL_ID 48 Luteolin (Luteoline), a flavanoid compound, is a potent Nrf2 inhibitor. Luteolin has anti-inflammatory, anti-cancer properties, including the induction of apoptosis and cell cycle arrest, and the inhibition of metastasis and angiogenesis, in several cancer cell lines, including human non-small lung cancer cells[1][2][3]. Luteolin (Luteoline), a flavanoid compound, is a potent Nrf2 inhibitor. Luteolin has anti-inflammatory, anti-cancer properties, including the induction of apoptosis and cell cycle arrest, and the inhibition of metastasis and angiogenesis, in several cancer cell lines, including human non-small lung cancer cells[1][2][3].

   

linolenate(18:3)

(9Z,12Z,15Z)-octadeca-9,12,15-trienoic acid

C18H30O2 (278.224568)


alpha-Linolenic acid (ALA) is a polyunsaturated fatty acid (PUFA). It is a member of the group of essential fatty acids called omega-3 fatty acids. alpha-Linolenic acid, in particular, is not synthesized by mammals and therefore is an essential dietary requirement for all mammals. Certain nuts (English walnuts) and vegetable oils (canola, soybean, flaxseed/linseed, olive) are particularly rich in alpha-linolenic acid. Omega-3 fatty acids get their name based on the location of one of their first double bond. In all omega-3 fatty acids, the first double bond is located between the third and fourth carbon atom counting from the methyl end of the fatty acid (n-3). Although humans and other mammals can synthesize saturated and some monounsaturated fatty acids from carbon groups in carbohydrates and proteins, they lack the enzymes necessary to insert a cis double bond at the n-6 or the n-3 position of a fatty acid. Omega-3 fatty acids like alpha-linolenic acid are important structural components of cell membranes. When incorporated into phospholipids, they affect cell membrane properties such as fluidity, flexibility, permeability, and the activity of membrane-bound enzymes. Omega-3 fatty acids can modulate the expression of a number of genes, including those involved with fatty acid metabolism and inflammation. alpha-Linolenic acid and other omega-3 fatty acids may regulate gene expression by interacting with specific transcription factors, including peroxisome proliferator-activated receptors (PPARs) and liver X receptors (LXRs). alpha-Linolenic acid is found to be associated with isovaleric acidemia, which is an inborn error of metabolism. α-Linolenic acid can be obtained by humans only through their diets. Humans lack the desaturase enzymes required for processing stearic acid into A-linoleic acid or other unsaturated fatty acids. Dietary α-linolenic acid is metabolized to stearidonic acid, a precursor to a collection of polyunsaturated 20-, 22-, 24-, etc fatty acids (eicosatetraenoic acid, eicosapentaenoic acid, docosapentaenoic acid, tetracosapentaenoic acid, 6,9,12,15,18,21-tetracosahexaenoic acid, docosahexaenoic acid).[12] Because the efficacy of n−3 long-chain polyunsaturated fatty acid (LC-PUFA) synthesis decreases down the cascade of α-linolenic acid conversion, DHA synthesis from α-linolenic acid is even more restricted than that of EPA.[13] Conversion of ALA to DHA is higher in women than in men.[14] α-Linolenic acid, also known as alpha-linolenic acid (ALA) (from Greek alpha meaning "first" and linon meaning flax), is an n−3, or omega-3, essential fatty acid. ALA is found in many seeds and oils, including flaxseed, walnuts, chia, hemp, and many common vegetable oils. In terms of its structure, it is named all-cis-9,12,15-octadecatrienoic acid.[2] In physiological literature, it is listed by its lipid number, 18:3 (n−3). It is a carboxylic acid with an 18-carbon chain and three cis double bonds. The first double bond is located at the third carbon from the methyl end of the fatty acid chain, known as the n end. Thus, α-linolenic acid is a polyunsaturated n−3 (omega-3) fatty acid. It is a regioisomer of gamma-linolenic acid (GLA), an 18:3 (n−6) fatty acid (i.e., a polyunsaturated omega-6 fatty acid with three double bonds). Alpha-linolenic acid is a linolenic acid with cis-double bonds at positions 9, 12 and 15. Shown to have an antithrombotic effect. It has a role as a micronutrient, a nutraceutical and a mouse metabolite. It is an omega-3 fatty acid and a linolenic acid. It is a conjugate acid of an alpha-linolenate and a (9Z,12Z,15Z)-octadeca-9,12,15-trienoate. Alpha-linolenic acid (ALA) is a polyunsaturated omega-3 fatty acid. It is a component of many common vegetable oils and is important to human nutrition. alpha-Linolenic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Linolenic Acid is a natural product found in Prunus mume, Dipteryx lacunifera, and other organisms with data available. Linolenic Acid is an essential fatty acid belonging to the omega-3 fatty acids group. It is highly concentrated in certain plant oils and has been reported to inhibit the synthesis of prostaglandin resulting in reduced inflammation and prevention of certain chronic diseases. Alpha-linolenic acid (ALA) is a polyunsaturated omega-3 fatty acid. It is a component of many common vegetable oils and is important to human nutrition. A fatty acid that is found in plants and involved in the formation of prostaglandins. Seed oils are the richest sources of α-linolenic acid, notably those of hempseed, chia, perilla, flaxseed (linseed oil), rapeseed (canola), and soybeans. α-Linolenic acid is also obtained from the thylakoid membranes in the leaves of Pisum sativum (pea leaves).[3] Plant chloroplasts consisting of more than 95 percent of photosynthetic thylakoid membranes are highly fluid due to the large abundance of ALA, evident as sharp resonances in high-resolution carbon-13 NMR spectra.[4] Some studies state that ALA remains stable during processing and cooking.[5] However, other studies state that ALA might not be suitable for baking as it will polymerize with itself, a feature exploited in paint with transition metal catalysts. Some ALA may also oxidize at baking temperatures. Gamma-linolenic acid (γ-Linolenic acid) is an omega-6 (n-6), 18 carbon (18C-) polyunsaturated fatty acid (PUFA) extracted from Perilla frutescens. Gamma-linolenic acid supplements could restore needed PUFAs and mitigate the disease[1]. Gamma-linolenic acid (γ-Linolenic acid) is an omega-6 (n-6), 18 carbon (18C-) polyunsaturated fatty acid (PUFA) extracted from Perilla frutescens. Gamma-linolenic acid supplements could restore needed PUFAs and mitigate the disease[1]. α-Linolenic acid, isolated from Perilla frutescens, is an essential fatty acid that cannot be synthesized by humans. α-Linolenic acid can affect the process of thrombotic through the modulation of PI3K/Akt signaling. α-Linolenic acid possess the anti-arrhythmic properties and is related to cardiovascular disease and cancer[1]. α-Linolenic acid, isolated from Perilla frutescens, is an essential fatty acid that cannot be synthesized by humans. α-Linolenic acid can affect the process of thrombotic through the modulation of PI3K/Akt signaling. α-Linolenic acid possess the anti-arrhythmic properties and is related to cardiovascular disease and cancer[1]. α-Linolenic acid, isolated from Perilla frutescens, is an essential fatty acid that cannot be synthesized by humans. α-Linolenic acid can affect the process of thrombotic through the modulation of PI3K/Akt signaling. α-Linolenic acid possess the anti-arrhythmic properties and is related to cardiovascular disease and cancer[1].

   

Chlorogenic acid

Chlorogenic acid (constituent of echinacea angustifolia root, echinacea pallida root, echinacea purpurea root and echinacea purpurea aerial parts)

C16H18O9 (354.0950778)


Chlorogenic acid is a cinnamate ester obtained by formal condensation of the carboxy group of trans-caffeic acid with the 3-hydroxy group of quinic acid. It is an intermediate metabolite in the biosynthesis of lignin. It has a role as a plant metabolite and a food component. It is a cinnamate ester and a tannin. It is functionally related to a (-)-quinic acid and a trans-caffeic acid. It is a conjugate acid of a chlorogenate. Chlorogenic Acid has been used in trials studying the treatment of Advanced Cancer and Impaired Glucose Tolerance. Chlorogenic Acid is a natural product found in Pavetta indica, Fragaria nipponica, and other organisms with data available. Chlorogenic Acid is a polyphenol and the ester of caffeic acid and quinic acid that is found in coffee and black tea, with potential antioxidant and chemopreventive activities. Chlorogenic acid scavenges free radicals, which inhibits DNA damage and may protect against the induction of carcinogenesis. In addition, this agent may upregulate the expression of genes involved in the activation of the immune system and enhances activation and proliferation of cytotoxic T-lymphocytes, macrophages, and natural killer cells. Chlorogenic acid also inhibits the activity of matrix metalloproteinases. A naturally occurring phenolic acid which is a carcinogenic inhibitor. It has also been shown to prevent paraquat-induced oxidative stress in rats. (From J Chromatogr A 1996;741(2):223-31; Biosci Biotechnol Biochem 1996;60(5):765-68). See also: Arctium lappa Root (part of); Cynara scolymus leaf (part of); Lonicera japonica flower (part of) ... View More ... Chlorogenic acid is an ester of caffeic acid and quinic acid. Chlorogenic acid is the major polyphenolic compound in coffee, isolated from the leaves and fruits of dicotyledonous plants. This compound, long known as an antioxidant, also slows the release of glucose into the bloodstream after a meal. Coffee is a complex mixture of chemicals that provides significant amounts of chlorogenic acid. The chlorogenic acid content of a 200 ml (7-oz) cup of coffee has been reported to range from 70-350 mg, which would provide about 35-175 mg of caffeic acid. The results of epidemiological research suggest that coffee consumption may help prevent several chronic diseases, including type 2 diabetes mellitus, Parkinsons disease and liver disease (cirrhosis and hepatocellular carcinoma). Most prospective cohort studies have not found coffee consumption to be associated with significantly increased cardiovascular disease risk. However, coffee consumption is associated with increases in several cardiovascular disease risk factors, including blood pressure and plasma homocysteine. At present, there is little evidence that coffee consumption increases the risk of cancer. (PMID:16507475, 17368041). A cinnamate ester obtained by formal condensation of the carboxy group of trans-caffeic acid with the 3-hydroxy group of quinic acid. It is an intermediate metabolite in the biosynthesis of lignin. [Raw Data] CBA08_Chlorogenic-aci_pos_10eV_1-1_01_209.txt [Raw Data] CBA08_Chlorogenic-aci_neg_30eV_1-1_01_218.txt [Raw Data] CBA08_Chlorogenic-aci_neg_20eV_1-1_01_217.txt [Raw Data] CBA08_Chlorogenic-aci_pos_30eV_1-1_01_211.txt [Raw Data] CBA08_Chlorogenic-aci_neg_40eV_1-1_01_219.txt [Raw Data] CBA08_Chlorogenic-aci_pos_20eV_1-1_01_210.txt [Raw Data] CBA08_Chlorogenic-aci_pos_50eV_1-1_01_213.txt [Raw Data] CBA08_Chlorogenic-aci_neg_50eV_1-1_01_220.txt [Raw Data] CBA08_Chlorogenic-aci_neg_10eV_1-1_01_216.txt [Raw Data] CBA08_Chlorogenic-aci_pos_40eV_1-1_01_212.txt Chlorogenic acid is a major phenolic compound in Lonicera japonica Thunb.. It plays several important and therapeutic roles such as antioxidant activity, antibacterial, hepatoprotective, cardioprotective, anti-inflammatory, antipyretic, neuroprotective, anti-obesity, antiviral, anti-microbial, anti-hypertension. Chlorogenic acid is a major phenolic compound in Lonicera japonica Thunb. It is an orally active antioxidant activity, antibacterial, hepatoprotective, cardioprotective, anti-inflammatory, antipyretic, neuroprotective, anti-obesity, antiviral, anti-microbial, anti-hypertension compound[1][2][3]. Chlorogenic acid is a major phenolic compound in Lonicera japonica Thunb.. It plays several important and therapeutic roles such as antioxidant activity, antibacterial, hepatoprotective, cardioprotective, anti-inflammatory, antipyretic, neuroprotective, anti-obesity, antiviral, anti-microbial, anti-hypertension.

   

Acacetin

4H-1-BENZOPYRAN-4-ONE, 5,7-DIHYDROXY-2-(4-METHOXYPHENYL)-

C16H12O5 (284.0684702)


5,7-dihydroxy-4-methoxyflavone is a monomethoxyflavone that is the 4-methyl ether derivative of apigenin. It has a role as an anticonvulsant and a plant metabolite. It is a dihydroxyflavone and a monomethoxyflavone. It is functionally related to an apigenin. It is a conjugate acid of a 5-hydroxy-2-(4-methoxyphenyl)-4-oxo-4H-chromen-7-olate. Acacetin is a natural product found in Verbascum lychnitis, Odontites viscosus, and other organisms with data available. Acacetin (5,7-Dihydroxy-4'-methoxyflavone) is an orally active flavonoid derived from Dendranthema morifolium. Acacetin docks in the ATP binding pocket of PI3Kγ. Acacetin causes cell cycle arrest and induces apoptosis and autophagy in cancer cells. Acacetin has potent anti-cancer and anti-inflammatory activity and has the potential for pain-related diseases research[1][2]. Acacetin (5,7-Dihydroxy-4'-methoxyflavone) is an orally active flavonoid derived from Dendranthema morifolium. Acacetin docks in the ATP binding pocket of PI3Kγ. Acacetin causes cell cycle arrest and induces apoptosis and autophagy in cancer cells. Acacetin has potent anti-cancer and anti-inflammatory activity and has the potential for pain-related diseases research[1][2].

   

Caffeic acid

(2E)-3-(3,4-dihydroxyphenyl)prop-2-enoic acid

C9H8O4 (180.0422568)


Caffeic acid is a hydroxycinnamic acid that is cinnamic acid in which the phenyl ring is substituted by hydroxy groups at positions 3 and 4. It exists in cis and trans forms; the latter is the more common. It has a role as a plant metabolite, an EC 1.13.11.33 (arachidonate 15-lipoxygenase) inhibitor, an EC 2.5.1.18 (glutathione transferase) inhibitor, an EC 1.13.11.34 (arachidonate 5-lipoxygenase) inhibitor, an antioxidant and an EC 3.5.1.98 (histone deacetylase) inhibitor. It is a hydroxycinnamic acid and a member of catechols. Caffeic Acid is a natural product found in Pavetta indica, Eupatorium cannabinum, and other organisms with data available. Caffeic Acid is an orally bioavailable, hydroxycinnamic acid derivative and polyphenol, with potential anti-oxidant, anti-inflammatory, and antineoplastic activities. Upon administration, caffeic acid acts as an antioxidant and prevents oxidative stress, thereby preventing DNA damage induced by free radicals. Caffeic acid targets and inhibits the histone demethylase (HDM) oncoprotein gene amplified in squamous cell carcinoma 1 (GASC1; JMJD2C; KDM4C) and inhibits cancer cell proliferation. GASC1, a member of the KDM4 subgroup of Jumonji (Jmj) domain-containing proteins, demethylates trimethylated lysine 9 and lysine 36 on histone H3 (H3K9 and H3K36), and plays a key role in tumor cell development. Caffeic acid is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Black Cohosh (part of); Arctium lappa Root (part of); Comfrey Leaf (part of) ... View More ... 3,4-Dihydroxy-trans-cinnamate, also known as trans-Caffeate, is a polyphenol present in normal human urine positively correlated to coffee consumption and influenced by the dietary intake of diverse types of food (PMID:16870009). trans-Caffeic acid is found in many foods, some of which are flaxseed, cereal and cereal products, common grape, fruits, and common sage. It is also found in wine and coffee in free and conjugated forms. Caffeic acid (CAS: 331-39-5) is a polyphenol present in normal human urine positively correlated to coffee consumption and influenced by the dietary intake of diverse types of food (PMID:16870009). Caffeic acid has been found to be a microbial metabolite of Escherichia (PMID: 28396925). Caffeic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=331-39-5 (retrieved 2024-06-28) (CAS RN: 331-39-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO). Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO). Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO).

   

Pinoresinol

PHENOL, 4,4-(TETRAHYDRO-1H,3H-FURO(3,4-C)FURAN-1,4-DIYL)BIS(2-METHOXY-, (1S-(1.ALPHA.,3A.ALPHA.,4.BETA.,6A.ALPHA.))-

C20H22O6 (358.1416312)


Epipinoresinol is an enantiomer of pinoresinol having (+)-(1R,3aR,4S,6aR)-configuration. It has a role as a plant metabolite and a marine metabolite. Epipinoresinol is a natural product found in Pandanus utilis, Abeliophyllum distichum, and other organisms with data available. An enantiomer of pinoresinol having (+)-(1R,3aR,4S,6aR)-configuration. (+)-pinoresinol is an enantiomer of pinoresinol having (+)-1S,3aR,4S,6aR-configuration. It has a role as a hypoglycemic agent, a plant metabolite and a phytoestrogen. Pinoresinol is a natural product found in Pandanus utilis, Zanthoxylum beecheyanum, and other organisms with data available. See also: Acai fruit pulp (part of). An enantiomer of pinoresinol having (+)-1S,3aR,4S,6aR-configuration. relative retention time with respect to 9-anthracene Carboxylic Acid is 0.907 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.905 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.897 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.895 Pinoresinol is a lignol of plant origin serving for defense in a caterpillar. Pinoresinol drastically sensitizes cancer cells against TNF-related apoptosis-inducing ligand (TRAIL) -induced apoptosis[1][2]. Pinoresinol is a lignol of plant origin serving for defense in a caterpillar. Pinoresinol drastically sensitizes cancer cells against TNF-related apoptosis-inducing ligand (TRAIL) -induced apoptosis[1][2].

   

Costunolide

Cyclodeca[b]furan-2(3H)-one, 3a,4,5,8,9,11a-hexahydro-6,10-dimethyl-3-methylene-, (3aS,6E,10E,11aR)-

C15H20O2 (232.14632200000003)


Costunolide is a germacranolide with anthelminthic, antiparasitic and antiviral activities. It has a role as an anthelminthic drug, an antiinfective agent, an antineoplastic agent, an antiparasitic agent, an antiviral drug and a metabolite. It is a germacranolide and a heterobicyclic compound. (+)-Costunolide is a natural product found in Magnolia garrettii, Critonia morifolia, and other organisms with data available. Constituent of costus root (Saussurea lappa). Costunolide is found in tarragon, sweet bay, and herbs and spices. Costunolide is found in herbs and spices. Costunolide is a constituent of costus root (Saussurea lappa) D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics D000890 - Anti-Infective Agents > D000998 - Antiviral Agents INTERNAL_ID 2266; CONFIDENCE Reference Standard (Level 1) CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2266 D000970 - Antineoplastic Agents D004791 - Enzyme Inhibitors Costunolide ((+)-Costunolide) is a naturally occurring sesquiterpene lactone, with antioxidative, anti-inflammatory, antiallergic, bone remodeling, neuroprotective, hair growth promoting, anticancer, and antidiabetic properties. Costunolide can induce cell cycle arrest and apoptosis on breast cancer cells[1][2][3]. Costunolide ((+)-Costunolide) is a naturally occurring sesquiterpene lactone, with antioxidative, anti-inflammatory, antiallergic, bone remodeling, neuroprotective, hair growth promoting, anticancer, and antidiabetic properties. Costunolide can induce cell cycle arrest and apoptosis on breast cancer cells[1][2][3].

   

Palmitic acid

hexadecanoic acid

C16H32O2 (256.2402172)


Palmitic acid, also known as palmitate or hexadecanoic acid, is a member of the class of compounds known as long-chain fatty acids. Long-chain fatty acids are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Thus, palmitic acid is considered to be a fatty acid lipid molecule. Palmitic acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Palmitic acid can be found in a number of food items such as sacred lotus, spinach, shallot, and corn salad, which makes palmitic acid a potential biomarker for the consumption of these food products. Palmitic acid can be found primarily in most biofluids, including feces, sweat, cerebrospinal fluid (CSF), and urine, as well as throughout most human tissues. Palmitic acid exists in all living species, ranging from bacteria to humans. In humans, palmitic acid is involved in several metabolic pathways, some of which include alendronate action pathway, rosuvastatin action pathway, simvastatin action pathway, and cerivastatin action pathway. Palmitic acid is also involved in several metabolic disorders, some of which include hypercholesterolemia, familial lipoprotein lipase deficiency, ethylmalonic encephalopathy, and carnitine palmitoyl transferase deficiency (I). Moreover, palmitic acid is found to be associated with schizophrenia. Palmitic acid is a non-carcinogenic (not listed by IARC) potentially toxic compound. Palmitic acid, or hexadecanoic acid in IUPAC nomenclature, is the most common saturated fatty acid found in animals, plants and microorganisms. Its chemical formula is CH3(CH2)14COOH, and its C:D is 16:0. As its name indicates, it is a major component of the oil from the fruit of oil palms (palm oil). Palmitic acid can also be found in meats, cheeses, butter, and dairy products. Palmitate is the salts and esters of palmitic acid. The palmitate anion is the observed form of palmitic acid at physiologic pH (7.4) . Palmitic acid is the first fatty acid produced during lipogenesis (fatty acid synthesis) and from which longer fatty acids can be produced. Palmitate negatively feeds back on acetyl-CoA carboxylase (ACC) which is responsible for converting acetyl-ACP to malonyl-ACP on the growing acyl chain, thus preventing further palmitate generation (DrugBank). Palmitic acid, or hexadecanoic acid, is one of the most common saturated fatty acids found in animals, plants, and microorganisms. As its name indicates, it is a major component of the oil from the fruit of oil palms (palm oil). Excess carbohydrates in the body are converted to palmitic acid. Palmitic acid is the first fatty acid produced during fatty acid synthesis and is the precursor to longer fatty acids. As a consequence, palmitic acid is a major body component of animals. In humans, one analysis found it to make up 21–30\\\% (molar) of human depot fat (PMID: 13756126), and it is a major, but highly variable, lipid component of human breast milk (PMID: 352132). Palmitic acid is used to produce soaps, cosmetics, and industrial mould release agents. These applications use sodium palmitate, which is commonly obtained by saponification of palm oil. To this end, palm oil, rendered from palm tree (species Elaeis guineensis), is treated with sodium hydroxide (in the form of caustic soda or lye), which causes hydrolysis of the ester groups, yielding glycerol and sodium palmitate. Aluminium salts of palmitic acid and naphthenic acid were combined during World War II to produce napalm. The word "napalm" is derived from the words naphthenic acid and palmitic acid (Wikipedia). Palmitic acid is also used in the determination of water hardness and is a surfactant of Levovist, an intravenous ultrasonic contrast agent. Hexadecanoic acid is a straight-chain, sixteen-carbon, saturated long-chain fatty acid. It has a role as an EC 1.1.1.189 (prostaglandin-E2 9-reductase) inhibitor, a plant metabolite, a Daphnia magna metabolite and an algal metabolite. It is a long-chain fatty acid and a straight-chain saturated fatty acid. It is a conjugate acid of a hexadecanoate. A common saturated fatty acid found in fats and waxes including olive oil, palm oil, and body lipids. Palmitic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Palmitic Acid is a saturated long-chain fatty acid with a 16-carbon backbone. Palmitic acid is found naturally in palm oil and palm kernel oil, as well as in butter, cheese, milk and meat. Palmitic acid, or hexadecanoic acid is one of the most common saturated fatty acids found in animals and plants, a saturated fatty acid found in fats and waxes including olive oil, palm oil, and body lipids. It occurs in the form of esters (glycerides) in oils and fats of vegetable and animal origin and is usually obtained from palm oil, which is widely distributed in plants. Palmitic acid is used in determination of water hardness and is an active ingredient of *Levovist*TM, used in echo enhancement in sonographic Doppler B-mode imaging and as an ultrasound contrast medium. A common saturated fatty acid found in fats and waxes including olive oil, palm oil, and body lipids. A straight-chain, sixteen-carbon, saturated long-chain fatty acid. Palmitic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=57-10-3 (retrieved 2024-07-01) (CAS RN: 57-10-3). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Stigmasterol

(3S,8S,9S,10R,13R,14S,17R)-17-((2R,5S,E)-5-ethyl-6-methylhept-3-en-2-yl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H48O (412.37049579999996)


Stigmasterol is a phytosterol, meaning it is steroid derived from plants. As a food additive, phytosterols have cholesterol-lowering properties (reducing cholesterol absorption in intestines), and may act in cancer prevention. Phytosterols naturally occur in small amount in vegetable oils, especially soybean oil. One such phytosterol complex, isolated from vegetable oil, is cholestatin, composed of campesterol, stigmasterol, and brassicasterol, and is marketed as a dietary supplement. Sterols can reduce cholesterol in human subjects by up to 15\\%. The mechanism behind phytosterols and the lowering of cholesterol occurs as follows : the incorporation of cholesterol into micelles in the gastrointestinal tract is inhibited, decreasing the overall amount of cholesterol absorbed. This may in turn help to control body total cholesterol levels, as well as modify HDL, LDL and TAG levels. Many margarines, butters, breakfast cereals and spreads are now enriched with phytosterols and marketed towards people with high cholesterol and a wish to lower it. Stigmasterol is found to be associated with phytosterolemia, which is an inborn error of metabolism. Stigmasterol is a 3beta-sterol that consists of 3beta-hydroxystigmastane having double bonds at the 5,6- and 22,23-positions. It has a role as a plant metabolite. It is a 3beta-sterol, a stigmastane sterol, a 3beta-hydroxy-Delta(5)-steroid and a member of phytosterols. It derives from a hydride of a stigmastane. Stigmasterol is a natural product found in Ficus auriculata, Xylopia aromatica, and other organisms with data available. Stigmasterol is a steroid derivative characterized by the hydroxyl group in position C-3 of the steroid skeleton, and unsaturated bonds in position 5-6 of the B ring, and position 22-23 in the alkyl substituent. Stigmasterol is found in the fats and oils of soybean, calabar bean and rape seed, as well as several other vegetables, legumes, nuts, seeds, and unpasteurized milk. See also: Comfrey Root (part of); Saw Palmetto (part of); Plantago ovata seed (part of). Stigmasterol is an unsaturated plant sterol occurring in the plant fats or oils of soybean, calabar bean, and rape seed, and in a number of medicinal herbs, including the Chinese herbs Ophiopogon japonicus (Mai men dong) and American Ginseng. Stigmasterol is also found in various vegetables, legumes, nuts, seeds, and unpasteurized milk. A 3beta-sterol that consists of 3beta-hydroxystigmastane having double bonds at the 5,6- and 22,23-positions. C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol

   

Lupeol

(1R,3aR,5aR,5bR,7aR,9S,11aR,11bR,13aR,13bR)-3a,5a,5b,8,8,11a-hexamethyl-1-prop-1-en-2-yl-1,2,3,4,5,6,7,7a,9,10,11,11b,12,13,13a,13b-hexadecahydrocyclopenta[a]chrysen-9-ol

C30H50O (426.386145)


Lupeol is a pentacyclic triterpenoid that is lupane in which the hydrogen at the 3beta position is substituted by a hydroxy group. It occurs in the skin of lupin seeds, as well as in the latex of fig trees and of rubber plants. It is also found in many edible fruits and vegetables. It has a role as an anti-inflammatory drug and a plant metabolite. It is a secondary alcohol and a pentacyclic triterpenoid. It derives from a hydride of a lupane. Lupeol has been investigated for the treatment of Acne. Lupeol is a natural product found in Ficus auriculata, Ficus septica, and other organisms with data available. See also: Calendula Officinalis Flower (part of). A pentacyclic triterpenoid that is lupane in which the hydrogen at the 3beta position is substituted by a hydroxy group. It occurs in the skin of lupin seeds, as well as in the latex of fig trees and of rubber plants. It is also found in many edible fruits and vegetables. D000893 - Anti-Inflammatory Agents Lupeol (Clerodol; Monogynol B; Fagarasterol) is an active pentacyclic?triterpenoid, has anti-oxidant, anti-mutagenic, anti-tumor and anti-inflammatory activity. Lupeol is a potent?androgen receptor (AR)?inhibitor and can be used for cancer research, especially prostate cancer of androgen-dependent phenotype (ADPC) and castration resistant phenotype (CRPC)[1]. Lupeol (Clerodol; Monogynol B; Fagarasterol) is an active pentacyclic?triterpenoid, has anti-oxidant, anti-mutagenic, anti-tumor and anti-inflammatory activity. Lupeol is a potent?androgen receptor (AR)?inhibitor and can be used for cancer research, especially prostate cancer of androgen-dependent phenotype (ADPC) and castration resistant phenotype (CRPC)[1].

   

3-Hydroxybenzaldehyde

Benzaldehyde, 3-hydroxy-

C7H6O2 (122.0367776)


3-hydroxybenzaldehyde is a hydroxybenzaldehyde carrying a hydroxy substituent at position 3. 3-Hydroxybenzaldehyde is a natural product found in Rhytidoponera metallica, Marchantia polymorpha, and other organisms with data available. 3-Hydroxybenzaldehyde, also known as 3-hydroxybenzaldehyde or m-hydroxybenzaldehyde, is an organic compound belonging to the class of aromatic aldehydes. Its chemical formula is C7H6O2 and it is characterized by a benzene ring with a hydroxyl group (-OH) and an aldehyde group (-CHO) attached at the meta position on the ring. Biologically, 3-hydroxybenzaldehyde has been found to possess several interesting properties: 1. **Antioxidant Activity**: It exhibits antioxidant properties, which means it can neutralize harmful free radicals in the body. This can be beneficial in reducing oxidative stress, which is associated with various diseases and aging. 2. **Antimicrobial Effects**: 3-Hydroxybenzaldehyde has shown antimicrobial activity against a range of microorganisms, including bacteria and fungi. This makes it a potential candidate for the development of new antimicrobial agents. 3. **Anti-inflammatory Properties**: Some studies have indicated that this compound may have anti-inflammatory effects, which could be useful in the treatment of inflammatory conditions. 4. **Cytotoxicity**: It has been observed to have cytotoxic effects on certain types of cancer cells, suggesting a potential role in cancer therapy. However, more research is needed in this area. 5. **Enzyme Inhibition**: 3-Hydroxybenzaldehyde can inhibit the activity of certain enzymes, which may have implications in the management of conditions where these enzymes play a pathological role. It's important to note that while 3-hydroxybenzaldehyde has these biological properties, its use in practical applications, especially in a medical context, is still largely experimental and requires further research. The compound's effects and safety profile need to be thoroughly evaluated before it can be considered for widespread use in therapeutic or preventive treatments. 3-Hydroxybenzaldehyde. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=100-83-4 (retrieved 2024-08-06) (CAS RN: 100-83-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). 3-Hydroxybenzaldehyde?is a precursor compound for phenolic compounds, such as Protocatechualdehyde (HY-N0295). 3-Hydroxybenzaldehyde is a substrate of aldehyde dehydrogenase (ALDH) in rats and humans (ALDH2). 3-Hydroxybenzaldehyde has vasculoprotective effects?in vitro and in vivo[1]. 3-Hydroxybenzaldehyde?is a precursor compound for phenolic compounds, such as Protocatechualdehyde (HY-N0295). 3-Hydroxybenzaldehyde is a substrate of aldehyde dehydrogenase (ALDH) in rats and humans (ALDH2). 3-Hydroxybenzaldehyde has vasculoprotective effects?in vitro and in vivo[1]. 3-Hydroxybenzaldehyde?is a precursor compound for phenolic compounds, such as Protocatechualdehyde (HY-N0295). 3-Hydroxybenzaldehyde is a substrate of aldehyde dehydrogenase (ALDH) in rats and humans (ALDH2). 3-Hydroxybenzaldehyde has vasculoprotective effects?in vitro and in vivo[1].

   

Isorhamnetin

4H-1-Benzopyran-4-one, 2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-methoxy-

C16H12O7 (316.05830019999996)


3,4,5,7-tetrahydroxy-3-methoxyflavone is a tetrahydroxyflavone having the 4-hydroxy groups located at the 3- 4- 5- and 7-positions as well as a methoxy group at the 2-position. It has a role as a metabolite and an antimicrobial agent. It is a tetrahydroxyflavone and a monomethoxyflavone. It is functionally related to a quercetin. It is a conjugate acid of a 3,4,5-trihydroxy-3-methoxyflavon-7-olate. 3-O-Methylquercetin is a natural product found in Lotus ucrainicus, Wollastonia biflora, and other organisms with data available. See also: Tobacco Leaf (part of). 3-O-Methylquercetin (3-MQ), a main constituent of Rhamnus nakaharai, inhibits total cAMP and cGMP-phosphodiesterase (PDE) of guinea pig trachealis. 3-O-Methylquercetin (3-MQ) exhibits IC50 values ranging from 1.6-86.9 μM for PDE isozymes (PDE1-5)[1]. 3-O-Methylquercetin (3-MQ), a main constituent of Rhamnus nakaharai, inhibits total cAMP and cGMP-phosphodiesterase (PDE) of guinea pig trachealis. 3-O-Methylquercetin (3-MQ) exhibits IC50 values ranging from 1.6-86.9 μM for PDE isozymes (PDE1-5)[1].

   

Amyrin

(3S,4aR,5R,6aR,6bR,8S,8aR,12aR,14aR,14bR)-4,4,6a,6b,8a,11,11,14b-Octamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-eicosahydro-picen-3-ol

C30H50O (426.386145)


Beta-amyrin is a pentacyclic triterpenoid that is oleanane substituted at the 3beta-position by a hydroxy group and containing a double bond between positions 12 and 13. It is one of the most commonly occurring triterpenoids in higher plants. It has a role as a plant metabolite and an Aspergillus metabolite. It is a pentacyclic triterpenoid and a secondary alcohol. It derives from a hydride of an oleanane. beta-Amyrin is a natural product found in Ficus pertusa, Ficus septica, and other organisms with data available. See also: Calendula Officinalis Flower (part of); Viburnum opulus bark (part of); Centaurium erythraea whole (part of). A pentacyclic triterpenoid that is oleanane substituted at the 3beta-position by a hydroxy group and containing a double bond between positions 12 and 13. It is one of the most commonly occurring triterpenoids in higher plants. β-Amyrin, an ingredient of Celastrus hindsii, blocks amyloid β (Aβ)-induced long-term potentiation (LTP) impairment. β-amyrin is a promising candidate of treatment for AD[1]. β-Amyrin, an ingredient of Celastrus hindsii, blocks amyloid β (Aβ)-induced long-term potentiation (LTP) impairment. β-amyrin is a promising candidate of treatment for AD[1].

   

Isorhamnetin

4H-1-Benzopyran-4-one, 3,5,7-trihydroxy-2-(4-hydroxy-3-methoxyphenyl)-

C16H12O7 (316.05830019999996)


Isorhamnetin is the methylated metabolite of quercetin. Quercetin is an important dietary flavonoid with in vitro antioxidant activity. However, it is found in human plasma as conjugates with glucuronic acid, sulfate or methyl groups, with no significant amounts of free quercetin present. Isorhamnetin prevents endothelial cell injuries from oxidized LDL via inhibition of lectin-like ox-LDL receptor-1 upregulation, interference of ox-LDL-mediated intracellular signaling pathway (p38MAPK activation, NF-kappaB nuclear translocation, eNOS expression) and the antioxidant activity of isorhamnetin. Isorhamnetin prevents endothelial dysfunction, superoxide production, and overexpression of p47phox induced by angiotensin II. Isorhamnetin appears to be a potent drug against esophageal cancer due to its in vitro potential to not only inhibit proliferation but also induce apoptosis of Eca-109 cells. (PMID: 15493462, 17368593, 17374653, 16963021). Isorhamnetin is a monomethoxyflavone that is quercetin in which the hydroxy group at position 3 is replaced by a methoxy group. It has a role as an EC 1.14.18.1 (tyrosinase) inhibitor, an anticoagulant and a metabolite. It is a 7-hydroxyflavonol, a tetrahydroxyflavone and a monomethoxyflavone. It is functionally related to a quercetin. It is a conjugate acid of an isorhamnetin(1-). Isorhamnetin is a natural product found in Lotus ucrainicus, Strychnos pseudoquina, and other organisms with data available. Isorhamnetin is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Peumus boldus leaf (part of). Widespread flavonol found especially in bee pollen, chives, corn poppy leaves, garden cress, fennel, hartwort, red onions, pears, dillweed, parsley and tarragon. Isorhamnetin is found in many foods, some of which are italian sweet red pepper, carrot, yellow wax bean, and lemon balm. A monomethoxyflavone that is quercetin in which the hydroxy group at position 3 is replaced by a methoxy group. Acquisition and generation of the data is financially supported in part by CREST/JST. Isorhamnetin is a flavonoid compound extracted from the Chinese herb Hippophae rhamnoides L.. Isorhamnetin suppresses skin cancer through direct inhibition of MEK1 and PI3K. Isorhamnetin is a flavonoid compound extracted from the Chinese herb Hippophae rhamnoides L.. Isorhamnetin suppresses skin cancer through direct inhibition of MEK1 and PI3K.

   

Stearic acid

1-Heptadecanecarboxylic acid

C18H36O2 (284.2715156)


Stearic acid, also known as stearate or N-octadecanoic acid, is a member of the class of compounds known as long-chain fatty acids. Long-chain fatty acids are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Thus, stearic acid is considered to be a fatty acid lipid molecule. Stearic acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Stearic acid can be synthesized from octadecane. Stearic acid is also a parent compound for other transformation products, including but not limited to, 3-oxooctadecanoic acid, (9S,10S)-10-hydroxy-9-(phosphonooxy)octadecanoic acid, and 16-methyloctadecanoic acid. Stearic acid can be found in a number of food items such as green bell pepper, common oregano, ucuhuba, and babassu palm, which makes stearic acid a potential biomarker for the consumption of these food products. Stearic acid can be found primarily in most biofluids, including urine, feces, cerebrospinal fluid (CSF), and sweat, as well as throughout most human tissues. Stearic acid exists in all living species, ranging from bacteria to humans. In humans, stearic acid is involved in the plasmalogen synthesis. Stearic acid is also involved in mitochondrial beta-oxidation of long chain saturated fatty acids, which is a metabolic disorder. Moreover, stearic acid is found to be associated with schizophrenia. Stearic acid is a non-carcinogenic (not listed by IARC) potentially toxic compound. Stearic acid ( STEER-ik, stee-ARR-ik) is a saturated fatty acid with an 18-carbon chain and has the IUPAC name octadecanoic acid. It is a waxy solid and its chemical formula is C17H35CO2H. Its name comes from the Greek word στέαρ "stéar", which means tallow. The salts and esters of stearic acid are called stearates. As its ester, stearic acid is one of the most common saturated fatty acids found in nature following palmitic acid. The triglyceride derived from three molecules of stearic acid is called stearin . Stearic acid, also known as octadecanoic acid or C18:0, belongs to the class of organic compounds known as long-chain fatty acids. These are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Stearic acid (its ester is called stearate) is a saturated fatty acid that has 18 carbons and is therefore a very hydrophobic molecule that is practically insoluble in water. It exists as a waxy solid. In terms of its biosynthesis, stearic acid is produced from carbohydrates via the fatty acid synthesis machinery wherein acetyl-CoA contributes two-carbon building blocks, up to the 16-carbon palmitate, via the enzyme complex fatty acid synthase (FA synthase), at which point a fatty acid elongase is needed to further lengthen it. After synthesis, there are a variety of reactions it may undergo, including desaturation to oleate via stearoyl-CoA desaturase (PMID: 16477801). Stearic acid is found in all living organisms ranging from bacteria to plants to animals. It is one of the useful types of saturated fatty acids that comes from many animal and vegetable fats and oils. For example, it is a component of cocoa butter and shea butter. It is used as a food additive, in cleaning and personal care products, and in lubricants. Its name comes from the Greek word stear, which means ‚Äòtallow‚Äô or ‚Äòhard fat‚Äô. Stearic acid is a long chain dietary saturated fatty acid which exists in many animal and vegetable fats and oils. Stearic acid is a long chain dietary saturated fatty acid which exists in many animal and vegetable fats and oils.

   

Tricin

5,7-Dihydroxy-2-(4-hydroxy-3,5-dimethoxyphenyl)-4H-1-benzopyran-4-one

C17H14O7 (330.0739494)


[Raw Data] CBA24_Tricin_neg_50eV_1-6_01_1424.txt [Raw Data] CBA24_Tricin_pos_50eV_1-6_01_1397.txt [Raw Data] CBA24_Tricin_neg_10eV_1-6_01_1368.txt [Raw Data] CBA24_Tricin_pos_40eV_1-6_01_1396.txt [Raw Data] CBA24_Tricin_pos_20eV_1-6_01_1394.txt [Raw Data] CBA24_Tricin_neg_30eV_1-6_01_1422.txt [Raw Data] CBA24_Tricin_neg_20eV_1-6_01_1421.txt [Raw Data] CBA24_Tricin_pos_10eV_1-6_01_1357.txt [Raw Data] CBA24_Tricin_pos_30eV_1-6_01_1488.txt [Raw Data] CBA24_Tricin_neg_40eV_1-6_01_1423.txt Tricin is a natural flavonoid present in large amounts in Triticum aestivum. Tricin can inhibit human cytomegalovirus (HCMV) replication by inhibiting CDK9. Tricin inhibits the proliferation and invasion of C6 glioma cells via the upregulation of focal-adhesion-finase (FAK)-targeting microRNA-7[1][2][3]. Tricin is a natural flavonoid present in large amounts in Triticum aestivum. Tricin can inhibit human cytomegalovirus (HCMV) replication by inhibiting CDK9. Tricin inhibits the proliferation and invasion of C6 glioma cells via the upregulation of focal-adhesion-finase (FAK)-targeting microRNA-7[1][2][3].

   

Cholesterol

(1S,2R,5S,10S,11S,14R,15R)-2,15-dimethyl-14-[(2R)-6-methylheptan-2-yl]tetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-7-en-5-ol

C27H46O (386.3548466)


Cholesterol is a sterol (a combination steroid and alcohol) and a lipid found in the cell membranes of all body tissues and transported in the blood plasma of all animals. The name originates from the Greek chole- (bile) and stereos (solid), and the chemical suffix -ol for an alcohol. This is because researchers first identified cholesterol in solid form in gallstones in 1784. In the body, cholesterol can exist in either the free form or as an ester with a single fatty acid (of 10-20 carbons in length) covalently attached to the hydroxyl group at position 3 of the cholesterol ring. Due to the mechanism of synthesis, plasma cholesterol esters tend to contain relatively high proportions of polyunsaturated fatty acids. Most of the cholesterol consumed as a dietary lipid exists as cholesterol esters. Cholesterol esters have a lower solubility in water than cholesterol and are more hydrophobic. They are hydrolyzed by the pancreatic enzyme cholesterol esterase to produce cholesterol and free fatty acids. Cholesterol has vital structural roles in membranes and in lipid metabolism in general. It is a biosynthetic precursor of bile acids, vitamin D, and steroid hormones (glucocorticoids, estrogens, progesterones, androgens and aldosterone). In addition, it contributes to the development and functioning of the central nervous system, and it has major functions in signal transduction and sperm development. Cholesterol is a ubiquitous component of all animal tissues where much of it is located in the membranes, although it is not evenly distributed. The highest proportion of unesterified cholesterol is in the plasma membrane (roughly 30-50\\\\% of the lipid in the membrane or 60-80\\\\% of the cholesterol in the cell), while mitochondria and the endoplasmic reticulum have very low cholesterol contents. Cholesterol is also enriched in early and recycling endosomes, but not in late endosomes. The brain contains more cholesterol than any other organ where it comprises roughly a quarter of the total free cholesterol in the human body. Of all the organic constituents of blood, only glucose is present in a higher molar concentration than cholesterol. Cholesterol esters appear to be the preferred form for transport in plasma and as a biologically inert storage (de-toxified) form. They do not contribute to membranes but are packed into intracellular lipid particles. Cholesterol molecules (i.e. cholesterol esters) are transported throughout the body via lipoprotein particles. The largest lipoproteins, which primarily transport fats from the intestinal mucosa to the liver, are called chylomicrons. They carry mostly triglyceride fats and cholesterol that are from food, especially internal cholesterol secreted by the liver into the bile. In the liver, chylomicron particles give up triglycerides and some cholesterol. They are then converted into low-density lipoprotein (LDL) particles, which carry triglycerides and cholesterol on to other body cells. In healthy individuals, the LDL particles are large and relatively few in number. In contrast, large numbers of small LDL particles are strongly associated with promoting atheromatous disease within the arteries. (Lack of information on LDL particle number and size is one of the major problems of conventional lipid tests.). In conditions with elevated concentrations of oxidized LDL particles, especially small LDL particles, cholesterol promotes atheroma plaque deposits in the walls of arteries, a condition known as atherosclerosis, which is a major contributor to coronary heart disease and other forms of cardiovascular disease. There is a worldwide trend to believe that lower total cholesterol levels tend to correlate with lower atherosclerosis event rates (though some studies refute this idea). As a result, cholesterol has become a very large focus for the scientific community trying to determine the proper amount of cholesterol needed in a healthy diet. However, the primary association of atherosclerosis with c... Constituent either free or as esters, of fish liver oils, lard, dairy fats, egg yolk and bran Cholesterol is the major sterol in mammals. It is making up 20-25\\% of structural component of the plasma membrane. Plasma membranes are highly permeable to water but relatively impermeable to ions and protons. Cholesterol plays an important role in determining the fluidity and permeability characteristics of the membrane as well as the function of both the transporters and signaling proteins[1][2]. Cholesterol is also an endogenous estrogen-related receptor α (ERRα) agonist[3]. Cholesterol is the major sterol in mammals. It is making up 20-25\% of structural component of the plasma membrane. Plasma membranes are highly permeable to water but relatively impermeable to ions and protons. Cholesterol plays an important role in determining the fluidity and permeability characteristics of the membrane as well as the function of both the transporters and signaling proteins[1][2]. Cholesterol is also an endogenous estrogen-related receptor α (ERRα) agonist[3].

   

Tamarixetin

4H-1-Benzopyran-4-one, 3,5,7-trihydroxy-2-(3-hydroxy-4-methoxyphenyl)-

C16H12O7 (316.05830019999996)


Tamarixetin is a monomethoxyflavone that is quercetin methylated at position O-4. Isolated from Cyperus teneriffae. It has a role as a metabolite and an antioxidant. It is a 7-hydroxyflavonol, a monomethoxyflavone and a tetrahydroxyflavone. It is functionally related to a quercetin. Tamarixetin is a natural product found in Ageratina altissima, Chromolaena odorata, and other organisms with data available. See also: Trifolium pratense flower (part of). A monomethoxyflavone that is quercetin methylated at position O-4. Isolated from Cyperus teneriffae. Tamarixetin (4'-O-Methyl Quercetin) is a natural flavonoid derivative of quercetin, with anti-oxidative and anti-inflammatory effects. Tamarixetin protects against cardiac hypertrophy[1][2]. Tamarixetin (4'-O-Methyl Quercetin) is a natural flavonoid derivative of quercetin, with anti-oxidative and anti-inflammatory effects. Tamarixetin protects against cardiac hypertrophy[1][2].

   

Tulipinolide

epi-Tulipinolide

C17H22O4 (290.1518012)


A germacranolide based on a 2,3,3a,4,5,8,9,11a-octahydrocyclodeca[b]furan-4-yl skeleton.

   

Taraxasterol

(3S,4aR,6aR,6aR,6bR,8aR,12S,12aS,14aR,14bR)-4,4,6a,6b,8a,12,14b-heptamethyl-11-methylidene-1,2,3,4a,5,6,6a,7,8,9,10,12,12a,13,14,14a-hexadecahydropicen-3-ol

C30H50O (426.386145)


Constituent of dandelion roots (Taraxacum officinale), Roman chamomile flowers (Anthemis nobilis) and many other plants. Taraxasterol is found in many foods, some of which are soy bean, chicory, evening primrose, and common grape. Taraxasterol is found in alcoholic beverages. Taraxasterol is a constituent of dandelion roots (Taraxacum officinale), Roman chamomile flowers (Anthemis nobilis) and many other plants Taraxasterol is a pentacyclic triterpenoid isolated from Taraxacum mongolicum. Taraxasterol has a role as a metabolite and an anti-inflammatory agent[1]. Taraxasterol is a pentacyclic triterpenoid isolated from Taraxacum mongolicum. Taraxasterol has a role as a metabolite and an anti-inflammatory agent[1].

   

Glaucolide B

Oxireno(9,10)cyclodeca(1,2-b)furan-4,9(1aH,5H)-dione, 5,7-bis(acetyloxy)-8-((acetyloxy)methyl)-2,3,6,7,10a,10b-hexahydro-1a,5-dimethyl-, (1aR-(1aR*,5R*,7S*,10aS*,10bR*))-

C21H26O10 (438.15258960000006)


   
   
   

Bicyclogermacrene

(2Z,6Z)-3,7,11,11-tetramethylbicyclo[8.1.0]undeca-2,6-diene

C15H24 (204.18779039999998)


Constituent of the peel oil of Citrus junos (yuzu). Bicyclogermacrene is found in many foods, some of which are common oregano, lemon balm, hyssop, and orange mint. Bicyclogermacrene is found in citrus. Bicyclogermacrene is a constituent of the peel oil of Citrus junos (yuzu).

   
   

Pinoresinol

Phenol,4-(tetrahydro-1H,3H-furo[3,4-c]furan-1,4-diyl)bis[2-methoxy-, [1S-(1.alpha.,3a.alpha.,4.alpha.,6a.alpha.)]-

C20H22O6 (358.1416312)


4-[6-(4-Hydroxy-3-methoxyphenyl)-1,3,3a,4,6,6a-hexahydrofuro[3,4-c]furan-3-yl]-2-methoxyphenol is a natural product found in Zanthoxylum riedelianum, Forsythia suspensa, and other organisms with data available. Pinoresinol is a lignol of plant origin serving for defense in a caterpillar. Pinoresinol drastically sensitizes cancer cells against TNF-related apoptosis-inducing ligand (TRAIL) -induced apoptosis[1][2]. Pinoresinol is a lignol of plant origin serving for defense in a caterpillar. Pinoresinol drastically sensitizes cancer cells against TNF-related apoptosis-inducing ligand (TRAIL) -induced apoptosis[1][2].

   

Dammaradienol

2,6,6,10,11-pentamethyl-14-(6-methylhepta-1,5-dien-2-yl)tetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadecan-5-ol

C30H50O (426.386145)


Dammaradienol is found in herbs and spices. Dammaradienol is a constituent of Inula helenium (elecampane)

   

alpha-Amyrin

4,4,6a,6b,8a,11,12,14b-octamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-icosahydropicen-3-ol

C30H50O (426.386145)


Epi-alpha-amyrin, also known as epi-α-amyrin, is a member of the class of compounds known as triterpenoids. Triterpenoids are terpene molecules containing six isoprene units. Epi-alpha-amyrin is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Epi-alpha-amyrin can be found in herbs and spices, pomes, and rosemary, which makes epi-alpha-amyrin a potential biomarker for the consumption of these food products.

   

alpha-Caryophyllene

2,6,6,9-tetramethylcycloundeca-1,4,8-triene

C15H24 (204.18779039999998)


α-Humulene is a main constituent of Tanacetum vulgare L. (Asteraceae) essential oil with anti-inflammation (IC50=15±2 μg/mL). α-Humulene inhibits COX-2 and iNOS expression[1]. α-Humulene is a main constituent of Tanacetum vulgare L. (Asteraceae) essential oil with anti-inflammation (IC50=15±2 μg/mL). α-Humulene inhibits COX-2 and iNOS expression[1].

   

beta-Amyrin

4,4,6a,6b,8a,11,11,14b-octamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-icosahydropicen-3-ol

C30H50O (426.386145)


Beta-amryin, also known as B-amryin, is a member of the class of compounds known as triterpenoids. Triterpenoids are terpene molecules containing six isoprene units. Beta-amryin is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Beta-amryin can be found in pigeon pea, which makes beta-amryin a potential biomarker for the consumption of this food product.

   

Lupenone

1,2,5,14,18,18-hexamethyl-8-(prop-1-en-2-yl)pentacyclo[11.8.0.0²,¹⁰.0⁵,⁹.0¹⁴,¹⁹]henicosan-17-one

C30H48O (424.37049579999996)


1,2,5,14,18,18-hexamethyl-8-(prop-1-en-2-yl)pentacyclo[11.8.0.0²,¹⁰.0⁵,⁹.0¹⁴,¹⁹]henicosan-17-one belongs to the class of organic compounds known as triterpenoids. These are terpene molecules containing six isoprene units. 1,2,5,14,18,18-hexamethyl-8-(prop-1-en-2-yl)pentacyclo[11.8.0.0²,¹⁰.0⁵,⁹.0¹⁴,¹⁹]henicosan-17-one is an extremely weak basic (essentially neutral) compound (based on its pKa). This compound has been identified in human blood as reported by (PMID: 31557052 ). Lupenone is not a naturally occurring metabolite and is only found in those individuals exposed to this compound or its derivatives. Technically Lupenone is part of the human exposome. The exposome can be defined as the collection of all the exposures of an individual in a lifetime and how those exposures relate to health. An individual's exposure begins before birth and includes insults from environmental and occupational sources.

   

Lupeol acetate

1,2,5,14,18,18-hexamethyl-8-(prop-1-en-2-yl)pentacyclo[11.8.0.0²,¹⁰.0⁵,⁹.0¹⁴,¹⁹]henicosan-17-yl acetate

C32H52O2 (468.3967092)


   

Loliolide

(6S,7aR)-6-hydroxy-4,4,7a-trimethyl-2,4,5,6,7,7a-hexahydro-1-benzofuran-2-one

C11H16O3 (196.1099386)


Loliolide, also known as (3s5r)-loliolide, is a member of the class of compounds known as benzofurans. Benzofurans are organic compounds containing a benzene ring fused to a furan. Furan is a five-membered aromatic ring with four carbon atoms and one oxygen atom. Loliolide is soluble (in water) and an extremely weak acidic compound (based on its pKa). Loliolide can be found in sunflower, tea, and wakame, which makes loliolide a potential biomarker for the consumption of these food products.

   

Reynosin

6-hydroxy-5a-methyl-3,9-dimethylidene-dodecahydronaphtho[1,2-b]furan-2-one

C15H20O3 (248.14123700000002)


Reynosin belongs to eudesmanolides, secoeudesmanolides, and derivatives class of compounds. Those are terpenoids with a structure based on the eudesmanolide (a 3,5a,9-trimethyl-naphtho[1,2-b]furan-2-one derivative) or secoeudesmanolide (a 3,6-dimethyl-5-(pentan-2-yl)-1-benzofuran-2-one derivative) skeleton. Reynosin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Reynosin can be found in sweet bay, which makes reynosin a potential biomarker for the consumption of this food product.

   

Tulipinolide

[(6E,10E)-6,10-dimethyl-3-methylidene-2-oxo-3a,4,5,8,9,11a-hexahydrocyclodeca[b]furan-4-yl] acetate

C17H22O4 (290.1518012)


Tulipinolide belongs to germacranolides and derivatives class of compounds. Those are sesquiterpene lactones with a structure based on the germacranolide skeleton, characterized by a gamma lactone fused to a 1,7-dimethylcyclodec-1-ene moiety. Tulipinolide is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Tulipinolide can be found in sweet bay, which makes tulipinolide a potential biomarker for the consumption of this food product.

   

Taraxasterol

(3S,4aR,6aR,6aR,6bR,8aR,12S,12aR,14aR,14bR)-4,4,6a,6b,8a,12,14b-heptamethyl-11-methylidene-1,2,3,4a,5,6,6a,7,8,9,10,12,12a,13,14,14a-hexadecahydropicen-3-ol

C30H50O (426.386145)


Taraxasterol is a pentacyclic triterpenoid that is taraxastane with a beta-hydroxy group at position 3. It has a role as a metabolite and an anti-inflammatory agent. It is a pentacyclic triterpenoid and a secondary alcohol. It derives from a hydride of a taraxastane. Taraxasterol is a natural product found in Eupatorium altissimum, Eupatorium perfoliatum, and other organisms with data available. See also: Calendula Officinalis Flower (part of). A pentacyclic triterpenoid that is taraxastane with a beta-hydroxy group at position 3. Taraxasterol is a pentacyclic triterpenoid isolated from Taraxacum mongolicum. Taraxasterol has a role as a metabolite and an anti-inflammatory agent[1]. Taraxasterol is a pentacyclic triterpenoid isolated from Taraxacum mongolicum. Taraxasterol has a role as a metabolite and an anti-inflammatory agent[1].

   

β-Amyrin

beta-amyrin-H2O

C30H50O (426.386145)


Beta-amyrin, also known as amyrin or (3beta)-olean-12-en-3-ol, is a member of the class of compounds known as triterpenoids. Triterpenoids are terpene molecules containing six isoprene units. Thus, beta-amyrin is considered to be an isoprenoid lipid molecule. Beta-amyrin is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Beta-amyrin can be synthesized from oleanane. Beta-amyrin is also a parent compound for other transformation products, including but not limited to, erythrodiol, glycyrrhetaldehyde, and 24-hydroxy-beta-amyrin. Beta-amyrin can be found in a number of food items such as thistle, pepper (c. baccatum), wakame, and endive, which makes beta-amyrin a potential biomarker for the consumption of these food products. The amyrins are three closely related natural chemical compounds of the triterpene class. They are designated α-amyrin (ursane skeleton), β-amyrin (oleanane skeleton) and δ-amyrin. Each is a pentacyclic triterpenol with the chemical formula C30H50O. They are widely distributed in nature and have been isolated from a variety of plant sources such as epicuticular wax. In plant biosynthesis, α-amyrin is the precursor of ursolic acid and β-amyrin is the precursor of oleanolic acid. All three amyrins occur in the surface wax of tomato fruit. α-Amyrin is found in dandelion coffee . β-Amyrin, an ingredient of Celastrus hindsii, blocks amyloid β (Aβ)-induced long-term potentiation (LTP) impairment. β-amyrin is a promising candidate of treatment for AD[1]. β-Amyrin, an ingredient of Celastrus hindsii, blocks amyloid β (Aβ)-induced long-term potentiation (LTP) impairment. β-amyrin is a promising candidate of treatment for AD[1].

   

Lupeol acetate

Acetic acid (1R,3aR,4S,5aR,5bR,7aR,9S,11aR,11bR,13aR,13bR)-1-isopropenyl-3a,5a,5b,8,8,11a-hexamethyl-eicosahydro-cyclopenta[a]chrysen-9-yl ester

C32H52O2 (468.3967092)


Lupeol acetate, a derivative of Lupeol, suppresses the progression of rheumatoid arthritis (RA) by inhibiting the activation of macrophages and osteoclastogenesis through downregulations of TNF-α, IL-1β, MCP-1, COX-2, VEGF and granzyme B[1]. Lupeol acetate, a derivative of Lupeol, suppresses the progression of rheumatoid arthritis (RA) by inhibiting the activation of macrophages and osteoclastogenesis through downregulations of TNF-α, IL-1β, MCP-1, COX-2, VEGF and granzyme B[1].

   

Palmitic Acid

n-Hexadecanoic acid

C16H32O2 (256.2402172)


COVID info from WikiPathways D004791 - Enzyme Inhibitors Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

sitosterol

17-(5-ethyl-6-methylheptan-2-yl)-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H50O (414.386145)


A member of the class of phytosterols that is stigmast-5-ene substituted by a beta-hydroxy group at position 3. C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Beta-Sitosterol (purity>98\\%) is a plant sterol. Beta-Sitosterol (purity>98\\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1]. Beta-Sitosterol (purity>98\%) is a plant sterol. Beta-Sitosterol (purity>98\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1].

   

Acacetin

4H-1-BENZOPYRAN-4-ONE, 5,7-DIHYDROXY-2-(4-METHOXYPHENYL)-

C16H12O5 (284.0684702)


5,7-dihydroxy-4-methoxyflavone is a monomethoxyflavone that is the 4-methyl ether derivative of apigenin. It has a role as an anticonvulsant and a plant metabolite. It is a dihydroxyflavone and a monomethoxyflavone. It is functionally related to an apigenin. It is a conjugate acid of a 5-hydroxy-2-(4-methoxyphenyl)-4-oxo-4H-chromen-7-olate. Acacetin is a natural product found in Verbascum lychnitis, Odontites viscosus, and other organisms with data available. A monomethoxyflavone that is the 4-methyl ether derivative of apigenin. 5,7-dihydroxy-2-(4-methoxyphenyl)-4h-chromen-4-one, also known as 4-methoxy-5,7-dihydroxyflavone or acacetin, is a member of the class of compounds known as 4-o-methylated flavonoids. 4-o-methylated flavonoids are flavonoids with methoxy groups attached to the C4 atom of the flavonoid backbone. Thus, 5,7-dihydroxy-2-(4-methoxyphenyl)-4h-chromen-4-one is considered to be a flavonoid lipid molecule. 5,7-dihydroxy-2-(4-methoxyphenyl)-4h-chromen-4-one is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). 5,7-dihydroxy-2-(4-methoxyphenyl)-4h-chromen-4-one can be synthesized from apigenin. 5,7-dihydroxy-2-(4-methoxyphenyl)-4h-chromen-4-one is also a parent compound for other transformation products, including but not limited to, acacetin-7-O-beta-D-galactopyranoside, acacetin-8-C-neohesperidoside, and isoginkgetin. 5,7-dihydroxy-2-(4-methoxyphenyl)-4h-chromen-4-one can be found in ginkgo nuts, orange mint, and winter savory, which makes 5,7-dihydroxy-2-(4-methoxyphenyl)-4h-chromen-4-one a potential biomarker for the consumption of these food products. Annotation level-1 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.223 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.225 Acacetin (5,7-Dihydroxy-4'-methoxyflavone) is an orally active flavonoid derived from Dendranthema morifolium. Acacetin docks in the ATP binding pocket of PI3Kγ. Acacetin causes cell cycle arrest and induces apoptosis and autophagy in cancer cells. Acacetin has potent anti-cancer and anti-inflammatory activity and has the potential for pain-related diseases research[1][2]. Acacetin (5,7-Dihydroxy-4'-methoxyflavone) is an orally active flavonoid derived from Dendranthema morifolium. Acacetin docks in the ATP binding pocket of PI3Kγ. Acacetin causes cell cycle arrest and induces apoptosis and autophagy in cancer cells. Acacetin has potent anti-cancer and anti-inflammatory activity and has the potential for pain-related diseases research[1][2].

   

3,7,11,11-Tetramethylbicyclo[8.1.0]undeca-2,6-diene

3,7,11,11-Tetramethylbicyclo[8.1.0]undeca-2,6-diene

C15H24 (204.18779039999998)


   

Stigmasterol

Stigmasterol

C29H48O (412.37049579999996)


Disclaimer: While authors make an effort to ensure that the content of this record is accurate, the authors make no representations or warranties in relation to the accuracy or completeness of the record. This record do not reflect any viewpoints of the affiliation and organization to which the authors belong.

   

Luteolin

4H-1-Benzopyran-4-one, 2-(3,4-dihydroxyphenyl)-5,7-dihydroxy- (9CI)

C15H10O6 (286.047736)


Annotation level-1 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.976 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.975 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.968 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.971 Luteolin (Luteoline), a flavanoid compound, is a potent Nrf2 inhibitor. Luteolin has anti-inflammatory, anti-cancer properties, including the induction of apoptosis and cell cycle arrest, and the inhibition of metastasis and angiogenesis, in several cancer cell lines, including human non-small lung cancer cells[1][2][3]. Luteolin (Luteoline), a flavanoid compound, is a potent Nrf2 inhibitor. Luteolin has anti-inflammatory, anti-cancer properties, including the induction of apoptosis and cell cycle arrest, and the inhibition of metastasis and angiogenesis, in several cancer cell lines, including human non-small lung cancer cells[1][2][3].

   

Isorhamnetin

4H-1-Benzopyran-4-one, 3,5,7-trihydroxy-2-(3-hydroxy-4-methoxyphenyl)- (9CI)

C16H12O7 (316.05830019999996)


Glucoside present in the leaves of Peumus boldus (boldo). Isorhamnetin 3-dirhamnoside is found in fruits. Annotation level-1 Isorhamnetin is a flavonoid compound extracted from the Chinese herb Hippophae rhamnoides L.. Isorhamnetin suppresses skin cancer through direct inhibition of MEK1 and PI3K. Isorhamnetin is a flavonoid compound extracted from the Chinese herb Hippophae rhamnoides L.. Isorhamnetin suppresses skin cancer through direct inhibition of MEK1 and PI3K.

   

Tricin

4H-1-BENZOPYRAN-4-ONE, 5,7-DIHYDROXY-2-(4-HYDROXY-3,5-DIMETHOXYPHENYL)-

C17H14O7 (330.0739494)


3,5-di-O-methyltricetin is the 3,5-di-O-methyl ether of tricetin. Known commonly as tricin, it is a constituent of rice bran and has been found to potently inhibit colon cancer cell growth. It has a role as an EC 1.14.99.1 (prostaglandin-endoperoxide synthase) inhibitor and a metabolite. It is a trihydroxyflavone, a dimethoxyflavone and a member of 3-methoxyflavones. It is functionally related to a tricetin. It is a conjugate acid of a 3,5-di-O-methyltricetin(1-). Tricin is a natural product found in Carex fraseriana, Smilax bracteata, and other organisms with data available. See also: Arnica montana Flower (part of); Elymus repens root (part of). The 3,5-di-O-methyl ether of tricetin. Known commonly as tricin, it is a constituent of rice bran and has been found to potently inhibit colon cancer cell growth. Isolated from Triticum dicoccum (emmer). Tricin 5-diglucoside is found in wheat and cereals and cereal products. From leaves of Oryza sativa (rice). 5,7-dihydroxy-2-(4-hydroxy-3,5-dimethoxyphenyl)-4h-chromen-4-one, also known as 3,5-O-dimethyltricetin or 5,7,4-trihydroxy-3,5-dimethoxy-flavone, is a member of the class of compounds known as 3-o-methylated flavonoids. 3-o-methylated flavonoids are flavonoids with methoxy groups attached to the C3 atom of the flavonoid backbone. Thus, 5,7-dihydroxy-2-(4-hydroxy-3,5-dimethoxyphenyl)-4h-chromen-4-one is considered to be a flavonoid lipid molecule. 5,7-dihydroxy-2-(4-hydroxy-3,5-dimethoxyphenyl)-4h-chromen-4-one is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). 5,7-dihydroxy-2-(4-hydroxy-3,5-dimethoxyphenyl)-4h-chromen-4-one can be synthesized from tricetin. 5,7-dihydroxy-2-(4-hydroxy-3,5-dimethoxyphenyl)-4h-chromen-4-one is also a parent compound for other transformation products, including but not limited to, tricin 7-O-glucoside, 4-O-beta-glucosyl-7-O-(6-O-sinapoylglucosyl)tricin, and tricin 7-O-(6-O-malonyl)-beta-D-glucopyranoside. 5,7-dihydroxy-2-(4-hydroxy-3,5-dimethoxyphenyl)-4h-chromen-4-one can be found in barley, common wheat, oat, and rice, which makes 5,7-dihydroxy-2-(4-hydroxy-3,5-dimethoxyphenyl)-4h-chromen-4-one a potential biomarker for the consumption of these food products. Tricin is a natural flavonoid present in large amounts in Triticum aestivum. Tricin can inhibit human cytomegalovirus (HCMV) replication by inhibiting CDK9. Tricin inhibits the proliferation and invasion of C6 glioma cells via the upregulation of focal-adhesion-finase (FAK)-targeting microRNA-7[1][2][3]. Tricin is a natural flavonoid present in large amounts in Triticum aestivum. Tricin can inhibit human cytomegalovirus (HCMV) replication by inhibiting CDK9. Tricin inhibits the proliferation and invasion of C6 glioma cells via the upregulation of focal-adhesion-finase (FAK)-targeting microRNA-7[1][2][3].

   

Chlorogenic Acid

Malonyl-caffeoylquinic acid

C16H18O9 (354.0950778)


IPB_RECORD: 1901; CONFIDENCE confident structure Chlorogenic acid is a major phenolic compound in Lonicera japonica Thunb.. It plays several important and therapeutic roles such as antioxidant activity, antibacterial, hepatoprotective, cardioprotective, anti-inflammatory, antipyretic, neuroprotective, anti-obesity, antiviral, anti-microbial, anti-hypertension. Chlorogenic acid is a major phenolic compound in Lonicera japonica Thunb. It is an orally active antioxidant activity, antibacterial, hepatoprotective, cardioprotective, anti-inflammatory, antipyretic, neuroprotective, anti-obesity, antiviral, anti-microbial, anti-hypertension compound[1][2][3]. Chlorogenic acid is a major phenolic compound in Lonicera japonica Thunb.. It plays several important and therapeutic roles such as antioxidant activity, antibacterial, hepatoprotective, cardioprotective, anti-inflammatory, antipyretic, neuroprotective, anti-obesity, antiviral, anti-microbial, anti-hypertension.

   

lupeol

Lup-20(29)-en-3.beta.-ol

C30H50O (426.386145)


D000893 - Anti-Inflammatory Agents Lupeol (Clerodol; Monogynol B; Fagarasterol) is an active pentacyclic?triterpenoid, has anti-oxidant, anti-mutagenic, anti-tumor and anti-inflammatory activity. Lupeol is a potent?androgen receptor (AR)?inhibitor and can be used for cancer research, especially prostate cancer of androgen-dependent phenotype (ADPC) and castration resistant phenotype (CRPC)[1]. Lupeol (Clerodol; Monogynol B; Fagarasterol) is an active pentacyclic?triterpenoid, has anti-oxidant, anti-mutagenic, anti-tumor and anti-inflammatory activity. Lupeol is a potent?androgen receptor (AR)?inhibitor and can be used for cancer research, especially prostate cancer of androgen-dependent phenotype (ADPC) and castration resistant phenotype (CRPC)[1].

   

Lupenone

(1R,3aR,4S,5aR,5bR,7aR,11aR,11bR,13aR,13bR)-1-Isopropenyl-3a,5a,5b,8,8,11a-hexamethyl-eicosahydro-cyclopenta[a]chrysen-9-one

C30H48O (424.37049579999996)


Lupenone, isolated from Musa basjoo, belongs to lupane type triterpenoids. Lupenone shows various pharmacological activities including anti-inflammatory, anti-virus, anti-diabetes, anti-cancer, improving Chagas disease without major toxicity[1][2]. Lupenone is an orally active lupine-type triterpenoid that can be isolated from Musa basjoo. Lupenone Lupenone plays a role through the PI3K/Akt/mTOR and NF-κB signaling pathways. Lupenone has anti-inflammatory, antiviral, antidiabetic and anticancer activities[1][2][3]. Lupenone, isolated from Musa basjoo, belongs to lupane type triterpenoids. Lupenone shows various pharmacological activities including anti-inflammatory, anti-virus, anti-diabetes, anti-cancer, improving Chagas disease without major toxicity[1][2].

   

bicyclogermacrene

bicyclogermacrene

C15H24 (204.18779039999998)


A sesquiterpene derived from germacrane by dehydrogenation across the C(1)-C(10) and C(4)-C(5) bonds and cyclisation across the C(8)-C(9) bond.

   

Cholesterol

(1S,2R,5S,10S,11S,14R,15R)-2,15-dimethyl-14-[(2R)-6-methylheptan-2-yl]tetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-7-en-5-ol

C27H46O (386.3548466)


A cholestanoid consisting of cholestane having a double bond at the 5,6-position as well as a 3beta-hydroxy group. Disclaimer: While authors make an effort to ensure that the content of this record is accurate, the authors make no representations or warranties in relation to the accuracy or completeness of the record. This record do not reflect any viewpoints of the affiliation and organization to which the authors belong. Cholesterol is the major sterol in mammals. It is making up 20-25\\% of structural component of the plasma membrane. Plasma membranes are highly permeable to water but relatively impermeable to ions and protons. Cholesterol plays an important role in determining the fluidity and permeability characteristics of the membrane as well as the function of both the transporters and signaling proteins[1][2]. Cholesterol is also an endogenous estrogen-related receptor α (ERRα) agonist[3]. Cholesterol is the major sterol in mammals. It is making up 20-25\% of structural component of the plasma membrane. Plasma membranes are highly permeable to water but relatively impermeable to ions and protons. Cholesterol plays an important role in determining the fluidity and permeability characteristics of the membrane as well as the function of both the transporters and signaling proteins[1][2]. Cholesterol is also an endogenous estrogen-related receptor α (ERRα) agonist[3].

   

Balanophonin

(2E)-3-[(2S,3R)-2-(4-hydroxy-3-methoxyphenyl)-3-(hydroxymethyl)-7-methoxy-2,3-dihydrobenzofuran-5-yl] acrylaldehyde

C20H20O6 (356.125982)


(+)-Balanophonin is a natural product found in Balanophora japonica, Catunaregam spinosa, and other organisms with data available. Balanophonin is a natural product found in Lonicera insularis, Carya cathayensis, and other organisms with data available.

   

Luteolin 7-O-glucoside

2-(3,4-Dihydroxyphenyl)-5,7-dihydroxy-4H-1-benzopyran-4-one mono-beta-D-glucopyranoside

C21H20O11 (448.100557)


   

Costunolide

NCGC00381718-02_C15H20O2_Cyclodeca[b]furan-2(3H)-one, 3a,4,5,8,9,11a-hexahydro-6,10-dimethyl-3-methylene-, (3aS,6E,10E,11aR)-

C15H20O2 (232.14632200000003)


Costunolide is a germacranolide with anthelminthic, antiparasitic and antiviral activities. It has a role as an anthelminthic drug, an antiinfective agent, an antineoplastic agent, an antiparasitic agent, an antiviral drug and a metabolite. It is a germacranolide and a heterobicyclic compound. (+)-Costunolide is a natural product found in Magnolia garrettii, Critonia morifolia, and other organisms with data available. D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics A germacranolide with anthelminthic, antiparasitic and antiviral activities. D000890 - Anti-Infective Agents > D000998 - Antiviral Agents D000970 - Antineoplastic Agents D004791 - Enzyme Inhibitors Costunolide ((+)-Costunolide) is a naturally occurring sesquiterpene lactone, with antioxidative, anti-inflammatory, antiallergic, bone remodeling, neuroprotective, hair growth promoting, anticancer, and antidiabetic properties. Costunolide can induce cell cycle arrest and apoptosis on breast cancer cells[1][2][3]. Costunolide ((+)-Costunolide) is a naturally occurring sesquiterpene lactone, with antioxidative, anti-inflammatory, antiallergic, bone remodeling, neuroprotective, hair growth promoting, anticancer, and antidiabetic properties. Costunolide can induce cell cycle arrest and apoptosis on breast cancer cells[1][2][3].

   

Reynosin

NAPHTHO(1,2-B)FURAN-2(3H)-ONE, DECAHYDRO-6-HYDROXY-5A-METHYL-3,9-BIS(METHYLENE)-, (3AS-(3A.ALPHA.,5A.BETA.,6.BETA.,9A.ALPHA.,9B.BETA.))-

C15H20O3 (248.14123700000002)


Reynosin is a sesquiterpene lactone of the eudesmanolide group, found particularly in Magnolia grandiflora and Laurus nobilis. It has a role as a metabolite. It is a sesquiterpene lactone and an organic heterotricyclic compound. Reynosin is a natural product found in Centaurea uniflora, Eupatorium capillifolium, and other organisms with data available. A sesquiterpene lactone of the eudesmanolide group, found particularly in Magnolia grandiflora and Laurus nobilis.

   

Scopoletin

Scopoletin

C10H8O4 (192.0422568)


relative retention time with respect to 9-anthracene Carboxylic Acid is 0.636 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.637 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.629 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.631 IPB_RECORD: 1582; CONFIDENCE confident structure Scopoletin is an inhibitor of acetylcholinesterase (AChE). Scopoletin is an inhibitor of acetylcholinesterase (AChE).

   

Esculetin

InChI=1\C9H6O4\c10-6-3-5-1-2-9(12)13-8(5)4-7(6)11\h1-4,10-11

C9H6O4 (178.0266076)


D020011 - Protective Agents > D000975 - Antioxidants relative retention time with respect to 9-anthracene Carboxylic Acid is 0.434 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.428 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.430 Esculetin is an active ingredient extracted mainly from the bark of Fraxinus rhynchophylla. Esculetin inhibits platelet-derived growth factor (PDGF)-induced airway smooth muscle cells (ASMCs) phenotype switching through inhibition of PI3K/Akt pathway. Esculetin has antioxidant, antiinflammatory, and antitumor activities[1]. Esculetin is an active ingredient extracted mainly from the bark of Fraxinus rhynchophylla. Esculetin inhibits platelet-derived growth factor (PDGF)-induced airway smooth muscle cells (ASMCs) phenotype switching through inhibition of PI3K/Akt pathway. Esculetin has antioxidant, antiinflammatory, and antitumor activities[1]. Esculetin is an active ingredient extracted mainly from the bark of Fraxinus rhynchophylla. Esculetin inhibits platelet-derived growth factor (PDGF)-induced airway smooth muscle cells (ASMCs) phenotype switching through inhibition of PI3K/Akt pathway. Esculetin has antioxidant, antiinflammatory, and antitumor activities[1].

   

stearic acid

stearic acid

C18H36O2 (284.2715156)


Stearic acid is a long chain dietary saturated fatty acid which exists in many animal and vegetable fats and oils. Stearic acid is a long chain dietary saturated fatty acid which exists in many animal and vegetable fats and oils.

   

loliolide

2(4H)-Benzofuranone, 5,6,7,7a-tetrahydro-6-hydroxy-4,4,7a-trimethyl-, (6S-cis)-

C11H16O3 (196.1099386)


A natural product found in Brachystemma calycinum.

   

α-Linolenic acid

alpha-Linolenic acid

C18H30O2 (278.224568)


α-Linolenic acid, isolated from Perilla frutescens, is an essential fatty acid that cannot be synthesized by humans. α-Linolenic acid can affect the process of thrombotic through the modulation of PI3K/Akt signaling. α-Linolenic acid possess the anti-arrhythmic properties and is related to cardiovascular disease and cancer[1]. α-Linolenic acid, isolated from Perilla frutescens, is an essential fatty acid that cannot be synthesized by humans. α-Linolenic acid can affect the process of thrombotic through the modulation of PI3K/Akt signaling. α-Linolenic acid possess the anti-arrhythmic properties and is related to cardiovascular disease and cancer[1]. α-Linolenic acid, isolated from Perilla frutescens, is an essential fatty acid that cannot be synthesized by humans. α-Linolenic acid can affect the process of thrombotic through the modulation of PI3K/Akt signaling. α-Linolenic acid possess the anti-arrhythmic properties and is related to cardiovascular disease and cancer[1].

   

3,4-Dihydroxybenzoic acid

3,4-Dihydroxybenzoic acid

C7H6O4 (154.0266076)


   

Hexadecanoic acid

Hexadecanoic acid

C16H32O2 (256.2402172)


   

Octadecanoic acid

Octadecanoic acid

C18H36O2 (284.2715156)


A C18 straight-chain saturated fatty acid component of many animal and vegetable lipids. As well as in the diet, it is used in hardening soaps, softening plastics and in making cosmetics, candles and plastics.

   

caryophyllene

(-)-beta-Caryophyllene

C15H24 (204.18779039999998)


A beta-caryophyllene in which the stereocentre adjacent to the exocyclic double bond has S configuration while the remaining stereocentre has R configuration. It is the most commonly occurring form of beta-caryophyllene, occurring in many essential oils, particularly oil of cloves. D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents β-Caryophyllene is a CB2 receptor agonist. β-Caryophyllene is a CB2 receptor agonist.

   

Epi-a-amyrin

4,4,6a,6b,8a,11,12,14b-octamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-icosahydropicen-3-ol

C30H50O (426.386145)


   

octadeca-9,12,15-trienoic acid

octadeca-9,12,15-trienoic acid

C18H30O2 (278.224568)


   

Dammaradienol

Dammaradienol

C30H50O (426.386145)


   

Humulene

trans,trans,trans-2,6,6,9-Tetramethyl-1,4,8-cycloundecatriene

C15H24 (204.18779039999998)


α-Humulene is a main constituent of Tanacetum vulgare L. (Asteraceae) essential oil with anti-inflammation (IC50=15±2 μg/mL). α-Humulene inhibits COX-2 and iNOS expression[1]. α-Humulene is a main constituent of Tanacetum vulgare L. (Asteraceae) essential oil with anti-inflammation (IC50=15±2 μg/mL). α-Humulene inhibits COX-2 and iNOS expression[1].

   

3-Formylphenol

3-Hydroxybenzaldehyde

C7H6O2 (122.0367776)


3-Hydroxybenzaldehyde. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=100-83-4 (retrieved 2024-08-06) (CAS RN: 100-83-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). 3-Hydroxybenzaldehyde?is a precursor compound for phenolic compounds, such as Protocatechualdehyde (HY-N0295). 3-Hydroxybenzaldehyde is a substrate of aldehyde dehydrogenase (ALDH) in rats and humans (ALDH2). 3-Hydroxybenzaldehyde has vasculoprotective effects?in vitro and in vivo[1]. 3-Hydroxybenzaldehyde?is a precursor compound for phenolic compounds, such as Protocatechualdehyde (HY-N0295). 3-Hydroxybenzaldehyde is a substrate of aldehyde dehydrogenase (ALDH) in rats and humans (ALDH2). 3-Hydroxybenzaldehyde has vasculoprotective effects?in vitro and in vivo[1]. 3-Hydroxybenzaldehyde?is a precursor compound for phenolic compounds, such as Protocatechualdehyde (HY-N0295). 3-Hydroxybenzaldehyde is a substrate of aldehyde dehydrogenase (ALDH) in rats and humans (ALDH2). 3-Hydroxybenzaldehyde has vasculoprotective effects?in vitro and in vivo[1].

   

Lupeol acetate

1,2,5,14,18,18-hexamethyl-8-(prop-1-en-2-yl)pentacyclo[11.8.0.0²,¹⁰.0⁵,⁹.0¹⁴,¹⁹]henicosan-17-yl acetate

C32H52O2 (468.3967092)


Lupeyl acetate, also known as lupeyl acetic acid, is a member of the class of compounds known as triterpenoids. Triterpenoids are terpene molecules containing six isoprene units. Lupeyl acetate is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Lupeyl acetate can be found in burdock, date, and fig, which makes lupeyl acetate a potential biomarker for the consumption of these food products. Lupeol acetate, a derivative of Lupeol, suppresses the progression of rheumatoid arthritis (RA) by inhibiting the activation of macrophages and osteoclastogenesis through downregulations of TNF-α, IL-1β, MCP-1, COX-2, VEGF and granzyme B[1]. Lupeol acetate, a derivative of Lupeol, suppresses the progression of rheumatoid arthritis (RA) by inhibiting the activation of macrophages and osteoclastogenesis through downregulations of TNF-α, IL-1β, MCP-1, COX-2, VEGF and granzyme B[1].

   

Avenasterol

24Z-ethylidene-cholest-7-en-3beta-ol

C29H48O (412.37049579999996)


A stigmastane sterol that is 5alpha-stigmastane carrying a hydroxy group at position 3beta and double bonds at positions 7 and 24.

   

4-({4-[hydroxy(4-hydroxy-3-methoxyphenyl)methyl]oxolan-3-yl}methyl)-2-methoxyphenol

4-({4-[hydroxy(4-hydroxy-3-methoxyphenyl)methyl]oxolan-3-yl}methyl)-2-methoxyphenol

C20H24O6 (360.1572804)


   

(1s,3ar,5as,5br,7ar,9s,11ar,11br,13bs)-1-isopropyl-3a,5a,5b,8,8,11a-hexamethyl-1h,2h,3h,4h,5h,6h,7h,7ah,9h,10h,11h,11bh,12h,13bh-cyclopenta[a]chrysen-9-ol

(1s,3ar,5as,5br,7ar,9s,11ar,11br,13bs)-1-isopropyl-3a,5a,5b,8,8,11a-hexamethyl-1h,2h,3h,4h,5h,6h,7h,7ah,9h,10h,11h,11bh,12h,13bh-cyclopenta[a]chrysen-9-ol

C30H50O (426.386145)


   

[4-(acetyloxy)-5,10-dimethyl-2-oxo-4h,8h,9h,11ah-cyclodeca[b]furan-3-yl]methyl acetate

[4-(acetyloxy)-5,10-dimethyl-2-oxo-4h,8h,9h,11ah-cyclodeca[b]furan-3-yl]methyl acetate

C19H22O6 (346.1416312)


   

10-hydroxy-6-(hydroxymethyl)-1,10-dimethyl-5-oxo-4,14-dioxatricyclo[9.2.1.0³,⁷]tetradeca-2,6-dien-8-yl hexanoate

10-hydroxy-6-(hydroxymethyl)-1,10-dimethyl-5-oxo-4,14-dioxatricyclo[9.2.1.0³,⁷]tetradeca-2,6-dien-8-yl hexanoate

C21H30O7 (394.199143)


   

4,4,6a,6b,8a,11,11,14b-octamethyl-1,2,3,4a,5,6,7,8,9,10,12,13,14,14a-tetradecahydropicen-3-ol

4,4,6a,6b,8a,11,11,14b-octamethyl-1,2,3,4a,5,6,7,8,9,10,12,13,14,14a-tetradecahydropicen-3-ol

C30H50O (426.386145)


   

[8-(acetyloxy)-11-ethoxy-10-hydroxy-1,10-dimethyl-5-oxo-4,14-dioxatricyclo[9.2.1.0³,⁷]tetradeca-2,6-dien-6-yl]methyl acetate

[8-(acetyloxy)-11-ethoxy-10-hydroxy-1,10-dimethyl-5-oxo-4,14-dioxatricyclo[9.2.1.0³,⁷]tetradeca-2,6-dien-6-yl]methyl acetate

C21H28O9 (424.17332380000005)


   

[(1s,2s,4r,6s,7e,10s)-6,10-bis(acetyloxy)-4,8-dimethyl-13-oxo-3,14-dioxatricyclo[9.3.0.0²,⁴]tetradeca-7,11-dien-12-yl]methyl acetate

[(1s,2s,4r,6s,7e,10s)-6,10-bis(acetyloxy)-4,8-dimethyl-13-oxo-3,14-dioxatricyclo[9.3.0.0²,⁴]tetradeca-7,11-dien-12-yl]methyl acetate

C21H26O9 (422.15767460000006)


   

24-ethyl coprostanol

24-ethyl coprostanol

C29H52O (416.4017942)


   

(1r,10r,11s)-6-[(acetyloxy)methyl]-10,11-dihydroxy-1,10-dimethyl-5-oxo-4,14-dioxatricyclo[9.2.1.0³,⁷]tetradeca-2,6-dien-8-yl 2-methylprop-2-enoate

(1r,10r,11s)-6-[(acetyloxy)methyl]-10,11-dihydroxy-1,10-dimethyl-5-oxo-4,14-dioxatricyclo[9.2.1.0³,⁷]tetradeca-2,6-dien-8-yl 2-methylprop-2-enoate

C21H26O9 (422.15767460000006)


   

10,11-dihydroxy-6-(methoxymethyl)-1,10-dimethyl-5-oxo-4,14-dioxatricyclo[9.2.1.0³,⁷]tetradeca-2,6-dien-8-yl acetate

10,11-dihydroxy-6-(methoxymethyl)-1,10-dimethyl-5-oxo-4,14-dioxatricyclo[9.2.1.0³,⁷]tetradeca-2,6-dien-8-yl acetate

C18H24O8 (368.1471104)


   

(1s,3ar,5as,5br,7ar,9s,11ar,11br,13bs)-1-isopropyl-3a,5a,5b,8,8,11a-hexamethyl-1h,2h,3h,4h,5h,6h,7h,7ah,9h,10h,11h,11bh,12h,13bh-cyclopenta[a]chrysen-9-yl acetate

(1s,3ar,5as,5br,7ar,9s,11ar,11br,13bs)-1-isopropyl-3a,5a,5b,8,8,11a-hexamethyl-1h,2h,3h,4h,5h,6h,7h,7ah,9h,10h,11h,11bh,12h,13bh-cyclopenta[a]chrysen-9-yl acetate

C32H52O2 (468.3967092)


   

12-[(acetyloxy)methyl]-5-hydroxy-4,8-dimethyl-7,13-dioxo-3,14-dioxatricyclo[9.3.0.0²,⁴]tetradec-11-en-10-yl 4-(acetyloxy)-3-methylbut-2-enoate

12-[(acetyloxy)methyl]-5-hydroxy-4,8-dimethyl-7,13-dioxo-3,14-dioxatricyclo[9.3.0.0²,⁴]tetradec-11-en-10-yl 4-(acetyloxy)-3-methylbut-2-enoate

C24H30O11 (494.178803)


   

(1r,4r,6s,10s)-4,12,12-trimethyl-9-methylidene-5-oxatricyclo[8.2.0.0⁴,⁶]dodecane

(1r,4r,6s,10s)-4,12,12-trimethyl-9-methylidene-5-oxatricyclo[8.2.0.0⁴,⁶]dodecane

C15H24O (220.18270539999997)


   

(3ar,5ar,5br,7ar,11ar,11br,13ar,13br)-3a,5a,5b,8,8,11a-hexamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysen-9-yl hexadecanoate

(3ar,5ar,5br,7ar,11ar,11br,13ar,13br)-3a,5a,5b,8,8,11a-hexamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysen-9-yl hexadecanoate

C46H80O2 (664.615798)


   

6-(3-formylphenoxymethyl)-10-hydroxy-11-methoxy-1,10-dimethyl-5-oxo-4,14-dioxatricyclo[9.2.1.0³,⁷]tetradeca-2,6-dien-8-yl acetate

6-(3-formylphenoxymethyl)-10-hydroxy-11-methoxy-1,10-dimethyl-5-oxo-4,14-dioxatricyclo[9.2.1.0³,⁷]tetradeca-2,6-dien-8-yl acetate

C25H28O9 (472.17332380000005)


   

[4-(acetyloxy)-6,10-dimethyl-2-oxo-4h,5h,9h,11ah-cyclodeca[b]furan-3-yl]methyl acetate

[4-(acetyloxy)-6,10-dimethyl-2-oxo-4h,5h,9h,11ah-cyclodeca[b]furan-3-yl]methyl acetate

C19H22O6 (346.1416312)


   

[(4s,11as)-4-(acetyloxy)-5,10-dimethyl-2-oxo-4h,8h,9h,11ah-cyclodeca[b]furan-3-yl]methyl acetate

[(4s,11as)-4-(acetyloxy)-5,10-dimethyl-2-oxo-4h,8h,9h,11ah-cyclodeca[b]furan-3-yl]methyl acetate

C19H22O6 (346.1416312)


   

(7ar)-1,1,7-trimethyl-4-methylidene-octahydrocyclopropa[e]azulen-7-ol

(7ar)-1,1,7-trimethyl-4-methylidene-octahydrocyclopropa[e]azulen-7-ol

C15H24O (220.18270539999997)


   

(1r,2e,8s,10r,11s)-6-[(acetyloxy)methyl]-10,11-dihydroxy-1,10-dimethyl-5-oxo-4,14-dioxatricyclo[9.2.1.0³,⁷]tetradeca-2,6-dien-8-yl 2-methylprop-2-enoate

(1r,2e,8s,10r,11s)-6-[(acetyloxy)methyl]-10,11-dihydroxy-1,10-dimethyl-5-oxo-4,14-dioxatricyclo[9.2.1.0³,⁷]tetradeca-2,6-dien-8-yl 2-methylprop-2-enoate

C21H26O9 (422.15767460000006)


   

(2e)-6-[(acetyloxy)methyl]-1,10-dimethyl-5,13-dioxo-4,14-dioxatricyclo[9.2.1.0³,⁷]tetradeca-2,6,11-trien-8-yl 2-methylprop-2-enoate

(2e)-6-[(acetyloxy)methyl]-1,10-dimethyl-5,13-dioxo-4,14-dioxatricyclo[9.2.1.0³,⁷]tetradeca-2,6,11-trien-8-yl 2-methylprop-2-enoate

C21H22O8 (402.1314612)


   

[(1s,2e,8r,10s,11r)-8,10-bis(acetyloxy)-11-hydroxy-1,10-dimethyl-5-oxo-4,14-dioxatricyclo[9.2.1.0³,⁷]tetradeca-2,6-dien-6-yl]methyl acetate

[(1s,2e,8r,10s,11r)-8,10-bis(acetyloxy)-11-hydroxy-1,10-dimethyl-5-oxo-4,14-dioxatricyclo[9.2.1.0³,⁷]tetradeca-2,6-dien-6-yl]methyl acetate

C21H26O10 (438.15258960000006)


   

[(1s,2e,8s,10s)-8-(acetyloxy)-10-hydroxy-1,10-dimethyl-5-oxo-4,14-dioxatricyclo[9.2.1.0³,⁷]tetradeca-2,6,11-trien-6-yl]methyl acetate

[(1s,2e,8s,10s)-8-(acetyloxy)-10-hydroxy-1,10-dimethyl-5-oxo-4,14-dioxatricyclo[9.2.1.0³,⁷]tetradeca-2,6,11-trien-6-yl]methyl acetate

C19H22O8 (378.1314612)


   

(1r,2e,8r,10s,11s)-8,10,11-trihydroxy-6-(hydroxymethyl)-1,10-dimethyl-4,14-dioxatricyclo[9.2.1.0³,⁷]tetradeca-2,6-dien-5-one

(1r,2e,8r,10s,11s)-8,10,11-trihydroxy-6-(hydroxymethyl)-1,10-dimethyl-4,14-dioxatricyclo[9.2.1.0³,⁷]tetradeca-2,6-dien-5-one

C15H20O7 (312.120897)


   

[(1r,2e,8s,10r,11s)-8-(acetyloxy)-10,11-dihydroxy-1,10-dimethyl-5-oxo-4,14-dioxatricyclo[9.2.1.0³,⁷]tetradeca-2,6-dien-6-yl]methyl acetate

[(1r,2e,8s,10r,11s)-8-(acetyloxy)-10,11-dihydroxy-1,10-dimethyl-5-oxo-4,14-dioxatricyclo[9.2.1.0³,⁷]tetradeca-2,6-dien-6-yl]methyl acetate

C19H24O9 (396.14202539999997)


   

[4,8-bis(acetyloxy)-6,10-dimethyl-2-oxo-4h,5h,8h,9h,11ah-cyclodeca[b]furan-3-yl]methyl acetate

[4,8-bis(acetyloxy)-6,10-dimethyl-2-oxo-4h,5h,8h,9h,11ah-cyclodeca[b]furan-3-yl]methyl acetate

C21H26O8 (406.1627596)


   

[8,10-bis(acetyloxy)-11-methoxy-1,10-dimethyl-5-oxo-4,14-dioxatricyclo[9.2.1.0³,⁷]tetradeca-2,6-dien-6-yl]methyl acetate

[8,10-bis(acetyloxy)-11-methoxy-1,10-dimethyl-5-oxo-4,14-dioxatricyclo[9.2.1.0³,⁷]tetradeca-2,6-dien-6-yl]methyl acetate

C22H28O10 (452.16823880000004)


   

[6,10-bis(acetyloxy)-4,8-dimethyl-13-oxo-3,14-dioxatricyclo[9.3.0.0²,⁴]tetradeca-7,11-dien-12-yl]methyl acetate

[6,10-bis(acetyloxy)-4,8-dimethyl-13-oxo-3,14-dioxatricyclo[9.3.0.0²,⁴]tetradeca-7,11-dien-12-yl]methyl acetate

C21H26O9 (422.15767460000006)


   

[(1s,2s,4r,8r,10s,11r,12r)-8,10-bis(acetyloxy)-4,8-dimethyl-7,13-dioxo-3,14-dioxatricyclo[9.3.0.0²,⁴]tetradecan-12-yl]methyl acetate

[(1s,2s,4r,8r,10s,11r,12r)-8,10-bis(acetyloxy)-4,8-dimethyl-7,13-dioxo-3,14-dioxatricyclo[9.3.0.0²,⁴]tetradecan-12-yl]methyl acetate

C21H28O10 (440.16823880000004)


   

(1r,2e,8r,10s,11s)-10,11-dihydroxy-6-(methoxymethyl)-1,10-dimethyl-5-oxo-4,14-dioxatricyclo[9.2.1.0³,⁷]tetradeca-2,6-dien-8-yl acetate

(1r,2e,8r,10s,11s)-10,11-dihydroxy-6-(methoxymethyl)-1,10-dimethyl-5-oxo-4,14-dioxatricyclo[9.2.1.0³,⁷]tetradeca-2,6-dien-8-yl acetate

C18H24O8 (368.1471104)


   

(5r)-3,4-dibromo-5-hydroxy-5h-furan-2-one

(5r)-3,4-dibromo-5-hydroxy-5h-furan-2-one

C4H2Br2O3 (255.8370662)


   

(1r,2e,8s,10s)-6-[(acetyloxy)methyl]-1,10-dimethyl-5,13-dioxo-4,14-dioxatricyclo[9.2.1.0³,⁷]tetradeca-2,6,11-trien-8-yl 2-methylprop-2-enoate

(1r,2e,8s,10s)-6-[(acetyloxy)methyl]-1,10-dimethyl-5,13-dioxo-4,14-dioxatricyclo[9.2.1.0³,⁷]tetradeca-2,6,11-trien-8-yl 2-methylprop-2-enoate

C21H22O8 (402.1314612)


   

[(1s,2s,4r,10s)-10-(acetyloxy)-4,9-dimethyl-13-oxo-3,14-dioxatricyclo[9.3.0.0²,⁴]tetradeca-7,8,11-trien-12-yl]methyl acetate

[(1s,2s,4r,10s)-10-(acetyloxy)-4,9-dimethyl-13-oxo-3,14-dioxatricyclo[9.3.0.0²,⁴]tetradeca-7,8,11-trien-12-yl]methyl acetate

C19H22O7 (362.1365462)


   

[(2e)-8,10,11-trihydroxy-1,10-dimethyl-5-oxo-4,14-dioxatricyclo[9.2.1.0³,⁷]tetradeca-2,6-dien-6-yl]methyl acetate

[(2e)-8,10,11-trihydroxy-1,10-dimethyl-5-oxo-4,14-dioxatricyclo[9.2.1.0³,⁷]tetradeca-2,6-dien-6-yl]methyl acetate

C17H22O8 (354.1314612)


   

1,10-dimethyl-6-methylidene-5,13-dioxo-4,14-dioxatricyclo[9.2.1.0³,⁷]tetradeca-9,11-dien-8-yl 2-methylprop-2-enoate

1,10-dimethyl-6-methylidene-5,13-dioxo-4,14-dioxatricyclo[9.2.1.0³,⁷]tetradeca-9,11-dien-8-yl 2-methylprop-2-enoate

C19H20O6 (344.125982)


   

(1r,3as,3br,7s,9as,9bs,11ar)-1-[(2r,5r)-5-ethyl-6-methylheptan-2-yl]-9a,11a-dimethyl-tetradecahydro-1h-cyclopenta[a]phenanthren-7-ol

(1r,3as,3br,7s,9as,9bs,11ar)-1-[(2r,5r)-5-ethyl-6-methylheptan-2-yl]-9a,11a-dimethyl-tetradecahydro-1h-cyclopenta[a]phenanthren-7-ol

C29H52O (416.4017942)


   

11-(formyloxy)-10-hydroxy-6-(hydroxymethyl)-1,10-dimethyl-5-oxo-4,14-dioxatricyclo[9.2.1.0³,⁷]tetradeca-2,6-dien-8-yl acetate

11-(formyloxy)-10-hydroxy-6-(hydroxymethyl)-1,10-dimethyl-5-oxo-4,14-dioxatricyclo[9.2.1.0³,⁷]tetradeca-2,6-dien-8-yl acetate

C18H22O9 (382.1263762)


   

[10-(acetyloxy)-4,9-dimethyl-13-oxo-3,14-dioxatricyclo[9.3.0.0²,⁴]tetradeca-7,8,11-trien-12-yl]methyl acetate

[10-(acetyloxy)-4,9-dimethyl-13-oxo-3,14-dioxatricyclo[9.3.0.0²,⁴]tetradeca-7,8,11-trien-12-yl]methyl acetate

C19H22O7 (362.1365462)


   

(1r,2e,8r,10s,11s)-8-hydroxy-11-methoxy-6-(methoxymethyl)-1,10-dimethyl-5-oxo-4,14-dioxatricyclo[9.2.1.0³,⁷]tetradeca-2,6-dien-10-yl acetate

(1r,2e,8r,10s,11s)-8-hydroxy-11-methoxy-6-(methoxymethyl)-1,10-dimethyl-5-oxo-4,14-dioxatricyclo[9.2.1.0³,⁷]tetradeca-2,6-dien-10-yl acetate

C19H26O8 (382.1627596)


   

10-isopropyl-7-methyl-3-methylidenecyclodeca-1,5-diene

10-isopropyl-7-methyl-3-methylidenecyclodeca-1,5-diene

C15H24 (204.18779039999998)


   

[4-(acetyloxy)-10-hydroxy-5,10-dimethyl-2-oxo-4h,8h,9h-cyclodeca[b]furan-3-yl]methyl acetate

[4-(acetyloxy)-10-hydroxy-5,10-dimethyl-2-oxo-4h,8h,9h-cyclodeca[b]furan-3-yl]methyl acetate

C19H22O7 (362.1365462)


   

[(1r,2e,8r,10s,11s)-10-(acetyloxy)-8-hydroxy-11-methoxy-1,10-dimethyl-5-oxo-4,14-dioxatricyclo[9.2.1.0³,⁷]tetradeca-2,6-dien-6-yl]methyl acetate

[(1r,2e,8r,10s,11s)-10-(acetyloxy)-8-hydroxy-11-methoxy-1,10-dimethyl-5-oxo-4,14-dioxatricyclo[9.2.1.0³,⁷]tetradeca-2,6-dien-6-yl]methyl acetate

C20H26O9 (410.15767460000006)


   

[10-(acetyloxy)-8,11-dihydroxy-1,10-dimethyl-5-oxo-4,14-dioxatricyclo[9.2.1.0³,⁷]tetradeca-2,6-dien-6-yl]methyl acetate

[10-(acetyloxy)-8,11-dihydroxy-1,10-dimethyl-5-oxo-4,14-dioxatricyclo[9.2.1.0³,⁷]tetradeca-2,6-dien-6-yl]methyl acetate

C19H24O9 (396.14202539999997)


   

[(1r,2e,8r,10s,11s)-8-(acetyloxy)-11-ethoxy-10-hydroxy-1,10-dimethyl-5-oxo-4,14-dioxatricyclo[9.2.1.0³,⁷]tetradeca-2,6-dien-6-yl]methyl acetate

[(1r,2e,8r,10s,11s)-8-(acetyloxy)-11-ethoxy-10-hydroxy-1,10-dimethyl-5-oxo-4,14-dioxatricyclo[9.2.1.0³,⁷]tetradeca-2,6-dien-6-yl]methyl acetate

C21H28O9 (424.17332380000005)


   

[(1s,2e,8r,10s,11s)-8-(acetyloxy)-10,11-dihydroxy-1,10-dimethyl-5-oxo-4,14-dioxatricyclo[9.2.1.0³,⁷]tetradeca-2,6-dien-6-yl]methyl acetate

[(1s,2e,8r,10s,11s)-8-(acetyloxy)-10,11-dihydroxy-1,10-dimethyl-5-oxo-4,14-dioxatricyclo[9.2.1.0³,⁷]tetradeca-2,6-dien-6-yl]methyl acetate

C19H24O9 (396.14202539999997)


   

3-[2-(4-hydroxy-3-methoxyphenyl)-3-(hydroxymethyl)-7-methoxy-2,3-dihydro-1-benzofuran-5-yl]prop-2-enal

3-[2-(4-hydroxy-3-methoxyphenyl)-3-(hydroxymethyl)-7-methoxy-2,3-dihydro-1-benzofuran-5-yl]prop-2-enal

C20H20O6 (356.125982)


   

(1s,2e,8s,10r,11s)-11-(formyloxy)-10-hydroxy-6-(hydroxymethyl)-1,10-dimethyl-5-oxo-4,14-dioxatricyclo[9.2.1.0³,⁷]tetradeca-2,6-dien-8-yl acetate

(1s,2e,8s,10r,11s)-11-(formyloxy)-10-hydroxy-6-(hydroxymethyl)-1,10-dimethyl-5-oxo-4,14-dioxatricyclo[9.2.1.0³,⁷]tetradeca-2,6-dien-8-yl acetate

C18H22O9 (382.1263762)


   

[(4s,8s,11ar)-4,8-bis(acetyloxy)-6,10-dimethyl-2-oxo-4h,5h,8h,9h,11ah-cyclodeca[b]furan-3-yl]methyl acetate

[(4s,8s,11ar)-4,8-bis(acetyloxy)-6,10-dimethyl-2-oxo-4h,5h,8h,9h,11ah-cyclodeca[b]furan-3-yl]methyl acetate

C21H26O8 (406.1627596)


   

9-hydroxy-14-(hydroxymethyl)-4,9-dimethyl-13-oxo-5,12-dioxatricyclo[9.3.0.0⁴,⁶]tetradeca-1(14),10-dien-2-yl hexanoate

9-hydroxy-14-(hydroxymethyl)-4,9-dimethyl-13-oxo-5,12-dioxatricyclo[9.3.0.0⁴,⁶]tetradeca-1(14),10-dien-2-yl hexanoate

C21H30O7 (394.199143)


   

[(1r,2e,8r,10s,11s)-10-(acetyloxy)-8,11-dihydroxy-1,10-dimethyl-5-oxo-4,14-dioxatricyclo[9.2.1.0³,⁷]tetradeca-2,6-dien-6-yl]methyl acetate

[(1r,2e,8r,10s,11s)-10-(acetyloxy)-8,11-dihydroxy-1,10-dimethyl-5-oxo-4,14-dioxatricyclo[9.2.1.0³,⁷]tetradeca-2,6-dien-6-yl]methyl acetate

C19H24O9 (396.14202539999997)


   

(4s)-4-hydroxy-4-(3-hydroxybut-1-en-1-yl)-3,5,5-trimethylcyclohex-2-en-1-one

(4s)-4-hydroxy-4-(3-hydroxybut-1-en-1-yl)-3,5,5-trimethylcyclohex-2-en-1-one

C13H20O3 (224.14123700000002)


   

3,4-dibromo-5-hydroxy-5h-furan-2-one

3,4-dibromo-5-hydroxy-5h-furan-2-one

C4H2Br2O3 (255.8370662)


   

5,8-dihydroxy-3-methyl-6,9-dimethylidene-octahydro-3h-azuleno[4,5-b]furan-2-one

5,8-dihydroxy-3-methyl-6,9-dimethylidene-octahydro-3h-azuleno[4,5-b]furan-2-one

C15H20O4 (264.13615200000004)


   

1-isopropyl-3a,5a,5b,8,8,11a-hexamethyl-1h,2h,3h,4h,5h,6h,7h,7ah,9h,10h,11h,11bh,12h,13bh-cyclopenta[a]chrysen-9-yl acetate

1-isopropyl-3a,5a,5b,8,8,11a-hexamethyl-1h,2h,3h,4h,5h,6h,7h,7ah,9h,10h,11h,11bh,12h,13bh-cyclopenta[a]chrysen-9-yl acetate

C32H52O2 (468.3967092)


   

[(4r,11ar)-4-(acetyloxy)-6,10-dimethyl-2-oxo-4h,5h,9h,11ah-cyclodeca[b]furan-3-yl]methyl acetate

[(4r,11ar)-4-(acetyloxy)-6,10-dimethyl-2-oxo-4h,5h,9h,11ah-cyclodeca[b]furan-3-yl]methyl acetate

C19H22O6 (346.1416312)


   
   

(2e)-5-[5-(but-3-en-1-yn-1-yl)thiophen-2-yl]pent-2-en-4-ynal

(2e)-5-[5-(but-3-en-1-yn-1-yl)thiophen-2-yl]pent-2-en-4-ynal

C13H8OS (212.02958379999998)


   

(3s,3as,5s,6ar,8s,9s,9ar,9bs)-5,8-dihydroxy-3,9-dimethyl-6-methylidene-decahydroazuleno[4,5-b]furan-2-one

(3s,3as,5s,6ar,8s,9s,9ar,9bs)-5,8-dihydroxy-3,9-dimethyl-6-methylidene-decahydroazuleno[4,5-b]furan-2-one

C15H22O4 (266.1518012)


   

(2e)-6-[(acetyloxy)methyl]-1,10-dimethyl-5,13-dioxo-4,14-dioxatricyclo[9.2.1.0³,⁷]tetradeca-2,6,11-trien-8-yl 4-(acetyloxy)-3-methylbut-2-enoate

(2e)-6-[(acetyloxy)methyl]-1,10-dimethyl-5,13-dioxo-4,14-dioxatricyclo[9.2.1.0³,⁷]tetradeca-2,6,11-trien-8-yl 4-(acetyloxy)-3-methylbut-2-enoate

C24H26O10 (474.15258960000006)


   

(1r,2e,8s,10s)-6-[(acetyloxy)methyl]-1,10-dimethyl-5,13-dioxo-4,14-dioxatricyclo[9.2.1.0³,⁷]tetradeca-2,6,11-trien-8-yl (2z)-4-(acetyloxy)-3-methylbut-2-enoate

(1r,2e,8s,10s)-6-[(acetyloxy)methyl]-1,10-dimethyl-5,13-dioxo-4,14-dioxatricyclo[9.2.1.0³,⁷]tetradeca-2,6,11-trien-8-yl (2z)-4-(acetyloxy)-3-methylbut-2-enoate

C24H26O10 (474.15258960000006)


   

3,4-dichloro-5-hydroxy-5h-furan-2-one

3,4-dichloro-5-hydroxy-5h-furan-2-one

C4H2Cl2O3 (167.9381002)


   

(1r,2z,8s,10s,11s)-10-hydroxy-6-(hydroxymethyl)-1,10-dimethyl-5-oxo-4,14-dioxatricyclo[9.2.1.0³,⁷]tetradeca-2,6-dien-8-yl hexanoate

(1r,2z,8s,10s,11s)-10-hydroxy-6-(hydroxymethyl)-1,10-dimethyl-5-oxo-4,14-dioxatricyclo[9.2.1.0³,⁷]tetradeca-2,6-dien-8-yl hexanoate

C21H30O7 (394.199143)


   

(3s,3as,5s,6ar,8s,9ar,9bs)-5,8-dihydroxy-3-methyl-6,9-dimethylidene-octahydro-3h-azuleno[4,5-b]furan-2-one

(3s,3as,5s,6ar,8s,9ar,9bs)-5,8-dihydroxy-3-methyl-6,9-dimethylidene-octahydro-3h-azuleno[4,5-b]furan-2-one

C15H20O4 (264.13615200000004)


   

(1r,2e,8s,10s,11r)-8-(acetyloxy)-6-[(acetyloxy)methyl]-10-hydroxy-1,10-dimethyl-5-oxo-4,14-dioxatricyclo[9.2.1.0³,⁷]tetradeca-2,6-dien-11-yl 3-methylbutanoate

(1r,2e,8s,10s,11r)-8-(acetyloxy)-6-[(acetyloxy)methyl]-10-hydroxy-1,10-dimethyl-5-oxo-4,14-dioxatricyclo[9.2.1.0³,⁷]tetradeca-2,6-dien-11-yl 3-methylbutanoate

C24H32O10 (480.1995372)


   

(6ar,6br,8ar,14br)-4,4,6a,6b,8a,12,14b-heptamethyl-11-methylidene-hexadecahydropicen-3-ol

(6ar,6br,8ar,14br)-4,4,6a,6b,8a,12,14b-heptamethyl-11-methylidene-hexadecahydropicen-3-ol

C30H50O (426.386145)


   

8-(acetyloxy)-6-[(acetyloxy)methyl]-10-hydroxy-1,10-dimethyl-5-oxo-4,14-dioxatricyclo[9.2.1.0³,⁷]tetradeca-2,6-dien-11-yl 3-methylbutanoate

8-(acetyloxy)-6-[(acetyloxy)methyl]-10-hydroxy-1,10-dimethyl-5-oxo-4,14-dioxatricyclo[9.2.1.0³,⁷]tetradeca-2,6-dien-11-yl 3-methylbutanoate

C24H32O10 (480.1995372)


   

4-(3-hydroxybut-1-en-1-yl)-3,5,5-trimethylcyclohex-2-en-1-ol

4-(3-hydroxybut-1-en-1-yl)-3,5,5-trimethylcyclohex-2-en-1-ol

C13H22O2 (210.1619712)


   

6,10-bis(acetyloxy)-6a,9-dihydroxy-3-(methoxymethyl)-6,9-dimethyl-2-oxo-4h,5h,7h,8h,10h-naphtho[4a,4-b]furan-4-yl acetate

6,10-bis(acetyloxy)-6a,9-dihydroxy-3-(methoxymethyl)-6,9-dimethyl-2-oxo-4h,5h,7h,8h,10h-naphtho[4a,4-b]furan-4-yl acetate

C22H30O11 (470.178803)


   

[(1r,10r,11s)-8-(acetyloxy)-10,11-dihydroxy-1,10-dimethyl-5-oxo-4,14-dioxatricyclo[9.2.1.0³,⁷]tetradeca-2,6-dien-6-yl]methyl acetate

[(1r,10r,11s)-8-(acetyloxy)-10,11-dihydroxy-1,10-dimethyl-5-oxo-4,14-dioxatricyclo[9.2.1.0³,⁷]tetradeca-2,6-dien-6-yl]methyl acetate

C19H24O9 (396.14202539999997)


   

(1s,2e,8s,10r,11r)-6-(ethoxymethyl)-10,11-dihydroxy-1,10-dimethyl-5-oxo-4,14-dioxatricyclo[9.2.1.0³,⁷]tetradeca-2,6-dien-8-yl acetate

(1s,2e,8s,10r,11r)-6-(ethoxymethyl)-10,11-dihydroxy-1,10-dimethyl-5-oxo-4,14-dioxatricyclo[9.2.1.0³,⁷]tetradeca-2,6-dien-8-yl acetate

C19H26O8 (382.1627596)


   

5-[5-(but-3-en-1-yn-1-yl)thiophen-2-yl]pent-2-en-4-ynal

5-[5-(but-3-en-1-yn-1-yl)thiophen-2-yl]pent-2-en-4-ynal

C13H8OS (212.02958379999998)


   

(4s,10r)-4-(acetyloxy)-10-hydroxy-6,10-dimethyl-2-oxo-4h,5h,9h-cyclodeca[b]furan-3-yl acetate

(4s,10r)-4-(acetyloxy)-10-hydroxy-6,10-dimethyl-2-oxo-4h,5h,9h-cyclodeca[b]furan-3-yl acetate

C18H20O7 (348.120897)


   

[(1s,2s,4r,8r,10s)-8,10-bis(acetyloxy)-4,8-dimethyl-7,13-dioxo-3,14-dioxatricyclo[9.3.0.0²,⁴]tetradec-11-en-12-yl]methyl acetate

[(1s,2s,4r,8r,10s)-8,10-bis(acetyloxy)-4,8-dimethyl-7,13-dioxo-3,14-dioxatricyclo[9.3.0.0²,⁴]tetradec-11-en-12-yl]methyl acetate

C21H26O10 (438.15258960000006)


   

(1r,2e,8r,10s,11s)-10-hydroxy-11-methoxy-6-(methoxymethyl)-1,10-dimethyl-5-oxo-4,14-dioxatricyclo[9.2.1.0³,⁷]tetradeca-2,6-dien-8-yl acetate

(1r,2e,8r,10s,11s)-10-hydroxy-11-methoxy-6-(methoxymethyl)-1,10-dimethyl-5-oxo-4,14-dioxatricyclo[9.2.1.0³,⁷]tetradeca-2,6-dien-8-yl acetate

C19H26O8 (382.1627596)


   

3a,3b,6,6,9a-pentamethyl-1-(6-methylhepta-2,5-dien-2-yl)-dodecahydro-1h-cyclopenta[a]phenanthren-7-ol

3a,3b,6,6,9a-pentamethyl-1-(6-methylhepta-2,5-dien-2-yl)-dodecahydro-1h-cyclopenta[a]phenanthren-7-ol

C30H50O (426.386145)


   

(2e)-6-[(acetyloxy)methyl]-10,11-dihydroxy-1,10-dimethyl-5-oxo-4,14-dioxatricyclo[9.2.1.0³,⁷]tetradeca-2,6-dien-8-yl 2-methylprop-2-enoate

(2e)-6-[(acetyloxy)methyl]-10,11-dihydroxy-1,10-dimethyl-5-oxo-4,14-dioxatricyclo[9.2.1.0³,⁷]tetradeca-2,6-dien-8-yl 2-methylprop-2-enoate

C21H26O9 (422.15767460000006)


   

2-(but-3-en-1-yn-1-yl)-5-(pent-3-en-1-yn-1-yl)thiophene

2-(but-3-en-1-yn-1-yl)-5-(pent-3-en-1-yn-1-yl)thiophene

C13H10S (198.050318)


   

10-hydroxy-11-methoxy-6-(methoxymethyl)-1,10-dimethyl-5-oxo-4,14-dioxatricyclo[9.2.1.0³,⁷]tetradeca-2,6-dien-8-yl acetate

10-hydroxy-11-methoxy-6-(methoxymethyl)-1,10-dimethyl-5-oxo-4,14-dioxatricyclo[9.2.1.0³,⁷]tetradeca-2,6-dien-8-yl acetate

C19H26O8 (382.1627596)


   

2-(but-3-en-1-yn-1-yl)-5-[(3e)-pent-3-en-1-yn-1-yl]thiophene

2-(but-3-en-1-yn-1-yl)-5-[(3e)-pent-3-en-1-yn-1-yl]thiophene

C13H10S (198.050318)


   

(1r,4r)-4-[(1e,3r)-3-hydroxybut-1-en-1-yl]-3,5,5-trimethylcyclohex-2-en-1-ol

(1r,4r)-4-[(1e,3r)-3-hydroxybut-1-en-1-yl]-3,5,5-trimethylcyclohex-2-en-1-ol

C13H22O2 (210.1619712)


   

(1r,2e,8r,10s,11s)-6-(3-formylphenoxymethyl)-10-hydroxy-11-methoxy-1,10-dimethyl-5-oxo-4,14-dioxatricyclo[9.2.1.0³,⁷]tetradeca-2,6-dien-8-yl acetate

(1r,2e,8r,10s,11s)-6-(3-formylphenoxymethyl)-10-hydroxy-11-methoxy-1,10-dimethyl-5-oxo-4,14-dioxatricyclo[9.2.1.0³,⁷]tetradeca-2,6-dien-8-yl acetate

C25H28O9 (472.17332380000005)


   

(1z,5e,7r,10s)-7-isopropyl-10-methyl-4-methylidenecyclodeca-1,5-diene

(1z,5e,7r,10s)-7-isopropyl-10-methyl-4-methylidenecyclodeca-1,5-diene

C15H24 (204.18779039999998)


   

(2e)-6-[(acetyloxy)methyl]-11-ethoxy-10-hydroxy-1,10-dimethyl-5-oxo-4,14-dioxatricyclo[9.2.1.0³,⁷]tetradeca-2,6-dien-8-yl 2-methylprop-2-enoate

(2e)-6-[(acetyloxy)methyl]-11-ethoxy-10-hydroxy-1,10-dimethyl-5-oxo-4,14-dioxatricyclo[9.2.1.0³,⁷]tetradeca-2,6-dien-8-yl 2-methylprop-2-enoate

C23H30O9 (450.18897300000003)


   

(3s,3as,5s,6ar,9s,9ar,9bs)-5-hydroxy-3,9-dimethyl-6-methylidene-octahydro-3h-azuleno[4,5-b]furan-2,8-dione

(3s,3as,5s,6ar,9s,9ar,9bs)-5-hydroxy-3,9-dimethyl-6-methylidene-octahydro-3h-azuleno[4,5-b]furan-2,8-dione

C15H20O4 (264.13615200000004)


   

[8,10-bis(acetyloxy)-4,8-dimethyl-7,13-dioxo-3,14-dioxatricyclo[9.3.0.0²,⁴]tetradecan-12-yl]methyl acetate

[8,10-bis(acetyloxy)-4,8-dimethyl-7,13-dioxo-3,14-dioxatricyclo[9.3.0.0²,⁴]tetradecan-12-yl]methyl acetate

C21H28O10 (440.16823880000004)


   

6-(ethoxymethyl)-10,11-dihydroxy-1,10-dimethyl-5-oxo-4,14-dioxatricyclo[9.2.1.0³,⁷]tetradeca-2,6-dien-8-yl acetate

6-(ethoxymethyl)-10,11-dihydroxy-1,10-dimethyl-5-oxo-4,14-dioxatricyclo[9.2.1.0³,⁷]tetradeca-2,6-dien-8-yl acetate

C19H26O8 (382.1627596)


   

[8-(acetyloxy)-10,11-dihydroxy-1,10-dimethyl-5-oxo-4,14-dioxatricyclo[9.2.1.0³,⁷]tetradeca-2,6-dien-6-yl]methyl acetate

[8-(acetyloxy)-10,11-dihydroxy-1,10-dimethyl-5-oxo-4,14-dioxatricyclo[9.2.1.0³,⁷]tetradeca-2,6-dien-6-yl]methyl acetate

C19H24O9 (396.14202539999997)


   

4-(acetyloxy)-10-hydroxy-6,10-dimethyl-2-oxo-4h,5h,9h-cyclodeca[b]furan-3-yl acetate

4-(acetyloxy)-10-hydroxy-6,10-dimethyl-2-oxo-4h,5h,9h-cyclodeca[b]furan-3-yl acetate

C18H20O7 (348.120897)


   

stigmast-5-en-3-ol, (3β)-

stigmast-5-en-3-ol, (3β)-

C29H50O (414.386145)


   

(4ar,6ar,6br,8as,12ar,12br,14ar,14br)-4,4,6a,6b,8a,11,12,14b-octamethyl-2,3,4a,5,6,7,8,9,12,12a,12b,13,14,14a-tetradecahydro-1h-picen-3-ol

(4ar,6ar,6br,8as,12ar,12br,14ar,14br)-4,4,6a,6b,8a,11,12,14b-octamethyl-2,3,4a,5,6,7,8,9,12,12a,12b,13,14,14a-tetradecahydro-1h-picen-3-ol

C30H50O (426.386145)


   

4-{[(3s,4r)-4-[(s)-hydroxy(4-hydroxy-3-methoxyphenyl)methyl]oxolan-3-yl]methyl}-2-methoxyphenol

4-{[(3s,4r)-4-[(s)-hydroxy(4-hydroxy-3-methoxyphenyl)methyl]oxolan-3-yl]methyl}-2-methoxyphenol

C20H24O6 (360.1572804)


   

(2s,4s,6s,9r,10e)-9-hydroxy-14-(hydroxymethyl)-4,9-dimethyl-13-oxo-5,12-dioxatricyclo[9.3.0.0⁴,⁶]tetradeca-1(14),10-dien-2-yl hexanoate

(2s,4s,6s,9r,10e)-9-hydroxy-14-(hydroxymethyl)-4,9-dimethyl-13-oxo-5,12-dioxatricyclo[9.3.0.0⁴,⁶]tetradeca-1(14),10-dien-2-yl hexanoate

C21H30O7 (394.199143)


   

(4ar,6ar,6bs,8ar,12ar,14ar,14br)-4,4,6a,6b,8a,11,11,14b-octamethyl-2,4a,5,6,7,8,9,10,12,12a,14,14a-dodecahydro-1h-picen-3-one

(4ar,6ar,6bs,8ar,12ar,14ar,14br)-4,4,6a,6b,8a,11,11,14b-octamethyl-2,4a,5,6,7,8,9,10,12,12a,14,14a-dodecahydro-1h-picen-3-one

C30H48O (424.37049579999996)


   

4-[(3ar,6as)-4-(4-hydroxy-3-methoxyphenyl)-hexahydrofuro[3,4-c]furan-1-yl]-2-methoxyphenol

4-[(3ar,6as)-4-(4-hydroxy-3-methoxyphenyl)-hexahydrofuro[3,4-c]furan-1-yl]-2-methoxyphenol

C20H22O6 (358.1416312)


   

5,8-dihydroxy-3,9-dimethyl-6-methylidene-decahydroazuleno[4,5-b]furan-2-one

5,8-dihydroxy-3,9-dimethyl-6-methylidene-decahydroazuleno[4,5-b]furan-2-one

C15H22O4 (266.1518012)


   

4-(acetyloxy)-6,10-dimethyl-2-oxo-4h,5h,9h,12h,12ah-cycloundeca[b]furan-3-yl acetate

4-(acetyloxy)-6,10-dimethyl-2-oxo-4h,5h,9h,12h,12ah-cycloundeca[b]furan-3-yl acetate

C19H22O6 (346.1416312)


   

[(1r,2e,8r,10s,11s)-8-(acetyloxy)-10,11-dihydroxy-1,10-dimethyl-5-oxo-4,14-dioxatricyclo[9.2.1.0³,⁷]tetradeca-2,6-dien-6-yl]methyl acetate

[(1r,2e,8r,10s,11s)-8-(acetyloxy)-10,11-dihydroxy-1,10-dimethyl-5-oxo-4,14-dioxatricyclo[9.2.1.0³,⁷]tetradeca-2,6-dien-6-yl]methyl acetate

C19H24O9 (396.14202539999997)


   

3-(but-3-en-1-yn-1-yl)-6-(pent-3-en-1-yn-1-yl)-1,2-dithiine

3-(but-3-en-1-yn-1-yl)-6-(pent-3-en-1-yn-1-yl)-1,2-dithiine

C13H10S2 (230.02239)


   

[(4s,10r)-4-(acetyloxy)-10-hydroxy-5,10-dimethyl-2-oxo-4h,8h,9h-cyclodeca[b]furan-3-yl]methyl acetate

[(4s,10r)-4-(acetyloxy)-10-hydroxy-5,10-dimethyl-2-oxo-4h,8h,9h-cyclodeca[b]furan-3-yl]methyl acetate

C19H22O7 (362.1365462)


   

(2e)-8,10,11-trihydroxy-6-(hydroxymethyl)-1,10-dimethyl-4,14-dioxatricyclo[9.2.1.0³,⁷]tetradeca-2,6-dien-5-one

(2e)-8,10,11-trihydroxy-6-(hydroxymethyl)-1,10-dimethyl-4,14-dioxatricyclo[9.2.1.0³,⁷]tetradeca-2,6-dien-5-one

C15H20O7 (312.120897)


   

3a,5a,5b,8,8,11a-hexamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysen-9-yl acetate

3a,5a,5b,8,8,11a-hexamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysen-9-yl acetate

C32H52O2 (468.3967092)


   

8-isopropyl-1-methyl-5-methylidenecyclodeca-1,6-diene

8-isopropyl-1-methyl-5-methylidenecyclodeca-1,6-diene

C15H24 (204.18779039999998)


   

(1s,3ar,3br,5ar,7s,9ar,9br,11ar)-3a,3b,6,6,9a-pentamethyl-1-[(2e)-6-methylhepta-2,5-dien-2-yl]-dodecahydro-1h-cyclopenta[a]phenanthren-7-ol

(1s,3ar,3br,5ar,7s,9ar,9br,11ar)-3a,3b,6,6,9a-pentamethyl-1-[(2e)-6-methylhepta-2,5-dien-2-yl]-dodecahydro-1h-cyclopenta[a]phenanthren-7-ol

C30H50O (426.386145)


   

(1r,2e,8r,10s,11s)-6-(ethoxymethyl)-10,11-dihydroxy-1,10-dimethyl-5-oxo-4,14-dioxatricyclo[9.2.1.0³,⁷]tetradeca-2,6-dien-8-yl acetate

(1r,2e,8r,10s,11s)-6-(ethoxymethyl)-10,11-dihydroxy-1,10-dimethyl-5-oxo-4,14-dioxatricyclo[9.2.1.0³,⁷]tetradeca-2,6-dien-8-yl acetate

C19H26O8 (382.1627596)


   

1-isopropyl-3a,5a,5b,8,8,11a-hexamethyl-1h,2h,3h,4h,5h,6h,7h,7ah,9h,10h,11h,11bh,12h,13bh-cyclopenta[a]chrysen-9-ol

1-isopropyl-3a,5a,5b,8,8,11a-hexamethyl-1h,2h,3h,4h,5h,6h,7h,7ah,9h,10h,11h,11bh,12h,13bh-cyclopenta[a]chrysen-9-ol

C30H50O (426.386145)


   

6-(3-hydroxybut-1-en-1-yl)-1,5,5-trimethyl-7-oxabicyclo[4.1.0]heptan-3-ol

6-(3-hydroxybut-1-en-1-yl)-1,5,5-trimethyl-7-oxabicyclo[4.1.0]heptan-3-ol

C13H22O3 (226.1568862)


   

(1r,3s,7r,8s,9z)-1,10-dimethyl-6-methylidene-5,13-dioxo-4,14-dioxatricyclo[9.2.1.0³,⁷]tetradeca-9,11-dien-8-yl 2-methylprop-2-enoate

(1r,3s,7r,8s,9z)-1,10-dimethyl-6-methylidene-5,13-dioxo-4,14-dioxatricyclo[9.2.1.0³,⁷]tetradeca-9,11-dien-8-yl 2-methylprop-2-enoate

C19H20O6 (344.125982)


   

5-hydroxy-3,9-dimethyl-6-methylidene-octahydro-3h-azuleno[4,5-b]furan-2,8-dione

5-hydroxy-3,9-dimethyl-6-methylidene-octahydro-3h-azuleno[4,5-b]furan-2,8-dione

C15H20O4 (264.13615200000004)


   

(1as,4as,7s,7ar,7bs)-1,1,7-trimethyl-4-methylidene-octahydrocyclopropa[e]azulen-7-ol

(1as,4as,7s,7ar,7bs)-1,1,7-trimethyl-4-methylidene-octahydrocyclopropa[e]azulen-7-ol

C15H24O (220.18270539999997)


   

[8,10-bis(acetyloxy)-4,8-dimethyl-7,13-dioxo-3,14-dioxatricyclo[9.3.0.0²,⁴]tetradec-11-en-12-yl]methyl acetate

[8,10-bis(acetyloxy)-4,8-dimethyl-7,13-dioxo-3,14-dioxatricyclo[9.3.0.0²,⁴]tetradec-11-en-12-yl]methyl acetate

C21H26O10 (438.15258960000006)


   

(4s,12ar)-4-(acetyloxy)-6,10-dimethyl-2-oxo-4h,5h,9h,12h,12ah-cycloundeca[b]furan-3-yl acetate

(4s,12ar)-4-(acetyloxy)-6,10-dimethyl-2-oxo-4h,5h,9h,12h,12ah-cycloundeca[b]furan-3-yl acetate

C19H22O6 (346.1416312)


   

3-(but-3-en-1-yn-1-yl)-6-[(3e)-pent-3-en-1-yn-1-yl]-1,2-dithiine

3-(but-3-en-1-yn-1-yl)-6-[(3e)-pent-3-en-1-yn-1-yl]-1,2-dithiine

C13H10S2 (230.02239)


   

[(1r,2e,8r,10s,11s)-8,10-bis(acetyloxy)-11-methoxy-1,10-dimethyl-5-oxo-4,14-dioxatricyclo[9.2.1.0³,⁷]tetradeca-2,6-dien-6-yl]methyl acetate

[(1r,2e,8r,10s,11s)-8,10-bis(acetyloxy)-11-methoxy-1,10-dimethyl-5-oxo-4,14-dioxatricyclo[9.2.1.0³,⁷]tetradeca-2,6-dien-6-yl]methyl acetate

C22H28O10 (452.16823880000004)


   

(3s)-4,4,6a,6b,8a,11,11,14b-octamethyl-1,2,3,4a,5,6,7,8,9,10,12b,13,14,14a-tetradecahydropicen-3-ol

(3s)-4,4,6a,6b,8a,11,11,14b-octamethyl-1,2,3,4a,5,6,7,8,9,10,12b,13,14,14a-tetradecahydropicen-3-ol

C30H50O (426.386145)


   

[10-(acetyloxy)-8-hydroxy-11-methoxy-1,10-dimethyl-5-oxo-4,14-dioxatricyclo[9.2.1.0³,⁷]tetradeca-2,6-dien-6-yl]methyl acetate

[10-(acetyloxy)-8-hydroxy-11-methoxy-1,10-dimethyl-5-oxo-4,14-dioxatricyclo[9.2.1.0³,⁷]tetradeca-2,6-dien-6-yl]methyl acetate

C20H26O9 (410.15767460000006)


   

(5r)-3,4-dichloro-5-hydroxy-5h-furan-2-one

(5r)-3,4-dichloro-5-hydroxy-5h-furan-2-one

C4H2Cl2O3 (167.9381002)


   

(1r,3r,6s)-6-[(1e,3r)-3-hydroxybut-1-en-1-yl]-1,5,5-trimethyl-7-oxabicyclo[4.1.0]heptan-3-ol

(1r,3r,6s)-6-[(1e,3r)-3-hydroxybut-1-en-1-yl]-1,5,5-trimethyl-7-oxabicyclo[4.1.0]heptan-3-ol

C13H22O3 (226.1568862)


   

(1s,2s,4r,5s,8s,10s)-12-[(acetyloxy)methyl]-5-hydroxy-4,8-dimethyl-7,13-dioxo-3,14-dioxatricyclo[9.3.0.0²,⁴]tetradec-11-en-10-yl (2z)-4-(acetyloxy)-3-methylbut-2-enoate

(1s,2s,4r,5s,8s,10s)-12-[(acetyloxy)methyl]-5-hydroxy-4,8-dimethyl-7,13-dioxo-3,14-dioxatricyclo[9.3.0.0²,⁴]tetradec-11-en-10-yl (2z)-4-(acetyloxy)-3-methylbut-2-enoate

C24H30O11 (494.178803)


   

[8-(acetyloxy)-10-hydroxy-1,10-dimethyl-5-oxo-4,14-dioxatricyclo[9.2.1.0³,⁷]tetradeca-2,6,11-trien-6-yl]methyl acetate

[8-(acetyloxy)-10-hydroxy-1,10-dimethyl-5-oxo-4,14-dioxatricyclo[9.2.1.0³,⁷]tetradeca-2,6,11-trien-6-yl]methyl acetate

C19H22O8 (378.1314612)


   

[(1s,2e,8s,10r,11r)-8-(acetyloxy)-10,11-dihydroxy-1,10-dimethyl-5-oxo-4,14-dioxatricyclo[9.2.1.0³,⁷]tetradeca-2,6-dien-6-yl]methyl acetate

[(1s,2e,8s,10r,11r)-8-(acetyloxy)-10,11-dihydroxy-1,10-dimethyl-5-oxo-4,14-dioxatricyclo[9.2.1.0³,⁷]tetradeca-2,6-dien-6-yl]methyl acetate

C19H24O9 (396.14202539999997)


   

8-hydroxy-11-methoxy-6-(methoxymethyl)-1,10-dimethyl-5-oxo-4,14-dioxatricyclo[9.2.1.0³,⁷]tetradeca-2,6-dien-10-yl acetate

8-hydroxy-11-methoxy-6-(methoxymethyl)-1,10-dimethyl-5-oxo-4,14-dioxatricyclo[9.2.1.0³,⁷]tetradeca-2,6-dien-10-yl acetate

C19H26O8 (382.1627596)