Gene Association: CRTC2

UniProt Search: CRTC2 (PROTEIN_CODING)
Function Description: CREB regulated transcription coactivator 2

found 16 associated metabolites with current gene based on the text mining result from the pubmed database.

Saponarin

5-hydroxy-2-(4-hydroxyphenyl)-6-((2S,3R,4R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)-7-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-4H-chromen-4-one

C27H30O15 (594.1585)


7-O-(beta-D-glucosyl)isovitexin is a C-glycosyl compound that is isovitexin in which the hydroxyl hydrogen at position 7 is replaced by a beta-D-glucosyl residue. It has a role as a metabolite. It is a C-glycosyl compound, a dihydroxyflavone, a glycosyloxyflavone and a monosaccharide derivative. It is functionally related to an isovitexin. Saponarin is a natural product found in Hibiscus syriacus, Moraea sisyrinchium, and other organisms with data available. Saponarin is a natural flavonoid isolated from Gypsophila trichotoma, with antioxidant, anti-inflammatory and hepatoprotective activities. Saponarin activates AMPK in a calcium-dependent manner, thus regulating gluconeogenesis and glucose uptake[1][2][3]. Saponarin is a natural flavonoid isolated from Gypsophila trichotoma, with antioxidant, anti-inflammatory and hepatoprotective activities. Saponarin activates AMPK in a calcium-dependent manner, thus regulating gluconeogenesis and glucose uptake[1][2][3].

   

1-Methyladenine

1, 9-dihydro-1-Methyl-6H-purin-6-imine

C6H7N5 (149.0701)


1-Methyladenine is the product of reaction between 1-methyladenosine and water which is catalyzed by 1-methyladenosine nucleosidase (EC:3.2.2.13). 1-Methyladenine is a product of alkylation damage in DNA which can be repaired by damage reversal by oxidative demethylation, a reaction requiring ferrous iron and 2-oxoglutarate as cofactor and co-substrate, respectively (PMID:15576352). 1-Methyladenine is found to be associated with adenosine deaminase (ADA) deficiency, which is an inborn error of metabolism. 1-Methyladenine is the product of reaction between 1-methyladenosine and water which is catalyzed by 1-methyladenosine nucleosidase. (EC:3.2.2.13) KEIO_ID M074

   

Sirolimus

(1R,9S,12S,15R,16E,18R,19R,21R,23S,24E,26E,28E,30S,32S,35R)-1,18-dihydroxy-12-[(2R)-1-[(1S,3R,4R)-4-hydroxy-3-methoxycyclohexyl]propan-2-yl]-19,30-dimethoxy-15,17,21,23,29,35-hexamethyl-11,36-dioxa-4-azatricyclo[30.3.1.0^{4,9}]hexatriaconta-16,24,26,28-tetraene-2,3,10,14,20-pentone

C51H79NO13 (913.5551)


Sirolimus is a macrolide compound obtained from Streptomyces hygroscopicus that acts by selectively blocking the transcriptional activation of cytokines thereby inhibiting cytokine production. It is bioactive only when bound to immunophilins. Sirolimus is a potent immunosuppressant and possesses both antifungal and antineoplastic properties. [PubChem] L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01E - Protein kinase inhibitors > L01EG - Mammalian target of rapamycin (mtor) kinase inhibitors L - Antineoplastic and immunomodulating agents > L04 - Immunosuppressants > L04A - Immunosuppressants > L04AA - Selective immunosuppressants C471 - Enzyme Inhibitor > C1404 - Protein Kinase Inhibitor > C61074 - Serine/Threonine Kinase Inhibitor COVID info from Guide to PHARMACOLOGY, clinicaltrial, clinicaltrials, clinical trial, clinical trials D000970 - Antineoplastic Agents > D000903 - Antibiotics, Antineoplastic > D020123 - Sirolimus C274 - Antineoplastic Agent > C163758 - Targeted Therapy Agent > C2201 - mTOR Inhibitor D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents C784 - Protein Synthesis Inhibitor > C261 - Macrolide Antibiotic D000890 - Anti-Infective Agents > D000935 - Antifungal Agents C308 - Immunotherapeutic Agent > C574 - Immunosuppressant C254 - Anti-Infective Agent > C258 - Antibiotic S - Sensory organs > S01 - Ophthalmologicals Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Rapamycin (Sirolimus; AY 22989) is a potent and specific mTOR inhibitor with an IC50 of 0.1 nM in HEK293 cells. Rapamycin binds to FKBP12 and specifically acts as an allosteric inhibitor of mTORC1[1]. Rapamycin is an autophagy activator, an immunosuppressant[2]. Rapamycin (Sirolimus; AY 22989) is a potent and specific mTOR inhibitor with an IC50 of 0.1 nM in HEK293 cells. Rapamycin binds to FKBP12 and specifically acts as an allosteric inhibitor of mTORC1[1]. Rapamycin is an autophagy activator, an immunosuppressant[2]. Rapamycin (Sirolimus; AY 22989) is a potent and specific mTOR inhibitor with an IC50 of 0.1 nM in HEK293 cells. Rapamycin binds to FKBP12 and specifically acts as an allosteric inhibitor of mTORC1[1]. Rapamycin is an autophagy activator, an immunosuppressant[2].

   

Myriocin

(2S,3R,4R,6E)-2-Amino-3,4-dihydroxy-2-(hydroxymethyl)-14-oxo-6-eicosenoic acid;ISP-I;Thermozymocidin

C21H39NO6 (401.2777)


An amino acid-based antibiotic derived from certain thermophilic fungi; acts as a potent inhibitor of serine palmitoyltransferase, the first step in sphingosine biosynthesis. Myriocin also possesses immunosuppressant activity. D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents D000890 - Anti-Infective Agents > D000935 - Antifungal Agents [Raw Data] CBA29_Myriocin_pos_20eV_1-3_01_1557.txt [Raw Data] CBA29_Myriocin_neg_40eV_1-3_01_1590.txt [Raw Data] CBA29_Myriocin_pos_10eV_1-3_01_1546.txt [Raw Data] CBA29_Myriocin_neg_30eV_1-3_01_1589.txt [Raw Data] CBA29_Myriocin_pos_40eV_1-3_01_1559.txt [Raw Data] CBA29_Myriocin_pos_30eV_1-3_01_1558.txt [Raw Data] CBA29_Myriocin_pos_50eV_1-3_01_1560.txt [Raw Data] CBA29_Myriocin_neg_10eV_1-3_01_1578.txt [Raw Data] CBA29_Myriocin_neg_20eV_1-3_01_1588.txt Myriocin (Thermozymocidin), a fungal metabolite could be isolated from Myriococcum albomyces, Isaria sinclairi and Mycelia sterilia, is a potent inhibitor of serine-palmitoyl-transferase (SPT) and a key enzyme in de novo synthesis of sphingolipids. Myriocin suppresses replication of both the subgenomic HCV-1b replicon and the JFH-1 strain of genotype 2a infectious HCV, with an IC50 of 3.5 μg/mL for inhibiting HCV infection[1][2][3].

   

4-Hydroxysphinganine

[2S-(2R*,3R*,4S*)]-2-amino-1,3,4-octadecanetriol

C18H39NO3 (317.293)


Phytosphingosine is a phospholipid. Phospholipids are a class of lipids and a major component of all biological membranes; sphingolipid metabolites, such as sphingosine and ceramide, are highly bioactive compounds and are involved in diverse cell processes, including cell-cell interaction, cell proliferation, differentiation, and apoptosis. Phytosphingosine is also one of the most widely distributed natural sphingoid bases, which is abundant in fungi and plants, and also found in animals including humans. Phytosphingosine is structurally similar to sphingosine; phytosphingosine possesses a hydroxyl group at C-4 of the sphingoid long-chain base. The physiological roles of phytosphingosine are largely unknown. Phytosphingosine induces apoptosis in human T-cell lymphoma and non-small cell lung cancer cells, and induces caspase-independent cytochrome c release from mitochondria. In the presence of caspase inhibitors, phytosphingosine-induced apoptosis is almost completely suppressed, suggesting that phytosphingosine-induced apoptosis is largely dependent on caspase activities. (PMID: 12576463, 12531554, 8046331, 8048941,8706124) [HMDB] Phytosphingosine is a phospholipid. Phospholipids are a class of lipids and a major component of all biological membranes; sphingolipid metabolites, such as sphingosine and ceramide, are highly bioactive compounds and are involved in diverse cell processes, including cell-cell interaction, cell proliferation, differentiation, and apoptosis. Phytosphingosine is also one of the most widely distributed natural sphingoid bases, which is abundant in fungi and plants, and also found in animals including humans. Phytosphingosine is structurally similar to sphingosine; phytosphingosine possesses a hydroxyl group at C-4 of the sphingoid long-chain base. The physiological roles of phytosphingosine are largely unknown. Phytosphingosine induces apoptosis in human T-cell lymphoma and non-small cell lung cancer cells, and induces caspase-independent cytochrome c release from mitochondria. In the presence of caspase inhibitors, phytosphingosine-induced apoptosis is almost completely suppressed, suggesting that phytosphingosine-induced apoptosis is largely dependent on caspase activities. (PMID: 12576463, 12531554, 8046331, 8048941,8706124). Phytosphingosine is a?phospholipid and has anti-cancer activities. Phytosphingosine induces cell apoptosis via caspase 8 activation and Bax translocation in cancer cells[1].

   

Morpholine

Morpholine, 4-soya alkyl derivs.

C4H9NO (87.0684)


Morpholine is a permitted (FDA) in edible coatings for fruit and vegetables. Morpholine is a food contaminant arising from its use as a boiler water additive Morpholine is a common additive, in ppm concentrations, for pH adjustment in both fossil fuel and nuclear power plant steam systems. Morpholine is used because its volatility is about the same as water, so once it is added to the water, its concentration becomes distributed rather evenly in both the water and steam phases. Its pH adjusting qualities then become distributed throughout the steam plant to provide corrosion protection. Morpholine is often used in conjunction with low concentrations of hydrazine or ammonia to provide a comprehensive all-volatile treatment chemistry for corrosion protection for the steam systems of such plants. Morpholine decomposes reasonably slowly in the absence of oxygen even at the high temperatures and pressures in these steam systems. Morpholine is an organic chemical compound having the chemical formula O(CH2CH2)2NH. This heterocycle, pictured at right, features both amine and ether functional groups. Because of the amine, morpholine is a base; its conjugate acid is called morpholinium. For example, when morpholine is neutralized by hydrochloric acid, one obtains the salt morpholinium chloride. Morpholine is widely used in organic synthesis. For example, it is a building block in the preparation of the antibiotic linezolid and the anticancer agent gefitinib (Iressa) Permitted (FDA) in edible coatings for fruit and vegetables. Food contaminant arising from its use as a boiler water additive CONFIDENCE standard compound; INTERNAL_ID 8365

   

Ribothymidine

1-[(2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-5-methyl-1,2,3,4-tetrahydropyrimidine-2,4-dione

C10H14N2O6 (258.0852)


Ribothymidine is an endogenous methylated nucleoside found in human fluids; methylated purine bases are present in higher amounts in tumor-bearing patients compared to healthy controls.DNA hypermethylation is a common finding in malignant cells and has been explored as a therapeutic target for hypomethylating agents. When chemical bonds to DNA, the DNA becomes damaged and proper and complete replication cannot occur to make the normal intended cell. A DNA adduct is an abnormal piece of DNA covalently-bonded to a cancer-causing chemical. This has shown to be the start of a cancerous cell, or carcinogenesis. DNA adducts in scientific experiments are used as bio-markers and as such are themselves measured to reflect quantitatively, for comparison, the amount of cancer in the subject. (PMID: 3506820, 17044778, 17264127, 16799933) [HMDB] Ribothymidine is an endogenous methylated nucleoside found in human fluids; methylated purine bases are present in higher amounts in tumor-bearing patients compared to healthy controls.DNA hypermethylation is a common finding in malignant cells and has been explored as a therapeutic target for hypomethylating agents. When chemical bonds to DNA, the DNA becomes damaged and proper and complete replication cannot occur to make the normal intended cell. A DNA adduct is an abnormal piece of DNA covalently-bonded to a cancer-causing chemical. This has shown to be the start of a cancerous cell, or carcinogenesis. DNA adducts in scientific experiments are used as bio-markers and as such are themselves measured to reflect quantitatively, for comparison, the amount of cancer in the subject. (PMID:3506820, 17044778, 17264127, 16799933). 5-Methyluridine is a is an endogenous methylated nucleoside found in human fluids. 5-Methyluridine is a is an endogenous methylated nucleoside found in human fluids.

   

(S)-2-Azetidinecarboxylic acid

1-Azetidinecarboxylicacid, 2-(aminocarbonyl)-, 1,1-dimethylethyl ester, (2S)-

C4H7NO2 (101.0477)


Azetidine-2-carboxylic acid is an azetidinecarboxylic acid that is azetidine substituted by a carboxy group at position 2. It is a plant non-protein amino acid. It has a role as a plant metabolite and a teratogenic agent. It is an azetidinecarboxylic acid and an amino acid. A proline analog that acts as a stoichiometric replacement of proline. It causes the production of abnormal proteins with impaired biological activity. (S)-2-Azetidinecarboxylic acid is found in common beet. (S)-2-Azetidinecarboxylic acid is present in roots and leaves of Convallaria majalis (lily-of-the-valley). Convallaria majalis is banned by the FDA from food use in the US Present in roots and leaves of Convallaria majalis (lily-of-the-valley). Convallaria majalis is banned by the FDA from food use in the USA. (S)-2-Azetidinecarboxylic acid is found in red beetroot and common beet. An azetidinecarboxylic acid that is azetidine substituted by a carboxy group at position 2. It is a plant non-protein amino acid. KEIO_ID A219 Azetidine-2-carboxylic acid is a non proteinogenic amino acid homologue of proline. Found in common beets. Azetidine-2-carboxylic acid can be misincorporated into proteins in place of proline in many species, including humans. Toxic and teratogenic agent[1][2]. Azetidine-2-carboxylic acid is a non proteinogenic amino acid homologue of proline. Found in common beets. Azetidine-2-carboxylic acid can be misincorporated into proteins in place of proline in many species, including humans. Toxic and teratogenic agent[1][2]. L-Azetidine-2-carboxylic acid is an endogenous metabolite. L-Azetidine-2-carboxylic acid is an endogenous metabolite.

   

5-Aminoimidazole

1H-imidazol-5-amine

C3H5N3 (83.0483)


Because of its ability to mimic a low energy status of the cell, the cell-permeable nucleoside 5-aminoimidazole-4-carboxamide (AICA) riboside was proposed as an antineoplastic agent switching off major energy-consuming processes associated with the malignant phenotype (lipid production, DNA synthesis, cell proliferation, cell migration, etc.). Key to the antineoplastic action of AICA riboside is its conversion to ZMP, an AMP mimetic that at high concentrations activates the AMP-activated protein kinase (AMPK). (PMID: 16985054) [HMDB] Because of its ability to mimic a low energy status of the cell, the cell-permeable nucleoside 5-aminoimidazole-4-carboxamide (AICA) riboside was proposed as an antineoplastic agent switching off major energy-consuming processes associated with the malignant phenotype (lipid production, DNA synthesis, cell proliferation, cell migration, etc.). Key to the antineoplastic action of AICA riboside is its conversion to ZMP, an AMP mimetic that at high concentrations activates the AMP-activated protein kinase (AMPK). (PMID: 16985054).

   

Sirolimus

(3S,6R,7E,9R,10R,12R,14S,15E,17E,19E,21S,23S,26R,27R,34aS)-9,27-dihydroxy-3-{(1R)-2-[(1S,3R,4R)-4-hydroxy-3-(methyloxy)cyclohexyl]-1-methylethyl}-6,8,12,14,20,26-hexamethyl-10,21-bis(methyloxy)-9,10,12,13,14,21,22,23,24,25,26,27,32,33,34,34a-hexadecahydro-3H-23,27-epoxypyrido[2,1-c][1,4]oxazacyclohentriacontine-1,5,11,28,29(6H,31H)-pentone

C51H79NO13 (913.5551)


Sirolimus is a macrolide lactam isolated from Streptomyces hygroscopicus consisting of a 29-membered ring containing 4 trans double bonds, three of which are conjugated. It is an antibiotic, immunosupressive and antineoplastic agent. It has a role as an immunosuppressive agent, an antineoplastic agent, an antibacterial drug, a mTOR inhibitor, a bacterial metabolite, an anticoronaviral agent and a geroprotector. It is a cyclic acetal, a cyclic ketone, an ether, a secondary alcohol, an organic heterotricyclic compound, an antibiotic antifungal drug and a macrolide lactam. Sirolimus, also known as rapamycin, is a macrocyclic lactone antibiotic produced by bacteria Streptomyces hygroscopicus, which was isolated from the soil of the Vai Atari region of Rapa Nui (Easter Island). It was first isolated and identified as an antifungal agent with potent anticandida activity; however, after its potent antitumor and immunosuppressive activities were later discovered, it was extensively investigated as an immunosuppressive and antitumour agent. Its primary mechanism of action is the inhibition of the mammalian target of rapamycin (mTOR), which is a serine/threonine-specific protein kinase that regulates cell growth, proliferation, and survival. mTOR is an important therapeutic target for various diseases, as it was shown to regulate longevity and maintain normal glucose homeostasis. Targeting mTOR received more attention especially in cancer, as mTOR signalling pathways are constitutively activated in many types of human cancer. Sirolimus was first approved by the FDA in 1999 for the prophylaxis of organ rejection in patients aged 13 years and older receiving renal transplants. In November 2000, the drug was recognized by the European Agency as an alternative to calcineurin antagonists for maintenance therapy with corticosteroids. In May 2015, the FDA approved sirolimus for the treatment of patients with lymphangioleiomyomatosis. In November 2021, albumin-bound sirolimus for intravenous injection was approved by the FDA for the treatment of adults with locally advanced unresectable or metastatic malignant perivascular epithelioid cell tumour (PEComa). Sirolimus was also investigated in other cancers such as skin cancer, Kaposi’s Sarcoma, cutaneous T-cell lymphomas, and tuberous sclerosis. The topical formulation of sirolimus, marketed as HYFTOR, was approved by the FDA in April 2022: this marks the first topical treatment approved in the US for facial angiofibroma associated with tuberous sclerosis complex. Sirolimus is a mTOR Inhibitor Immunosuppressant and Kinase Inhibitor. The mechanism of action of sirolimus is as a mTOR Inhibitor and Protein Kinase Inhibitor. The physiologic effect of sirolimus is by means of Decreased Immunologic Activity. Sirolimus is macrocyclic antibiotic with potent immunosuppressive activity that is used alone or in combination with calcineurin inhibitors and corticosteroids to prevent cellular rejection after renal transplantation. Sirolimus therapy can be associated with mild serum enzyme elevations and it has been linked to rare instances of clinically apparent cholestatic liver injury. Sirolimus is a natural product found in Streptomyces rapamycinicus, Streptomyces hygroscopicus, and other organisms with data available. Sirolimus is a natural macrocyclic lactone produced by the bacterium Streptomyces hygroscopicus, with immunosuppressant properties. In cells, sirolimus binds to the immunophilin FK Binding Protein-12 (FKBP-12) to generate an immunosuppressive complex that binds to and inhibits the activation of the mammalian Target Of Rapamycin (mTOR), a key regulatory kinase. This results in inhibition of T lymphocyte activation and proliferation that occurs in response to antigenic and cytokine (IL-2, IL-4, and IL-15) stimulation and inhibition of antibody production. (NCI04) A macrolide compound obtained from Streptomyces hygroscopicus that acts by selectively blocking the transcriptional activation ... Sirolimus is a macrolide compound obtained from Streptomyces hygroscopicus that acts by selectively blocking the transcriptional activation of cytokines thereby inhibiting cytokine production. It is bioactive only when bound to immunophilins. Sirolimus is a potent immunosuppressant and possesses both antifungal and antineoplastic properties. [PubChem] A macrolide lactam isolated from Streptomyces hygroscopicus consisting of a 29-membered ring containing 4 trans double bonds, three of which are conjugated. It is an antibiotic, immunosupressive and antineoplastic agent. L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01E - Protein kinase inhibitors > L01EG - Mammalian target of rapamycin (mtor) kinase inhibitors L - Antineoplastic and immunomodulating agents > L04 - Immunosuppressants > L04A - Immunosuppressants > L04AA - Selective immunosuppressants C471 - Enzyme Inhibitor > C1404 - Protein Kinase Inhibitor > C61074 - Serine/Threonine Kinase Inhibitor COVID info from Guide to PHARMACOLOGY, clinicaltrial, clinicaltrials, clinical trial, clinical trials D000970 - Antineoplastic Agents > D000903 - Antibiotics, Antineoplastic > D020123 - Sirolimus C274 - Antineoplastic Agent > C163758 - Targeted Therapy Agent > C2201 - mTOR Inhibitor D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents C784 - Protein Synthesis Inhibitor > C261 - Macrolide Antibiotic D000890 - Anti-Infective Agents > D000935 - Antifungal Agents C308 - Immunotherapeutic Agent > C574 - Immunosuppressant C254 - Anti-Infective Agent > C258 - Antibiotic S - Sensory organs > S01 - Ophthalmologicals Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Rapamycin (Sirolimus; AY 22989) is a potent and specific mTOR inhibitor with an IC50 of 0.1 nM in HEK293 cells. Rapamycin binds to FKBP12 and specifically acts as an allosteric inhibitor of mTORC1[1]. Rapamycin is an autophagy activator, an immunosuppressant[2]. Rapamycin (Sirolimus; AY 22989) is a potent and specific mTOR inhibitor with an IC50 of 0.1 nM in HEK293 cells. Rapamycin binds to FKBP12 and specifically acts as an allosteric inhibitor of mTORC1[1]. Rapamycin is an autophagy activator, an immunosuppressant[2]. Rapamycin (Sirolimus; AY 22989) is a potent and specific mTOR inhibitor with an IC50 of 0.1 nM in HEK293 cells. Rapamycin binds to FKBP12 and specifically acts as an allosteric inhibitor of mTORC1[1]. Rapamycin is an autophagy activator, an immunosuppressant[2].

   

Ribothymidine

1-[(2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-5-methyl-1,2,3,4-tetrahydropyrimidine-2,4-dione

C10H14N2O6 (258.0852)


A methyluridine having a single methyl substituent at the 5-position on the uracil ring. 5-Methyluridine is a is an endogenous methylated nucleoside found in human fluids. 5-Methyluridine is a is an endogenous methylated nucleoside found in human fluids.

   

5-Methyluridine

5-Methyluridine

C10H14N2O6 (258.0852)


CONFIDENCE standard compound; INTERNAL_ID 320 5-Methyluridine is a is an endogenous methylated nucleoside found in human fluids. 5-Methyluridine is a is an endogenous methylated nucleoside found in human fluids.

   

Phytosphingosine

4-hydroxysphinganine (SaccharoMyces Cerevisiae)

C18H39NO3 (317.293)


Phytosphingosine is a?phospholipid and has anti-cancer activities. Phytosphingosine induces cell apoptosis via caspase 8 activation and Bax translocation in cancer cells[1].

   

1-Methyladenine

1-Methyladenine

C6H7N5 (149.0701)


Adenine substituted with a methyl group at position N-1.

   

4-aminoimidazole

4-aminoimidazole

C3H5N3 (83.0483)


   

Tetrahydro-1,4-oxazine

Tetrahydro-1,4-oxazine

C4H9NO (87.0684)