Asparagine (BioDeep_00000001300)

 

Secondary id: BioDeep_00000014864, BioDeep_00000399883, BioDeep_00000405763, BioDeep_00000896607, BioDeep_00001872844

natural product human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite BioNovoGene_Lab2019


代谢物信息卡片


(2S)-2-Amino-3-carbamoylpropanoic acid

化学式: C4H8N2O3 (132.05348980000002)
中文名称: L-天冬酰胺, 天冬酰胺
谱图信息: 最多检出来源 Homo sapiens(blood) 16.43%

Reviewed

Last reviewed on 2024-09-14.

Cite this Page

Asparagine. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China. https://query.biodeep.cn/s/asparagine (retrieved 2024-12-04) (BioDeep RN: BioDeep_00000001300). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

分子结构信息

SMILES: C(C(C(=O)O)N)C(=O)N
InChI: InChI=1S/C4H8N2O3/c5-2(4(8)9)1-3(6)7/h2H,1,5H2,(H2,6,7)(H,8,9)

描述信息

Asparagine (Asn) or L-asparagine is an alpha-amino acid. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Amino acids are organic compounds that contain amino (–NH2) and carboxyl (–COOH) functional groups, along with a side chain (R group) specific to each amino acid. L-asparagine is one of 20 proteinogenic amino acids, i.e., the amino acids used in the biosynthesis of proteins. Asparagine is found in all organisms ranging from bacteria to plants to animals. In humans, asparagine is not an essential amino acid, which means that it can be synthesized from central metabolic pathway intermediates in humans and is not required in the diet. The precursor to asparagine is oxaloacetate. Oxaloacetate is converted to aspartate using a transaminase enzyme. This enzyme transfers the amino group from glutamate to oxaloacetate producing alpha-ketoglutarate and aspartate. The enzyme asparagine synthetase produces asparagine, AMP, glutamate, and pyrophosphate from aspartate, glutamine, and ATP. In the asparagine synthetase reaction, ATP is used to activate aspartate, forming beta-aspartyl-AMP. Glutamine donates an ammonium group which reacts with beta-aspartyl-AMP to form asparagine and free AMP. Since the asparagine side chain can make efficient hydrogen bond interactions with the peptide backbone, asparagines are often found near the beginning and end of alpha-helices, and in turn motifs in beta sheets. Its role can be thought as "capping" the hydrogen bond interactions which would otherwise need to be satisfied by the polypeptide backbone. Asparagine also provides key sites for N-linked glycosylation, a modification of the protein chain that is characterized by the addition of carbohydrate chains. A reaction between asparagine and reducing sugars or reactive carbonyls produces acrylamide (acrylic amide) in food when heated to sufficient temperature (i.e. baking). These occur primarily in baked goods such as French fries, potato chips, and roasted coffee. Asparagine was first isolated in 1806 from asparagus juice --hence its name. Asparagine was the first amino acid to be isolated. The smell observed in the urine of some individuals after the consumption of asparagus is attributed to a byproduct of the metabolic breakdown of asparagine, asparagine-amino-succinic-acid monoamide. However, some scientists disagree and implicate other substances in the smell, especially methanethiol.
[Spectral] L-Asparagine (exact mass = 132.05349) and L-Aspartate (exact mass = 133.03751) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions.
One of the nonessential amino acids. Dietary supplement, nutrient. Widely distributed in the plant kingdom. Isolated from asparagus, beetroot, peas, beans, etc.

(-)-Asparagine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=70-47-3 (retrieved 2024-07-15) (CAS RN: 70-47-3). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
L-Asparagine ((-)-Asparagine) is a non-essential amino acid that is involved in the metabolic control of cell functions in nerve and brain tissue.
L-Asparagine ((-)-Asparagine) is a non-essential amino acid that is involved in the metabolic control of cell functions in nerve and brain tissue.

同义名列表

53 个代谢物同义名

(2S)-2-Amino-3-carbamoylpropanoic acid; (S)-2-Amino-3-carbamoylpropanoic acid; (2S)-2,4-Diamino-4-oxobutanoic acid; b2,4-(S)-Diamino-4-oxo-utanoic acid; (2S)-2-Amino-3-carbamoylpropanoate; (S)-2,4-Diamino-4-oxobutanoic acid; (S)-2-Amino-3-carbamoylpropanoate; L-2,4-Diamino-4-oxobutanoic acid; (2S)-2,4-Diamino-4-oxobutanoate; b2,4-(S)-Diamino-4-oxo-utanoate; (S)-2,4-Diamino-4-oxobutanoate; L-2,4-Diamino-4-oxobutanoate; alpha Amminosuccinamic acid; L-Aspartic acid beta-amide; alpha-Aminosuccinamic acid; Aspartic acid beta amide; L-2-Aminosuccinamic acid; L-Aspartic acid β-amide; alpha Amminosuccinamate; L-Aspartic acid b-amide; a-Aminosuccinamic acid; Α-aminosuccinamic acid; alpha-Aminosuccinamate; 2-Aminosuccinamic acid; L-Aspartate beta-amide; Aspartic acid b-amide; L-2-Aminosuccinamate; Aspartic acid amide; L-Aspartate b-amide; L-Aspartate β-amide; 2-Aminosuccinamate; a-Aminosuccinamate; Α-aminosuccinamate; L-beta-Asparagine; Aspartamic acid; Asparagine acid; (S)-Asparagine; (-)-Asparagine; L-b-Asparagine; L-Aspartamine; L-Asparagine; Aspartamate; L-Asparagin; ASPARAGINE; Asparamide; Crystal VI; Agedoite; Altheine; Asn; N; Asparagine; L-Asparagine; Asparagine



数据库引用编号

68 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(3)

PlantCyc(0)

代谢反应

39 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(5)

WikiPathways(0)

Plant Reactome(0)

INOH(1)

PlantCyc(0)

COVID-19 Disease Map(1)

PathBank(32)

  • Asparagine Biosynthesis: Adenosine triphosphate + L-Aspartic acid + L-Glutamine + Water ⟶ Adenosine monophosphate + Hydrogen Ion + L-Asparagine + L-Glutamic acid + Pyrophosphate
  • Asparagine Metabolism: Adenosine triphosphate + L-Aspartic acid + L-Glutamine + Water ⟶ Adenosine monophosphate + Hydrogen Ion + L-Asparagine + L-Glutamic acid + Pyrophosphate
  • Asparagine Metabolism: Adenosine triphosphate + L-Aspartic acid + L-Glutamine + Water ⟶ Adenosine monophosphate + Hydrogen Ion + L-Asparagine + L-Glutamic acid + Pyrophosphate
  • Asparagine Biosynthesis: Adenosine triphosphate + L-Aspartic acid + L-Glutamine + Water ⟶ Adenosine monophosphate + Hydrogen Ion + L-Asparagine + L-Glutamic acid + Pyrophosphate
  • Aspartate Metabolism: N-Acetyl-L-aspartic acid + Water ⟶ Acetic acid + L-Aspartic acid
  • Ammonia Recycling: Adenosine triphosphate + L-Aspartic acid + L-Glutamine + Water ⟶ Adenosine monophosphate + L-Asparagine + L-Glutamic acid + Pyrophosphate
  • Canavan Disease: N-Acetyl-L-aspartic acid + Water ⟶ Acetic acid + L-Aspartic acid
  • Hypoacetylaspartia: N-Acetyl-L-aspartic acid + Water ⟶ Acetic acid + L-Aspartic acid
  • Aspartate Metabolism: Adenosine triphosphate + Ammonia + L-Aspartic acid ⟶ Adenosine monophosphate + L-Asparagine + Pyrophosphate
  • tRNA Charging: Adenosine triphosphate + Hydrogen Ion + L-Arginine ⟶ Adenosine monophosphate + Pyrophosphate
  • tRNA Charging 2: Adenosine triphosphate + Hydrogen Ion + L-Arginine ⟶ Adenosine monophosphate + Pyrophosphate
  • Ammonia Recycling: Adenosine triphosphate + L-Aspartic acid + L-Glutamine + Water ⟶ Adenosine monophosphate + L-Asparagine + L-Glutamic acid + Pyrophosphate
  • Aspartate Metabolism: N-Acetyl-L-aspartic acid + Water ⟶ Acetic acid + L-Aspartic acid
  • Hypoacetylaspartia: N-Acetyl-L-aspartic acid + Water ⟶ Acetic acid + L-Aspartic acid
  • Aspartate Metabolism: N-Acetyl-L-aspartic acid + Water ⟶ Acetic acid + L-Aspartic acid
  • Ammonia Recycling: Adenosine triphosphate + L-Aspartic acid + L-Glutamine + Water ⟶ Adenosine monophosphate + L-Asparagine + L-Glutamic acid + Pyrophosphate
  • Aspartate Metabolism: N-Acetyl-L-aspartic acid + Water ⟶ Acetic acid + L-Aspartic acid
  • Ammonia Recycling: Adenosine triphosphate + L-Aspartic acid + L-Glutamine + Water ⟶ Adenosine monophosphate + L-Asparagine + L-Glutamic acid + Pyrophosphate
  • Aspartate Metabolism: N-Acetyl-L-aspartic acid + Water ⟶ Acetic acid + L-Aspartic acid
  • Ammonia Recycling: Adenosine triphosphate + L-Aspartic acid + L-Glutamine + Water ⟶ Adenosine monophosphate + L-Asparagine + L-Glutamic acid + Pyrophosphate
  • Aspartate Metabolism: N-Acetyl-L-aspartic acid + Water ⟶ Acetic acid + L-Aspartic acid
  • Ammonia Recycling: Adenosine triphosphate + L-Aspartic acid + L-Glutamine + Water ⟶ Adenosine monophosphate + L-Asparagine + L-Glutamic acid + Pyrophosphate
  • Protein Synthesis: Asparagine: Adenosine triphosphate + L-Asparagine ⟶ Adenosine monophosphate + Pyrophosphate
  • Protein Synthesis: Asparagine: Adenosine triphosphate + L-Asparagine ⟶ Adenosine monophosphate + Pyrophosphate
  • Protein Synthesis: Asparagine: Adenosine triphosphate + L-Asparagine ⟶ Adenosine monophosphate + Pyrophosphate
  • Protein Synthesis: Asparagine: Adenosine triphosphate + L-Asparagine ⟶ Adenosine monophosphate + Pyrophosphate
  • Canavan Disease: N-Acetyl-L-aspartic acid + Water ⟶ Acetic acid + L-Aspartic acid
  • Hypoacetylaspartia: N-Acetyl-L-aspartic acid + Water ⟶ Acetic acid + L-Aspartic acid
  • Aspartate Metabolism: Adenosine triphosphate + L-Aspartic acid + L-Glutamine + Water ⟶ Adenosine monophosphate + L-Asparagine + L-Glutamic acid + Pyrophosphate
  • tRNA Charging: Adenosine triphosphate + Hydrogen Ion + L-Arginine ⟶ Adenosine monophosphate + Pyrophosphate
  • tRNA Charging 2: Adenosine triphosphate + Hydrogen Ion + L-Arginine ⟶ Adenosine monophosphate + Pyrophosphate
  • Canavan Disease: N-Acetyl-L-aspartic acid + Water ⟶ Acetic acid + L-Aspartic acid

PharmGKB(0)

120 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • Qing Xiao, Qingrong Huang, Chi-Tang Ho. Asparagine-Glucose Amadori Compounds: Formation, Characterization, and Analysis in Dry Jujube Fruit. Journal of agricultural and food chemistry. 2024 Apr; 72(13):7344-7353. doi: 10.1021/acs.jafc.4c00526. [PMID: 38502793]
  • Sarah L Oliver, Abou Yobi, Sherry Flint-Garcia, Ruthie Angelovici. Reducing Acrylamide Formation Potential by Targeting Free Asparagine Accumulation in Seeds. Journal of agricultural and food chemistry. 2024 Mar; 72(12):6089-6095. doi: 10.1021/acs.jafc.3c09547. [PMID: 38483189]
  • Mélanie Lavoignat, Cédric Cassan, Pierre Pétriacq, Yves Gibon, Emmanuel Heumez, Céline Duque, Philippe Momont, Renaud Rincent, Justin Blancon, Catherine Ravel, Jacques Le Gouis. Different wheat loci are associated to heritable free asparagine content in grain grown under different water and nitrogen availability. TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik. 2024 Feb; 137(2):46. doi: 10.1007/s00122-024-04551-x. [PMID: 38332254]
  • Amanda G A Sá, James D House. Adding pulse flours to cereal-based snacks and bakery products: An overview of free asparagine quantification methods and mitigation strategies of acrylamide formation in foods. Comprehensive reviews in food science and food safety. 2024 Jan; 23(1):1-20. doi: 10.1111/1541-4337.13260. [PMID: 38284574]
  • Gyeongik Ahn, Yeong Jun Ban, Gyeong-Im Shin, Song Yi Jeong, Ki Hun Park, Woe-Yeon Kim, Joon-Yung Cha. Ethylene enhances transcriptions of asparagine biosynthetic genes in soybean (Glycine max L. Merr) leaves. Plant signaling & behavior. 2023 Dec; 18(1):2287883. doi: 10.1080/15592324.2023.2287883. [PMID: 38019725]
  • Kaikai Zhu, Si Chen, Ming Gao, Yanying Wu, Xinqi Liu. Asparagine-rich protein (NRP) mediates stress response by regulating biosynthesis of plant secondary metabolites in Arabidopsis. Plant signaling & behavior. 2023 12; 18(1):2241165. doi: 10.1080/15592324.2023.2241165. [PMID: 37515751]
  • Karolina Wleklik, Szymon Stefaniak, Katarzyna Nuc, Małgorzata Pietrowska-Borek, Sławomir Borek. Identification and Potential Participation of Lipases in Autophagic Body Degradation in Embryonic Axes of Lupin (Lupinus spp.) Germinating Seeds. International journal of molecular sciences. 2023 Dec; 25(1):. doi: 10.3390/ijms25010090. [PMID: 38203260]
  • Xiaochao Wang, Wanling Cai, Yihan Liu, Yaoming Lu, Mange Liu, Xuewei Cao, Da Guo. Exploring biomarkers associated with severity of knee osteoarthritis in Southern China using widely targeted metabolomics. BMC musculoskeletal disorders. 2023 Dec; 24(1):953. doi: 10.1186/s12891-023-07084-4. [PMID: 38066443]
  • Joseph Oddy, Monika Chhetry, Rajani Awal, John Addy, Mark Wilkinson, Dan Smith, Robert King, Chris Hall, Rebecca Testa, Eve Murray, Sarah Raffan, Tanya Y Curtis, Luzie Wingen, Simon Griffiths, Simon Berry, J Stephen Elmore, Nicholas Cryer, Isabel Moreira de Almeida, Nigel G Halford. Genetic control of grain amino acid composition in a UK soft wheat mapping population. The plant genome. 2023 Dec; 16(4):e20335. doi: 10.1002/tpg2.20335. [PMID: 37138544]
  • Spenser Waller, Avery Powell, Randi Noel, Michael J Schueller, Richard A Ferrieri. Radiocarbon Flux Measurements Reveal Mechanistic Insight into Heat-Stress Induction of Nicotine Biosynthesis in Nicotiana attenuata. International journal of molecular sciences. 2023 Oct; 24(21):. doi: 10.3390/ijms242115509. [PMID: 37958493]
  • Bo-Yi Ke, Yu-Sheng Qin, Lu Cheng, Shu-Zhi Wang. Legumain: a potential biomarker for atherosclerosis. The Journal of pharmacy and pharmacology. 2023 Aug; ?(?):. doi: 10.1093/jpp/rgad073. [PMID: 37584490]
  • Sarah Raffan, Joseph Oddy, Andrew Mead, Gary Barker, Tanya Curtis, Sarah Usher, Christopher Burt, Nigel G Halford. Field assessment of genome-edited, low asparagine wheat: Europe's first CRISPR wheat field trial. Plant biotechnology journal. 2023 06; 21(6):1097-1099. doi: 10.1111/pbi.14026. [PMID: 36759345]
  • Chaoyu Zhai, Steven M Lonergan, Elisabeth J Huff-Lonergan, Logan G Johnson, Kitty Brown, Jessica E Prenni, Mahesh N Nair. Lipid Peroxidation Products Influence Calpain-1 Functionality In Vitro by Covalent Binding. Journal of agricultural and food chemistry. 2023 May; 71(20):7836-7846. doi: 10.1021/acs.jafc.3c01225. [PMID: 37167568]
  • Kohei Oda, Alexander Wlodawer. Overview of the Properties of Glutamic Peptidases That Are Present in Plant and Bacterial Pathogens and Play a Role in Celiac Disease and Cancer. Biochemistry. 2023 Feb; 62(3):672-694. doi: 10.1021/acs.biochem.2c00622. [PMID: 36705990]
  • Feng Huang, Tong Zhang, Bin Li, Shaosong Wang, Chang Xu, Caihua Huang, Donghai Lin. NMR-based metabolomic analysis for the effects of moxibustion on imiquimod-induced psoriatic mice. Journal of ethnopharmacology. 2023 Jan; 300(?):115626. doi: 10.1016/j.jep.2022.115626. [PMID: 36049653]
  • Jolanta Bugajska, Joanna Berska, Małgorzata Wójcik, Krystyna Sztefko. Amino acid profile in overweight and obese prepubertal children - can simple biochemical tests help in the early prevention of associated comorbidities?. Frontiers in endocrinology. 2023; 14(?):1274011. doi: 10.3389/fendo.2023.1274011. [PMID: 37964971]
  • Erhard Bieberich. Synthesis, Processing, and Function of N-Glycans in N-Glycoproteins. Advances in neurobiology. 2023; 29(?):65-93. doi: 10.1007/978-3-031-12390-0_3. [PMID: 36255672]
  • Yunan Hu, Mingxia Li, Yongjun Hu, Defu Han, Jian Wei, Tao Zhang, Jixun Guo, Lianxuan Shi. Wild soybean salt tolerance metabolic model: Assessment of storage protein mobilization in cotyledons and C/N balance in the hypocotyl/root axis. Physiologia plantarum. 2023 Jan; 175(1):e13863. doi: 10.1111/ppl.13863. [PMID: 36688582]
  • Hongzhao Yuan, Zhen He, Xiangbi Chen, Tida Ge, Liping Zhang, Jiurong Wang. Rapid, sensitive analysis method for determining the nitrogen stable isotope ratio of total free amino acids in soil. Rapid communications in mass spectrometry : RCM. 2022 Nov; 36(21):e9390. doi: 10.1002/rcm.9390. [PMID: 36056455]
  • Rui-Rui Guo, Tian-Chan Zhang, Thomas Ole Tandrup Lambert, Ting Wang, Josef Voglmeir, Kasper D Rand, Li Liu. PNGase H + variant from Rudaea cellulosilytica with improved deglycosylation efficiency for rapid analysis of eukaryotic N-glycans and hydrogen deuterium exchange mass spectrometry analysis of glycoproteins. Rapid communications in mass spectrometry : RCM. 2022 Nov; 36(21):e9376. doi: 10.1002/rcm.9376. [PMID: 35945033]
  • Adel Abdelrazek Abdelazim Mohdaly, Mohamed H H Roby, Seham Ahmed Rabea Sultan, Eberhard Groß, Iryna Smetanska. Potential of Low Cost Agro-Industrial Wastes as a Natural Antioxidant on Carcinogenic Acrylamide Formation in Potato Fried Chips. Molecules (Basel, Switzerland). 2022 Nov; 27(21):. doi: 10.3390/molecules27217516. [PMID: 36364343]
  • Meshal M Almutairi, Hany M Almotairy. Analysis of Heat Shock Proteins Based on Amino Acids for the Tomato Genome. Genes. 2022 11; 13(11):. doi: 10.3390/genes13112014. [PMID: 36360251]
  • Cengiz Kaya, Ferhat Ugurlar, Shahid Farooq, Muhammed Ashraf, Mohammed Nasser Alyemeni, Parvaiz Ahmad. Combined application of asparagine and thiourea improves tolerance to lead stress in wheat by modulating AsA-GSH cycle, lead detoxification and nitrogen metabolism. Plant physiology and biochemistry : PPB. 2022 Nov; 190(?):119-132. doi: 10.1016/j.plaphy.2022.08.014. [PMID: 36113307]
  • Mei Han, Shizhen Wang, Liangdan Wu, Junhu Feng, Yujia Si, Xiaoning Liu, Tao Su. Effects of Exogenous L-Asparagine on Poplar Biomass Partitioning and Root Morphology. International journal of molecular sciences. 2022 Oct; 23(21):. doi: 10.3390/ijms232113126. [PMID: 36361911]
  • Anjali Zaveri, Jacqueline Edwards, Simone Rochfort. Production of Primary Metabolites by Rhizopus stolonifer, Causal Agent of Almond Hull Rot Disease. Molecules (Basel, Switzerland). 2022 Oct; 27(21):. doi: 10.3390/molecules27217199. [PMID: 36364023]
  • Na Zhang, Yi Yang, Wei Li, Shenzhi Zhou, Weiwei Li, Ying Peng, Jiang Zheng. Asparagine and Glutamine Residues Participate in Protein Covalent Binding by Epoxide Metabolite of 8-Epidiosbulbin E Acetate In Vitro and In Vivo. Chemical research in toxicology. 2022 10; 35(10):1821-1830. doi: 10.1021/acs.chemrestox.2c00130. [PMID: 35839447]
  • Haifang Jiang, Yiting Shi, Jingyan Liu, Zhen Li, Diyi Fu, Shifeng Wu, Minze Li, Zijia Yang, Yunlu Shi, Jinsheng Lai, Xiaohong Yang, Zhizhong Gong, Jian Hua, Shuhua Yang. Natural polymorphism of ZmICE1 contributes to amino acid metabolism that impacts cold tolerance in maize. Nature plants. 2022 10; 8(10):1176-1190. doi: 10.1038/s41477-022-01254-3. [PMID: 36241735]
  • C Anilkumar, Rameswar Prasad Sah, T P Muhammed Azharudheen, Sasmita Behera, Namita Singh, Nitish Ranjan Prakash, N C Sunitha, B N Devanna, B C Marndi, B C Patra, Sunil Kumar Nair. Understanding complex genetic architecture of rice grain weight through QTL-meta analysis and candidate gene identification. Scientific reports. 2022 08; 12(1):13832. doi: 10.1038/s41598-022-17402-w. [PMID: 35974066]
  • Huchen Zhang, Shijie Yi, Yuan Zhang, Zhi Hong. A conserved asparagine residue in the inner surface of BRI1 superhelix is essential for protein native conformation. Biochemical and biophysical research communications. 2022 07; 615(?):49-55. doi: 10.1016/j.bbrc.2022.05.014. [PMID: 35605405]
  • Bo Cao, Rui-Yang Zhao, Hang-Hang Li, Xing-Ming Xu, Hao Cui, Huan Deng, Lin Chen, Bo Wei. Oral administration of asparagine and 3-indolepropionic acid prolongs survival time of rats with traumatic colon injury. Military Medical Research. 2022 07; 9(1):37. doi: 10.1186/s40779-022-00397-w. [PMID: 35791006]
  • Siew Hwei Yap, Cheng Siang Lee, Aogu Furusho, Chiharu Ishii, Syahirah Shaharudin, Nurul Syuhada Zulhaimi, Adeeba Kamarulzaman, Shahrul Bahyah Kamaruzzaman, Masashi Mita, Kok Hoong Leong, Kenji Hamase, Reena Rajasuriar. Plasma d-amino acids are associated with markers of immune activation and organ dysfunction in people with HIV. AIDS (London, England). 2022 Jun; 36(7):911-921. doi: 10.1097/qad.0000000000003207. [PMID: 35212669]
  • Ling Liu, Jing Wang, Haiyu Li, Yan Dong, Ying Li, Lei Xia, Bo Yang, Handuo Wang, Yiran Xu, Guomei Cheng, Kaixian Du, Xiaoli Zhang, Changlian Zhu, Shihong Cui, Chenchen Ren. An intractable epilepsy phenotype of ASNS novel mutation in two patients with asparagine synthetase deficiency. Clinica chimica acta; international journal of clinical chemistry. 2022 Jun; 531(?):331-336. doi: 10.1016/j.cca.2022.04.989. [PMID: 35469797]
  • Arthur J L Cooper, Thambi Dorai, John T Pinto, Travis T Denton. The metabolic importance of the overlooked asparaginase II pathway. Analytical biochemistry. 2022 05; 644(?):114084. doi: 10.1016/j.ab.2020.114084. [PMID: 33347861]
  • Tina Kollannoor Johny, Rinu Madhu Puthusseri, Bindiya Ellathuparambil Saidumohamed, Unnikrishnan Babukuttan Sheela, Saipriya Parol Puthusseri, Raghul Subin Sasidharan, Sarita Ganapathy Bhat. Appraisal of cytotoxicity and acrylamide mitigation potential of L-asparaginase SlpA from fish gut microbiome. Applied microbiology and biotechnology. 2022 May; 106(9-10):3583-3598. doi: 10.1007/s00253-022-11954-7. [PMID: 35579684]
  • Nawal E Al-Hazmi, Deyala M Naguib. Plant asparaginase versus microbial asparaginase as anticancer agent. Environmental science and pollution research international. 2022 Apr; 29(18):27283-27293. doi: 10.1007/s11356-021-17925-1. [PMID: 34978032]
  • William F Mueller, Lei Zhu, Brandon Tan, Selina Dwight, Brendan Beahm, Matt Wilsey, Thomas Wechsler, Justin Mak, Tina Cowan, Jake Pritchett, Eric Taylor, Brett E Crawford. GlcNAc-Asn is a biomarker for NGLY1 deficiency. Journal of biochemistry. 2022 Feb; 171(2):177-186. doi: 10.1093/jb/mvab111. [PMID: 34697629]
  • Peter Bults, Anna van der Voort, Coby Meijer, Gabe S Sonke, Rainer Bischoff, Nico C van de Merbel. Analytical and pharmacological consequences of the in vivo deamidation of trastuzumab and pertuzumab. Analytical and bioanalytical chemistry. 2022 Feb; 414(4):1513-1524. doi: 10.1007/s00216-021-03756-z. [PMID: 35001193]
  • Koshi Akahane, Shunsuke Kimura, Kunio Miyake, Atsushi Watanabe, Keiko Kagami, Kentaro Yoshimura, Tamao Shinohara, Daisuke Harama, Shin Kasai, Kumiko Goi, Tomoko Kawai, Kenichiro Hata, Nobutaka Kiyokawa, Katsuyoshi Koh, Toshihiko Imamura, Keizo Horibe, A Thomas Look, Masayoshi Minegishi, Kanji Sugita, Junko Takita, Takeshi Inukai. Association of allele-specific methylation of the ASNS gene with asparaginase sensitivity and prognosis in T-ALL. Blood advances. 2022 01; 6(1):212-224. doi: 10.1182/bloodadvances.2021004271. [PMID: 34535013]
  • Changyun Liu, Shaorui Tian, Xing Lv, Yundan Pu, Haoran Peng, Guangjin Fan, Xiaozhou Ma, Lisong Ma, Xianchao Sun. Nicotiana benthamiana asparagine synthetase associates with IP-L and confers resistance against tobacco mosaic virus via the asparagine-induced salicylic acid signalling pathway. Molecular plant pathology. 2022 01; 23(1):60-77. doi: 10.1111/mpp.13143. [PMID: 34617390]
  • Fabio K Tamaki. Commentary on Urinary l-erythro-β-hydroxyasparagine: a novel serine racemase inhibitor and substrate of the Zn2+-dependent d-serine dehydratase. Bioscience reports. 2021 12; 41(12):. doi: 10.1042/bsr20211524c. [PMID: 34874398]
  • Maria Dumina, Alexander Zhgun, Marina Pokrovskaya, Svetlana Aleksandrova, Dmitry Zhdanov, Nikolay Sokolov, Michael El'darov. Highly Active Thermophilic L-Asparaginase from Melioribacter roseus Represents a Novel Large Group of Type II Bacterial L-Asparaginases from Chlorobi-Ignavibacteriae-Bacteroidetes Clade. International journal of molecular sciences. 2021 Dec; 22(24):. doi: 10.3390/ijms222413632. [PMID: 34948436]
  • Diana Ramírez-Montaño, Estephania Candelo, Harry Pachajoa. [New variant in the ALG13 gene responsible for the congenital disorder of Is-type glycosylation in a male patient]. Andes pediatrica : revista Chilena de pediatria. 2021 Oct; 92(5):769-776. doi: 10.32641/andespediatr.v92i5.3353. [PMID: 35319586]
  • Senzhao Zhang, Xiaoli Wang, Yu He, Tao Hu, Jiaqi Guo, Mingshu Wang, Renyong Jia, Dekang Zhu, Mafeng Liu, Xinxin Zhao, Qiao Yang, Ying Wu, Shaqiu Zhang, Juan Huang, Sai Mao, Xumin Ou, Qun Gao, Di Sun, Yunya Liu, Ling Zhang, Shun Chen, Anchun Cheng. N130, N175 and N207 are N-linked glycosylation sites of duck Tembusu virus NS1 that are important for viral multiplication, viremia and virulence in ducklings. Veterinary microbiology. 2021 Oct; 261(?):109215. doi: 10.1016/j.vetmic.2021.109215. [PMID: 34455356]
  • John C Panetta, Yiwei Liu, Teodoro Bottiglieri, Erland Arning, Cheng Cheng, Seth E Karol, Jun J Yang, Yinmei Zhou, Hiroto Inaba, Ching-Hon Pui, Sima Jeha, Mary V Relling. Pharmacodynamics of cerebrospinal fluid asparagine after asparaginase. Cancer chemotherapy and pharmacology. 2021 10; 88(4):655-664. doi: 10.1007/s00280-021-04315-0. [PMID: 34170389]
  • Can Zhang, Meng Cai, Shanshan Chen, Fan Zhang, Tongshan Cui, Zhaolin Xue, Weizhen Wang, Borui Zhang, Xili Liu. The consensus Nglyco -X-S/T motif and a previously unknown Nglyco -N-linked glycosylation are necessary for growth and pathogenicity of Phytophthora. Environmental microbiology. 2021 09; 23(9):5147-5163. doi: 10.1111/1462-2920.15468. [PMID: 33728790]
  • Sarah Raffan, Caroline Sparks, Alison Huttly, Lucy Hyde, Damiano Martignago, Andrew Mead, Steven J Hanley, Paul A Wilkinson, Gary Barker, Keith J Edwards, Tanya Y Curtis, Sarah Usher, Ondrej Kosik, Nigel G Halford. Wheat with greatly reduced accumulation of free asparagine in the grain, produced by CRISPR/Cas9 editing of asparagine synthetase gene TaASN2. Plant biotechnology journal. 2021 08; 19(8):1602-1613. doi: 10.1111/pbi.13573. [PMID: 33638281]
  • Joseph Oddy, Rocío Alarcón-Reverte, Mark Wilkinson, Karl Ravet, Sarah Raffan, Andrea Minter, Andrew Mead, J Stephen Elmore, Isabel Moreira de Almeida, Nicholas C Cryer, Nigel G Halford, Stephen Pearce. Reduced free asparagine in wheat grain resulting from a natural deletion of TaASN-B2: investigating and exploiting diversity in the asparagine synthetase gene family to improve wheat quality. BMC plant biology. 2021 Jun; 21(1):302. doi: 10.1186/s12870-021-03058-7. [PMID: 34187359]
  • Taha Azad, Ragunath Singaravelu, Zaid Taha, Taylor R Jamieson, Stephen Boulton, Mathieu J F Crupi, Nikolas T Martin, Emily E F Brown, Joanna Poutou, Mina Ghahremani, Adrian Pelin, Kazem Nouri, Reza Rezaei, Christopher Boyd Marshall, Masahiro Enomoto, Rozanne Arulanandam, Nouf Alluqmani, Reuben Samson, Anne-Claude Gingras, D William Cameron, Peter A Greer, Carolina S Ilkow, Jean-Simon Diallo, John C Bell. Nanoluciferase complementation-based bioreporter reveals the importance of N-linked glycosylation of SARS-CoV-2 S for viral entry. Molecular therapy : the journal of the American Society of Gene Therapy. 2021 06; 29(6):1984-2000. doi: 10.1016/j.ymthe.2021.02.007. [PMID: 33578036]
  • Lovemore Nkhata Malunga, Nancy Ames, Ali Salimi Khorshidi, Sijo Joseph Thandapilly, Weikai Yan, Adam Dyck, John Waterer, Linda Malcolmson, Richard Cuthbert, Elaine Sopiwnyk, Martin G Scanlon. Association of asparagine concentration in wheat with cultivar, location, fertilizer, and their interaction. Food chemistry. 2021 May; 344(?):128630. doi: 10.1016/j.foodchem.2020.128630. [PMID: 33223298]
  • Tomokazu Ito, Mayuka Tono, Yasuyuki Kitaura, Hisashi Hemmi, Tohru Yoshimura. Urinary l-erythro-β-hydroxyasparagine-a novel serine racemase inhibitor and substrate of the Zn2+-dependent d-serine dehydratase. Bioscience reports. 2021 04; 41(4):. doi: 10.1042/bsr20210260. [PMID: 33821987]
  • Mark J Henderson, Kathleen A Trychta, Shyh-Ming Yang, Susanne Bäck, Adam Yasgar, Emily S Wires, Carina Danchik, Xiaokang Yan, Hideaki Yano, Lei Shi, Kuo-Jen Wu, Amy Q Wang, Dingyin Tao, Gergely Zahoránszky-Kőhalmi, Xin Hu, Xin Xu, David Maloney, Alexey V Zakharov, Ganesha Rai, Fumihiko Urano, Mikko Airavaara, Oksana Gavrilova, Ajit Jadhav, Yun Wang, Anton Simeonov, Brandon K Harvey. A target-agnostic screen identifies approved drugs to stabilize the endoplasmic reticulum-resident proteome. Cell reports. 2021 04; 35(4):109040. doi: 10.1016/j.celrep.2021.109040. [PMID: 33910017]
  • Ryoya Tanahashi, Tomonori Matsushita, Akira Nishimura, Hiroshi Takagi. Downregulation of the broad-specificity amino acid permease Agp1 mediated by the ubiquitin ligase Rsp5 and the arrestin-like protein Bul1 in yeast. Bioscience, biotechnology, and biochemistry. 2021 Apr; 85(5):1266-1274. doi: 10.1093/bbb/zbab028. [PMID: 33620458]
  • Pu Wang, Xiufang Zhu, Mengyan Wei, Yangong Liu, Kenshi Yoshimura, Mingqi Zheng, Gang Liu, Shinichiro Kume, Tatsuki Kurokawa, Katsushige Ono. Disruption of asparagine-linked glycosylation to rescue and alter gating of the NaV1.5-Na+ channel. Heart and vessels. 2021 Apr; 36(4):589-596. doi: 10.1007/s00380-020-01736-4. [PMID: 33392644]
  • Henry Christopher Janse van Rensburg, Anis M Limami, Wim Van den Ende. Spermine and Spermidine Priming against Botrytis cinerea Modulates ROS Dynamics and Metabolism in Arabidopsis. Biomolecules. 2021 02; 11(2):. doi: 10.3390/biom11020223. [PMID: 33562549]
  • Yixuan J Hou, Shiho Chiba, Peter Halfmann, Camille Ehre, Makoto Kuroda, Kenneth H Dinnon, Sarah R Leist, Alexandra Schäfer, Noriko Nakajima, Kenta Takahashi, Rhianna E Lee, Teresa M Mascenik, Rachel Graham, Caitlin E Edwards, Longping V Tse, Kenichi Okuda, Alena J Markmann, Luther Bartelt, Aravinda de Silva, David M Margolis, Richard C Boucher, Scott H Randell, Tadaki Suzuki, Lisa E Gralinski, Yoshihiro Kawaoka, Ralph S Baric. SARS-CoV-2 D614G variant exhibits efficient replication ex vivo and transmission in vivo. Science (New York, N.Y.). 2020 12; 370(6523):1464-1468. doi: 10.1126/science.abe8499. [PMID: 33184236]
  • Vendula Ficelova, Ivana A Souza, Leos Cmarko, Maria A Gandini, Robin N Stringer, Gerald W Zamponi, Norbert Weiss. Functional identification of potential non-canonical N-glycosylation sites within Cav3.2 T-type calcium channels. Molecular brain. 2020 11; 13(1):149. doi: 10.1186/s13041-020-00697-z. [PMID: 33176830]
  • Yuki Kawasaki, Hirotaka Ariyama, Hajime Motomura, Daisuke Fujinami, Daisuke Noshiro, Toshio Ando, Daisuke Kohda. Two-State Exchange Dynamics in Membrane-Embedded Oligosaccharyltransferase Observed in Real-Time by High-Speed AFM. Journal of molecular biology. 2020 11; 432(22):5951-5965. doi: 10.1016/j.jmb.2020.09.017. [PMID: 33010307]
  • Jordi Mayneris-Perxachs, Josep Puig, Rémy Burcelin, Marc-Emmanuel Dumas, Richard H Barton, Lesley Hoyles, Massimo Federici, José-Manuel Fernández-Real. The APOA1bp-SREBF-NOTCH axis is associated with reduced atherosclerosis risk in morbidly obese patients. Clinical nutrition (Edinburgh, Scotland). 2020 11; 39(11):3408-3418. doi: 10.1016/j.clnu.2020.02.034. [PMID: 32199697]
  • Emanoella Soares, Leonard Shumbe, Nicolas Dauchot, Christine Notté, Claire Prouin, Olivier Maudoux, Hervé Vanderschuren. Asparagine accumulation in chicory storage roots is controlled by translocation and feedback regulation of asparagine biosynthesis in leaves. The New phytologist. 2020 11; 228(3):922-931. doi: 10.1111/nph.16764. [PMID: 32729968]
  • Hui-Huan Luo, Xiao-Fei Feng, Xi-Lin Yang, Rui-Qin Hou, Zhong-Ze Fang. Interactive effects of asparagine and aspartate homeostasis with sex and age for the risk of type 2 diabetes risk. Biology of sex differences. 2020 10; 11(1):58. doi: 10.1186/s13293-020-00328-1. [PMID: 33092635]
  • Shulin Hou, Yulong Zhang, Jinxin Xu, Junping Bai, Jinsong Liu, Jun Xie, Tingting Xu. Residue Asn21 acts as a switch for calcium binding to modulate the enzymatic activity of human phospholipase A2 group IIE. Biochimie. 2020 Sep; 176(?):117-121. doi: 10.1016/j.biochi.2020.07.003. [PMID: 32659444]
  • Cheng-Yu Tsai, Michael S Kilberg, Sohail Z Husain. The role of asparagine synthetase on nutrient metabolism in pancreatic disease. Pancreatology : official journal of the International Association of Pancreatology (IAP) ... [et al.]. 2020 Sep; 20(6):1029-1034. doi: 10.1016/j.pan.2020.08.002. [PMID: 32800652]
  • Lenka Rucká, Natalia Kulik, Petr Novotný, Anastasia Sedova, Lucie Petrásková, Romana Příhodová, Barbora Křístková, Petr Halada, Miroslav Pátek, Ludmila Martínková. Plant Nitrilase Homologues in Fungi: Phylogenetic and Functional Analysis with Focus on Nitrilases in Trametes versicolor and Agaricus bisporus. Molecules (Basel, Switzerland). 2020 Aug; 25(17):. doi: 10.3390/molecules25173861. [PMID: 32854275]
  • Madis Parksepp, Liisa Leppik, Kadri Koch, Kärt Uppin, Raul Kangro, Liina Haring, Eero Vasar, Mihkel Zilmer. Metabolomics approach revealed robust changes in amino acid and biogenic amine signatures in patients with schizophrenia in the early course of the disease. Scientific reports. 2020 08; 10(1):13983. doi: 10.1038/s41598-020-71014-w. [PMID: 32814830]
  • Patrick J Chitwood, Ramanujan S Hegde. An intramembrane chaperone complex facilitates membrane protein biogenesis. Nature. 2020 08; 584(7822):630-634. doi: 10.1038/s41586-020-2624-y. [PMID: 32814900]
  • Faizan Muneer, Muhammad Hussnain Siddique, Farrukh Azeem, Ijaz Rasul, Saima Muzammil, Muhammad Zubair, Muhammad Afzal, Habibullah Nadeem. Microbial L-asparaginase: purification, characterization and applications. Archives of microbiology. 2020 Jul; 202(5):967-981. doi: 10.1007/s00203-020-01814-1. [PMID: 32052094]
  • Jianping Li, Ampon Sae Her, Nathaniel J Traaseth. Site-specific resolution of anionic residues in proteins using solid-state NMR spectroscopy. Journal of biomolecular NMR. 2020 Jul; 74(6-7):355-363. doi: 10.1007/s10858-020-00323-z. [PMID: 32514875]
  • Sarah Raffan, Joseph Oddy, Nigel G Halford. The Sulphur Response in Wheat Grain and Its Implications for Acrylamide Formation and Food Safety. International journal of molecular sciences. 2020 May; 21(11):. doi: 10.3390/ijms21113876. [PMID: 32485924]
  • Robert T Williams, Rohiverth Guarecuco, Leah A Gates, Douglas Barrows, Maria C Passarelli, Bryce Carey, Lou Baudrier, Swarna Jeewajee, Konnor La, Benjamin Prizer, Sohail Malik, Javier Garcia-Bermudez, Xiphias Ge Zhu, Jason Cantor, Henrik Molina, Thomas Carroll, Robert G Roeder, Omar Abdel-Wahab, C David Allis, Kıvanç Birsoy. ZBTB1 Regulates Asparagine Synthesis and Leukemia Cell Response to L-Asparaginase. Cell metabolism. 2020 04; 31(4):852-861.e6. doi: 10.1016/j.cmet.2020.03.008. [PMID: 32268116]
  • Shimba Kawasue, Yohei Sakaguchi, Reiko Koga, Hideyuki Yoshida, Hitoshi Nohta. Assessment method for deamidation in proteins using carboxylic acid derivatization-liquid chromatography-tandem mass spectrometry. Journal of pharmaceutical and biomedical analysis. 2020 Mar; 181(?):113095. doi: 10.1016/j.jpba.2020.113095. [PMID: 31962249]
  • Navid Ghaffari, Mario A Jardon, Natalie Krahn, Michael Butler, Malcolm Kennard, Robin F B Turner, Bhushan Gopaluni, James M Piret. Effects of cysteine, asparagine, or glutamine limitations in Chinese hamster ovary cell batch and fed-batch cultures. Biotechnology progress. 2020 03; 36(2):e2946. doi: 10.1002/btpr.2946. [PMID: 31823468]
  • Gabriel Levin, Bruna Andrade Aguiar Koga, Gustavo Gross Belchior, Ana Claudia Oliveira Carreira, Mari Cleide Sogayar. Production, purification and characterization of recombinant human R-spondin1 (RSPO1) protein stably expressed in human HEK293 cells. BMC biotechnology. 2020 01; 20(1):5. doi: 10.1186/s12896-020-0600-0. [PMID: 31959207]
  • Juan Wu, Changcheng Chen, Shiying Huang, Shuhong Shen, Jing Chen, Shunguo Zhang. Correlation of L-asp Activity, Anti-L-asp Antibody, Asn and Gln With Adverse Events Especially Anaphylaxis Risks in PEG-asp-Contained Regime Treated Pediatric ALL Patients. Technology in cancer research & treatment. 2020 Jan; 19(?):1533033820980113. doi: 10.1177/1533033820980113. [PMID: 33287663]
  • Manrong Yu, Hui Chen, Pan Liu, Mei Yang, Leqin Zou, Dingfu Xiao. Antioxidant Function and Metabolomics Study in Mice after Dietary Supplementation with Methionine. BioMed research international. 2020; 2020(?):9494528. doi: 10.1155/2020/9494528. [PMID: 33145362]
  • Jun Li, Jiawen Xu, Luhan Li, Alessandro Ianni, Poonam Kumari, Shuo Liu, Peiqing Sun, Thomas Braun, Xiaoyue Tan, Rong Xiang, Shijing Yue. MGAT3-mediated glycosylation of tetraspanin CD82 at asparagine 157 suppresses ovarian cancer metastasis by inhibiting the integrin signaling pathway. Theranostics. 2020; 10(14):6467-6482. doi: 10.7150/thno.43865. [PMID: 32483464]
  • Rabiatuladawiyah Ruzmi, Muhammad Saiful Ahmad-Hamdani, Norida Mazlan. Ser-653-Asn substitution in the acetohydroxyacid synthase gene confers resistance in weedy rice to imidazolinone herbicides in Malaysia. PloS one. 2020; 15(9):e0227397. doi: 10.1371/journal.pone.0227397. [PMID: 32925921]
  • Eugenia Marbach-Breitrück, Laura Kutzner, Michael Rothe, Robert Gurke, Yannick Schreiber, Pallu Reddanna, Nils-Helge Schebb, Sabine Stehling, Lothar H Wieler, Dagmar Heydeck, Hartmut Kuhn. Functional Characterization of Knock-In Mice Expressing a 12/15-Lipoxygenating Alox5 Mutant Instead of the 5-Lipoxygenating Wild-Type Enzyme. Antioxidants & redox signaling. 2020 01; 32(1):1-17. doi: 10.1089/ars.2019.7751. [PMID: 31642348]
  • Kang Li, Dehong Wang, Liang Gong, Yuanyuan Lyu, Hao Guo, Wei Chen, Cheng Jin, Xianqing Liu, Chuanying Fang, Jie Luo. Comparative analysis of metabolome of rice seeds at three developmental stages using a recombinant inbred line population. The Plant journal : for cell and molecular biology. 2019 12; 100(5):908-922. doi: 10.1111/tpj.14482. [PMID: 31355982]
  • Courtney A Rieder, Jonathan Rieder, Sebastién Sannajust, Diana Goode, Ramaz Geguchadze, Ryan F Relich, Derek C Molliver, Tamara E King, James Vaughn, Meghan May. A Novel Mechanism for Zika Virus Host-Cell Binding. Viruses. 2019 11; 11(12):. doi: 10.3390/v11121101. [PMID: 31795144]
  • Yuchun Jing, Xiaoping Li, Xinzhong Hu, Zhen Ma, Liu Liu, Xia Ma. Effect of buckwheat extracts on acrylamide formation and the quality of bread. Journal of the science of food and agriculture. 2019 Nov; 99(14):6482-6489. doi: 10.1002/jsfa.9927. [PMID: 31294827]
  • Abdolmajid Ghasemian, Ali-Hussein Al-Marzoqi, Hiba Riyadh Al-Abodi, Yasemin Khudiar Alghanimi, Samah Ahmed Kadhum, Seyyed Khalil Shokouhi Mostafavi, Azam Fattahi. Bacterial l-asparaginases for cancer therapy: Current knowledge and future perspectives. Journal of cellular physiology. 2019 11; 234(11):19271-19279. doi: 10.1002/jcp.28563. [PMID: 30993718]
  • Beyazit Garip, Hakan Kayir. Alteration in NMDAR-related amino acids in first episode psychosis. Synapse (New York, N.Y.). 2019 11; 73(11):e22127. doi: 10.1002/syn.22127. [PMID: 31403728]
  • Yukina Nishito, Taiho Kambe. Zinc transporter 1 (ZNT1) expression on the cell surface is elaborately controlled by cellular zinc levels. The Journal of biological chemistry. 2019 10; 294(43):15686-15697. doi: 10.1074/jbc.ra119.010227. [PMID: 31471319]
  • Chusheng Liu, Peter Bults, Rainer Bischoff, Jacques Crommen, Qiqin Wang, Zhengjin Jiang. Separation of deamidated peptides with mixed-mode chromatography using phospholipid-functionalized monolithic stationary phases. Journal of chromatography. A. 2019 Oct; 1603(?):417-421. doi: 10.1016/j.chroma.2019.05.053. [PMID: 31196587]
  • Carmelo Rizzari, Claudia Lanvers-Kaminsky, Maria Grazia Valsecchi, Andrea Ballerini, Cristina Matteo, Joachim Gerss, Gudrun Wuerthwein, Daniela Silvestri, Antonella Colombini, Valentino Conter, Andrea Biondi, Martin Schrappe, Anja Moericke, Martin Zimmermann, Arend von Stackelberg, Christin Linderkamp, Michael C Frühwald, Sabine Legien, Andishe Attarbaschi, Bettina Reismüller, David Kasper, Petr Smisek, Jan Stary, Luciana Vinti, Elena Barisone, Rosanna Parasole, Concetta Micalizzi, Massimo Zucchetti, Joachim Boos. Asparagine levels in the cerebrospinal fluid of children with acute lymphoblastic leukemia treated with pegylated-asparaginase in the induction phase of the AIEOP-BFM ALL 2009 study. Haematologica. 2019 09; 104(9):1812-1821. doi: 10.3324/haematol.2018.206433. [PMID: 30705097]
  • Ibiye Owei, Nkiru Umekwe, Frankie Stentz, Jim Wan, Samuel Dagogo-Jack. Amino acid signature predictive of incident prediabetes: A case-control study nested within the longitudinal pathobiology of prediabetes in a biracial cohort. Metabolism: clinical and experimental. 2019 09; 98(?):76-83. doi: 10.1016/j.metabol.2019.06.011. [PMID: 31228482]
  • Tanya Y Curtis, Sarah Raffan, Yongfang Wan, Robert King, Asier Gonzalez-Uriarte, Nigel G Halford. Contrasting gene expression patterns in grain of high and low asparagine wheat genotypes in response to sulphur supply. BMC genomics. 2019 Aug; 20(1):628. doi: 10.1186/s12864-019-5991-8. [PMID: 31370780]
  • Reuven J Schore, Meenakshi Devidas, Archie Bleyer, Gregory H Reaman, Naomi Winick, Mignon L Loh, Elizabeth A Raetz, William L Carroll, Stephen P Hunger, Anne L Angiolillo. Plasma asparaginase activity and asparagine depletion in acute lymphoblastic leukemia patients treated with pegaspargase on Children's Oncology Group AALL07P4. Leukemia & lymphoma. 2019 07; 60(7):1740-1748. doi: 10.1080/10428194.2018.1542146. [PMID: 30626253]
  • Huili Yan, Wenxiu Xu, Jianyin Xie, Yiwei Gao, Lulu Wu, Liang Sun, Lu Feng, Xu Chen, Tian Zhang, Changhua Dai, Ting Li, Xiuni Lin, Zhanying Zhang, Xueqiang Wang, Fengmei Li, Xiaoyang Zhu, Jinjie Li, Zichao Li, Caiyan Chen, Mi Ma, Hongliang Zhang, Zhenyan He. Variation of a major facilitator superfamily gene contributes to differential cadmium accumulation between rice subspecies. Nature communications. 2019 06; 10(1):2562. doi: 10.1038/s41467-019-10544-y. [PMID: 31189898]
  • Jūratė Skerniškytė, Emilija Karazijaitė, Julien Deschamps, Renatas Krasauskas, Romain Briandet, Edita Sužiedėlienė. The Mutation of Conservative Asp268 Residue in the Peptidoglycan-Associated Domain of the OmpA Protein Affects Multiple Acinetobacter baumannii Virulence Characteristics. Molecules (Basel, Switzerland). 2019 May; 24(10):. doi: 10.3390/molecules24101972. [PMID: 31121924]
  • Chunpu Qu, Bingqing Hao, Xiuyue Xu, Yuchen Wang, Chengjun Yang, Zhiru Xu, Guanjun Liu. Functional Research on Three Presumed Asparagine Synthetase Family Members in Poplar. Genes. 2019 04; 10(5):. doi: 10.3390/genes10050326. [PMID: 31035411]
  • Sheng-Tao Li, Tian-Tian Lu, Xin-Xin Xu, Yi Ding, Zijie Li, Toshihiko Kitajima, Neta Dean, Ning Wang, Xiao-Dong Gao. Reconstitution of the lipid-linked oligosaccharide pathway for assembly of high-mannose N-glycans. Nature communications. 2019 04; 10(1):1813. doi: 10.1038/s41467-019-09752-3. [PMID: 31000718]
  • Chao Gao, Melinda S Hanes, Lauren A Byrd-Leotis, Mohui Wei, Nan Jia, Robert J Kardish, Tanya R McKitrick, David A Steinhauer, Richard D Cummings. Unique Binding Specificities of Proteins toward Isomeric Asparagine-Linked Glycans. Cell chemical biology. 2019 04; 26(4):535-547.e4. doi: 10.1016/j.chembiol.2019.01.002. [PMID: 30745240]
  • Stine A Mikkelsen, Louise S Mogensen, Bente Vilsen, Robert S Molday, Anna L Vestergaard, Jens Peter Andersen. Asparagine 905 of the mammalian phospholipid flippase ATP8A2 is essential for lipid substrate-induced activation of ATP8A2 dephosphorylation. The Journal of biological chemistry. 2019 04; 294(15):5970-5979. doi: 10.1074/jbc.ra118.007240. [PMID: 30760526]
  • Yangong Liu, Pu Wang, Fangfang Ma, Mingqi Zheng, Gang Liu, Shinichiro Kume, Tatsuki Kurokawa, Katsushige Ono. Asparagine-linked glycosylation modifies voltage-dependent gating properties of CaV3.1-T-type Ca2+ channel. The journal of physiological sciences : JPS. 2019 Mar; 69(2):335-343. doi: 10.1007/s12576-018-0650-4. [PMID: 30600443]
  • Nathaniel Washburn, Robin Meccariello, Jay Duffner, Kristen Getchell, Kimberly Holte, Thomas Prod'homme, Karunya Srinivasan, Robert Prenovitz, Jonathan Lansing, Ishan Capila, Ganesh Kaundinya, Anthony M Manning, Carlos J Bosques. Characterization of Endogenous Human FcγRIII by Mass Spectrometry Reveals Site, Allele and Sequence Specific Glycosylation. Molecular & cellular proteomics : MCP. 2019 03; 18(3):534-545. doi: NULL. [PMID: 30559323]
  • Indre Lapeikaite, Ugne Dragunaite, Vilmantas Pupkis, Osvaldas Ruksenas, Vilma Kisnieriene. Asparagine alters action potential parameters in single plant cell. Protoplasma. 2019 Mar; 256(2):511-519. doi: 10.1007/s00709-018-1315-0. [PMID: 30291442]
  • Ernesto Gonzalez de Valdivia, Caroline Sandén, Robin Kahn, Björn Olde, L M Fredrik Leeb-Lundberg. Human G protein-coupled receptor 30 is N-glycosylated and N-terminal domain asparagine 44 is required for receptor structure and activity. Bioscience reports. 2019 02; 39(2):. doi: 10.1042/bsr20182436. [PMID: 30760632]
  • Ashley N Stewart, Stefanie Y Tan, David J Clark, Hui Zhang, G William Wong. N-Linked Glycosylation-Dependent and -Independent Mechanisms Regulating CTRP12 Cleavage, Secretion, and Stability. Biochemistry. 2019 02; 58(6):727-741. doi: 10.1021/acs.biochem.8b00528. [PMID: 30566828]