beta-Ionone (BioDeep_00000009223)
Secondary id: BioDeep_00000858408, BioDeep_00000861363
human metabolite PANOMIX_OTCML-2023 Endogenous
代谢物信息卡片
化学式: C13H20O (192.1514)
中文名称: beta-紫罗酮, β-紫罗兰酮, β-紫罗酮
谱图信息:
最多检出来源 Homo sapiens(plant) 18.04%
Last reviewed on 2024-11-06.
Cite this Page
beta-Ionone. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China.
https://query.biodeep.cn/s/beta-ionone (retrieved
2024-12-22) (BioDeep RN: BioDeep_00000009223). Licensed
under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
分子结构信息
SMILES: CC(/C=C/C1=C(C)CCCC1(C)C)=O
InChI: InChI=1S/C13H20O/c1-10-6-5-9-13(3,4)12(10)8-7-11(2)14/h7-8H,5-6,9H2,1-4H3/b8-7+
描述信息
Beta-ionone is a colorless to light yellow liquid with an odor of cedar wood. In very dilute alcoholic solution the odor resembles odor of violets. Used in perfumery.
Beta-ionone is an ionone that is but-3-en-2-one substituted by a 2,6,6-trimethylcyclohex-1-en-1-yl group at position 4. It has a role as an antioxidant and a fragrance.
beta-Ionone is a natural product found in Nepeta nepetella, Vitis rotundifolia, and other organisms with data available.
beta-Ionone is a metabolite found in or produced by Saccharomyces cerevisiae.
beta-Ionone, also known as (e)-b-ionone or trans-beta-ionone, belongs to the class of organic compounds known as sesquiterpenoids. These are terpenes with three consecutive isoprene units.
Found in many essential oils including oil of Boronia megastigma (brown boronia) and coml. ionone. Flavouring agent
An ionone that is but-3-en-2-one substituted by a 2,6,6-trimethylcyclohex-1-en-1-yl group at position 4.
D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids
β-Ionone is effective in the induction of apoptosis in gastric adenocarcinoma SGC7901 cells. Anti-cancer activity[1].
β-Ionone. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=79-77-6 (retrieved 2024-11-06) (CAS RN: 79-77-6). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
同义名列表
90 个代谢物同义名
InChI=1/C13H20O/c1-10-6-5-9-13(3,4)12(10)8-7-11(2)14/h7-8H,5-6,9H2,1-4H3/b8-7; 3-Buten-2-one, 4-(2,6,6-trimethyl-1-cyclohexen-1-yl)-, (3E)-; 3-Buten-2-one, 4-(2,6,6-trimethyl-1-cyclohexen-1-yl)-, (E)-; 3-Buten-2-one, 4-(2,6,6-trimethyl-1-cyclohexen-1-yl)-, (E); (3E)-4-(2,6,6-trimethylcyclohex-1-en-1-yl) but-3-en-2-one; trans-4-(2,6,6-Trimethyl-1-cyclohexen-1-yl)-3-buten-2-one; 4-(2,6,6-Trimethyl-1(or 2)-cyclohexen-1-yl)-3-buten-2-one; (3E)-4-(2,6,6-trimethylcyclohex-1-en-1-yl)but-3-en-2-one; (3E)-4-(2,6,6-Trimethyl-1-cyclohexen-1-yl)-3-buten-2-one; [E]-4-[2,6,6-trimethyl-1-cyclohexen-1-yl]-3-buten-2-one; (E)-4-(2,6,6-Trimethyl-1-cyclohexen-1-yl)-3-buten-2-one; 4-(2,6,6-Trimethyl-1-cyclohexen-1-yl)-(E)-3-Buten-2-one; (E)-4-(2,6,6-Trimethylcyclohex-1-en-1-yl)but-3-en-2-one; 4-(2,6,6-Trimethylcyclohex-1-ene-1-yl)-but-3-ene-2-one; 3-Buten-2-one, 4-(2,6,6-trimethyl-1-cyclohexen-1-yl)-; (E)-4-(2,6,6-trimethyl-1-cyclohexenyl)-but-3-en-2-one; (E)-4-(2,6,6-trimethylcyclohex-1-enyl)but-3-en-2-one; (E)-4-(2,6,6-trimethylcyclohexen-1-yl)but-3-en-2-one; 4-(2,6,6-trimethyl-1-cyclohexene-1-yl)-3-buten-2-one; 4-(2,6,6-Trimethyl-1-cyclohexen-l-yl)-3-buten-2-one; 4-(2,6,6-Trimethylcyclohex-1-en-1-yl)but-3-en-2-one; 4-(2,6,6-trimethyl-1-cyclohexen-1-yl)-3-buten-2-one; 4-(2,6-Trimethyl-1-cyclohexen-1-yl)-3-buten-2-one; beta-Ionone, predominantly trans, >=97\\%, FCC, FG; 4-(2,6-Trimethyl-1-cyclohexen-l-yl)-3-buten-2-one; 4-(2,6,6-Trimethyl-1-cyclohexenyl)-3-buten-2-one; 3-Buten-2-one,6,6-trimethyl-1-cyclohexen-1-yl)-; 4-(2,6-Trimethyl-1-cyclohexenyl)-3-buten-2-one; 2-07-00-00140 (Beilstein Handbook Reference); beta-Ionone, natural (US), >=85\\%, FG; beta-Ionone, purum, >=95.0\\% (GC); beta-Ionone, analytical standard; beta-Ionone, natural, >=85\\%, FG; .beta.-Cyclocitrylideneacetone; beta-Cyclocitrylideneacetone; 3-BENZYLAMINO-PROPIONICACID; BETA-CYCLOCITRYLIDENACETONE; beta-ionone, (trans)-isomer; WLN: L6UTJ A1U1V1 B1 F1 F1; 9-apo-beta-caroten-9-one; .beta.-Ionone isomer # 2; .beta.-Ionone isomer # 1; beta-Ionone, synthetic; .BETA.-IONONE [FHFI]; beta-Ionone (trans); trans-.beta.-Ionone; .BETA.-IONONE [MI]; Trans-beta -ionone; (E)-.beta.-Ionone; beta-Ionone, 96\\%; trans-beta-Ionone; BETA-IONONE [FCC]; (3E)-BETA-IONONE; (E)-beta -ionone; UNII-A7NRR1HLH6; (E)-beta-Ionone; Ionone, .beta.-; beta -E-ionone; trans-b-Ionone; trans-Β-ionone; .beta.-Ionone; .beta.-Ionene; Ionone, beta-; beta-E-Ionone; Tox21_300709; Tox21_302862; (e)-b-Ionone; Tox21_201454; (e)-Β-ionone; IONONE, BETA; beta -ionone; CAS-79-77-6; beta-Ionone; beta-Jonone; beta ionone; A7NRR1HLH6; b-e-Ionone; beta-Ionon; Β-e-ionone; AI3-25073; ss-Ionone; FEMA 2595; ?-IONONE; b-ionone; β-Ionone; Β-ionon; b-Ionon; 4-(2,6,6-Trimethyl-cyclohex-1-enyl)-but-3-en-2-one; beta-Ionone; beta-Ionone
数据库引用编号
23 个数据库交叉引用编号
- ChEBI: CHEBI:32325
- KEGG: C12287
- KEGGdrug: D70747
- PubChem: 638014
- HMDB: HMDB0036565
- Metlin: METLIN69413
- ChEMBL: CHEMBL559945
- Wikipedia: Ionone
- MeSH: beta-ionone
- ChemIDplus: 0000079776
- MetaCyc: CPD-7204
- KNApSAcK: C00029816
- foodb: FDB015469
- chemspider: 553581
- CAS: 79-77-6
- medchemexpress: HY-W015084
- PMhub: MS000022981
- MetaboLights: MTBLC32325
- PDB-CCD: ID3
- NIKKAJI: J4.392C
- RefMet: beta-Ionone
- PubChem: 14431
- KNApSAcK: 32325
分类词条
相关代谢途径
Reactome(6)
代谢反应
425 个相关的代谢反应过程信息。
Reactome(93)
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of fat-soluble vitamins:
Oxygen + betaC ⟶ atRAL
- Retinoid metabolism and transport:
Oxygen + betaC ⟶ atRAL
- Signaling Pathways:
AMP + p-AMPK heterotrimer ⟶ p-AMPK heterotrimer:AMP
- Signaling by GPCR:
2AG + H2O ⟶ AA + Glycerol + H+
- GPCR downstream signalling:
2AG + H2O ⟶ AA + Glycerol + H+
- G alpha (i) signalling events:
ATP + H2O + atRAL ⟶ ADP + Pi + atRAL
- Visual phototransduction:
ATP + H2O + atRAL ⟶ ADP + Pi + atRAL
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of fat-soluble vitamins:
TTPA + alpha-TOH ⟶ TTPA:alpha-TOH
- Retinoid metabolism and transport:
H+ + RBP2:atRAL + TPNH ⟶ RBP2:atROL + TPN
- Visual phototransduction:
H+ + RBP2:atRAL + TPNH ⟶ RBP2:atROL + TPN
- Visual phototransduction:
H+ + RBP2:atRAL + TPNH ⟶ RBP2:atROL + TPN
- Retinoid metabolism and transport:
H+ + RBP2:atRAL + TPNH ⟶ RBP2:atROL + TPN
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of fat-soluble vitamins:
H+ + RBP2:atRAL + TPNH ⟶ RBP2:atROL + TPN
- Visual phototransduction:
atREs + nascent CM ⟶ nascent CM:atREs
- Retinoid metabolism and transport:
atREs + nascent CM ⟶ nascent CM:atREs
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of vitamins and cofactors:
6x(PCCA:PCCB) + ATP + Btn ⟶ 6x(Btn-PCCA:PCCB) + AMP + PPi
- Metabolism of fat-soluble vitamins:
atREs + nascent CM ⟶ nascent CM:atREs
- Visual phototransduction:
atREs + nascent CM ⟶ nascent CM:atREs
- Retinoid metabolism and transport:
atREs + nascent CM ⟶ nascent CM:atREs
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of fat-soluble vitamins:
atREs + nascent CM ⟶ nascent CM:atREs
- Visual phototransduction:
RLBP1:11cROL + TPN ⟶ H+ + RLBP1:11cRAL + TPNH
- Retinoid metabolism and transport:
H+ + RBP2:atRAL + TPNH ⟶ RBP2:atROL + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of fat-soluble vitamins:
Homologues of TTPA + alpha-TOH ⟶ TTPA:alpha-TOH
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of fat-soluble vitamins:
TTPA + alpha-TOH ⟶ TTPA:alpha-TOH
- Retinoid metabolism and transport:
H+ + RBP2:atRAL + TPNH ⟶ RBP2:atROL + TPN
- Visual phototransduction:
H+ + RBP2:atRAL + TPNH ⟶ RBP2:atROL + TPN
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of fat-soluble vitamins:
atREs + nascent CM ⟶ nascent CM:atREs
- Retinoid metabolism and transport:
atREs + nascent CM ⟶ nascent CM:atREs
- Visual phototransduction:
atREs + nascent CM ⟶ nascent CM:atREs
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of fat-soluble vitamins:
atREs + nascent CM ⟶ nascent CM:atREs
- Retinoid metabolism and transport:
atREs + nascent CM ⟶ nascent CM:atREs
- Visual phototransduction:
atREs + nascent CM ⟶ nascent CM:atREs
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of fat-soluble vitamins:
Oxygen + betaC ⟶ atRAL
- Retinoid metabolism and transport:
Oxygen + betaC ⟶ atRAL
- Signaling Pathways:
AMP + p-AMPK heterotrimer ⟶ p-AMPK heterotrimer:AMP
- Signaling by GPCR:
2AG + H2O ⟶ AA + Glycerol + H+
- GPCR downstream signalling:
2AG + H2O ⟶ AA + Glycerol + H+
- G alpha (i) signalling events:
ATP + Calmodulin:CaMK IV ⟶ ADP + phospho-CaMK IV:Calmodulin
- Visual phototransduction:
ATP + H2O + atRAL ⟶ ADP + Pi + atRAL
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of fat-soluble vitamins:
atREs + nascent CM ⟶ nascent CM:atREs
- Retinoid metabolism and transport:
atREs + nascent CM ⟶ nascent CM:atREs
- Visual phototransduction:
atREs + nascent CM ⟶ nascent CM:atREs
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of fat-soluble vitamins:
atREs + nascent CM ⟶ nascent CM:atREs
- Retinoid metabolism and transport:
atREs + nascent CM ⟶ nascent CM:atREs
- Visual phototransduction:
atREs + nascent CM ⟶ nascent CM:atREs
- Signaling Pathways:
AMP + p-AMPK heterotrimer ⟶ p-AMPK heterotrimer:AMP
- Signaling by GPCR:
H2O + cAMP ⟶ AMP
- GPCR downstream signalling:
H2O + cAMP ⟶ AMP
- G alpha (i) signalling events:
H2O + cAMP ⟶ AMP
- Visual phototransduction:
H+ + RBP2:atRAL + TPNH ⟶ RBP2:atROL + TPN
- Retinoid metabolism and transport:
H+ + RBP2:atRAL + TPNH ⟶ RBP2:atROL + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of fat-soluble vitamins:
TTPA + alpha-TOH ⟶ TTPA:alpha-TOH
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of fat-soluble vitamins:
atREs + nascent CM ⟶ nascent CM:atREs
- Retinoid metabolism and transport:
atREs + nascent CM ⟶ nascent CM:atREs
- Visual phototransduction:
atREs + nascent CM ⟶ nascent CM:atREs
- Sensory Perception:
H2O + RPALM ⟶ PALM + atROL
- Sensory Perception:
atREs + nascent CM ⟶ nascent CM:atREs
- Sensory Perception:
atREs + nascent CM ⟶ nascent CM:atREs
- Sensory Perception:
atREs + nascent CM ⟶ nascent CM:atREs
- Sensory Perception:
H2O + RPALM ⟶ PALM + atROL
- Sensory Perception:
atREs + nascent CM ⟶ nascent CM:atREs
- Sensory Perception:
atREs + nascent CM ⟶ nascent CM:atREs
- Sensory Perception:
H2O + RPALM ⟶ PALM + atROL
- Sensory Perception:
H2O + RPALM ⟶ PALM + atROL
- Sensory Perception:
atREs + nascent CM ⟶ nascent CM:atREs
- Sensory Perception:
GTP + odorant:Olfactory Receptor:GNAL:GDP:GNB1:GNG13 ⟶ GDP + odorant:Olfactory Receptor:GNAL:GTP:GNB1:GNG13
BioCyc(4)
- 5-deoxystrigol biosynthesis:
9-cis-β-carotene + O2 ⟶ β-ionone + 9-cis-10'-apo-β-carotenal
- carotenoid cleavage:
β-carotene + O2 ⟶ β-ionone + 4,9-dimethyldodeca-2,4,6,8,10-pentaene-1,12-dial
- carotenoid cleavage:
all-trans-β-carotene + O2 ⟶ β-ionone + 4,9-dimethyldodeca-2,4,6,8,10-pentaene-1,12-dial
- 5-deoxystrigol biosynthesis:
9-cis-β-carotene + O2 ⟶ β-ionone + 9-cis-10'-apo-β-carotenal
WikiPathways(0)
Plant Reactome(195)
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- Strigolactone biosynthesis:
9-cis-beta-carotene + Oxygen ⟶ 9-cis-10'-apo-beta-carotenal + beta-ionone
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- Strigolactone biosynthesis:
9-cis-beta-carotene + Oxygen ⟶ 9-cis-10'-apo-beta-carotenal + beta-ionone
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- Strigolactone biosynthesis:
9-cis-beta-carotene + Oxygen ⟶ 9-cis-10'-apo-beta-carotenal + beta-ionone
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- Strigolactone biosynthesis:
beta-carotene ⟶ 9-cis-beta-carotene
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- Strigolactone biosynthesis:
beta-carotene ⟶ 9-cis-beta-carotene
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- Strigolactone biosynthesis:
9-cis-beta-carotene + Oxygen ⟶ 9-cis-10'-apo-beta-carotenal + beta-ionone
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- Strigolactone biosynthesis:
9-cis-beta-carotene + Oxygen ⟶ 9-cis-10'-apo-beta-carotenal + beta-ionone
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- Strigolactone biosynthesis:
beta-carotene ⟶ 9-cis-beta-carotene
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- Strigolactone biosynthesis:
beta-carotene ⟶ 9-cis-beta-carotene
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- Strigolactone biosynthesis:
beta-carotene ⟶ 9-cis-beta-carotene
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- Strigolactone biosynthesis:
beta-carotene ⟶ 9-cis-beta-carotene
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- Strigolactone biosynthesis:
beta-carotene ⟶ 9-cis-beta-carotene
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- Strigolactone biosynthesis:
9-cis-beta-carotene + Oxygen ⟶ 9-cis-10'-apo-beta-carotenal + beta-ionone
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- Strigolactone biosynthesis:
beta-carotene ⟶ 9-cis-beta-carotene
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- Strigolactone biosynthesis:
beta-carotene ⟶ 9-cis-beta-carotene
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- Strigolactone biosynthesis:
beta-carotene ⟶ 9-cis-beta-carotene
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- Strigolactone biosynthesis:
9-cis-beta-carotene + Oxygen ⟶ 9-cis-10'-apo-beta-carotenal + beta-ionone
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- Strigolactone biosynthesis:
beta-carotene ⟶ 9-cis-beta-carotene
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- Strigolactone biosynthesis:
beta-carotene ⟶ 9-cis-beta-carotene
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- Strigolactone biosynthesis:
9-cis-beta-carotene + Oxygen ⟶ 9-cis-10'-apo-beta-carotenal + beta-ionone
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- Strigolactone biosynthesis:
beta-carotene ⟶ 9-cis-beta-carotene
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- Strigolactone biosynthesis:
beta-carotene ⟶ 9-cis-beta-carotene
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- Strigolactone biosynthesis:
beta-carotene ⟶ 9-cis-beta-carotene
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- Strigolactone biosynthesis:
beta-carotene ⟶ 9-cis-beta-carotene
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- Strigolactone biosynthesis:
beta-carotene ⟶ 9-cis-beta-carotene
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- Strigolactone biosynthesis:
beta-carotene ⟶ 9-cis-beta-carotene
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- Strigolactone biosynthesis:
beta-carotene ⟶ 9-cis-beta-carotene
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- Strigolactone biosynthesis:
9-cis-beta-carotene + Oxygen ⟶ 9-cis-10'-apo-beta-carotenal + beta-ionone
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- Strigolactone biosynthesis:
9-cis-beta-carotene + Oxygen ⟶ 9-cis-10'-apo-beta-carotenal + beta-ionone
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- Strigolactone biosynthesis:
beta-carotene ⟶ 9-cis-beta-carotene
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- Strigolactone biosynthesis:
9-cis-beta-carotene + Oxygen ⟶ 9-cis-10'-apo-beta-carotenal + beta-ionone
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- Strigolactone biosynthesis:
9-cis-beta-carotene + Oxygen ⟶ 9-cis-10'-apo-beta-carotenal + beta-ionone
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- Strigolactone biosynthesis:
beta-carotene ⟶ 9-cis-beta-carotene
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- Strigolactone biosynthesis:
9-cis-beta-carotene + Oxygen ⟶ 9-cis-10'-apo-beta-carotenal + beta-ionone
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- Strigolactone biosynthesis:
9-cis-beta-carotene + Oxygen ⟶ 9-cis-10'-apo-beta-carotenal + beta-ionone
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- Strigolactone biosynthesis:
beta-carotene ⟶ 9-cis-beta-carotene
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- Strigolactone biosynthesis:
beta-carotene ⟶ 9-cis-beta-carotene
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- Strigolactone biosynthesis:
9-cis-beta-carotene + Oxygen ⟶ 9-cis-10'-apo-beta-carotenal + beta-ionone
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- Strigolactone biosynthesis:
beta-carotene ⟶ 9-cis-beta-carotene
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- Strigolactone biosynthesis:
beta-carotene ⟶ 9-cis-beta-carotene
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- Strigolactone biosynthesis:
beta-carotene ⟶ 9-cis-beta-carotene
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- Strigolactone biosynthesis:
9-cis-beta-carotene + Oxygen ⟶ 9-cis-10'-apo-beta-carotenal + beta-ionone
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- Strigolactone biosynthesis:
9-cis-beta-carotene + Oxygen ⟶ 9-cis-10'-apo-beta-carotenal + beta-ionone
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- Strigolactone biosynthesis:
beta-carotene ⟶ 9-cis-beta-carotene
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- Strigolactone biosynthesis:
beta-carotene ⟶ 9-cis-beta-carotene
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- Strigolactone biosynthesis:
beta-carotene ⟶ 9-cis-beta-carotene
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- Strigolactone biosynthesis:
beta-carotene ⟶ 9-cis-beta-carotene
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- Strigolactone biosynthesis:
beta-carotene ⟶ 9-cis-beta-carotene
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- Strigolactone biosynthesis:
9-cis-beta-carotene + Oxygen ⟶ 9-cis-10'-apo-beta-carotenal + beta-ionone
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- Strigolactone biosynthesis:
9-cis-beta-carotene + Oxygen ⟶ 9-cis-10'-apo-beta-carotenal + beta-ionone
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- Strigolactone biosynthesis:
beta-carotene ⟶ 9-cis-beta-carotene
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- Strigolactone biosynthesis:
9-cis-beta-carotene + Oxygen ⟶ 9-cis-10'-apo-beta-carotenal + beta-ionone
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- Strigolactone biosynthesis:
beta-carotene ⟶ 9-cis-beta-carotene
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- Strigolactone biosynthesis:
9-cis-beta-carotene + Oxygen ⟶ 9-cis-10'-apo-beta-carotenal + beta-ionone
- Metabolism and regulation:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Hormone signaling, transport, and metabolism:
3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-octanoate + Oxygen ⟶ CH3COO- + jasmonic acid
- Strigolactone biosynthesis:
beta-carotene ⟶ 9-cis-beta-carotene
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- Strigolactone biosynthesis:
beta-carotene ⟶ 9-cis-beta-carotene
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- Strigolactone biosynthesis:
beta-carotene ⟶ 9-cis-beta-carotene
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- Strigolactone biosynthesis:
beta-carotene ⟶ 9-cis-beta-carotene
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- Strigolactone biosynthesis:
9-cis-beta-carotene + Oxygen ⟶ 9-cis-10'-apo-beta-carotenal + beta-ionone
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- Strigolactone biosynthesis:
beta-carotene ⟶ 9-cis-beta-carotene
- Strigolactone biosynthesis:
beta-carotene ⟶ 9-cis-beta-carotene
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- Strigolactone biosynthesis:
beta-carotene ⟶ 9-cis-beta-carotene
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- Strigolactone biosynthesis:
beta-carotene ⟶ 9-cis-beta-carotene
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- Strigolactone biosynthesis:
beta-carotene ⟶ 9-cis-beta-carotene
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- Strigolactone biosynthesis:
beta-carotene ⟶ 9-cis-beta-carotene
INOH(0)
PlantCyc(132)
- 5-deoxystrigol biosynthesis:
β-carotene ⟶ 9-cis-β-carotene
- 5-deoxystrigol biosynthesis:
β-carotene ⟶ 9-cis-β-carotene
- 5-deoxystrigol biosynthesis:
β-carotene ⟶ 9-cis-β-carotene
- 5-deoxystrigol biosynthesis:
β-carotene ⟶ 9-cis-β-carotene
- 5-deoxystrigol biosynthesis:
β-carotene ⟶ 9-cis-β-carotene
- carotenoid cleavage:
β-carotene + O2 ⟶ β-ionone + all-trans-10'-apo-β-carotenal
- 5-deoxystrigol biosynthesis:
9-cis-β-carotene + O2 ⟶ β-ionone + 9-cis-10'-apo-β-carotenal
- 5-deoxystrigol biosynthesis:
β-carotene ⟶ 9-cis-β-carotene
- 5-deoxystrigol biosynthesis:
β-carotene ⟶ 9-cis-β-carotene
- 5-deoxystrigol biosynthesis:
β-carotene ⟶ 9-cis-β-carotene
- 5-deoxystrigol biosynthesis:
β-carotene ⟶ 9-cis-β-carotene
- 5-deoxystrigol biosynthesis:
β-carotene ⟶ 9-cis-β-carotene
- 5-deoxystrigol biosynthesis:
β-carotene ⟶ 9-cis-β-carotene
- 5-deoxystrigol biosynthesis:
β-carotene ⟶ 9-cis-β-carotene
- 5-deoxystrigol biosynthesis:
β-carotene ⟶ 9-cis-β-carotene
- 5-deoxystrigol biosynthesis:
β-carotene ⟶ 9-cis-β-carotene
- 5-deoxystrigol biosynthesis:
β-carotene ⟶ 9-cis-β-carotene
- 5-deoxystrigol biosynthesis:
β-carotene ⟶ 9-cis-β-carotene
- 5-deoxystrigol biosynthesis:
β-carotene ⟶ 9-cis-β-carotene
- 5-deoxystrigol biosynthesis:
β-carotene ⟶ 9-cis-β-carotene
- 5-deoxystrigol biosynthesis:
β-carotene ⟶ 9-cis-β-carotene
- 5-deoxystrigol biosynthesis:
β-carotene ⟶ 9-cis-β-carotene
- 5-deoxystrigol biosynthesis:
β-carotene ⟶ 9-cis-β-carotene
- 5-deoxystrigol biosynthesis:
β-carotene ⟶ 9-cis-β-carotene
- 5-deoxystrigol biosynthesis:
β-carotene ⟶ 9-cis-β-carotene
- 5-deoxystrigol biosynthesis:
β-carotene ⟶ 9-cis-β-carotene
- 5-deoxystrigol biosynthesis:
β-carotene ⟶ 9-cis-β-carotene
- 5-deoxystrigol biosynthesis:
β-carotene ⟶ 9-cis-β-carotene
- 5-deoxystrigol biosynthesis:
β-carotene ⟶ 9-cis-β-carotene
- 5-deoxystrigol biosynthesis:
β-carotene ⟶ 9-cis-β-carotene
- 5-deoxystrigol biosynthesis:
β-carotene ⟶ 9-cis-β-carotene
- 5-deoxystrigol biosynthesis:
β-carotene ⟶ 9-cis-β-carotene
- carotenoid cleavage:
β-carotene + O2 ⟶ β-ionone + 4,9-dimethyldodeca-2,4,6,8,10-pentaene-1,12-dial
- 5-deoxystrigol biosynthesis:
β-carotene ⟶ 9-cis-β-carotene
- 5-deoxystrigol biosynthesis:
β-carotene ⟶ 9-cis-β-carotene
- 5-deoxystrigol biosynthesis:
β-carotene ⟶ 9-cis-β-carotene
- 5-deoxystrigol biosynthesis:
β-carotene ⟶ 9-cis-β-carotene
- 5-deoxystrigol biosynthesis:
β-carotene ⟶ 9-cis-β-carotene
- 5-deoxystrigol biosynthesis:
β-carotene ⟶ 9-cis-β-carotene
- 5-deoxystrigol biosynthesis:
β-carotene ⟶ 9-cis-β-carotene
- 5-deoxystrigol biosynthesis:
β-carotene ⟶ 9-cis-β-carotene
- 5-deoxystrigol biosynthesis:
β-carotene ⟶ 9-cis-β-carotene
- 5-deoxystrigol biosynthesis:
β-carotene ⟶ 9-cis-β-carotene
- 5-deoxystrigol biosynthesis:
β-carotene ⟶ 9-cis-β-carotene
- 5-deoxystrigol biosynthesis:
β-carotene ⟶ 9-cis-β-carotene
- 5-deoxystrigol biosynthesis:
β-carotene ⟶ 9-cis-β-carotene
- 5-deoxystrigol biosynthesis:
β-carotene ⟶ 9-cis-β-carotene
- 5-deoxystrigol biosynthesis:
β-carotene ⟶ 9-cis-β-carotene
- 5-deoxystrigol biosynthesis:
β-carotene ⟶ 9-cis-β-carotene
- 5-deoxystrigol biosynthesis:
β-carotene ⟶ 9-cis-β-carotene
- 5-deoxystrigol biosynthesis:
β-carotene ⟶ 9-cis-β-carotene
- 5-deoxystrigol biosynthesis:
β-carotene ⟶ 9-cis-β-carotene
- 5-deoxystrigol biosynthesis:
β-carotene ⟶ 9-cis-β-carotene
- 5-deoxystrigol biosynthesis:
β-carotene ⟶ 9-cis-β-carotene
- 5-deoxystrigol biosynthesis:
β-carotene ⟶ 9-cis-β-carotene
- 5-deoxystrigol biosynthesis:
β-carotene ⟶ 9-cis-β-carotene
- 5-deoxystrigol biosynthesis:
β-carotene ⟶ 9-cis-β-carotene
- 5-deoxystrigol biosynthesis:
β-carotene ⟶ 9-cis-β-carotene
- 5-deoxystrigol biosynthesis:
β-carotene ⟶ 9-cis-β-carotene
- 5-deoxystrigol biosynthesis:
β-carotene ⟶ 9-cis-β-carotene
- 5-deoxystrigol biosynthesis:
β-carotene ⟶ 9-cis-β-carotene
- 5-deoxystrigol biosynthesis:
β-carotene ⟶ 9-cis-β-carotene
- 5-deoxystrigol biosynthesis:
β-carotene ⟶ 9-cis-β-carotene
- 5-deoxystrigol biosynthesis:
β-carotene ⟶ 9-cis-β-carotene
- 5-deoxystrigol biosynthesis:
β-carotene ⟶ 9-cis-β-carotene
- 5-deoxystrigol biosynthesis:
β-carotene ⟶ 9-cis-β-carotene
- 5-deoxystrigol biosynthesis:
β-carotene ⟶ 9-cis-β-carotene
- 5-deoxystrigol biosynthesis:
β-carotene ⟶ 9-cis-β-carotene
- 5-deoxystrigol biosynthesis:
β-carotene ⟶ 9-cis-β-carotene
- 5-deoxystrigol biosynthesis:
β-carotene ⟶ 9-cis-β-carotene
- carotenoid cleavage:
β-carotene + O2 ⟶ β-ionone + all-trans-10'-apo-β-carotenal
- 5-deoxystrigol biosynthesis:
β-carotene ⟶ 9-cis-β-carotene
- 5-deoxystrigol biosynthesis:
β-carotene ⟶ 9-cis-β-carotene
- 5-deoxystrigol biosynthesis:
β-carotene ⟶ 9-cis-β-carotene
- 5-deoxystrigol biosynthesis:
β-carotene ⟶ 9-cis-β-carotene
- 5-deoxystrigol biosynthesis:
β-carotene ⟶ 9-cis-β-carotene
- carotenoid cleavage:
β-carotene + O2 ⟶ β-ionone + 4,9-dimethyldodeca-2,4,6,8,10-pentaene-1,12-dial
- 5-deoxystrigol biosynthesis:
9-cis-β-carotene + O2 ⟶ β-ionone + 9-cis-10'-apo-β-carotenal
- 5-deoxystrigol biosynthesis:
β-carotene ⟶ 9-cis-β-carotene
- 5-deoxystrigol biosynthesis:
β-carotene ⟶ 9-cis-β-carotene
- 5-deoxystrigol biosynthesis:
β-carotene ⟶ 9-cis-β-carotene
- 5-deoxystrigol biosynthesis:
β-carotene ⟶ 9-cis-β-carotene
- 5-deoxystrigol biosynthesis:
β-carotene ⟶ 9-cis-β-carotene
- 5-deoxystrigol biosynthesis:
β-carotene ⟶ 9-cis-β-carotene
- 5-deoxystrigol biosynthesis:
β-carotene ⟶ 9-cis-β-carotene
- 5-deoxystrigol biosynthesis:
β-carotene ⟶ 9-cis-β-carotene
- 5-deoxystrigol biosynthesis:
β-carotene ⟶ 9-cis-β-carotene
- 5-deoxystrigol biosynthesis:
β-carotene ⟶ 9-cis-β-carotene
- 5-deoxystrigol biosynthesis:
β-carotene ⟶ 9-cis-β-carotene
- 5-deoxystrigol biosynthesis:
β-carotene ⟶ 9-cis-β-carotene
- 5-deoxystrigol biosynthesis:
β-carotene ⟶ 9-cis-β-carotene
- 5-deoxystrigol biosynthesis:
β-carotene ⟶ 9-cis-β-carotene
- 5-deoxystrigol biosynthesis:
β-carotene ⟶ 9-cis-β-carotene
- 5-deoxystrigol biosynthesis:
β-carotene ⟶ 9-cis-β-carotene
- 5-deoxystrigol biosynthesis:
β-carotene ⟶ 9-cis-β-carotene
- 5-deoxystrigol biosynthesis:
β-carotene ⟶ 9-cis-β-carotene
- 5-deoxystrigol biosynthesis:
β-carotene ⟶ 9-cis-β-carotene
- 5-deoxystrigol biosynthesis:
β-carotene ⟶ 9-cis-β-carotene
- 5-deoxystrigol biosynthesis:
β-carotene ⟶ 9-cis-β-carotene
- 5-deoxystrigol biosynthesis:
β-carotene ⟶ 9-cis-β-carotene
- 5-deoxystrigol biosynthesis:
β-carotene ⟶ 9-cis-β-carotene
- 5-deoxystrigol biosynthesis:
β-carotene ⟶ 9-cis-β-carotene
- 5-deoxystrigol biosynthesis:
β-carotene ⟶ 9-cis-β-carotene
- 5-deoxystrigol biosynthesis:
β-carotene ⟶ 9-cis-β-carotene
- 5-deoxystrigol biosynthesis:
β-carotene ⟶ 9-cis-β-carotene
- 5-deoxystrigol biosynthesis:
β-carotene ⟶ 9-cis-β-carotene
- 5-deoxystrigol biosynthesis:
β-carotene ⟶ 9-cis-β-carotene
- 5-deoxystrigol biosynthesis:
β-carotene ⟶ 9-cis-β-carotene
- 5-deoxystrigol biosynthesis:
β-carotene ⟶ 9-cis-β-carotene
- 5-deoxystrigol biosynthesis:
β-carotene ⟶ 9-cis-β-carotene
- 5-deoxystrigol biosynthesis:
β-carotene ⟶ 9-cis-β-carotene
- 5-deoxystrigol biosynthesis:
β-carotene ⟶ 9-cis-β-carotene
- 5-deoxystrigol biosynthesis:
β-carotene ⟶ 9-cis-β-carotene
- 5-deoxystrigol biosynthesis:
β-carotene ⟶ 9-cis-β-carotene
- 5-deoxystrigol biosynthesis:
β-carotene ⟶ 9-cis-β-carotene
- 5-deoxystrigol biosynthesis:
β-carotene ⟶ 9-cis-β-carotene
- 5-deoxystrigol biosynthesis:
β-carotene ⟶ 9-cis-β-carotene
- 5-deoxystrigol biosynthesis:
β-carotene ⟶ 9-cis-β-carotene
- 5-deoxystrigol biosynthesis:
β-carotene ⟶ 9-cis-β-carotene
- 5-deoxystrigol biosynthesis:
β-carotene ⟶ 9-cis-β-carotene
- 5-deoxystrigol biosynthesis:
β-carotene ⟶ 9-cis-β-carotene
- 5-deoxystrigol biosynthesis:
β-carotene ⟶ 9-cis-β-carotene
- 5-deoxystrigol biosynthesis:
β-carotene ⟶ 9-cis-β-carotene
- 5-deoxystrigol biosynthesis:
β-carotene ⟶ 9-cis-β-carotene
- carotenoid cleavage:
β-carotene + O2 ⟶ β-ionone + all-trans-10'-apo-β-carotenal
- 5-deoxystrigol biosynthesis:
9-cis-β-carotene + O2 ⟶ β-ionone + 9-cis-10'-apo-β-carotenal
- 5-deoxystrigol biosynthesis:
β-carotene ⟶ 9-cis-β-carotene
- 5-deoxystrigol biosynthesis:
β-carotene ⟶ 9-cis-β-carotene
- 5-deoxystrigol biosynthesis:
β-carotene ⟶ 9-cis-β-carotene
- 5-deoxystrigol biosynthesis:
β-carotene ⟶ 9-cis-β-carotene
- 5-deoxystrigol biosynthesis:
β-carotene ⟶ 9-cis-β-carotene
- 5-deoxystrigol biosynthesis:
β-carotene ⟶ 9-cis-β-carotene
COVID-19 Disease Map(0)
PharmGKB(0)
95 个相关的物种来源信息
- 39269 - Agastache foeniculum: 10.1080/10412905.1997.9700708
- 501610 - Agathosma betulina: 10.1021/JF60201A021
- 205369 - Artemisia judaica: 10.1080/10412905.1990.9697881
- 385370 - Aster scaber: 10.1021/JF00034A033
- 146531 - Avena byzantina: 10.1021/JF00112A045
- 4498 - Avena sativa: 10.1021/JF00112A045
- 28974 - Averrhoa carambola: 10.1021/JF00062A009
- 72900 - Baccharis dracunculifolia: 10.1002/(SICI)1099-1026(199601)11:1<15::AID-FFJ541>3.0.CO;2-H
- 3589 - Basella alba: 10.1016/0889-1575(91)90017-Z
- 41492 - Bellis perennis: 10.1016/0031-9422(95)00183-8
- 3504 - Betula: 10.1007/BF02236421
- 52824 - Brassica carinata: 10.1016/0031-9422(88)83085-1
- 3708 - Brassica napus: 10.1016/0031-9422(88)83085-1
- 41496 - Calendula officinalis: 10.1055/S-2006-962683
- 4442 - Camellia sinensis: 10.1271/BBB1961.50.1039
- 3483 - Cannabis sativa: 10.1021/NP50008A001
- 4072 - Capsicum annuum: 10.1007/S002170050019
- 4058 - Catharanthus roseus: 10.1002/FFJ.958
- 2230519 - Cerastium candidissimum: 10.1080/10412905.2000.9712192
- 114280 - Cichorium endivia: 10.1021/JF00068A014
- 3654 - Citrullus lanatus: 10.1271/BBB1961.49.3145
- 171251 - Citrus medica: 10.1080/10412905.1996.9700547
- 72917 - Conyza canadensis: 10.1016/0031-9422(88)80461-8
- 202634 - Crateva religiosa: 10.1021/NP50052A041
- 3656 - Cucumis melo: 10.1111/J.1365-2621.1987.TB14284.X
- 3661 - Cucurbita maxima: 10.1021/JF00073A014
- 329675 - Daphne odora: 10.1271/BBB1961.47.483
- 2715869 - Daphne papyracea: 10.1271/BBB1961.47.483
- 4039 - Daucus carota:
- 308281 - Diplotaxis harra: 10.1002/(SICI)1099-1573(199906)13:4<329::AID-PTR458>3.0.CO;2-U
- 3046 - Dunaliella salina: 10.2210/PDB6IUY/PDB
- 72917 - Erigeron canadensis: 10.1016/0031-9422(88)80461-8
- 1078594 - Erucaria microcarpa: 10.1002/(SICI)1099-1573(199906)13:4<329::AID-PTR458>3.0.CO;2-U
- 87257 - Evernia prunastri: 10.1021/JF60201A022
- 52153 - Festuca rubra: 10.1016/0031-9422(91)84185-U
- 3635 - Gossypium hirsutum: 10.1021/JF60200A011
- 4397 - Hamamelis virginiana: 10.1055/S-2006-957420
- 1775740 - Hedlundia hybrida: 10.1021/NP0103057
- 9606 - Homo sapiens: -
- 228586 - Humulus Scandens (Lour.) Merr.: -
- 185542 - Ilex paraguariensis: 10.1021/JF00025A023
- 483693 - Inula racemosa: 10.1016/S0031-9422(00)83760-7
- 153348 - Lepidium meyenii: 10.1016/S0031-9422(02)00208-X
- 4606 - Lolium arundinaceum: 10.1016/0031-9422(91)84185-U
- 3750 - Malus domestica: 10.1021/JF00025A025
- 283210 - Malus pumila: 10.1021/JF00025A025
- 389206 - Mandragora autumnalis: 10.1016/J.PHYTOCHEM.2005.07.016
- 33117 - Mandragora officinarum: 10.1016/J.PHYTOCHEM.2005.07.016
- 3879 - Medicago sativa: 10.1021/JF00043A019
- 1126 - Microcystis aeruginosa: 10.1016/S0031-9422(97)00943-6
- 1000421 - Nepeta nepetella: 10.1055/S-2007-969632
- 54731 - Nepeta racemosa: 10.1080/10412905.1993.9698205
- 39350 - Ocimum basilicum: 10.1080/10412905.1995.9698501
- 371859 - Opuntia ficus-indica: 10.1021/JF60218A053
- 39352 - Origanum vulgare: 10.1080/10412905.1993.9698253
- 204151 - Orthosiphon aristatus: 10.1055/S-2007-969136
- 159425 - Passiflora incarnata: 10.1080/10412905.1992.9698081
- 48386 - Perilla Frutescens: -
- 33090 - Plants: -
- 174549 - Polygala senega: 10.1002/FFJ.2730100408
- 36596 - Prunus armeniaca: 10.1016/J.FOODRES.2010.11.014
- 3755 - Prunus dulcis: 10.1021/JF60228A025
- 313948 - Rhanterium epapposum: 10.1002/FFJ.2730020106
- 88149 - Saccharina japonica: 10.3390/MOLECULES200712093
- 324593 - Saussurea costus: 10.1135/CCCC19582188
- 200489 - Saussurea involucrata: 10.1080/10412905.1992.9698080
- 375857 - Scolochloa festucacea: 10.1016/0031-9422(91)84185-U
- 27967 - Scytosiphon lomentaria: 10.1016/0031-9422(91)85017-T
- 72402 - Senna alexandrina: 10.1055/S-2006-957965
- 2816102 - Seriphium plumosum: 10.1076/PHBI.35.1.66.13267
- 1391945 - Sideritis leucantha: 10.1016/S0031-9422(00)80325-8
- 155267 - Sideritis tragoriganum: 10.1016/S0031-9422(00)80325-8
- 55670 - Stevia rebaudiana: 10.1002/FFJ.2730010103
- 1735431 - Stoebe plumosa: 10.1076/PHBI.35.1.66.13267
- 1237821 - Stoebe vulgaris: 10.1076/PHBI.35.1.66.13267
- 137129 - Swertia japonica: 10.1246/BCSJ.56.3477
- 547782 - Symphyotrichum undulatum: 10.1021/JF00034A033
- 79022 - Thapsia garganica: 10.1055/S-2006-960216
- 210368 - Tilia mandshurica: 10.1080/10412905.1999.9701158
- 82423 - Tilia platyphyllos: 10.1080/10412905.1999.9701158
- 121718 - Tilia tomentosa: 10.1080/10412905.1999.9701158
- 78534 - Trigonella foenum-graecum: 10.1055/S-2007-969591
- 4565 - Triticum aestivum: 10.1016/S0031-9422(00)82634-5
- 74381 - Undaria pinnatifida: 10.1021/NP0103057
- 945837 - Vaccinium ashei:
- 69266 - Vaccinium corymbosum:
- 1493660 - Vaccinium virgatum:
- 19953 - Valeriana officinalis:
- 19953 - Valeriana officinalis: 10.1016/0031-9422(95)00492-P
- 103349 - Vitis rotundifolia: 10.1111/J.1365-2621.1984.TB13669.X
- 29760 - Vitis vinifera:
- 4577 - Zea mays:
- 136225 - Zingiber mioga: 10.1271/BBB1961.55.1655
- 94328 - Zingiber officinale: 10.1271/BBB1961.52.2961
- 94328 - Zingiber Officinale Roscoe: -
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Cristina Votta, Jian You Wang, Nicola Cavallini, Francesco Savorani, Arianna Capparotto, Kit Xi Liew, Marco Giovannetti, Luisa Lanfranco, Salim Al-Babili, Valentina Fiorilli. Integration of rice apocarotenoid profile and expression pattern of Carotenoid Cleavage Dioxygenases reveals a positive effect of β-ionone on mycorrhization.
Plant physiology and biochemistry : PPB.
2024 Feb; 207(?):108366. doi:
10.1016/j.plaphy.2024.108366
. [PMID: 38244387] - Maria Sol Balbuena, Stephen L Buchmann, Daniel R Papaj, Robert A Raguso. Organ-specific volatiles from Sonoran desert Krameria flowers as potential signals for oil-collecting bees.
Phytochemistry.
2024 Feb; 218(?):113937. doi:
10.1016/j.phytochem.2023.113937
. [PMID: 38035972] - Tingting Shi, Man Shi, Yunfang Ye, Yuanzheng Yue, Lianggui Wang, Xiulian Yang. Floral Volatile Organic Compounds Change the Composition and Function of the Endophytic Fungal Community in the Flowers of Osmanthus fragrans.
International journal of molecular sciences.
2024 Jan; 25(2):. doi:
10.3390/ijms25020857
. [PMID: 38255929] - Abrar Felemban, Juan C Moreno, Jianing Mi, Shawkat Ali, Arjun Sham, Synan F AbuQamar, Salim Al-Babili. The apocarotenoid β-ionone regulates the transcriptome of Arabidopsis thaliana and increases its resistance against Botrytis cinerea.
The Plant journal : for cell and molecular biology.
2023 Nov; ?(?):. doi:
10.1111/tpj.16510
. [PMID: 37932864] - Jixin Zhang, Dongzhou Xia, Tiehan Li, Yuming Wei, Wanzhen Feng, Zhichao Xiong, Junlan Huang, Wei-Wei Deng, Jingming Ning. Effects of different over-fired drying methods on the aroma of Lu'an Guapian tea.
Food research international (Ottawa, Ont.).
2023 Nov; 173(Pt 1):113224. doi:
10.1016/j.foodres.2023.113224
. [PMID: 37803542] - Yuming Wei, Jixin Zhang, Tiehan Li, Mengjie Zhao, Zhenshuo Song, Yujie Wang, Jingming Ning. GC-MS, GC-O, and sensomics analysis reveals the key odorants underlying the improvement of yellow tea aroma after optimized yellowing.
Food chemistry.
2023 Aug; 431(?):137139. doi:
10.1016/j.foodchem.2023.137139
. [PMID: 37604002] - Hiroshi Magome, Masao Arai, Kiyoshi Oyama, Ryo Nishiguchi, Yoshimitsu Takakura. Multiple loss-of-function mutations of carotenoid cleavage dioxygenase 4 reveal its major role in both carotenoid level and apocarotenoid composition in flue-cured mature tobacco leaves.
Scientific reports.
2023 08; 13(1):12992. doi:
10.1038/s41598-023-39692-4
. [PMID: 37563246] - Yuan-Yuan Zhang, Peng Zhang, Miao-Miao Le, Yan Qi, Zi Yang, Feng-Lin Hu, Tie-Jun Ling, Guan-Hu Bao. Improving flavor of summer Keemun black tea by solid-state fermentation using Cordyceps militaris revealed by LC/MS-based metabolomics and GC/MS analysis.
Food chemistry.
2023 May; 407(?):135172. doi:
10.1016/j.foodchem.2022.135172
. [PMID: 36508871] - Hee Ju Yoo, Mi-Young Chung, Hyun-Ah Lee, Soo-Bin Lee, Silvana Grandillo, James J Giovannoni, Je Min Lee. Natural overexpression of CAROTENOID CLEAVAGE DIOXYGENASE 4 in tomato alters carotenoid flux.
Plant physiology.
2023 Jan; ?(?):. doi:
10.1093/plphys/kiad049
. [PMID: 36715630] - Ruijun Li, Shuang Shan, Xuan Song, Adel Khashaveh, Shanning Wang, Zixuan Yin, Ziyun Lu, Khalid Hussain Dhiloo, Yongjun Zhang. Plant volatile ligands for male-biased MmedOBP14 stimulate orientation behavior of the parasitoid wasp Microplitis mediator.
International journal of biological macromolecules.
2022 Dec; 223(Pt A):1521-1529. doi:
10.1016/j.ijbiomac.2022.11.149
. [PMID: 36400212] - Ge-Ge Yuan, Lin-Chao Zhao, Yuan-Wen Du, Huan Yu, Xiao-Bin Shi, Wen-Chao Chen, Gong Chen. Repellence or attraction: secondary metabolites in pepper mediate attraction and defense against Spodoptera litura.
Pest management science.
2022 Nov; 78(11):4859-4870. doi:
10.1002/ps.7107
. [PMID: 36181416] - Fan Li, Xiaowei Gong, Yupeng Liang, Lijuan Peng, Xiulin Han, Mengliang Wen. Characteristics of a new carotenoid cleavage dioxygenase NtCCD10 derived from Nicotiana tabacum.
Planta.
2022 Oct; 256(5):100. doi:
10.1007/s00425-022-04013-y
. [PMID: 36251100] - Siyi Du, Haozhe Xu, Mengdan Yang, Ning Pan, Tiefeng Zheng, Chenyi Xu, Yan Li, Zhaojiang Zuo. Toxic mechanism of two cyanobacterial volatiles β-cyclocitral and β-ionone on the photosynthesis in duckweed by altering gene expression.
Environmental pollution (Barking, Essex : 1987).
2022 Sep; 308(?):119711. doi:
10.1016/j.envpol.2022.119711
. [PMID: 35809713] - Weicheng Zhou, Yuming Wang, Jinglong Wang, Chengrong Peng, Zhicong Wang, Hongjie Qin, Genbao Li, Dunhai Li. β-Ionone causes endocrine disruption, hyperpigmentation and hypoactivity in zebrafish early life stages.
The Science of the total environment.
2022 Aug; 834(?):155433. doi:
10.1016/j.scitotenv.2022.155433
. [PMID: 35461947] - Suleiman Aminu, Mohammed Auwal Ibrahim, Gloria Dada Chechet, Elewechi Onyike. Chemotherapeutic potentials of β-ionone against Trypanosoma congolense infection: Inhibition of parasite proliferation, anemia development, trans-sialidase (TconTS3 and TconTS4) gene expressions, and phospholipase A2.
Chemical biology & drug design.
2022 06; 99(6):908-922. doi:
10.1111/cbdd.14048
. [PMID: 35353953] - Alessandro Brambilla, Anna Sommer, Andrea Ghirardo, Marion Wenig, Claudia Knappe, Baris Weber, Melissa Amesmaier, Miriam Lenk, Jörg-Peter Schnitzler, A Corina Vlot. Immunity-associated volatile emissions of β-ionone and nonanal propagate defence responses in neighbouring barley plants.
Journal of experimental botany.
2022 01; 73(2):615-630. doi:
10.1093/jxb/erab520
. [PMID: 34849759] - Lujain Aloum, Mohammad H Semreen, Taleb H Al-Tel, Hamza Al-Hroub, Muath Mousa, Richard L Jayaraj, Eman Alefishat, Abdu Adem, Georg A Petroianu. Metabolic conversion of β-pinene to β-ionone in rats.
Xenobiotica; the fate of foreign compounds in biological systems.
2021 Dec; 51(12):1427-1435. doi:
10.1080/00498254.2021.2020376
. [PMID: 34931580] - Ping Yang, Huanlu Song, Yanping Lin, Tianyang Guo, Lijin Wang, Michael Granvogl, Yongquan Xu. Differences of characteristic aroma compounds in Rougui tea leaves with different roasting temperatures analyzed by switchable GC-O-MS and GC × GC-O-MS and sensory evaluation.
Food & function.
2021 Jun; 12(11):4797-4807. doi:
10.1039/d1fo00165e
. [PMID: 33861271] - Deepa Agarwal, Lim Mui, Emma Aldridge, James McKinney, Louise Hewson, Ian Denis Fisk. The progression of lipid oxidation, β-carotenes degradation and sensory perception of batch-fried sliced sweet potato crisps during storage.
Food & function.
2021 May; 12(10):4535-4543. doi:
10.1039/d0fo03100c
. [PMID: 33903860] - Jie Yang, Wen-Wen Mu, Yu-Xin Cao, Guo-Yun Liu. Synthesis and biological evaluation of β-ionone oriented proapoptosis agents by enhancing the ROS generation.
Bioorganic chemistry.
2020 11; 104(?):104273. doi:
10.1016/j.bioorg.2020.104273
. [PMID: 32956875] - Jingming Wang, Bin Wu, Na Zhang, Mingyue Zhao, Tingting Jing, Yi Wu, YunQing Hu, Feng Yu, Xiaochun Wan, Wilfried Schwab, Chuankui Song. Dehydration-Induced Carotenoid Cleavage Dioxygenase 1 Reveals a Novel Route for β-Ionone Formation during Tea (Camellia sinensis) Withering.
Journal of agricultural and food chemistry.
2020 Sep; 68(39):10815-10821. doi:
10.1021/acs.jafc.0c04208
. [PMID: 32840106] - Yanting Zhong, Xiaoying Pan, Ruifeng Wang, Jiuliang Xu, Jingyu Guo, Tingxue Yang, Jianyu Zhao, Faisal Nadeem, Xiaoting Liu, Hongyan Shan, Yanjun Xu, Xuexian Li. ZmCCD10a Encodes a Distinct Type of Carotenoid Cleavage Dioxygenase and Enhances Plant Tolerance to Low Phosphate.
Plant physiology.
2020 09; 184(1):374-392. doi:
10.1104/pp.20.00378
. [PMID: 32586893] - Jingming Wang, Na Zhang, Minyue Zhao, Tingting Jing, Jieyang Jin, Bin Wu, Xiaochun Wan, Wilfried Schwab, Chuankui Song. Carotenoid Cleavage Dioxygenase 4 Catalyzes the Formation of Carotenoid-Derived Volatile β-Ionone during Tea (Camellia sinensis) Withering.
Journal of agricultural and food chemistry.
2020 Feb; 68(6):1684-1690. doi:
10.1021/acs.jafc.9b07578
. [PMID: 31957431] - Nicole Werner, César A Ramirez-Sarmiento, Eduardo Agosin. Protein engineering of carotenoid cleavage dioxygenases to optimize β-ionone biosynthesis in yeast cell factories.
Food chemistry.
2019 Nov; 299(?):125089. doi:
10.1016/j.foodchem.2019.125089
. [PMID: 31319343] - Cencen Yu, Chenfei Shi, Jing Tang, Qiuyi Ji, Xuan Wang, Xiaoguang Xu, Guoxiang Wang. Release of taste and odour compounds during Zizania latifolia decay: A microcosm system study.
Environmental pollution (Barking, Essex : 1987).
2019 Nov; 254(Pt A):112954. doi:
10.1016/j.envpol.2019.07.122
. [PMID: 31398637] - Cencen Yu, Chenfei Shi, Ming Ji, Xiaoguang Xu, Zhongqian Zhang, Jie Ma, Guoxiang Wang. Taste and odor compounds associated with aquatic plants in Taihu Lake: distribution and producing potential.
Environmental science and pollution research international.
2019 Nov; 26(33):34510-34520. doi:
10.1007/s11356-019-06188-6
. [PMID: 31643015] - Fengqi Li, Du Li, Youssef Dewer, Cheng Qu, Zhen Yang, Jiahui Tian, Chen Luo. Discrimination of Oviposition Deterrent Volatile β-Ionone by Odorant-Binding Proteins 1 and 4 in the Whitefly Bemisia tabaci.
Biomolecules.
2019 10; 9(10):. doi:
10.3390/biom9100563
. [PMID: 31623354] - Shuang-Feng Sun, Fang-Fang Zeng, Shan-Cheng Yi, Man-Qun Wang. Molecular Screening of Behaviorally Active Compounds with CmedOBP14 from the Rice Leaf Folder Cnaphalocrocis medinalis.
Journal of chemical ecology.
2019 Oct; 45(10):849-857. doi:
10.1007/s10886-019-01106-z
. [PMID: 31512099] - Gita Naseri, Jessica Behrend, Lisa Rieper, Bernd Mueller-Roeber. COMPASS for rapid combinatorial optimization of biochemical pathways based on artificial transcription factors.
Nature communications.
2019 06; 10(1):2615. doi:
10.1038/s41467-019-10224-x
. [PMID: 31197154] - Melissa Dein, John P Munafo. Characterization of Key Odorants in Hoary Mountain Mint, Pycnanthemum incanum.
Journal of agricultural and food chemistry.
2019 Mar; 67(9):2589-2597. doi:
10.1021/acs.jafc.8b06803
. [PMID: 30789719] - Ling Chen, Rong Liang, Yihan Wang, Wallace Yokoyama, Maoshen Chen, Fang Zhong. Characterizations on the Stability and Release Properties of β-ionone Loaded Thermosensitive Liposomes (TSLs).
Journal of agricultural and food chemistry.
2018 Aug; 66(31):8336-8345. doi:
10.1021/acs.jafc.7b06130
. [PMID: 29847116] - Jing Tan, Xinmi Song, Xiaobin Fu, Fan Wu, Fuliang Hu, Hongliang Li. Combinatorial multispectral, thermodynamics, docking and site-directed mutagenesis reveal the cognitive characteristics of honey bee chemosensory protein to plant semiochemical.
Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.
2018 Aug; 201(?):346-353. doi:
10.1016/j.saa.2018.04.074
. [PMID: 29763828] - Xuesong Zhang, Shiyong Liao, Fuliang Cao, Linguo Zhao, Jianjun Pei, Feng Tang. Cloning and characterization of enoate reductase with high β-ionone to dihydro-β-ionone bioconversion productivity.
BMC biotechnology.
2018 05; 18(1):26. doi:
10.1186/s12896-018-0438-x
. [PMID: 29743047] - Xu Deng, Yi-Jing Wu, Ying-Peng Chen, Hong-Hong Zheng, Zhong-Ping Wang, Yan Zhu, Xiu-Mei Gao, Yan-Tong Xu, Hong-Hua Wu. Nardonaphthalenones A and B from the roots and rhizomes of Nardostachys chinensis Batal.
Bioorganic & medicinal chemistry letters.
2017 02; 27(4):875-879. doi:
10.1016/j.bmcl.2017.01.008
. [PMID: 28094186] - Hui Feng, Patricia A Skinkis, Michael C Qian. Pinot noir wine volatile and anthocyanin composition under different levels of vine fruit zone leaf removal.
Food chemistry.
2017 Jan; 214(?):736-744. doi:
10.1016/j.foodchem.2016.07.110
. [PMID: 27507532] - Lian Gelis, Nikolina Jovancevic, Sophie Veitinger, Bhubaneswar Mandal, Hans-Dieter Arndt, Eva M Neuhaus, Hanns Hatt. Functional Characterization of the Odorant Receptor 51E2 in Human Melanocytes.
The Journal of biological chemistry.
2016 08; 291(34):17772-86. doi:
10.1074/jbc.m116.734517
. [PMID: 27226631] - Martin P Horvath, Evan W George, Quang T Tran, Kody Baumgardner, Gabe Zharov, Sarah Lee, Hassan Sharifzadeh, Saeed Shihab, Ty Mattinson, Binxing Li, Paul S Bernstein. Structure of the lutein-binding domain of human StARD3 at 1.74 Å resolution and model of a complex with lutein.
Acta crystallographica. Section F, Structural biology communications.
2016 08; 72(Pt 8):609-18. doi:
10.1107/s2053230x16010694
. [PMID: 27487925] - Mona E El-Tantawy, Manal M Shams, Manal S Afifi. Chemical composition and biological evaluation of the volatile constituents from the aerial parts of Nephrolepis exaltata (L.) and Nephrolepis cordifolia (L.) C. Presl grown in Egypt.
Natural product research.
2016; 30(10):1197-201. doi:
10.1080/14786419.2015.1046070
. [PMID: 26211503] - Juan Camilo Moreno Beltran, Claudia Stange. Apocarotenoids: A New Carotenoid-Derived Pathway.
Sub-cellular biochemistry.
2016; 79(?):239-72. doi:
10.1007/978-3-319-39126-7_9
. [PMID: 27485225] - Shoib Ahmad Baba, Deepti Jain, Nazia Abbas, Nasheeman Ashraf. Overexpression of Crocus carotenoid cleavage dioxygenase, CsCCD4b, in Arabidopsis imparts tolerance to dehydration, salt and oxidative stresses by modulating ROS machinery.
Journal of plant physiology.
2015 Sep; 189(?):114-25. doi:
10.1016/j.jplph.2015.11.001
. [PMID: 26595090] - Javiera López, Karen Essus, Il-kwon Kim, Rui Pereira, Jan Herzog, Verena Siewers, Jens Nielsen, Eduardo Agosin. Production of β-ionone by combined expression of carotenogenic and plant CCD1 genes in Saccharomyces cerevisiae.
Microbial cell factories.
2015 Jun; 14(?):84. doi:
10.1186/s12934-015-0273-x
. [PMID: 26063466] - Satoshi Nakaya, Atsushi Usami, Tomohito Yorimoto, Mitsuo Miyazawa. Characteristic Chemical Components and Aroma-active Compounds of the Essential Oils from Ranunculus nipponicus var. submersus Used in Japanese Traditional Food.
Journal of oleo science.
2015; 64(6):595-601. doi:
10.5650/jos.ess14265
. [PMID: 25891110] - Wei-Sheng Feng, Meng Li, Xiao-Ke Zheng, Na Zhang, Kai Song, Jian-Chao Wang, Hai-Xue Kuang. Two new ionone glycosides from the roots of Rehmannia glutinosa Libosch.
Natural product research.
2015; 29(1):59-63. doi:
10.1080/14786419.2014.958735
. [PMID: 25232801] - Jules Beekwilder, Harmen M van Rossum, Frank Koopman, Frank Sonntag, Markus Buchhaupt, Jens Schrader, Robert D Hall, Dirk Bosch, Jack T Pronk, Antonius J A van Maris, Jean-Marc Daran. Polycistronic expression of a β-carotene biosynthetic pathway in Saccharomyces cerevisiae coupled to β-ionone production.
Journal of biotechnology.
2014 Dec; 192 Pt B(?):383-92. doi:
10.1016/j.jbiotec.2013.12.016
. [PMID: 24486029] - Angela Rubio-Moraga, José Luis Rambla, Asun Fernández-de-Carmen, Almudena Trapero-Mozos, Oussama Ahrazem, Diego Orzáez, Antonio Granell, Lourdes Gómez-Gómez. New target carotenoids for CCD4 enzymes are revealed with the characterization of a novel stress-induced carotenoid cleavage dioxygenase gene from Crocus sativus.
Plant molecular biology.
2014 Nov; 86(4-5):555-69. doi:
10.1007/s11103-014-0250-5
. [PMID: 25204497] - Yao Lu, Zhi-Hong Li, Lin Ma, An-Jun Deng, Feng Wu, Zhi-Hui Zhang, Hai-Lin Qin. [Study on chemical constituents from cultivated Gynura nepalensis].
Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica.
2014 Oct; 39(19):3777-81. doi:
. [PMID: 25612439]
- Ruchi Badoni Semwal, Deepak Kumar Semwal, Sandra Combrinck, Catherine Cartwright-Jones, Alvaro Viljoen. Lawsonia inermis L. (henna): ethnobotanical, phytochemical and pharmacological aspects.
Journal of ethnopharmacology.
2014 Aug; 155(1):80-103. doi:
10.1016/j.jep.2014.05.042
. [PMID: 24886774] - Vo Anh Tu, Atsushi Kaga, Karl-Heinz Gericke, Naoharu Watanabe, Tetsuo Narumi, Mitsuo Toda, Bernhard Brueckner, Susanne Baldermann, Nobuyuki Mase. Synthesis and characterization of quantum dot nanoparticles bound to the plant volatile precursor of hydroxy-apo-10'-carotenal.
The Journal of organic chemistry.
2014 Aug; 79(15):6808-15. doi:
10.1021/jo500605c
. [PMID: 25026389] - Xuan Cai, Rong-zhang Mai, Jing-jing Zou, Hong-yan Zhang, Xiang-ling Zeng, Ri-ru Zheng, Cai-yun Wang. Analysis of aroma-active compounds in three sweet osmanthus (Osmanthus fragrans) cultivars by GC-olfactometry and GC-MS.
Journal of Zhejiang University. Science. B.
2014 Jul; 15(7):638-48. doi:
10.1631/jzus.b1400058
. [PMID: 25001223] - Keming Li, Shanning Wang, Kang Zhang, Liyan Ren, Abid Ali, Yongjun Zhang, Jingjiang Zhou, Yuyuan Guo. Odorant binding characteristics of three recombinant odorant binding proteins in Microplitis mediator (Hymenoptera: Braconidae).
Journal of chemical ecology.
2014 Jun; 40(6):541-8. doi:
10.1007/s10886-014-0458-5
. [PMID: 24928754] - Hongyan Sun, Li Guan, Honglin Feng, Jiao Yin, Yazhong Cao, Jinghui Xi, Kebin Li. Functional characterization of chemosensory proteins in the scarab beetle, Holotrichia oblita Faldermann (Coleoptera: Scarabaeida).
PloS one.
2014; 9(9):e107059. doi:
10.1371/journal.pone.0107059
. [PMID: 25188038] - Jin-Feng Wei, Zhen-hua Yin, Wen-Yi Kang. Volatiles of Lysimachia paridiformis Var. Stenophylla, Lysimachia fortumei and Lysimachia chikungensis by HS-SPME-GC-MS.
African journal of traditional, complementary, and alternative medicines : AJTCAM.
2014; 11(3):70-5. doi:
10.4314/ajtcam.v11i3.10
. [PMID: 25371565] - Sara R Jaeger, Jeremy F McRae, Christina M Bava, Michelle K Beresford, Denise Hunter, Yilin Jia, Sok Leang Chheang, David Jin, Mei Peng, Joanna C Gamble, Kelly R Atkinson, Lauren G Axten, Amy G Paisley, Leah Tooman, Benedicte Pineau, Simon A Rouse, Richard D Newcomb. A Mendelian trait for olfactory sensitivity affects odor experience and food selection.
Current biology : CB.
2013 Aug; 23(16):1601-5. doi:
10.1016/j.cub.2013.07.030
. [PMID: 23910657] - Hongliang Li, Linya Zhang, Cuixia Ni, Hanwu Shang, Shulin Zhuang, Jianke Li. Molecular recognition of floral volatile with two olfactory related proteins in the Eastern honeybee (Apis cerana).
International journal of biological macromolecules.
2013 May; 56(?):114-21. doi:
10.1016/j.ijbiomac.2013.01.032
. [PMID: 23403023] - Sheila Jones, Nicolle V Fernandes, Hoda Yeganehjoo, Rajasekhar Katuru, Haibin Qu, Zhiling Yu, Huanbiao Mo. β-ionone induces cell cycle arrest and apoptosis in human prostate tumor cells.
Nutrition and cancer.
2013; 65(4):600-10. doi:
10.1080/01635581.2013.776091
. [PMID: 23659452] - Atsushi Usami, Yusei Kashima, Shinsuke Marumoto, Mitsuo Miyazawa. Characterization of aroma-active compounds in dry flower of Malva sylvestris L. by GC-MS-O analysis and OAV calculations.
Journal of oleo science.
2013; 62(8):563-70. doi:
10.5650/jos.62.563
. [PMID: 23985485] - Christoph Nacke, Sonja Hüttmann, Maria M W Etschmann, Jens Schrader. Enzymatic production and in situ separation of natural β-ionone from β-carotene.
Journal of industrial microbiology & biotechnology.
2012 Dec; 39(12):1771-8. doi:
10.1007/s10295-012-1182-1
. [PMID: 22911237] - Mitsuo Miyazawa, Shunsuke Hashidume, Toshiyuki Takahashi, Tohru Kikuchi. Aroma evaluation of gamazumi (Viburnum dilatatum) by aroma extract dilution analysis and odour activity value.
Phytochemical analysis : PCA.
2012 May; 23(3):208-13. doi:
10.1002/pca.1344
. [PMID: 21858881] - Selvamani Asokkumar, Chandrashekar Naveenkumar, Subramanian Raghunandhakumar, Sattu Kamaraj, Pandi Anandakumar, Sundaram Jagan, Thiruvengadam Devaki. Antiproliferative and antioxidant potential of beta-ionone against benzo(a)pyrene-induced lung carcinogenesis in Swiss albino mice.
Molecular and cellular biochemistry.
2012 Apr; 363(1-2):335-45. doi:
10.1007/s11010-011-1186-6
. [PMID: 22187222] - Jolanta Nazaruk, Ewa Karna, Danuta Kalemba. The chemical composition of the essential oils of Cirsium palustre and C. rivulare and their antiproliferative effect.
Natural product communications.
2012 Feb; 7(2):269-72. doi:
. [PMID: 22474978]
- Sisi Deng, Jiao Yin, Tao Zhong, Yazhong Cao, Kebin Li. Function and immunocytochemical localization of two novel odorant-binding proteins in olfactory sensilla of the scarab beetle Holotrichia oblita Faldermann (Coleoptera: Scarabaeidae).
Chemical senses.
2012 Feb; 37(2):141-50. doi:
10.1093/chemse/bjr084
. [PMID: 21852709] - Shu Wei, Abdelali Hannoufa, Julie Soroka, Ning Xu, Xiang Li, Alireza Zebarjadi, Margaret Gruber. Enhanced β-ionone emission in Arabidopsis over-expressing AtCCD1 reduces feeding damage in vivo by the crucifer flea beetle.
Environmental entomology.
2011 Dec; 40(6):1622-30. doi:
10.1603/en11088
. [PMID: 22217781] - N L Rodríguez-Ávila, J A Narváez-Zapata, J E Ramírez-Benítez, M L Aguilar-Espinosa, R Rivera-Madrid. Identification and expression pattern of a new carotenoid cleavage dioxygenase gene member from Bixa orellana.
Journal of experimental botany.
2011 Nov; 62(15):5385-95. doi:
10.1093/jxb/err201
. [PMID: 21813796] - Gabriel Ordaz, Haydelba D'Armas, Dayanis Yáñez, Shailili Moreno. [Chemical composition of essential oils from leaves of Helicteres guazumifolia (Sterculiaceae), Piper tuberculatum (Piperaceae), Scoparia dulcis (Arecaceae) and Solanum subinerme (Solanaceae) from Sucre, Venezuela].
Revista de biologia tropical.
2011 Jun; 59(2):585-95. doi:
"
. [PMID: 21721229] - Mônica Testoni Cardozo, Aline de Conti, Thomas Prates Ong, Clarissa Scolastici, Eduardo Purgatto, Maria Aderuza Horst, Bruna Kempfer Bassoli, Fernando Salvador Moreno. Chemopreventive effects of β-ionone and geraniol during rat hepatocarcinogenesis promotion: distinct actions on cell proliferation, apoptosis, HMGCoA reductase, and RhoA.
The Journal of nutritional biochemistry.
2011 Feb; 22(2):130-5. doi:
10.1016/j.jnutbio.2009.12.007
. [PMID: 20435455] - Federica Brandi, Einat Bar, Fabienne Mourgues, Györgyi Horváth, Erika Turcsi, Giovanni Giuliano, Alessandro Liverani, Stefano Tartarini, Efraim Lewinsohn, Carlo Rosati. Study of 'Redhaven' peach and its white-fleshed mutant suggests a key role of CCD4 carotenoid dioxygenase in carotenoid and norisoprenoid volatile metabolism.
BMC plant biology.
2011 Jan; 11(?):24. doi:
10.1186/1471-2229-11-24
. [PMID: 21269483] - Silvana A Rodriguez, Ana P Murray. Antioxidant activity and chemical composition of essential oil from Atriplex undulata.
Natural product communications.
2010 Nov; 5(11):1841-4. doi:
"
. [PMID: 21213996] - Xiao-Hua Deng, Peng-Fei Xie, Xin-Hui Peng, Jian-Hua Yi, Ji-Heng Zhou, Qing-Ming Zhou, Wen-Xuan Pu, Yuan-Gang Dai. [Effects of soil, climate, and their interaction on some neutral volatile aroma components in flue-cured tobacco leaves from high quality tobacco planting regions of Hunan Province].
Ying yong sheng tai xue bao = The journal of applied ecology.
2010 Aug; 21(8):2063-71. doi:
. [PMID: 21043117]
- Susanne Baldermann, Masaya Kato, Miwako Kurosawa, Yoshiko Kurobayashi, Akira Fujita, Peter Fleischmann, Naoharu Watanabe. Functional characterization of a carotenoid cleavage dioxygenase 1 and its relation to the carotenoid accumulation and volatile emission during the floral development of Osmanthus fragrans Lour.
Journal of experimental botany.
2010 Jun; 61(11):2967-77. doi:
10.1093/jxb/erq123
. [PMID: 20478967] - Hisashi Kato-Noguchi, Takahiro Seki, Hideyuki Shigemori. Allelopathy and allelopathic substance in the moss Rhynchostegium pallidifolium.
Journal of plant physiology.
2010 Apr; 167(6):468-71. doi:
10.1016/j.jplph.2009.10.018
. [PMID: 20018404] - Rebekah S Marsh, Yan Yan, Vanessa M Reed, Damian Hruszkewycz, Robert W Curley, Earl H Harrison. {beta}-Apocarotenoids do not significantly activate retinoic acid receptors {alpha} or {beta}.
Experimental biology and medicine (Maywood, N.J.).
2010 Mar; 235(3):342-8. doi:
10.1258/ebm.2009.009202
. [PMID: 20404052] - Michael F Brown, Gilmar F J Salgado, Andrey V Struts. Retinal dynamics during light activation of rhodopsin revealed by solid-state NMR spectroscopy.
Biochimica et biophysica acta.
2010 Feb; 1798(2):177-93. doi:
10.1016/j.bbamem.2009.08.013
. [PMID: 19716801] - Bo Huang, Xiaoquan Ban, Jingsheng He, Jing Tong, Jun Tian, Youwei Wang. Comparative analysis of essential oil components and antioxidant activity of extracts of Nelumbo nucifera from various areas of China.
Journal of agricultural and food chemistry.
2010 Jan; 58(1):441-8. doi:
10.1021/jf902643e
. [PMID: 19919095] - Jia-Ren Liu, Hong-Wei Dong, Xiang-Rong Sun, Qi Wang, Wen-Guang Sun, John W Parry, Qian Liu, Xiao-Hui Han, Chang-Hao Sun, Bing-Qing Chen, Bao-Feng Yang. Effects of beta-ionone on mammary carcinogenesis and antioxidant status in rats treated with DMBA.
Nutrition and cancer.
2010; 62(1):58-65. doi:
10.1080/01635580903191510
. [PMID: 20043260] - Deepak Ganjewala, Rajesh Luthra. Essential oil biosynthesis and regulation in the genus Cymbopogon.
Natural product communications.
2010 Jan; 5(1):163-72. doi:
"
. [PMID: 20184044] - Eva M Neuhaus, Weiyi Zhang, Lian Gelis, Ying Deng, Joachim Noldus, Hanns Hatt. Activation of an olfactory receptor inhibits proliferation of prostate cancer cells.
The Journal of biological chemistry.
2009 Jun; 284(24):16218-16225. doi:
10.1074/jbc.m109.012096
. [PMID: 19389702] - Fong-Chin Huang, Györgyi Horváth, Péter Molnár, Erika Turcsi, József Deli, Jens Schrader, Gerhard Sandmann, Holger Schmidt, Wilfried Schwab. Substrate promiscuity of RdCCD1, a carotenoid cleavage oxygenase from Rosa damascena.
Phytochemistry.
2009 Mar; 70(4):457-64. doi:
10.1016/j.phytochem.2009.01.020
. [PMID: 19264332] - Chris M Cooper, Noel W Davies, Robert C Menary. Changes in some carotenoids and apocarotenoids during flower development in Boronia megastigma (Nees).
Journal of agricultural and food chemistry.
2009 Feb; 57(4):1513-20. doi:
10.1021/jf802610p
. [PMID: 19166317] - Fong-Chin Huang, Péter Molnár, Wilfried Schwab. Cloning and functional characterization of carotenoid cleavage dioxygenase 4 genes.
Journal of experimental botany.
2009; 60(11):3011-22. doi:
10.1093/jxb/erp137
. [PMID: 19436048] - Elham Attaran, Michael Rostás, Jürgen Zeier. Pseudomonas syringae elicits emission of the terpenoid (E,E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene in Arabidopsis leaves via jasmonate signaling and expression of the terpene synthase TPS4.
Molecular plant-microbe interactions : MPMI.
2008 Nov; 21(11):1482-97. doi:
10.1094/mpmi-21-11-1482
. [PMID: 18842097] - Jose A Mendiola, Susana Santoyo, Alejandro Cifuentes, Guillermo Reglero, Elena Ibáñez, F Javier Señoráns. Antimicrobial activity of sub- and supercritical CO2 extracts of the green alga Dunaliella salina.
Journal of food protection.
2008 Oct; 71(10):2138-43. doi:
10.4315/0362-028x-71.10.2138
. [PMID: 18939768] - Angela Rubio, José Luís Rambla, Marcella Santaella, M Dolores Gómez, Diego Orzaez, Antonio Granell, Lourdes Gómez-Gómez. Cytosolic and plastoglobule-targeted carotenoid dioxygenases from Crocus sativus are both involved in beta-ionone release.
The Journal of biological chemistry.
2008 Sep; 283(36):24816-25. doi:
10.1074/jbc.m804000200
. [PMID: 18611853] - József Vuts, Zoltán Imrei, Miklós Töth. Development of an attractant-baited trap for Oxythyrea funesta Poda (Coleoptera: Scarabaeidae, Cetoniinae).
Zeitschrift fur Naturforschung. C, Journal of biosciences.
2008 Sep; 63(9-10):761-8. doi:
10.1515/znc-2008-9-1023
. [PMID: 19040118] - Daniel Scherzinger, Salim Al-Babili. In vitro characterization of a carotenoid cleavage dioxygenase from Nostoc sp. PCC 7120 reveals a novel cleavage pattern, cytosolic localization and induction by highlight.
Molecular microbiology.
2008 Jul; 69(1):231-44. doi:
10.1111/j.1365-2958.2008.06282.x
. [PMID: 18485074] - O Boussaada, S Ammar, D Saidana, J Chriaa, I Chraif, M Daami, A N Helal, Z Mighri. Chemical composition and antimicrobial activity of volatile components from capitula and aerial parts of Rhaponticum acaule DC growing wild in Tunisia.
Microbiological research.
2008; 163(1):87-95. doi:
10.1016/j.micres.2007.02.010
. [PMID: 17482441] - Jules Beekwilder, Ingrid M van der Meer, Ana Simic, Jan Uitdewilligen, Jeroen van Arkel, Ric C H de Vos, Harry Jonker, Francel W A Verstappen, Harro J Bouwmeester, Ole Sibbesen, Ingmar Qvist, Jørn D Mikkelsen, Robert D Hall. Metabolism of carotenoids and apocarotenoids during ripening of raspberry fruit.
BioFactors (Oxford, England).
2008; 34(1):57-66. doi:
"
. [PMID: 19706972] - Pick-Wei Lau, Alan Grossfield, Scott E Feller, Michael C Pitman, Michael F Brown. Dynamic structure of retinylidene ligand of rhodopsin probed by molecular simulations.
Journal of molecular biology.
2007 Sep; 372(4):906-917. doi:
10.1016/j.jmb.2007.06.047
. [PMID: 17719606] - Andrey V Struts, Gilmar F J Salgado, Katsunori Tanaka, Sonja Krane, Koji Nakanishi, Michael F Brown. Structural analysis and dynamics of retinal chromophore in dark and meta I states of rhodopsin from 2H NMR of aligned membranes.
Journal of molecular biology.
2007 Sep; 372(1):50-66. doi:
10.1016/j.jmb.2007.03.046
. [PMID: 17640664] - María del Mar Caja, Christina Preston, Michael Kempf, Peter Schreier. Flavor authentication studies of alpha-ionone, beta-ionone, and alpha-ionol from various sources.
Journal of agricultural and food chemistry.
2007 Aug; 55(16):6700-4. doi:
10.1021/jf070805r
. [PMID: 17630763] - Keren A Bindon, Peter R Dry, Brian R Loveys. Influence of plant water status on the production of C13-norisoprenoid precursors in Vitis vinifera L. Cv. cabernet sauvignon grape berries.
Journal of agricultural and food chemistry.
2007 May; 55(11):4493-500. doi:
10.1021/jf063331p
. [PMID: 17469842] - Gilmar F J Salgado, Andrey V Struts, Katsunori Tanaka, Sonja Krane, Koji Nakanishi, Michael F Brown. Solid-state 2H NMR structure of retinal in metarhodopsin I.
Journal of the American Chemical Society.
2006 Aug; 128(34):11067-71. doi:
10.1021/ja058738+
. [PMID: 16925423] - Mwafaq Ibdah, Yaniv Azulay, Vitaly Portnoy, Boris Wasserman, Einat Bar, Ayala Meir, Yossi Burger, Joseph Hirschberg, Arthur A Schaffer, Nurit Katzir, Yaakov Tadmor, Efraim Lewinsohn. Functional characterization of CmCCD1, a carotenoid cleavage dioxygenase from melon.
Phytochemistry.
2006 Aug; 67(15):1579-89. doi:
10.1016/j.phytochem.2006.02.009
. [PMID: 16563447] - Michele E Auldridge, Donald R McCarty, Harry J Klee. Plant carotenoid cleavage oxygenases and their apocarotenoid products.
Current opinion in plant biology.
2006 Jun; 9(3):315-21. doi:
10.1016/j.pbi.2006.03.005
. [PMID: 16616608] - Holger Schmidt, Robert Kurtzer, Wolfgang Eisenreich, Wilfried Schwab. The carotenase AtCCD1 from Arabidopsis thaliana is a dioxygenase.
The Journal of biological chemistry.
2006 Apr; 281(15):9845-51. doi:
10.1074/jbc.m511668200
. [PMID: 16459333] - Yoshiko Kurobayashi, Emi Kouno, Akira Fujita, Yasujiro Morimitsu, Kikue Kubota. Potent odorants characterize the aroma quality of leaves and stalks in raw and boiled celery.
Bioscience, biotechnology, and biochemistry.
2006 Apr; 70(4):958-65. doi:
10.1271/bbb.70.958
. [PMID: 16636464] - Vincent Lemaître, Philip Yeagle, Anthony Watts. Molecular dynamics simulations of retinal in rhodopsin: from the dark-adapted state towards lumirhodopsin.
Biochemistry.
2005 Sep; 44(38):12667-80. doi:
10.1021/bi0506019
. [PMID: 16171381] - S F Wang, T J Ridsdill-Smith, E L Ghisalberti. Chemical defenses of Trifolium glanduliferum against redlegged earth mite Halotydeus destructor.
Journal of agricultural and food chemistry.
2005 Aug; 53(16):6240-5. doi:
10.1021/jf0502202
. [PMID: 16076100] - Roseli de Moura Espíndola, Rogério Pietro Mazzantini, Thomas Prates Ong, Aline de Conti, Renato Heidor, Fernando Salvador Moreno. Geranylgeraniol and beta-ionone inhibit hepatic preneoplastic lesions, cell proliferation, total plasma cholesterol and DNA damage during the initial phases of hepatocarcinogenesis, but only the former inhibits NF-kappaB activation.
Carcinogenesis.
2005 Jun; 26(6):1091-9. doi:
10.1093/carcin/bgi047
. [PMID: 15718255] - Graham Eyres, Jean-Pierre Dufour, Gabrielle Hallifax, Subramaniam Sotheeswaran, Philip J Marriott. Identification of character-impact odorants in coriander and wild coriander leaves using gas chromatography-olfactometry (GCO) and comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry (GC x GC-TOFMS).
Journal of separation science.
2005 Jun; 28(9-10):1061-74. doi:
10.1002/jssc.200500012
. [PMID: 16013833]