Vanillylamine (BioDeep_00000011339)

   

human metabolite PANOMIX_OTCML-2023 Endogenous natural product


代谢物信息卡片


4-(Aminomethyl)-2-methoxyphenol, AldrichCPR

化学式: C8H11NO2 (153.079)
中文名称: 香草胺
谱图信息: 最多检出来源 Homo sapiens(blood) 11.73%

分子结构信息

SMILES: COC1=C(C=CC(=C1)CN)O
InChI: InChI=1S/C8H11NO2/c1-11-8-4-6(5-9)2-3-7(8)10/h2-4,10H,5,9H2,1H3

描述信息

Vanillylamine is prepared by reacting vanillin with hydroxylamine or the salts thereof in the presence of an organic salt, which may optionally be produced in situ, wherein the reaction is carried out in an inorganic or organic acid as diluent, and subsequently hydrogenating the resulting vanillyloxime with hydrogen in the presence of a suitable catalyst and an organic and/or inorganic acid.It inhibits microsomal enzyme function; RN given refers to parent cpd. Vanillylamine is a component of capsaicin.In Pseudomonas fluorescens B56 under growing conditions, the cells metabolized vanillylamine to vanillin, and vanillin to vanillic acid and a small amount of vanillyl alcohol. Under non-growing conditions, the cells produced vanillin, vanillic acid and protocatechuic acid from vanillylamine, and vanillic acid supplied to the medium was converted to protocatechuic acid. It is thus suggested that vanillylamine is metabolized to vanillic acid through vanillin by Pseudomonas fluorescens B56 in a rich medium, however, in a starving medium, the bacterial strain further metabolizes vanillic acid to protocatechuic acid. The vanillylamine metabolic activity was slowly induced by the substrate.
Vanillylamine is prepared by reacting vanillin with hydroxylamine or the salts thereof in the presence of an organic salt, which may optionally be produced in situ, wherein the reaction is carried out in an inorganic or organic acid as diluent, and subsequently hydrogenating the resulting vanillyloxime with hydrogen in the presence of a suitable catalyst and an organic and/or inorganic acid.It inhibits microsomal enzyme function; RN given refers to parent cpd
Vanillylamine is an aralkylamino compound. It is functionally related to a vanillyl alcohol. It is a conjugate base of a vanillylamine(1+).
Vanillylamine is a natural product found in Capsicum annuum with data available.
Vanillylamine is a derivative of vanillin is synthesized through a transaminase reaction in the phenylpropanoid pathway of capsaicinoid synthesis[1].

同义名列表

24 个代谢物同义名

4-(Aminomethyl)-2-methoxyphenol, AldrichCPR; ((4-HYDROXY-3-METHOXYPHENYL)METHYL)AMINE; (3-Methoxy-4-hydroxyphenyl)methylamine; (4-Hydroxy-3-methoxyphenyl)methanamine; 4-(aminomethyl)-2-(methyloxy)phenol; p-Cresol, .alpha.-amino-2-methoxy-; Phenol, 4-(aminomethyl)-2-methoxy-; 4-(Aminomethyl)-2-methoxyphenol #; 4-hydroxy-3-methoxy-benzylamine; 4-(Aminomethyl)-2-methoxyphenol; alpha-amino-2-methoxy-p-Cresol; 4-Hydroxy-3-methoxybenzylamine; 3-Methoxy-4-hydroxybenzylamine; 4-Aminomethyl-2-methoxy-phenol; vanillylamine hydrochloride; a-amino-2-methoxy-p-Cresol; CREOSOL, .ALPHA.-AMINO-; UNII-1WEZ91E3Z0; Vanillylamine; CAPSIVIROL-T; vanillylamin; 1WEZ91E3Z0; Vanillylamine; Vanillylamine



数据库引用编号

22 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 6 AXIN2, CASP3, CAT, CNR1, PPARG, PTGS2
Peripheral membrane protein 2 CYP1B1, PTGS2
Endoplasmic reticulum membrane 2 CYP1B1, PTGS2
Mitochondrion membrane 1 MAOA
Nucleus 5 AXIN2, CASP3, MYB, PPARG, RFC2
cytosol 8 AXIN2, CASP3, CAT, COMT, LIPE, MAOA, MYB, PPARG
dendrite 2 COMT, MAOB
centrosome 1 AXIN2
nucleoplasm 4 CASP3, MYB, PPARG, RFC2
RNA polymerase II transcription regulator complex 2 MYB, PPARG
Cell membrane 5 CNR1, COMT, LIPE, TNF, TRPV1
Cytoplasmic side 2 MAOA, MAOB
Cell projection, axon 1 CNR1
Multi-pass membrane protein 4 CATSPER3, CNR1, TRPV1, UCP1
Synapse 1 COMT
cell surface 1 TNF
glutamatergic synapse 2 CASP3, CNR1
Golgi membrane 1 INS
growth cone 1 CNR1
mitochondrial inner membrane 1 UCP1
neuronal cell body 4 CASP3, MAOB, TNF, TRPV1
presynaptic membrane 1 CNR1
Cytoplasm, cytosol 1 LIPE
Presynapse 1 CNR1
acrosomal vesicle 1 CATSPER3
plasma membrane 7 AXIN2, CATSPER3, CNR1, COMT, SERPINC1, TNF, TRPV1
Membrane 7 CAT, COMT, CYP1B1, LIPE, MAOA, MYB, TRPV1
axon 2 CNR1, COMT
caveola 2 LIPE, PTGS2
extracellular exosome 3 CAT, COMT, SERPINC1
endoplasmic reticulum 2 CATSPER3, PTGS2
extracellular space 3 INS, SERPINC1, TNF
perinuclear region of cytoplasm 1 PPARG
mitochondrion 6 ABAT, CAT, CYP1B1, MAOA, MAOB, UCP1
protein-containing complex 2 CAT, PTGS2
intracellular membrane-bounded organelle 4 CAT, COMT, CYP1B1, PPARG
Microsome membrane 2 CYP1B1, PTGS2
postsynaptic density 1 CASP3
Secreted 1 INS
extracellular region 4 CAT, INS, SERPINC1, TNF
Mitochondrion outer membrane 3 CNR1, MAOA, MAOB
Single-pass membrane protein 1 MAOA
mitochondrial outer membrane 3 CNR1, MAOA, MAOB
mitochondrial matrix 2 ABAT, CAT
Extracellular side 1 COMT
motile cilium 1 CATSPER3
external side of plasma membrane 2 TNF, TRPV1
actin cytoskeleton 1 CNR1
beta-catenin destruction complex 1 AXIN2
recycling endosome 1 TNF
Single-pass type II membrane protein 2 COMT, TNF
postsynaptic membrane 1 TRPV1
Mitochondrion inner membrane 1 UCP1
Membrane raft 2 CNR1, TNF
focal adhesion 1 CAT
GABA-ergic synapse 2 CNR1, TRPV1
Peroxisome 1 CAT
Peroxisome matrix 1 CAT
peroxisomal matrix 1 CAT
peroxisomal membrane 1 CAT
collagen-containing extracellular matrix 1 SERPINC1
Nucleus inner membrane 1 PTGS2
Nucleus outer membrane 1 PTGS2
nuclear inner membrane 1 PTGS2
nuclear outer membrane 1 PTGS2
Postsynaptic cell membrane 1 TRPV1
receptor complex 1 PPARG
Cell projection, neuron projection 1 TRPV1
neuron projection 1 PTGS2
chromatin 1 PPARG
phagocytic cup 1 TNF
Secreted, extracellular space 1 SERPINC1
blood microparticle 1 SERPINC1
endosome lumen 1 INS
Lipid droplet 1 LIPE
Membrane, caveola 1 LIPE
Cell projection, cilium, flagellum membrane 1 CATSPER3
ficolin-1-rich granule lumen 1 CAT
secretory granule lumen 2 CAT, INS
Golgi lumen 1 INS
endoplasmic reticulum lumen 3 INS, PTGS2, SERPINC1
nuclear matrix 1 MYB
transport vesicle 1 INS
Endoplasmic reticulum-Golgi intermediate compartment membrane 1 INS
mitochondrial envelope 1 MAOB
Single-pass type IV membrane protein 2 MAOA, MAOB
death-inducing signaling complex 1 CASP3
Cell projection, dendritic spine membrane 1 TRPV1
dendritic spine membrane 1 TRPV1
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
catalase complex 1 CAT
[Isoform Soluble]: Cytoplasm 1 COMT
[Isoform Membrane-bound]: Cell membrane 1 COMT
Ctf18 RFC-like complex 1 RFC2
DNA replication factor C complex 1 RFC2
CatSper complex 1 CATSPER3
4-aminobutyrate transaminase complex 1 ABAT
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF


文献列表

  • Ryota Nakaniwa, Yuki Misawa, Saika Nakasato, Kaori Sano, Yoshiyuki Tanaka, Sachie Nakatani, Kenji Kobata. Biochemical Aspects of Putative Aminotransferase Responsible for Converting Vanillin to Vanillylamine in the Capsaicinoid Biosynthesis Pathway in Capsicum Plants. Journal of agricultural and food chemistry. 2024 Jan; 72(1):559-565. doi: 10.1021/acs.jafc.3c07369. [PMID: 38134368]
  • Hirokazu Kusaka, Saika Nakasato, Kaori Sano, Kenji Kobata, Sho Ohno, Motoaki Doi, Yoshiyuki Tanaka. An evolutionary view of vanillylamine synthase pAMT, a key enzyme of capsaicinoid biosynthesis pathway in chili pepper. The Plant journal : for cell and molecular biology. 2023 Dec; ?(?):. doi: 10.1111/tpj.16573. [PMID: 38117481]
  • Jianzhong Ge, Jie Zhang, Xiaolu Wang, Yingguo Bai, Yaru Wang, Yuan Wang, Tao Tu, Xing Qin, Xiaoyun Su, Huiying Luo, Bin Yao, Huoqing Huang. Production of capsaicinoid nonivamide from plant oil and vanillylamine via whole-cell biotransformation. Bioresource technology. 2023 Dec; 390(?):129883. doi: 10.1016/j.biortech.2023.129883. [PMID: 37871741]
  • Yoshiyuki Tanaka, Takaya Asano, Yorika Kanemitsu, Tanjuro Goto, Yuichi Yoshida, Kenichiro Yasuba, Yuki Misawa, Sachie Nakatani, Kenji Kobata. Positional differences of intronic transposons in pAMT affect the pungency level in chili pepper through altered splicing efficiency. The Plant journal : for cell and molecular biology. 2019 11; 100(4):693-705. doi: 10.1111/tpj.14462. [PMID: 31323150]
  • Nora Weber, Abdelrahman Ismail, Marie Gorwa-Grauslund, Magnus Carlquist. Biocatalytic potential of vanillin aminotransferase from Capsicum chinense. BMC biotechnology. 2014 Apr; 14(?):25. doi: 10.1186/1472-6750-14-25. [PMID: 24712445]
  • Kenji Kobata, Ikue Takemura, Gaku Tago, Takayuki Moriya, Kaori Kubota, Sachie Nakatani, Masahiro Wada, Tatsuo Watanabe. Formation of long-chain N-vanillyl-acylamides from plant oils. Bioscience, biotechnology, and biochemistry. 2014; 78(7):1242-5. doi: 10.1080/09168451.2014.912118. [PMID: 25229865]
  • Kenji Kobata, Mai Sugawara, Makoto Mimura, Susumu Yazawa, Tatsuo Watanabe. Potent production of capsaicinoids and capsinoids by Capsicum peppers. Journal of agricultural and food chemistry. 2013 Nov; 61(46):11127-32. doi: 10.1021/jf403553w. [PMID: 24147886]
  • Harishchandra B Gururaj, Mallaya N Padma, Parvatam Giridhar, Gokare A Ravishankar. Functional validation of Capsicum frutescens aminotransferase gene involved in vanillylamine biosynthesis using Agrobacterium mediated genetic transformation studies in Nicotiana tabacum and Capsicum frutescens calli cultures. Plant science : an international journal of experimental plant biology. 2012 Oct; 195(?):96-105. doi: 10.1016/j.plantsci.2012.06.014. [PMID: 22921003]
  • Kenji Kobata, Makoto Mimura, Mai Sugawara, Tatsuo Watanabe. Synthesis of stable isotope-labeled precursors for the biosyntheses of capsaicinoids, capsinoids, and capsiconinoids. Bioscience, biotechnology, and biochemistry. 2011; 75(8):1611-4. doi: 10.1271/bbb.110187. [PMID: 21821932]
  • Yaqin Lang, Hiroaki Kisaka, Ryuji Sugiyama, Kenzo Nomura, Akihito Morita, Tatsuo Watanabe, Yoshiyuki Tanaka, Susumu Yazawa, Tetsuya Miwa. Functional loss of pAMT results in biosynthesis of capsinoids, capsaicinoid analogs, in Capsicum annuum cv. CH-19 Sweet. The Plant journal : for cell and molecular biology. 2009 Sep; 59(6):953-61. doi: 10.1111/j.1365-313x.2009.03921.x. [PMID: 19473323]
  • Charles Stewart, Michael Mazourek, Giulia M Stellari, Mary O'Connell, Molly Jahn. Genetic control of pungency in C. chinense via the Pun1 locus. Journal of experimental botany. 2007; 58(5):979-91. doi: 10.1093/jxb/erl243. [PMID: 17339653]
  • Bellur Chayapathy Narasimha Prasad, Harishchandra Bhaskar Gururaj, Vinod Kumar, Parvatam Giridhar, Gokare Ashwathnarayana Ravishankar. Valine pathway is more crucial than phenyl propanoid pathway in regulating capsaicin biosynthesis in Capsicum frutescens mill. Journal of agricultural and food chemistry. 2006 Sep; 54(18):6660-6. doi: 10.1021/jf061040a. [PMID: 16939324]
  • Kouzou Sutoh, Kenji Kobata, Susumu Yazawa, Tatsuo Watanabe. Capsinoid is biosynthesized from phenylalanine and valine in a non-pungent pepper, Capsicum annuum L. cv. CH-19 sweet. Bioscience, biotechnology, and biochemistry. 2006 Jun; 70(6):1513-6. doi: 10.1271/bbb.50665. [PMID: 16794338]
  • Bellur Chayapathy Narasimha Prasad, Harishchandra Bhaskar Gururaj, Vinod Kumar, Parvatam Giridhar, Rangan Parimalan, Ashwani Sharma, Gokare Ashwathnarayana Ravishankar. Influence of 8-methyl-nonenoic acid on capsaicin biosynthesis in in-vivo and in-vitro cell cultures of Capsicum spp. Journal of agricultural and food chemistry. 2006 Mar; 54(5):1854-9. doi: 10.1021/jf052085z. [PMID: 16506844]
  • Suvi F Flagan, Jared R Leadbetter. Utilization of capsaicin and vanillylamine as growth substrates by Capsicum (hot pepper)-associated bacteria. Environmental microbiology. 2006 Mar; 8(3):560-5. doi: 10.1111/j.1462-2920.2005.00938.x. [PMID: 16478462]
  • B Suresh, G A Ravishankar. Methyl jasmonate modulated biotransformation of phenylpropanoids to vanillin related metabolites using Capsicum frutescens root cultures. Plant physiology and biochemistry : PPB. 2005 Feb; 43(2):125-31. doi: 10.1016/j.plaphy.2005.01.006. [PMID: 15820659]
  • M Roden, W Raffesberg, W Raber, E Bernroider, B Niederle, W Waldhäusl, S Gasic. Quantification of unconjugated metanephrines in human plasma without interference by acetaminophen. Clinical chemistry. 2001 Jun; 47(6):1061-7. doi: . [PMID: 11375292]
  • . . . . doi: . [PMID: 15918882]