Sirolimus (BioDeep_00000230911)
Secondary id: BioDeep_00000002122
human metabolite Endogenous blood metabolite Chemicals and Drugs Antibiotics Volatile Flavor Compounds natural product
代谢物信息卡片
化学式: C51H79NO13 (913.5551124)
中文名称: 雷帕霉素(DMSO溶液), 雷帕霉素
谱图信息:
最多检出来源 Chinese Herbal Medicine(otcml) 11.32%
分子结构信息
SMILES: CC1CCC2CC(C(=CC=CC=CC(CC(C(=O)C(C(C(=CC(C(=O)CC(OC(=O)C3CCCCN3C(=O)C(=O)C1(O2)O)C(C)CC4CCC(C(C4)OC)O)C)C)O)OC)C)C)C)OC
InChI: InChI=1S/C51H79NO13/c1-30-16-12-11-13-17-31(2)42(61-8)28-38-21-19-36(7)51(60,65-38)48(57)49(58)52-23-15-14-18-39(52)50(59)64-43(33(4)26-37-20-22-40(53)44(27-37)62-9)29-41(54)32(3)25-35(6)46(56)47(63-10)45(55)34(5)24-30/h11-13,16-17,25,30,32-34,36-40,42-44,46-47,53,56,60H,14-15,18-24,26-29H2,1-10H3/b13-11+,16-12+,31-17+,35-25+/t30-,32-,33-,34-,36-,37+,38+,39+,40-,42+,43+,44-,46-,47+,51-/m1/s1
描述信息
Sirolimus is a macrolide lactam isolated from Streptomyces hygroscopicus consisting of a 29-membered ring containing 4 trans double bonds, three of which are conjugated. It is an antibiotic, immunosupressive and antineoplastic agent. It has a role as an immunosuppressive agent, an antineoplastic agent, an antibacterial drug, a mTOR inhibitor, a bacterial metabolite, an anticoronaviral agent and a geroprotector. It is a cyclic acetal, a cyclic ketone, an ether, a secondary alcohol, an organic heterotricyclic compound, an antibiotic antifungal drug and a macrolide lactam.
Sirolimus, also known as rapamycin, is a macrocyclic lactone antibiotic produced by bacteria Streptomyces hygroscopicus, which was isolated from the soil of the Vai Atari region of Rapa Nui (Easter Island). It was first isolated and identified as an antifungal agent with potent anticandida activity; however, after its potent antitumor and immunosuppressive activities were later discovered, it was extensively investigated as an immunosuppressive and antitumour agent. Its primary mechanism of action is the inhibition of the mammalian target of rapamycin (mTOR), which is a serine/threonine-specific protein kinase that regulates cell growth, proliferation, and survival. mTOR is an important therapeutic target for various diseases, as it was shown to regulate longevity and maintain normal glucose homeostasis. Targeting mTOR received more attention especially in cancer, as mTOR signalling pathways are constitutively activated in many types of human cancer. Sirolimus was first approved by the FDA in 1999 for the prophylaxis of organ rejection in patients aged 13 years and older receiving renal transplants. In November 2000, the drug was recognized by the European Agency as an alternative to calcineurin antagonists for maintenance therapy with corticosteroids. In May 2015, the FDA approved sirolimus for the treatment of patients with lymphangioleiomyomatosis. In November 2021, albumin-bound sirolimus for intravenous injection was approved by the FDA for the treatment of adults with locally advanced unresectable or metastatic malignant perivascular epithelioid cell tumour (PEComa). Sirolimus was also investigated in other cancers such as skin cancer, Kaposi’s Sarcoma, cutaneous T-cell lymphomas, and tuberous sclerosis. The topical formulation of sirolimus, marketed as HYFTOR, was approved by the FDA in April 2022: this marks the first topical treatment approved in the US for facial angiofibroma associated with tuberous sclerosis complex.
Sirolimus is a mTOR Inhibitor Immunosuppressant and Kinase Inhibitor. The mechanism of action of sirolimus is as a mTOR Inhibitor and Protein Kinase Inhibitor. The physiologic effect of sirolimus is by means of Decreased Immunologic Activity.
Sirolimus is macrocyclic antibiotic with potent immunosuppressive activity that is used alone or in combination with calcineurin inhibitors and corticosteroids to prevent cellular rejection after renal transplantation. Sirolimus therapy can be associated with mild serum enzyme elevations and it has been linked to rare instances of clinically apparent cholestatic liver injury.
Sirolimus is a natural product found in Streptomyces rapamycinicus, Streptomyces hygroscopicus, and other organisms with data available.
Sirolimus is a natural macrocyclic lactone produced by the bacterium Streptomyces hygroscopicus, with immunosuppressant properties. In cells, sirolimus binds to the immunophilin FK Binding Protein-12 (FKBP-12) to generate an immunosuppressive complex that binds to and inhibits the activation of the mammalian Target Of Rapamycin (mTOR), a key regulatory kinase. This results in inhibition of T lymphocyte activation and proliferation that occurs in response to antigenic and cytokine (IL-2, IL-4, and IL-15) stimulation and inhibition of antibody production. (NCI04)
A macrolide compound obtained from Streptomyces hygroscopicus that acts by selectively blocking the transcriptional activation ...
Sirolimus is a macrolide compound obtained from Streptomyces hygroscopicus that acts by selectively blocking the transcriptional activation of cytokines thereby inhibiting cytokine production. It is bioactive only when bound to immunophilins. Sirolimus is a potent immunosuppressant and possesses both antifungal and antineoplastic properties. [PubChem]
A macrolide lactam isolated from Streptomyces hygroscopicus consisting of a 29-membered ring containing 4 trans double bonds, three of which are conjugated. It is an antibiotic, immunosupressive and antineoplastic agent.
L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01E - Protein kinase inhibitors > L01EG - Mammalian target of rapamycin (mtor) kinase inhibitors
L - Antineoplastic and immunomodulating agents > L04 - Immunosuppressants > L04A - Immunosuppressants > L04AA - Selective immunosuppressants
C471 - Enzyme Inhibitor > C1404 - Protein Kinase Inhibitor > C61074 - Serine/Threonine Kinase Inhibitor
COVID info from Guide to PHARMACOLOGY, clinicaltrial, clinicaltrials, clinical trial, clinical trials
D000970 - Antineoplastic Agents > D000903 - Antibiotics, Antineoplastic > D020123 - Sirolimus
C274 - Antineoplastic Agent > C163758 - Targeted Therapy Agent > C2201 - mTOR Inhibitor
D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents
D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents
C784 - Protein Synthesis Inhibitor > C261 - Macrolide Antibiotic
D000890 - Anti-Infective Agents > D000935 - Antifungal Agents
C308 - Immunotherapeutic Agent > C574 - Immunosuppressant
C254 - Anti-Infective Agent > C258 - Antibiotic
S - Sensory organs > S01 - Ophthalmologicals
Corona-virus
Coronavirus
SARS-CoV-2
COVID-19
SARS-CoV
COVID19
SARS2
SARS
Rapamycin (Sirolimus; AY 22989) is a potent and specific mTOR inhibitor with an IC50 of 0.1 nM in HEK293 cells. Rapamycin binds to FKBP12 and specifically acts as an allosteric inhibitor of mTORC1[1]. Rapamycin is an autophagy activator, an immunosuppressant[2].
Rapamycin (Sirolimus; AY 22989) is a potent and specific mTOR inhibitor with an IC50 of 0.1 nM in HEK293 cells. Rapamycin binds to FKBP12 and specifically acts as an allosteric inhibitor of mTORC1[1]. Rapamycin is an autophagy activator, an immunosuppressant[2].
Rapamycin (Sirolimus; AY 22989) is a potent and specific mTOR inhibitor with an IC50 of 0.1 nM in HEK293 cells. Rapamycin binds to FKBP12 and specifically acts as an allosteric inhibitor of mTORC1[1]. Rapamycin is an autophagy activator, an immunosuppressant[2].
同义名列表
78 个代谢物同义名
(3S,6R,7E,9R,10R,12R,14S,15E,17E,19E,21S,23S,26R,27R,34aS)-9,27-dihydroxy-3-{(1R)-2-[(1S,3R,4R)-4-hydroxy-3-(methyloxy)cyclohexyl]-1-methylethyl}-6,8,12,14,20,26-hexamethyl-10,21-bis(methyloxy)-9,10,12,13,14,21,22,23,24,25,26,27,32,33,34,34a-hexadecahydro-3H-23,27-epoxypyrido[2,1-c][1,4]oxazacyclohentriacontine-1,5,11,28,29(6H,31H)-pentone; (3S,6R,7E,9R,10R,12R,14S,15E,17E,19E,21S,23S,26R,27R,34aS)-4,9,10,12,13,14,21,22,23,24,25,26,27,32,33,34,34a-heptadecahydro-9,27-dihydroxy-3-[(1R)-2-[(1S,3,4R)-4-hydroxy-3-methoxycyclohexyl]-1-methylethyl]-10,21-dimethoxy-6,8,12,14,20,26-hexamethyl-223,27-Epoxy-3H-pyrido[2,1-c][1,4]oxaazacyclohentriacontine-1,5,11,28,29(6H,31H)-pentone; (3S,6R,7E,9R,10R,12R,14S,15E,17E,19E,21S,23S,26R,27R,34aS)-9,10,12,13,14,21,22,23,24,25,26,27,32,33,34,34a-Hexadecahydro-9,27-dihydroxy-3-((1R)-2-((1S,3R,4R)-4-hydroxy-3-methoxycyclohexyl)-1-methylethyl)-10,21-dimethoxy-6,8,12,14,20,26-hexamethyl-23,27-epoxy-3H-pyrido(2,1-c)(1,4)oxaazacyclohentriacontine-1,5,11,28,29(4H,6H,31H)-pentone; (3S,6R,7E,9R,10R,12R,14S,15E,17E,19E,21S,23S,26R,27R,34aS)-9,10,12,13,14,21,22,23,24,25,26,27,32,33,34,34a-Hexadecahydro-9,27-dihydroxy-3-[(1R)-2-[(1S,3R,4R)-4-hydroxy-3-methoxycyclohexyl]-1-methylethyl]-10,21-dimethoxy-6,8,12,14,20,26-hexamethyl-23,27-epoxy-3H-pyrido[2,1-c][1,4]oxaazacyclohentriacontine-1,5,11,28,29(4H,6H,31H)-pentone; (3S,6R,7E,9R,10R,12R,14S,15E,17E,19E,21S,23S,26R,27R,34aS)-9,27-dihydroxy-3-{(1R)-2-[(1S,3R,4R)-4-hydroxy-3-methoxycyclohexyl]-1-methylethyl}-10,21-dimethoxy-6,8,12,14,20,26-hexamethyl-9,10,12,13,14,21,22,23,24,25,26,27,32,33,34,34a-hexadecahydro-3H-23,27-epoxypyrido[2,1-c][1,4]oxazacyclohentriacontine-1,5,11,28,29(4H,6H,31H)-pentone; (3S,6R,7E,9R,10R,12R,14S,15E,17E,19E,21S,23S,26R,27R,34aS)-9,27-dihydroxy-3-((2R)-1-((1S,3R,4R)-4-hydroxy-3-methoxycyclohexyl)propan-2-yl)-10,21-dimethoxy-6,8,12,14,20,26-hexamethyl-9,10,12,13,14,21,22,23,24,25,26,27,32,33,34,34a-hexadecahydro-3H-23,27-epoxypyrido(2,1-c)(1,4)oxazacyclohentriacontine-1,5,11,28,29(4H,6H,31H)-pentone; (3S,6R,7E,9R,10R,12R,14S,15E,17E,19E,21S,23S,26R,27R,34aS)-9,27-dihydroxy-3-{(2R)-1-[(1S,3R,4R)-4-hydroxy-3-methoxycyclohexyl]propan-2-yl}-10,21-dimethoxy-6,8,12,14,20,26-hexamethyl-9,10,12,13,14,21,22,23,24,25,26,27,32,33,34,34a-hexadecahydro-3H-23,27-epoxypyrido[2,1-c][1,4]oxazacyclohentriacontine-1,5,11,28,29(4H,6H,31H)-pentone; (1R,9S,12S,15R,16E,18R,19R,21R,23S,24E,26E,28E,30S,32S,35R)-1,18-Dihydroxy-12-((1R)-2-((1S,3R,4R)-4-hydroxy-3-methoxycyclohexyl)-1-methylethyl)-19,30-dimethoxy-15,17,21,23,29,35-hexamethyl-11,36-dioxa-4-azatricyclo(30.3.1.04,9)hexatriaconta-16,24,26,28-tetraene-2,3,10,14,20-pentaone; (1R,9S,12S,15R,16E,18R,19R,21R,23S,24E,26E,28E,30S,32S,35R)-1,18-dihydroxy-12-[(2R)-1-[(1S,3R,4R)-4-hydroxy-3-methoxycyclohexyl]propan-2-yl]-19,30-dimethoxy-15,17,21,23,29,35-hexamethyl-11,36-dioxa-4-azatricyclo[30.3.1.0^{4,9}]hexatriaconta-16,24,26,28-tetraene-2,3,10,14,20-pentone; (1R,9S,12S,15R,16E,18R,19R,21R,23S,24E,26E,28E,30S,32S,35R)-1,18-dihydroxy-12-{(2S)-1-[(1S,3R,4R)-4-hydroxy-3-methoxycyclohexyl]propan-2-yl}-19,30-dimethoxy-15,17,21,23,29,35-hexamethyl-11,36-dioxa-4-azatricyclo[30.3.1.0(4,9)]hexatriaconta-16,24,26,28-tetraene-2,3,10,14,20-pentone; (1R,9S,12S,15R,16E,18R,19R,21R,23S,24E,26E,28E,30S,32S,35R)-1,18-dihydroxy-12-((2S)-1-((1S,3R,4R)-4-hydroxy-3-methoxycyclohexyl)propan-2-yl)-19,30-dimethoxy-15,17,21,23,29,35-hexamethyl-11,36-dioxa-4-azatricyclo(30.3.1.0(4,9))hexatriaconta-16,24,26,28-tetraene-2,3,10,14,20-pentone; (1R,9S,12S,15R,16E,18R,19R,21R,23S,24E,26E,28E,30S,32S,35R)-1,18-Dihydroxy-12-{(2S)-1-[(1S,3R,4R)-4-hydroxy-3-methoxycyclohexyl]propan-2-yl}-19,30-dimethoxy-15,17,21,23,29,35-hexamethyl-11,36-dioxa-4-azatricyclo[30.3.1.04,9]hexatriaconta-16,24,26,28-tetraene-2,3,10,14,20-pentone; (3S,6R,7E,9R,10R,12R,14S,15E,17E,19E,21S,23S,26R,27R,34 aS)-9,10,12,13,14,21,22,23,24,25,26,27,32,33,34,34a-Hex adecahydro-9,27-dihydroxy-3-[(1R)-2-[(1S,3R,4R)-4-hydro xy-3-methoxycyclohexyl]-1-methylethyl]-10,21-dimethoxy- 6,8,12,14,20,26-hexamethyl-23,27-ep; 9,10,12,13,14,21,22,23,24,25,26,27,32,33,34,34a-Hexadecahydro-9,27-dihydroxy-3-((1R)-2-((1S,3R,4R)-4-hydroxy-3-methoxycyclohexyl)-1-methylethyl)-10,21-dimethoxy-6,8,12,14,20,26-hexamethyl-23,27-epoxy-3H-pyrido(2,1-c)(1,4)oxaazacyclohentriacontine-1,5,11,2; (3S,6R,7E,9R,10R,12R,14S,15E,17E,19E,21S,23S,26R,27R,34aS)-9,27-dihydroxy-3-{(1R)-2-[(1S,3R,4R)-4-hydroxy-3-(methyloxy)cyclohexyl]-1-methylethyl}-6,8,12,14,20,26-hexamethyl-10,21-bis(methyloxy)-9,10,12,13,14,21,22,23,24,25,26,27,32,33,34,34a-hexadecahydro; 1,18-Dihydroxy-12-[2-(4-hydroxy-3-methoxy-cyclohexyl)-1-methyl-ethyl]-19,30-dimethoxy-15,17,21,23,29,35-hexamethyl-11,36-dioxa-4-aza-tricyclo[30.3.1.0*4,9*]hexatriaconta-16,24,26,28-tetraene-2,3,10,14,20-pentaone (Rapamycin); (3 S ,6 R ,7 E ,9 R ,10 R ,12 R ,14 S ,15 E ,17 E , 19 E ,21 S ,23 S ,26 R ,27 R ,34a S )-9,10,12,13,14,21,22,23,24,25,26,27,32,33,34, 34a-hexadecahydro-9,27-dihydroxy-3-; Rapamycin from Streptomyces hygroscopicus, Vetec(TM) reagent grade, >=95\\%; Rapamycin from Streptomyces hygroscopicus, >=95\\% (HPLC), powder; Rapamycin, VETRANAL(TM), analytical standard; Fyarro (sirolimus albumin-bound particles); Rapamycin from Streptomyces hygroscopicus; EVEROLIMUS IMPURITY A [EP IMPURITY]; EVEROLIMUS IMPURITY A (EP IMPURITY); NAB-RAPAMYCIN COMPONENT RAPAMYCIN; Rapamycin Immunosuppressant Drug; Rapamycin,Sirolimus,Rapamune; QFJCIRLUMZQUOT-HPLJOQBZSA-N; SM-88 COMPONENT SIROLIMUS; Sirolimus [USAN:INN:BAN]; Human Blood - Sirolimus; SIROLIMUS [ORANGE BOOK]; Rapamycin (Sirolimus); SIROLIMUS [EMA EPAR]; Antibiotic ay 22989; Rapamycin/Sirolimus; SIROLIMUS [USP-RS]; SIROLIMUS [WHO-DD]; SIROLIMUS (USP-RS); SIROLIMUS (MART.); SIROLIMUS [VANDF]; SIROLIMUS [MART.]; SIROLIMUS [USAN]; BiomolKI2_000084; SIROLIMUS [HSDB]; SIROLIMUS [INN]; UNII-W36ZG6FT64; SIROLIMUS [JAN]; Rapamycin (GMP); RAPAMYCIN [MI]; Rapamycin (TN); (-)-Rapamycin; sirolimusum; Supralimus; W36ZG6FT64; Rapamycin; AY 22 989; Rapammune; AY 22-989; rapalimus; Sirolimus; Rapamysin; Rapamune; LCP-Siro; Perceiva; L04AA10; Npc-12g; S01XA23; HYFTOR; FYARRO; Cypher; RAPA; 1pbk; 1fkb; RAP; RPM; AY-22989; Sirolimus
数据库引用编号
22 个数据库交叉引用编号
- ChEBI: CHEBI:9168
- KEGG: C07909
- PubChem: 5497196
- PubChem: 5284616
- HMDB: HMDB0015015
- DrugBank: DB00877
- Wikipedia: Rapamycin
- Wikipedia: Sirolimus
- LipidMAPS: LMPK06000003
- MeSH: Sirolimus
- ChemIDplus: 0053123889
- KNApSAcK: C00018055
- chemspider: 10482078
- CAS: 53123-88-9
- MetaboLights: MTBLC9168
- PubChem: 10111
- PDB-CCD: RAP
- 3DMET: B02141
- NIKKAJI: J137.896A
- medchemexpress: HY-10219
- KNApSAcK: 9168
- LOTUS: LTS0107850
分类词条
相关代谢途径
Reactome(0)
BioCyc(0)
PlantCyc(0)
代谢反应
0 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(0)
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
85 个相关的物种来源信息
- 7458 - Apidae: LTS0107850
- 7459 - Apis: LTS0107850
- 7461 - Apis cerana: 10.1371/JOURNAL.PONE.0175573
- 7461 - Apis cerana: LTS0107850
- 6656 - Arthropoda: LTS0107850
- 2 - Bacteria: LTS0107850
- 2759 - Eukaryota: LTS0107850
- 9606 - Homo sapiens: -
- 50557 - Insecta: LTS0107850
- 33208 - Metazoa: LTS0107850
- 1883 - Streptomyces: 10.1007/BF01573954
- 1883 - Streptomyces: 10.1007/S00253-011-3348-6
- 1883 - Streptomyces: 10.1007/S00449-013-1051-Y
- 1883 - Streptomyces: 10.1016/0378-1119(95)00799-7
- 1883 - Streptomyces: 10.1016/B978-0-12-404634-4.00017-6
- 1883 - Streptomyces: 10.1016/J.JBIOSC.2013.03.011
- 1883 - Streptomyces: 10.1016/S0006-291X(03)01231-2
- 1883 - Streptomyces: 10.1016/S0378-1119(97)00450-2
- 1883 - Streptomyces: 10.1038/SJ.JIM.2900434
- 1883 - Streptomyces: 10.1074/JBC.RA118.005314
- 1883 - Streptomyces: 10.1099/13500872-142-10-2815
- 1883 - Streptomyces: 10.1099/13500872-145-8-1989
- 1883 - Streptomyces: 10.1099/MIC.0.28194-0
- 1883 - Streptomyces: 10.1111/J.1432-1033.1997.00526.X
- 1883 - Streptomyces: 10.1128/GENOMEA.00616-14
- 1883 - Streptomyces: 10.4014/JMB.1403.03024
- 1883 - Streptomyces: LTS0107850
- 1912 - Streptomyces hygroscopicus:
- 1912 - Streptomyces hygroscopicus: 10.1007/BF01573954
- 1912 - Streptomyces hygroscopicus: 10.1007/S00253-011-3348-6
- 1912 - Streptomyces hygroscopicus: 10.1007/S00449-013-1051-Y
- 1912 - Streptomyces hygroscopicus: 10.1016/0378-1119(95)00799-7
- 1912 - Streptomyces hygroscopicus: 10.1016/B978-0-12-404634-4.00017-6
- 1912 - Streptomyces hygroscopicus: 10.1016/J.JBIOSC.2013.03.011
- 1912 - Streptomyces hygroscopicus: 10.1016/S0006-291X(03)01231-2
- 1912 - Streptomyces hygroscopicus: 10.1016/S0378-1119(97)00450-2
- 1912 - Streptomyces hygroscopicus: 10.1021/NP50073A015
- 1912 - Streptomyces hygroscopicus: 10.1038/SJ.JIM.2900434
- 1912 - Streptomyces hygroscopicus: 10.1074/JBC.RA118.005314
- 1912 - Streptomyces hygroscopicus: 10.1099/13500872-142-10-2815
- 1912 - Streptomyces hygroscopicus: 10.1099/13500872-145-8-1989
- 1912 - Streptomyces hygroscopicus: 10.1099/MIC.0.28194-0
- 1912 - Streptomyces hygroscopicus: 10.1111/J.1432-1033.1997.00526.X
- 1912 - Streptomyces hygroscopicus: 10.1128/GENOMEA.00616-14
- 1912 - Streptomyces hygroscopicus: 10.4014/JMB.1403.03024
- 1912 - Streptomyces hygroscopicus: 10.7164/ANTIBIOTICS.28.727
- 1912 - Streptomyces hygroscopicus: LTS0107850
- 132248 - Streptomyces hygroscopicus subsp. ascomyceticus: 10.1007/BF01573954
- 132248 - Streptomyces hygroscopicus subsp. ascomyceticus: 10.1007/S00253-011-3348-6
- 132248 - Streptomyces hygroscopicus subsp. ascomyceticus: 10.1007/S00449-013-1051-Y
- 132248 - Streptomyces hygroscopicus subsp. ascomyceticus: 10.1016/0378-1119(95)00799-7
- 132248 - Streptomyces hygroscopicus subsp. ascomyceticus: 10.1016/B978-0-12-404634-4.00017-6
- 132248 - Streptomyces hygroscopicus subsp. ascomyceticus: 10.1016/J.JBIOSC.2013.03.011
- 132248 - Streptomyces hygroscopicus subsp. ascomyceticus: 10.1016/S0006-291X(03)01231-2
- 132248 - Streptomyces hygroscopicus subsp. ascomyceticus: 10.1016/S0378-1119(97)00450-2
- 132248 - Streptomyces hygroscopicus subsp. ascomyceticus: 10.1038/SJ.JIM.2900434
- 132248 - Streptomyces hygroscopicus subsp. ascomyceticus: 10.1074/JBC.RA118.005314
- 132248 - Streptomyces hygroscopicus subsp. ascomyceticus: 10.1099/13500872-142-10-2815
- 132248 - Streptomyces hygroscopicus subsp. ascomyceticus: 10.1099/13500872-145-8-1989
- 132248 - Streptomyces hygroscopicus subsp. ascomyceticus: 10.1099/MIC.0.28194-0
- 132248 - Streptomyces hygroscopicus subsp. ascomyceticus: 10.1111/J.1432-1033.1997.00526.X
- 132248 - Streptomyces hygroscopicus subsp. ascomyceticus: 10.1128/GENOMEA.00616-14
- 132248 - Streptomyces hygroscopicus subsp. ascomyceticus: 10.4014/JMB.1403.03024
- 132248 - Streptomyces hygroscopicus subsp. ascomyceticus: LTS0107850
- 576784 - Streptomyces iranensis:
- 576784 - Streptomyces iranensis: 10.1007/BF01573954
- 576784 - Streptomyces iranensis: 10.1007/S00253-011-3348-6
- 576784 - Streptomyces iranensis: 10.1007/S00449-013-1051-Y
- 576784 - Streptomyces iranensis: 10.1016/0378-1119(95)00799-7
- 576784 - Streptomyces iranensis: 10.1016/B978-0-12-404634-4.00017-6
- 576784 - Streptomyces iranensis: 10.1016/J.JBIOSC.2013.03.011
- 576784 - Streptomyces iranensis: 10.1016/S0006-291X(03)01231-2
- 576784 - Streptomyces iranensis: 10.1016/S0378-1119(97)00450-2
- 576784 - Streptomyces iranensis: 10.1038/SJ.JIM.2900434
- 576784 - Streptomyces iranensis: 10.1074/JBC.RA118.005314
- 576784 - Streptomyces iranensis: 10.1099/13500872-142-10-2815
- 576784 - Streptomyces iranensis: 10.1099/13500872-145-8-1989
- 576784 - Streptomyces iranensis: 10.1099/MIC.0.28194-0
- 576784 - Streptomyces iranensis: 10.1111/J.1432-1033.1997.00526.X
- 576784 - Streptomyces iranensis: 10.1128/GENOMEA.00616-14
- 576784 - Streptomyces iranensis: 10.4014/JMB.1403.03024
- 576784 - Streptomyces iranensis: LTS0107850
- 1226757 - Streptomyces rapamycinicus:
- 1226757 - Streptomyces rapamycinicus: LTS0107850
- 2062 - Streptomycetaceae: LTS0107850
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Xiaodan Chen, Faranak Bahramimehr, Nasim Shahhamzehei, Huangjie Fu, Siyi Lin, Hanxiao Wang, Changyu Li, Thomas Efferth, Chunlan Hong. Anti-aging effects of medicinal plants and their rapid screening using the nematode Caenorhabditis elegans.
Phytomedicine : international journal of phytotherapy and phytopharmacology.
2024 Jul; 129(?):155665. doi:
10.1016/j.phymed.2024.155665
. [PMID: 38768535] - Cheng-Wen He, Chunlian Qin, Yi Zhang, Yan Zhang, Kaiqiang Li, Yuqun Cai, Wei Zhang, Ning Hu, Zhen Wang. A cardiomyocyte-based biosensing platform for dynamic and quantitative investigation of excessive autophagy.
Biosensors & bioelectronics.
2024 May; 251(?):116113. doi:
10.1016/j.bios.2024.116113
. [PMID: 38364328] - Yung-Shun Su, Ming-Jen Cheng, Aij-Lie Kwan, Shu-Ping Huang, Yu-Chang Tyan, Chee-Yin Chai, Bin Huang. The crude extract obtained from Cinnamomum macrostemon Hayata regulates oxidative stress and mitophagy in keratinocytes.
Bioscience, biotechnology, and biochemistry.
2024 Apr; 88(5):529-537. doi:
10.1093/bbb/zbae022
. [PMID: 38509025] - Yuanhao Zhao, Xiaoyan Chen, Penghui He, Xuanyu Wang, Yanhua Xu, Rui Hu, Yangsen Ou, Zhihua Zhang, Zhibing Zhang, Guangsheng Du, Xun Sun. Transdermal Microneedles Alleviated Rheumatoid Arthritis by Inducing Immune Tolerance via Skin-Resident Antigen Presenting Cells.
Small (Weinheim an der Bergstrasse, Germany).
2024 Apr; 20(16):e2307366. doi:
10.1002/smll.202307366
. [PMID: 38039446] - Jie Dong, Qian Xu, Chenxi Qian, Lu Wang, Alison DiSciullo, Jun Lei, Hui Lei, Song Yan, Jingjing Wang, Ni Jin, Yujing Xiong, Jianhua Zhang, Irina Burd, Xiaohong Wang. Fetal growth restriction exhibits various mTOR signaling in different regions of mouse placentas with altered lipid metabolism.
Cell biology and toxicology.
2024 03; 40(1):15. doi:
10.1007/s10565-024-09855-8
. [PMID: 38451382] - Liping Feng, Meixia Dong, Zhirui Huang, Qian Wang, Bang An, Chaozu He, Qiannan Wang, Hongli Luo. CgCFEM1 Is Required for the Full Virulence of Colletotrichum gloeosporioides.
International journal of molecular sciences.
2024 Mar; 25(5):. doi:
10.3390/ijms25052937
. [PMID: 38474183] - Yulin Yang, Shushu Wang, Chunxiang Sheng, Jialin Tan, Junmin Chen, Tianjiao Li, Xiaoqin Ma, Haipeng Sun, Xiao Wang, Libin Zhou. Branched-chain amino acid catabolic defect promotes α-cell proliferation via activating mTOR signaling.
Molecular and cellular endocrinology.
2024 Mar; 582(?):112143. doi:
10.1016/j.mce.2023.112143
. [PMID: 38158148] - Maria Juliana Calderan-Rodrigues, Camila Caldana. Impact of the TOR pathway on plant growth via cell wall remodeling.
Journal of plant physiology.
2024 Mar; 294(?):154202. doi:
10.1016/j.jplph.2024.154202
. [PMID: 38422631] - Yi Liu, Qian Huang, Mengyun He, Tingting Chen, Xia Chu. A nano-bioconjugate modified with anti-SIRPα antibodies and antisense oligonucleotides of mTOR for anti-atherosclerosis therapy.
Acta biomaterialia.
2024 Mar; 176(?):356-366. doi:
10.1016/j.actbio.2023.12.031
. [PMID: 38160854] - María Victoria Canal, Natanael Mansilla, Diana E Gras, Agustín Ibarra, Carlos M Figueroa, Daniel H Gonzalez, Elina Welchen. Cytochrome c levels affect the TOR pathway to regulate growth and metabolism under energy-deficient conditions.
The New phytologist.
2024 Mar; 241(5):2039-2058. doi:
10.1111/nph.19506
. [PMID: 38191763] - Md Torikul Islam, Shelby A Hall, Tavia Dutson, Samuel I Bloom, R Colton Bramwell, John Kim, Jordan R Tucker, Daniel R Machin, Anthony J Donato, Lisa A Lesniewski. Endothelial cell-specific reduction in mTOR ameliorates age-related arterial and metabolic dysfunction.
Aging cell.
2024 Feb; 23(2):e14040. doi:
10.1111/acel.14040
. [PMID: 38017701] - Iftah Marash, Rupali Gupta, Gautam Anand, Meirav Leibman-Markus, Naomi Lindner, Alon Israeli, Dov Nir, Adi Avni, Maya Bar. TOR coordinates cytokinin and gibberellin signals mediating development and defense.
Plant, cell & environment.
2024 Feb; 47(2):629-650. doi:
10.1111/pce.14748
. [PMID: 37904283] - Jialong Yang, Jiapeng Deng, Kaitao Wang, An Wang, Guodong Chen, Qingyu Chen, Minle Ye, Xinyu Wu, Xinye Wang, Dingsheng Lin. Tetrahydropalmatine promotes random skin flap survival in rats via the PI3K/AKT signaling pathway.
Journal of ethnopharmacology.
2024 Jan; 324(?):117808. doi:
10.1016/j.jep.2024.117808
. [PMID: 38280663] - Yang Kong, Xiangrong Li, Huanle Zhang, Bin Fu, Hua-Ye Jiang, Hui-Lin Yang, Jin Dai. Targeting POLRMT by a first-in-class inhibitor IMT1 inhibits osteosarcoma cell growth in vitro and in vivo.
Cell death & disease.
2024 01; 15(1):57. doi:
10.1038/s41419-024-06444-9
. [PMID: 38228583] - Emanuela Fabiola Craparo, Marta Cabibbo, Cinzia Scialabba, Luca Casula, Francesco Lai, Gennara Cavallaro. Rapamycin-based inhaled therapy for potential treatment of COPD-related inflammation: production and characterization of aerosolizable nano into micro (NiM) particles.
Biomaterials science.
2024 Jan; 12(2):387-401. doi:
10.1039/d3bm01210g
. [PMID: 37997957] - Jianyang Bai, Zhangqi Zuo, Haonan DuanMu, Meizhen Li, Haojie Tong, Yang Mei, Yiqi Xiao, Kang He, Mingxing Jiang, Shuping Wang, Fei Li. Endosymbiont Tremblaya phenacola influences the reproduction of cotton mealybugs by regulating the mechanistic target of rapamycin pathway.
The ISME journal.
2024 Jan; 18(1):. doi:
10.1093/ismejo/wrae052
. [PMID: 38519099] - Leonel E Lopez, Javier Martinez Pacheco, José M Estevez. The exception to the rule? TORC1 triggers growth under low nutrient environments.
Trends in plant science.
2024 01; 29(1):13-15. doi:
10.1016/j.tplants.2023.10.001
. [PMID: 37848359] - Jie Cai, Danni Xie, Fanjing Kong, Zhenwei Zhai, Zhishan Zhu, Yanru Zhao, Ying Xu, Tao Sun. Effect and Mechanism of Rapamycin on Cognitive Deficits in Animal Models of Alzheimer's Disease: A Systematic Review and Meta-analysis of Preclinical Studies.
Journal of Alzheimer's disease : JAD.
2024; 99(1):53-84. doi:
10.3233/jad-231249
. [PMID: 38640155] - B Li, Y Wang, F Hou, J DU, X Tong. [Rapamycin enhances inhibitory effect of RSL3 on proliferation, invasion and migration of testicular cancer I-10 cells in vitro].
Nan fang yi ke da xue xue bao = Journal of Southern Medical University.
2023 Dec; 43(12):2145-2151. doi:
10.12122/j.issn.1673-4254.2023.12.21
. [PMID: 38189403] - Yuting Yin, Chun Wu, Yufeng Zhou, Meiyin Zhang, Shijuan Mai, Minshan Chen, Hui-Yun Wang. Ezetimibe Induces Paraptosis through Niemann-Pick C1-like 1 Inhibition of Mammalian-Target-of-Rapamycin Signaling in Hepatocellular Carcinoma Cells.
Genes.
2023 Dec; 15(1):. doi:
10.3390/genes15010004
. [PMID: 38275586] - Don Luu, Tariq Shah, Prashant Sakharkar, David I Min. Genetic variations in a Sestrin2/Sestrin3/mTOR Axis and development of new-onset diabetes after kidney transplantation.
Transplant immunology.
2023 12; 81(?):101947. doi:
10.1016/j.trim.2023.101947
. [PMID: 37918578] - Romain Perdoux, Adam Barrada, Manal Boulaiz, Camille Garau, Clément Belbachir, Cécile Lecampion, Marie-Hélène Montané, Benoît Menand. A drug-resistant mutation in plant target of rapamycin validates the specificity of ATP-competitive TOR inhibitors in vivo.
The Plant journal : for cell and molecular biology.
2023 Nov; ?(?):. doi:
10.1111/tpj.16564
. [PMID: 38011587] - Chenglong Ji, Jingya Zhou, Daoyong Yang, Bowen Yuan, Rongxia Tang, Yong Liu, Dehui Xi. ATG8f Interacts with Chilli Veinal Mottle Virus 6K2 Protein to Limit Virus Infection.
Viruses.
2023 Nov; 15(12):. doi:
10.3390/v15122324
. [PMID: 38140565] - Sang-Min Kim, Dong Yeol Kim, Jiwon Park, Young-Ah Moon, Inn-Oc Han. Glucosamine increases macrophage lipid accumulation by regulating the mammalian target of rapamycin signaling pathway.
BMB reports.
2023 Nov; ?(?):. doi:
. [PMID: 37964636]
- Wu Xiong, Xue Bai, Xi Zhang, Huajuan Lei, Hui Xiao, Luyao Zhang, Yuting Xiao, Qianpei Yang, Xiaoling Zou. Endothelial Progenitor-Cell-Derived Exosomes Induced by Astragaloside IV Accelerate Type I Diabetic-wound Healing via the PI3K/AKT/mTOR Pathway in Rats.
Frontiers in bioscience (Landmark edition).
2023 Nov; 28(11):282. doi:
10.31083/j.fbl2811282
. [PMID: 38062822] - Iara Bastos de Andrade, Vinicius Alves, Luiza Pereira, Bruna Miranda, Dario Corrêa-Junior, Maria Helena Galdino Figueiredo-Carvalho, Marcos Vinicius Santos, Rodrigo Almeida-Paes, Susana Frases. Effect of rapamycin on Cryptococcus neoformans: cellular organization, biophysics and virulence factors.
Future microbiology.
2023 11; 18(?):1061-1075. doi:
10.2217/fmb-2023-0097
. [PMID: 37721517] - Ya-Fei Deng, Shu-Ting Wu, Hong-Yan Peng, Lei Tian, Ya-Na Li, Yao Yang, Meng Meng, Lan-Lan Huang, Pei-Wen Xiong, Song-Yang Li, Qing-Lan Yang, Li-Li Wang, Xiao-Yao Li, Li-Ping Li, Xiu-Lan Lu, Xiao-Hui Li, Yan-Ling Wei, Zheng-Hui Xiao, Jian-Hua Yu, You-Cai Deng. mTORC2 acts as a gatekeeper for mTORC1 deficiency-mediated impairments in ILC3 development.
Acta pharmacologica Sinica.
2023 Nov; 44(11):2243-2252. doi:
10.1038/s41401-023-01120-8
. [PMID: 37407703] - Yanjie Li, Wang Liu, Ruoyu Zhao, Yuanyuan An, Mingzhu Zhang, Xiaobin Ren, Hongbing He. Yunnan Baiyao Inhibits Periodontitis by Suppressing the Autophagic Flux.
International dental journal.
2023 Oct; ?(?):. doi:
10.1016/j.identj.2023.09.005
. [PMID: 37852809] - Xiaodan Ren, Ying Dai, Mengya Shan, Jing Zheng, Zhongyi Zhang, Tao Shen. Astragalus polysaccharide restores insulin secretion impaired by lipopolysaccharides through the protein kinase B /mammalian target of rapamycin/glucose transporter 2 pathway.
BMC complementary medicine and therapies.
2023 Oct; 23(1):358. doi:
10.1186/s12906-023-04188-1
. [PMID: 37817130] - Vivek Panwar, Aishwarya Singh, Manini Bhatt, Rajiv K Tonk, Shavkatjon Azizov, Agha Saquib Raza, Shinjinee Sengupta, Deepak Kumar, Manoj Garg. Multifaceted role of mTOR (mammalian target of rapamycin) signaling pathway in human health and disease.
Signal transduction and targeted therapy.
2023 10; 8(1):375. doi:
10.1038/s41392-023-01608-z
. [PMID: 37779156] - Shuangdi Duan, Nong Qin, Jiayi Pi, Pei Sun, Yating Gao, Lamei Liu, Zenghui Li, Ya Li, Liyang Shi, Qiang Gao, Ye Qiu, Songqing Tang, Chun-Hsiang Wang, Tzu-Ying Chen, Sin-Tian Wang, Kung-Chia Young, Hung-Yu Sun. Antagonizing apolipoprotein J chaperone promotes proteasomal degradation of mTOR and relieves hepatic lipid deposition.
Hepatology (Baltimore, Md.).
2023 10; 78(4):1182-1199. doi:
10.1097/hep.0000000000000185
. [PMID: 37013405] - Qin Zhao, Hong Su, Wei Jiang, Haodong Luo, Lu Pan, Yuan Liu, Ce Yang, Ying Yin, Lehua Yu, Botao Tan. IGF-1 Combined with OPN Promotes Neuronal Axon Growth in Vitro Through the IGF-1R/Akt/mTOR Signaling Pathway in Lipid Rafts.
Neurochemical research.
2023 Oct; 48(10):3190-3201. doi:
10.1007/s11064-023-03971-3
. [PMID: 37395917] - Jennifer Saile, Theresa Wießner-Kroh, Katarina Erbstein, Dominik M Obermüller, Anne Pfeiffer, Denis Janocha, Jan Lohmann, Andreas Wachter. SNF1-RELATED KINASE 1 and TARGET OF RAPAMYCIN control light-responsive splicing events and developmental characteristics in etiolated Arabidopsis seedlings.
The Plant cell.
2023 09; 35(9):3413-3428. doi:
10.1093/plcell/koad168
. [PMID: 37338062] - Thomas J Wert, Stephanie Heeney, Maddy Morrison. Conversion between sirolimus and everolimus in heart transplant recipients.
Clinical transplantation.
2023 Aug; ?(?):e15102. doi:
10.1111/ctr.15102
. [PMID: 37589884] - Yihan Dong, Ola Srour, Nina Lukhovitskaya, Joelle Makarian, Nicolas Baumberger, Oxana Galzitskaya, David Elser, Mikhail Schepetilnikov, Lyubov A Ryabova. Functional analogs of mammalian 4E-BPs reveal a role for TOR in global plant translation.
Cell reports.
2023 Jul; 42(8):112892. doi:
10.1016/j.celrep.2023.112892
. [PMID: 37516965] - A R Tornero-Écija, M A Navas, S Muñoz-Braceras, O Vincent, R Escalante. Effect of rapamycin on lysosomal accumulation in a CRISPR/Cas9-based cellular model of VPS13A deficiency.
Journal of cellular and molecular medicine.
2023 May; ?(?):. doi:
10.1111/jcmm.17768
. [PMID: 37163371] - Huikyong Cho, Michael Banf, Zaigham Shahzad, Jelle Van Leene, Flavia Bossi, Sandrine Ruffel, Nadia Bouain, Pengfei Cao, Gabiel Krouk, Geert De Jaeger, Benoit Lacombe, Federica Brandizzi, Seung Y Rhee, Hatem Rouached. ARSK1 activates TORC1 signaling to adjust growth to phosphate availability in Arabidopsis.
Current biology : CB.
2023 05; 33(9):1778-1786.e5. doi:
10.1016/j.cub.2023.03.005
. [PMID: 36963384] - Shraddha Parate, Vikas Kumar, Jong Chan Hong, Keun Woo Lee. Investigation of Macrocyclic mTOR Modulators of Rapamycin Binding Site via Pharmacoinformatics Approaches.
Computational biology and chemistry.
2023 Apr; 104(?):107875. doi:
10.1016/j.compbiolchem.2023.107875
. [PMID: 37148678] - Camille Ingargiola, Isabelle Jéhanno, Céline Forzani, Anne Marmagne, Justine Broutin, Gilles Clément, Anne-Sophie Leprince, Christian Meyer. The Arabidopsis Target of Rapamycin (TOR) kinase regulates ammonium assimilation and glutamine metabolism.
Plant physiology.
2023 Apr; ?(?):. doi:
10.1093/plphys/kiad216
. [PMID: 37042394] - Qiumin Chen, Mengqi Qu, Qinglei Chen, Xiangnan Meng, Haiyan Fan. Phosphoproteomics analysis of the effect of target of rapamycin kinase inhibition on Cucumis sativus in response to Podosphaera xanthii.
Plant physiology and biochemistry : PPB.
2023 Apr; 197(?):107641. doi:
10.1016/j.plaphy.2023.107641
. [PMID: 36940522] - Xiang Zheng, Weijie Zhang, Hua Zhou, Ronghua Cao, Zhangfei Shou, Shuwei Zhang, Ying Cheng, Xuchun Chen, Chenguang Ding, Ning Li, Shaohua Shi, Qiang Zhou, Qiuyuan Chen, Gang Chen, Zheng Chen, Peijun Zhou, Xiaopeng Hu, Wujun Xue, Xiaodong Zhang, Ning Na, Wei Wang. A multi-center randomized controlled trial to evaluate efficacy and safety of early conversion to a low-dose calcineurin inhibitor combined with sirolimus in renal transplant patients.
Chinese medical journal.
2023 03; 136(5):607-609. doi:
10.1097/cm9.0000000000002604
. [PMID: 36921118] - Ying-Ya Cao, Yang Qiao, Zhong-Han Wang, Qun Chen, Yu-Peng Qi, Zi-Meng Lu, Zhen Wang, Wei-Hua Lu. The Polo-Like Kinase 1-Mammalian Target of Rapamycin Axis Regulates Autophagy to Prevent Intestinal Barrier Dysfunction During Sepsis.
The American journal of pathology.
2023 03; 193(3):296-312. doi:
10.1016/j.ajpath.2022.11.008
. [PMID: 36509119] - Peiyu Liu, Yang Xu, Jiaxue Ye, Jingrui Tan, Jie Hou, Yazhuo Wang, Jianwei Li, Weizhen Cui, Shiyuan Wang, Qingyang Zhao. Qingre Huazhuo Jiangsuan Decoction promotes autophagy by inhibiting PI3K/AKT/mTOR signaling pathway to relieve acute gouty arthritis.
Journal of ethnopharmacology.
2023 Feb; 302(Pt A):115875. doi:
10.1016/j.jep.2022.115875
. [PMID: 36328206] - Lishan Ouyang, Jiaqi Li, Xiaonan Chen, Huiming Huang, Yingying Tian, Xingxing Li, Daoran Pang, Xuejiao Wei, Jinxin Xie, Longyan Wang, Dongxiao Liu, Pengfei Tu, Jun Li, Zhongdong Hu. Chinese dragon's blood ethyl acetate extract suppresses gastric cancer progression through induction of apoptosis and autophagy mediated by activation of MAPK and downregulation of the mTOR-Beclin1 signalling cascade.
Phytotherapy research : PTR.
2023 Feb; 37(2):689-701. doi:
10.1002/ptr.7652
. [PMID: 36245270] - Yongpeng Huang, Hui Tang, Xiangyan Meng, Hui Zhong, Yunyang Song, Bo Chen, Zhiyun Zou. [Rapid and simultaneous determination of two immunosuppressants in whole blood by high performance liquid chromatography].
Se pu = Chinese journal of chromatography.
2023 Feb; 41(2):152-159. doi:
10.3724/sp.j.1123.2022.03033
. [PMID: 36725711] - Guang-Han Fan, Chen-Zhi Zhang, Feng-Qiang Gao, Xu-Yong Wei, Sun-Bin Ling, Kai Wang, Jian-Guo Wang, Shu-Sen Zheng, Mehrdad Nikfarjam, Xiao Xu. A mixed blessing for liver transplantation patients - Rapamycin.
Hepatobiliary & pancreatic diseases international : HBPD INT.
2023 Feb; 22(1):14-21. doi:
10.1016/j.hbpd.2022.10.004
. [PMID: 36328894] - Quan Wang, Yi Duan, Hongshu Jing, Zhihua Wu, Yu Tian, Ke Gong, Qianqian Guo, Jiali Zhang, Ying Sun, Zhaojun Li, Yourong Duan. Inhibition of atherosclerosis progression by modular micelles.
Journal of controlled release : official journal of the Controlled Release Society.
2023 02; 354(?):294-304. doi:
10.1016/j.jconrel.2023.01.020
. [PMID: 36638843] - Shiyi Tan, Shang Yang, Huimin Kang, Ke Zhou, Hanqin Wang, Yujing Zhang, Shi Chen. Atractylenolide III Ameliorated Autophagy Dysfunction via Epidermal Growth Factor Receptor-Mammalian Target of Rapamycin Signals and Alleviated Silicosis Fibrosis in Mice.
Laboratory investigation; a journal of technical methods and pathology.
2023 02; 103(2):100024. doi:
10.1016/j.labinv.2022.100024
. [PMID: 37039148] - Qi Zhang, Peizheng Yan, Pan Zhao, Dongsheng Zhao, Heran Cao, Jing Lu, Beibei Mao. Design, Synthesis, and Biological Evaluation of mTOR-Targeting PROTACs Based on MLN0128 and Pomalidomide.
Chemical & pharmaceutical bulletin.
2023 Feb; 71(2):120-128. doi:
10.1248/cpb.c22-00576
. [PMID: 36436947] - Yao Yao, Ying Yang, Huihui Wang, Zhihao Jiang, Haitian Ma. Dehydroepiandrosterone alleviates oleic acid-induced lipid metabolism disorders through activation of AMPK-mTOR signal pathway in primary chicken hepatocytes.
Poultry science.
2023 Feb; 102(2):102385. doi:
10.1016/j.psj.2022.102385
. [PMID: 36565630] - Tianyu Cao, Feng Xie, Youwei Shi, Junhao Xu, Yi Liu, Di Cui, Fang Zhang, Lihui Lin, Weize Li, Yanting Gao, Yuan Ruan, Xiaohai Wang, Yiping Zhu, Bangmin Han, Shujie Xia, Wenhuan Guo, Bin Li, Yifeng Jing. Rapamycin and Low-dose IL-2 Mediate an Immunosuppressive Microenvironment to Inhibit Benign Prostatic Hyperplasia.
International journal of biological sciences.
2023; 19(11):3441-3455. doi:
10.7150/ijbs.85089
. [PMID: 37497009] - Chenliang Ge, Changguo Ma, Jiesheng Cui, Xingbo Dong, Luyang Sun, Yanjiao Li, An Yu. Rapamycin suppresses inflammation and increases the interaction between p65 and IκBα in rapamycin-induced fatty livers.
PloS one.
2023; 18(3):e0281888. doi:
10.1371/journal.pone.0281888
. [PMID: 36867603] - Mingming Fang, Chen Zhong. Vitamin D Receptor Regulates Autophagy to Inhibit Apoptosis and Promote Proliferation in Hepatocyte Injury.
Journal of Nippon Medical School = Nippon Ika Daigaku zasshi.
2023; 90(1):89-95. doi:
10.1272/jnms.jnms.2023_90-114
. [PMID: 36908130] - Xiaojia Liu, Caiyan Lin, Wenfei Zhong, Zhongwen Yuan, Pengke Yan, Shixia Guan. Effective Attenuation of Arteriosclerosis Following Lymphatic-Targeted Delivery of Hyaluronic Acid-Decorated Rapamycin Liposomes.
International journal of nanomedicine.
2023; 18(?):4403-4419. doi:
10.2147/ijn.s410653
. [PMID: 37551276] - Haiyang Xia, Hamza Armghan Noushahi, Aamir Hamid Khan, Ying Liu, Andreea Cosoveanu, Lingli Cui, Jing Tang, Shehzad Iqbal, Shaohua Shu. Genome sequencing of Colletotrichum gloeosporioides ES026 reveals plausible pathway of HupA.
Molecular biology reports.
2022 Dec; 49(12):11611-11622. doi:
10.1007/s11033-022-07850-y
. [PMID: 36161578] - Yang Jin, Huanhuan Pang, Lihong Zhao, Fangyi Zhao, Ziqian Cheng, Qianqian Liu, Ranji Cui, Wei Yang, Bingjin Li. Ginseng total saponins and Fuzi total alkaloids exert antidepressant-like effects in ovariectomized mice through BDNF-mTORC1, autophagy and peripheral metabolic pathways.
Phytomedicine : international journal of phytotherapy and phytopharmacology.
2022 Dec; 107(?):154425. doi:
10.1016/j.phymed.2022.154425
. [PMID: 36137328] - Hee Su Sohn, Jeong Won Choi, JooYeon Jhun, Sung Pil Kwon, Mungyo Jung, Sangmin Yong, Hyun Sik Na, Jin-Hong Kim, Mi-La Cho, Byung-Soo Kim. Tolerogenic nanoparticles induce type II collagen-specific regulatory T cells and ameliorate osteoarthritis.
Science advances.
2022 11; 8(47):eabo5284. doi:
10.1126/sciadv.abo5284
. [PMID: 36427299] - Mohan Sharma, Manvi Sharma, Muhammed Jamsheer K, Ashverya Laxmi. A glucose-target of rapamycin signaling axis integrates environmental history of heat stress through maintenance of transcription-associated epigenetic memory in Arabidopsis.
Journal of experimental botany.
2022 11; 73(20):7083-7102. doi:
10.1093/jxb/erac338
. [PMID: 35980748] - Yanyan Meng, Nan Zhang, Jiatian Li, Xuehong Shen, Jen Sheen, Yan Xiong. TOR kinase, a GPS in the complex nutrient and hormonal signaling networks to guide plant growth and development.
Journal of experimental botany.
2022 11; 73(20):7041-7054. doi:
10.1093/jxb/erac282
. [PMID: 35781569] - Reynel Urrea-Castellanos, Camila Caldana, Rossana Henriques. Growing at the right time: interconnecting the TOR pathway with photoperiod and circadian regulation.
Journal of experimental botany.
2022 11; 73(20):7006-7015. doi:
10.1093/jxb/erac279
. [PMID: 35738873] - Zhaoping Pan, Yi Chen, Haiying Pang, Xiaoyun Wang, Yuehua Zhang, Xin Xie, Gu He. Design, synthesis, and biological evaluation of novel dual inhibitors of heat shock protein 90/mammalian target of rapamycin (Hsp90/mTOR) against bladder cancer cells.
European journal of medicinal chemistry.
2022 Nov; 242(?):114674. doi:
10.1016/j.ejmech.2022.114674
. [PMID: 35987020] - M Regina Scarpin, Carl H Simmons, Jacob O Brunkard. Translating across kingdoms: target of rapamycin promotes protein synthesis through conserved and divergent pathways in plants.
Journal of experimental botany.
2022 11; 73(20):7016-7025. doi:
10.1093/jxb/erac267
. [PMID: 35770874] - Giuseppe Sirago, Anna Picca, Riccardo Calvani, Hélio José Coelho-Júnior, Emanuele Marzetti. Mammalian Target of Rapamycin (mTOR) Signaling at the Crossroad of Muscle Fiber Fate in Sarcopenia.
International journal of molecular sciences.
2022 Nov; 23(22):. doi:
10.3390/ijms232213823
. [PMID: 36430301] - Christian Montes, Ping Wang, Ching-Yi Liao, Trevor M Nolan, Gaoyuan Song, Natalie M Clark, J Mitch Elmore, Hongqing Guo, Diane C Bassham, Yanhai Yin, Justin W Walley. Integration of multi-omics data reveals interplay between brassinosteroid and Target of Rapamycin Complex signaling in Arabidopsis.
The New phytologist.
2022 11; 236(3):893-910. doi:
10.1111/nph.18404
. [PMID: 35892179] - Yongdong Yu, Zhaochen Zhong, Liuyin Ma, Chengbin Xiang, Jie Chen, Xin-Yuan Huang, Ping Xu, Yan Xiong. Sulfate-TOR signaling controls transcriptional reprogramming for shoot apex activation.
The New phytologist.
2022 11; 236(4):1326-1338. doi:
10.1111/nph.18441
. [PMID: 36028982] - Qi Gong, Xie Zhang, Yixuan Sun, Jixiang Shen, Xiuping Li, Chao Xue, Zhihua Liu. Transcription factor EB inhibits non-alcoholic fatty liver disease through fibroblast growth factor 21.
Journal of molecular medicine (Berlin, Germany).
2022 11; 100(11):1587-1597. doi:
10.1007/s00109-022-02256-6
. [PMID: 36102936] - Wenyuan He, Andy Tran, Chuck T Chen, Neruja Loganathan, Richard P Bazinet, Denise D Belsham. Oleate restores altered autophagic flux to rescue palmitate lipotoxicity in hypothalamic neurons.
Molecular and cellular endocrinology.
2022 11; 557(?):111753. doi:
10.1016/j.mce.2022.111753
. [PMID: 35981630] - Zhu Zhang, Wen-Qing Chen, Shi-Qing Zhang, Jing-Xuan Bai, Bin Liu, Ken Kin-Lam Yung, Joshua Ka-Shun Ko. Isoliquiritigenin inhibits pancreatic cancer progression through blockade of p38 MAPK-regulated autophagy.
Phytomedicine : international journal of phytotherapy and phytopharmacology.
2022 Nov; 106(?):154406. doi:
10.1016/j.phymed.2022.154406
. [PMID: 36029643] - Zhi-Rong Lin, Zhen-Zhen Li, Yan-Jun Cao, Wen-Jing Yu, Jian-Tao Ye, Pei-Qing Liu. GDH promotes isoprenaline-induced cardiac hypertrophy by activating mTOR signaling via elevation of α-ketoglutarate level.
Naunyn-Schmiedeberg's archives of pharmacology.
2022 11; 395(11):1373-1385. doi:
10.1007/s00210-022-02252-0
. [PMID: 35904584] - Norin Chaudhry, Margaux Sica, Satya Surabhi, David Sanchez Hernandez, Ana Mesquita, Adem Selimovic, Ayesha Riaz, Laury Lescat, Hua Bai, Gustavo C MacIntosh, Andreas Jenny. Lamp1 mediates lipid transport, but is dispensable for autophagy in Drosophila.
Autophagy.
2022 Oct; 18(10):2443-2458. doi:
10.1080/15548627.2022.2038999
. [PMID: 35266854] - Gaizun Hu, Guangbi Li, Dandan Huang, Yao Zou, Xinxu Yuan, Joseph K Ritter, Ningjun Li, Pin-Lan Li. Renomedullary exosomes produce antihypertensive effects in reversible two-kidney one-clip renovascular hypertensive mice.
Biochemical pharmacology.
2022 10; 204(?):115238. doi:
10.1016/j.bcp.2022.115238
. [PMID: 36055382] - Xiaojuan Chao, Sha Neisha Williams, Wen-Xing Ding. Role of mechanistic target of rapamycin in autophagy and alcohol-associated liver disease.
American journal of physiology. Cell physiology.
2022 10; 323(4):C1100-C1111. doi:
10.1152/ajpcell.00281.2022
. [PMID: 36062877] - Ying Zhao, Xiu-Qin Wang. The kinase and FATC domains of VvTOR affect sugar-related gene expression and sugar accumulation in grape (Vitis vinifera).
Functional plant biology : FPB.
2022 10; 49(11):927-935. doi:
10.1071/fp21302
. [PMID: 35817514] - Gonzalo Caló, María Agustina De Marco, Graciela Lidia Salerno, Giselle María Astrid Martínez-Noël. TOR signaling in the green picoalga Ostreococcus tauri.
Plant science : an international journal of experimental plant biology.
2022 Oct; 323(?):111390. doi:
10.1016/j.plantsci.2022.111390
. [PMID: 35868347] - Ilyeong Choi, Chang Sook Ahn, Du-Hwa Lee, Seung-A Baek, Jung Won Jung, Jae Kwang Kim, Ho-Seok Lee, Hyun-Sook Pai. Silencing of the Target of Rapamycin Complex Genes Stimulates Tomato Fruit Ripening.
Molecules and cells.
2022 Sep; 45(9):660-672. doi:
10.14348/molcells.2022.2025
. [PMID: 35993163] - Yihan Dong, Rasha Aref, Ilaria Forieri, David Schiel, Wiebke Leemhuis, Christian Meyer, Ruediger Hell, Markus Wirtz. The plant TOR kinase tunes autophagy and meristem activity for nutrient stress-induced developmental plasticity.
The Plant cell.
2022 09; 34(10):3814-3829. doi:
10.1093/plcell/koac201
. [PMID: 35792878] - Anna Schulten, Björn Pietzenuk, Julia Quintana, Marleen Scholle, Regina Feil, Marcus Krause, Maida Romera-Branchat, Vanessa Wahl, Edouard Severing, George Coupland, Ute Krämer. Energy status-promoted growth and development of Arabidopsis require copper deficiency response transcriptional regulator SPL7.
The Plant cell.
2022 09; 34(10):3873-3898. doi:
10.1093/plcell/koac215
. [PMID: 35866980] - Tingting Zhu, Linxuan Li, Huimin Chang, Jiasui Zhan, Maozhi Ren. Target of Rapamycin Regulates Photosynthesis and Cell Growth in Auxenochlorella pyrenoidosa.
International journal of molecular sciences.
2022 Sep; 23(19):. doi:
10.3390/ijms231911309
. [PMID: 36232611] - Li-Min Wu, Jie Zhao, Xiao-Wei Zhang, Zhong-Hua Li, Pan Wang, Yi-Ran Sun, Zhen-Qiang Zhang, Zhi-Shen Xie. [Mechanism of Atractylodes macrocephala against Alzheimer's disease via regulating lysophagy based on LKB1-AMPK-TFEB pathway].
Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica.
2022 Sep; 47(17):4723-4732. doi:
10.19540/j.cnki.cjcmm.20220304.701
. [PMID: 36164880] - Rui Chen, Hongguang Yang, Yong Song, Hongjie Yu, Minzhe Zhang, Weiming Rao, Yaxu Wang, Xiaoyue Xiao, Qiutong Chen, Qiqiang He. Maternal obesity induces liver lipid accumulation of offspring through the lncRNA Lockd/mTOR autophagy pathway.
Molecular genetics and genomics : MGG.
2022 Sep; 297(5):1277-1287. doi:
10.1007/s00438-022-01916-z
. [PMID: 35759023] - Beibei Mao, Qi Zhang, Li Ma, Dong-Sheng Zhao, Pan Zhao, Peizheng Yan. Overview of Research into mTOR Inhibitors.
Molecules (Basel, Switzerland).
2022 Aug; 27(16):. doi:
10.3390/molecules27165295
. [PMID: 36014530] - Ana P Pinto, Alisson L da Rocha, Bruno B Marafon, Jonatas E Nogueira, Luiz G S Branco, José R Pauli, Leandro P de Moura, Dennys E Cintra, Eduardo R Ropelle, Adelino S R da Silva. Chronic rapamycin treatment decreases hepatic IL-6 protein, but increases autophagy markers as a protective effect against the overtraining-induced tissue damage.
Clinical and experimental pharmacology & physiology.
2022 Aug; 49(8):893-902. doi:
10.1111/1440-1681.13677
. [PMID: 35637552] - Jiahui Xu, Gale M Strasburg, Kent M Reed, Sandra G Velleman. Thermal stress and selection for growth affect myogenic satellite cell lipid accumulation and adipogenic gene expression through mechanistic target of rapamycin pathway.
Journal of animal science.
2022 Aug; 100(8):. doi:
10.1093/jas/skac001
. [PMID: 35908789] - Marcos Castro-Guarda, Yennyfer Arancibia, Carina Chipón, Christofer Matamala, Paola Oyarzo, Gabriela Vargas, Alejandro Reyes, Mónica Salas, Francisco J Morera, Angara Zambrano. Metabolic changes induced by DNA damage in Ramos cells: exploring the role of mTORC1 complex.
FEBS open bio.
2022 08; 12(8):1509-1522. doi:
10.1002/2211-5463.13436
. [PMID: 35538662] - Hua-Di Yang, Qun-Fei Zhu, Hui Li, Xue-Lu Jiang, Xu-Qun Xu, Yong Guo. Effect of Neiyi Prescription of QIU on autophagy and angiogenic ability of endometriosis via the PPARγ/NF-κB signaling pathway.
Archives of gynecology and obstetrics.
2022 08; 306(2):533-545. doi:
10.1007/s00404-022-06537-w
. [PMID: 35366690] - Murat Cimci, Jawed Polad, Mamas Mamas, Andres Iniguez-Romo, Bernard Chevalier, Rajpal Abhaichand, Adel Aminian, Ariel Roguin, Gabriel Maluenda, Michael Angioi, Graham Cassel, Shoichi Kuramitsu, Lotte Jacobs, Roxane Debrus, Fazila Malik, David Hildick-Smith, Peep Laanmets, Marco Roffi. Outcomes and regional differences in practice in a worldwide coronary stent registry.
Heart (British Cardiac Society).
2022 07; 108(16):1310-1318. doi:
10.1136/heartjnl-2021-320116
. [PMID: 35012960] - Limei Song, Guoyun Xu, Tingting Li, Huina Zhou, Qinlu Lin, Jia Chen, Long Wang, Dousheng Wu, Xiaoxu Li, Lifeng Wang, Sirui Zhu, Feng Yu. The RALF1-FERONIA complex interacts with and activates TOR signaling in response to low nutrients.
Molecular plant.
2022 07; 15(7):1120-1136. doi:
10.1016/j.molp.2022.05.004
. [PMID: 35585790] - Xiaotong Yang, Wenqin Yang, Xue Xia, Ting Lei, Zhihang Yang, Wenfeng Jia, Yang Zhou, Guo Cheng, Huile Gao. Intranasal Delivery of BACE1 siRNA and Rapamycin by Dual Targets Modified Nanoparticles for Alzheimer's Disease Therapy.
Small (Weinheim an der Bergstrasse, Germany).
2022 07; 18(30):e2203182. doi:
10.1002/smll.202203182
. [PMID: 35771092] - Linxuan Li, Tingting Zhu, Yun Song, Li Feng, Philip James Kear, Rooallah Saberi Riseh, Mahmoud Sitohy, Raju Datla, Maozhi Ren. Salicylic acid fights against Fusarium wilt by inhibiting target of rapamycin signaling pathway in Fusarium oxysporum.
Journal of advanced research.
2022 07; 39(?):1-13. doi:
10.1016/j.jare.2021.10.014
. [PMID: 35777900] - Wenda Wang, Zhan Wang, Yang Zhao, Xu Wang, Hanzhong Li, Yushi Zhang. Analysis of serum lipid parameters predicting lipid metabolic disorders in TSC-AML patients with treatment of mTOR inhibitors.
Journal of clinical pharmacy and therapeutics.
2022 Jul; 47(7):979-985. doi:
10.1111/jcpt.13631
. [PMID: 35229896] - María M Adeva-Andany, Carlos Fernández-Fernández, Natalia Carneiro-Freire, Elvira Castro-Quintela, Matilde Vila-Altesor, Manuel González-Lucán. Cardiovascular Protection Associated With Cilostazol, Colchicine, and Target of Rapamycin Inhibitors.
Journal of cardiovascular pharmacology.
2022 07; 80(1):31-43. doi:
10.1097/fjc.0000000000001276
. [PMID: 35384911] - Syed Inzimam Ul Haq, Jun Shang, Huichun Xie, Quan-Sheng Qiu. Roles of TOR signaling in nutrient deprivation and abiotic stress.
Journal of plant physiology.
2022 Jul; 274(?):153716. doi:
10.1016/j.jplph.2022.153716
. [PMID: 35597106] - Qian Lu, Yang-Yang Wang, Qiu-Hong Wang, Li-Na Tang, Xiao-Yan Yang, Shuo Dun, Li-Ping Zou. Safety of inactivated COVID-19 vaccine in tuberous sclerosis complex patients with epilepsy treated with rapamycin.
Seizure.
2022 Jul; 99(?):71-74. doi:
10.1016/j.seizure.2022.05.010
. [PMID: 35605444] - Liang Gao, Dan Luo, Dan Wu, Qi Sun, Yang Liu, Deliang Wen, Lihong Jia. Effects of mammalian target of rapamycin and aryl hydrocarbon receptor-mediating autophagy signaling on the balance of Th17/Treg cells during perinatal bisphenol A exposure in female offspring mice.
Environmental toxicology.
2022 Jul; 37(7):1781-1789. doi:
10.1002/tox.23525
. [PMID: 35357751] - Kaiming Yue, Xudong Pu, Juan J Loor, Qianming Jiang, Jihong Dong, Taiyu Shen, Guojin Li, Wenwen Gao, Lin Lei, Xiliang Du, Yuxiang Song, Guowen Liu, Xinwei Li. Impaired autophagy aggravates oxidative stress in mammary gland of dairy cows with clinical ketosis.
Journal of dairy science.
2022 Jul; 105(7):6030-6040. doi:
10.3168/jds.2021-21234
. [PMID: 35637003] - Hao Zhang, Lin Guo, Yongpeng Li, Dan Zhao, Luping Liu, Wenwen Chang, Ke Zhang, Yichao Zheng, Jiajie Hou, Chenghao Fu, Ying Zhang, Baowen Zhang, Yuru Ma, Yanxiao Niu, Kang Zhang, Jihong Xing, Sujuan Cui, Fengru Wang, Ke Tan, Shuzhi Zheng, Wenqiang Tang, Jingao Dong, Xigang Liu. TOP1α fine-tunes TOR-PLT2 to maintain root tip homeostasis in response to sugars.
Nature plants.
2022 07; 8(7):792-801. doi:
10.1038/s41477-022-01179-x
. [PMID: 35817819] - Cuicui Sun, Xiaoyan Yang, Zhi Jin, Zuhua Gao. Combination of mTOR inhibitor PP242 and AMPK activator metformin exerts enhanced inhibitory effects on colorectal carcinoma cells in vitro by blocking multiple kinase pathways.
Journal of chemotherapy (Florence, Italy).
2022 Jun; ?(?):1-11. doi:
10.1080/1120009x.2022.2091122
. [PMID: 35731713] - Vincent Portero, Thomas Nicol, Svitlana Podliesna, Gerard A Marchal, Antonius Baartscheer, Simona Casini, Rafik Tadros, Jorien L Treur, Michael W T Tanck, I Jane Cox, Fay Probert, Tertius A Hough, Sara Falcone, Leander Beekman, Martina Müller-Nurasyid, Gabi Kastenmüller, Christian Gieger, Annette Peters, Stefan Kääb, Moritz F Sinner, Andrew Blease, Arie O Verkerk, Connie R Bezzina, Paul K Potter, Carol Ann Remme. Chronically elevated branched chain amino acid levels are pro-arrhythmic.
Cardiovascular research.
2022 06; 118(7):1742-1757. doi:
10.1093/cvr/cvab207
. [PMID: 34142125] - Abdallah Alhaj Sulaiman, Reem Ali, Mustapha Aouida, Balasubramanian Moovarkumudalvan, Dindial Ramotar. The histone H2B Arg95 residue links the pheromone response pathway to rapamycin-induced G1 arrest in yeast.
Scientific reports.
2022 06; 12(1):10023. doi:
10.1038/s41598-022-14053-9
. [PMID: 35705668]