Acetaldehyde (BioDeep_00000004377)
Secondary id: BioDeep_00000405408
human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite
代谢物信息卡片
化学式: C2H4O (44.0262)
中文名称: 乙醛-13C2, 乙醛
谱图信息:
最多检出来源 Homo sapiens(blood) 32.17%
分子结构信息
SMILES: CC=O
InChI: InChI=1S/C2H4O/c1-2-3/h2H,1H3
描述信息
Acetaldehyde, also known as ethanal, belongs to the class of organic compounds known as short-chain aldehydes. These are an aldehyde with a chain length containing between 2 and 5 carbon atoms. Acetaldehyde exists in all living species, ranging from bacteria to humans. Within humans, acetaldehyde participates in a number of enzymatic reactions. In particular, acetaldehyde can be biosynthesized from ethanol which is mediated by the enzyme alcohol dehydrogenase 1B. Acetaldehyde can also be converted to acetic acid by the enzyme aldehyde dehydrogenase (mitochondrial) and aldehyde dehydrogenase X (mitochondrial). The main method of production is the oxidation of ethylene by the Wacker process, which involves oxidation of ethylene using a homogeneous palladium/copper system: 2 CH2CH2 + O2 → 2 CH3CHO. In the 1970s, the world capacity of the Wacker-Hoechst direct oxidation process exceeded 2 million tonnes annually. In humans, acetaldehyde is involved in disulfiram action pathway. Acetaldehyde is an aldehydic, ethereal, and fruity tasting compound. Outside of the human body, acetaldehyde is found, on average, in the highest concentration in a few different foods, such as sweet oranges, pineapples, and mandarin orange (clementine, tangerine) and in a lower concentration in . acetaldehyde has also been detected, but not quantified in several different foods, such as malabar plums, malus (crab apple), rose hips, natal plums, and medlars. This could make acetaldehyde a potential biomarker for the consumption of these foods. In condensation reactions, acetaldehyde is prochiral. Acetaldehyde is formally rated as a possible carcinogen (by IARC 2B) and is also a potentially toxic compound. Acetaldehyde has been found to be associated with several diseases such as alcoholism, ulcerative colitis, nonalcoholic fatty liver disease, and crohns disease; also acetaldehyde has been linked to the inborn metabolic disorders including aldehyde dehydrogenase deficiency (III) sulfate is used to reoxidize the mercury back to the mercury. Acetaldehyde was first observed by the Swedish pharmacist/chemist Carl Wilhelm Scheele (1774); it was then investigated by the French chemists Antoine François, comte de Fourcroy and Louis Nicolas Vauquelin (1800), and the German chemists Johann Wolfgang Döbereiner (1821, 1822, 1832) and Justus von Liebig (1835). At room temperature, acetaldehyde (CH3CHO) is more stable than vinyl alcohol (CH2CHOH) by 42.7 kJ/mol: Overall the keto-enol tautomerization occurs slowly but is catalyzed by acids. The level at which an average consumer could detect acetaldehyde is still considerably lower than any toxicity. Pathways of exposure include air, water, land, or groundwater, as well as drink and smoke. Acetaldehyde is also created by thermal degradation or ultraviolet photo-degradation of some thermoplastic polymers during or after manufacture. The water industry generally recognizes 20–40 ppb as the taste/odor threshold for acetaldehyde. The level at which an average consumer could detect acetaldehyde is still considerably lower than any toxicity.
Flavouring agent and adjuvant used to impart orange, apple and butter flavours; component of food flavourings added to milk products, baked goods, fruit juices, candy, desserts and soft drinks [DFC]
同义名列表
11 个代谢物同义名
Acetic aldehyde; Ethyl aldehyde; Acetaldehydes; acetaldehyde; Acetaldehyd; Azetaldehyd; Aldehyde; Ethanal; ch3cho; Acetaldehyde; Acetaldehyde
数据库引用编号
23 个数据库交叉引用编号
- ChEBI: CHEBI:15343
- ChEBI: CHEBI:16571
- KEGG: C00084
- KEGGdrug: D78540
- PubChem: 177
- HMDB: HMDB0000990
- Metlin: METLIN3200
- ChEMBL: CHEMBL170365
- Wikipedia: Acetaldehyde
- MeSH: Acetaldehyde
- MetaCyc: ACETALD
- KNApSAcK: C00007392
- foodb: FDB008297
- chemspider: 172
- CAS: 1632-98-0
- CAS: 75-07-0
- PMhub: MS000016792
- PubChem: 3384
- PDB-CCD: ACE
- 3DMET: B01155
- NIKKAJI: J2.388D
- RefMet: Acetaldehyde
- KNApSAcK: 15343
分类词条
相关代谢途径
Reactome(21)
- Metabolism
- Biological oxidations
- Phase I - Functionalization of compounds
- Metabolism of lipids
- Metabolism of steroids
- DNA replication and repair
- DNA repair
- Cytochrome P450 - arranged by substrate type
- Xenobiotics
- DNA Repair
- DNA Damage Reversal
- Reversal of alkylation damage by DNA dioxygenases
- ALKBH2 mediated reversal of alkylation damage
- ALKBH3 mediated reversal of alkylation damage
- CYP2E1 reactions
- Carbohydrate metabolism
- Pentose phosphate pathway
- Phospholipid metabolism
- Glycerophospholipid biosynthesis
- Synthesis of PE
- Metabolism of steroid hormones
BioCyc(40)
- superpathway of ribose and deoxyribose phosphate degradation
- (deoxy)ribose phosphate degradation
- alkylnitronates degradation
- superpathway of N-acetylneuraminate degradation
- superpathway of anaerobic sucrose degradation
- p-cymene degradation
- chitin degradation to ethanol
- mixed acid fermentation
- atrazine degradation II
- superpathway of Clostridium acetobutylicum acidogenic and solventogenic fermentation
- superpathway of Clostridium acetobutylicum solventogenic fermentation
- NAD/NADP-NADH/NADPH cytosolic interconversion (yeast)
- superpathway NAD/NADP - NADH/NADPH interconversion (yeast)
- superpathway NAD/NADP - NADH/NADPH interconversion
- NAD/NADP-NADH/NADPH cytosolic interconversion
- superpathway of threonine degradation
- superpathway of threonine metabolism
- superpathway of pyrimidine deoxyribonucleosides degradation
- superpathway of purine deoxyribonucleosides degradation
- hexitol fermentation to lactate, formate, ethanol and acetate
- superpathway of aromatic compound degradation via 2-hydroxypentadienoate
- superpathway of aromatic compound degradation via 3-oxoadipate
- 3-phenylpropanoate and 3-(3-hydroxyphenyl)propanoate degradation
- 2-hydroxypenta-2,4-dienoate degradation
- meta cleavage pathway of aromatic compounds
- catechol degradation II (meta-cleavage pathway)
- catechol degradation I (meta-cleavage pathway)
- mandelate degradation to acetyl-CoA
- superpathway of L-threonine metabolism
- 2'-deoxy-α-D-ribose 1-phosphate degradation
- ethanol degradation II (cytosol)
- oxidative ethanol degradation III (microsomal)
- ethanol degradation IV (peroxisomal)
- ethanol degradation I
- ethanolamine utilization
- L-threonine degradation IV
- pyruvate fermentation to ethanol I
- threonine degradation I
- glycine betaine biosynthesis I (Gram-negative bacteria)
- superpathway of acetoin and butanediol biosynthesis
代谢反应
1473 个相关的代谢反应过程信息。
Reactome(214)
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of lipids:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of steroids:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of steroid hormones:
17aHPROG + H+ + Oxygen + TPNH ⟶ 11-deoxycortisol + H2O + TPN
- Androgen biosynthesis:
DHEA + NAD ⟶ ANDST + H+ + NADH
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of steroids:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of steroid hormones:
17aHPROG + H+ + Oxygen + TPNH ⟶ 11-deoxycortisol + H2O + TPN
- Androgen biosynthesis:
DHEA + NAD ⟶ ANDST + H+ + NADH
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of steroids:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of steroid hormones:
17aHPROG + H+ + Oxygen + TPNH ⟶ 11-deoxycortisol + H2O + TPN
- Androgen biosynthesis:
DHEA + NAD ⟶ ANDST + H+ + NADH
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of steroids:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of steroid hormones:
17aHPROG + H+ + Oxygen + TPNH ⟶ 11-deoxycortisol + H2O + TPN
- Androgen biosynthesis:
DHEA + NAD ⟶ ANDST + H+ + NADH
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of steroids:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of steroid hormones:
11-deoxycortisol ⟶ 11DCORT
- Androgen biosynthesis:
DHEA + NAD ⟶ ANDST + H+ + NADH
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of steroids:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of steroid hormones:
17aHPROG + H+ + Oxygen + TPNH ⟶ 11-deoxycortisol + H2O + TPN
- Androgen biosynthesis:
DHEA + NAD ⟶ ANDST + H+ + NADH
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of steroids:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of steroid hormones:
17aHPROG + H+ + Oxygen + TPNH ⟶ 11-deoxycortisol + H2O + TPN
- Androgen biosynthesis:
H+ + Oxygen + TPNH + progesterone ⟶ 17aHPROG + H2O + TPN
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Metabolism of lipids:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Metabolism of steroids:
17aHPROG + H+ + Oxygen + TPNH ⟶ 11-deoxycortisol + H2O + TPN
- Metabolism of steroid hormones:
17aHPROG + H+ + Oxygen + TPNH ⟶ 11-deoxycortisol + H2O + TPN
- Androgen biosynthesis:
H+ + Oxygen + TPNH + progesterone ⟶ 17aHPROG + H2O + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of steroids:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of steroid hormones:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Androgen biosynthesis:
H+ + Oxygen + TPNH + progesterone ⟶ 17aHPROG + H2O + TPN
- DNA replication and repair:
2OG + Oxygen ⟶ CH2O + CH3CHO + SUCCA + carbon dioxide
- DNA repair:
2OG + Oxygen ⟶ CH2O + CH3CHO + SUCCA + carbon dioxide
- DNA Damage Reversal:
2OG + Oxygen ⟶ CH2O + CH3CHO + SUCCA + carbon dioxide
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Biological oxidations:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Phase I - Functionalization of compounds:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Ethanol oxidation:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Ethanol oxidation:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Biological oxidations:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Phase I - Functionalization of compounds:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- Ethanol oxidation:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Ethanol oxidation:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Ethanol oxidation:
ATP + CH3COO- + CoA-SH ⟶ AMP + Ac-CoA + PPi
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Biological oxidations:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Phase I - Functionalization of compounds:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- Ethanol oxidation:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Biological oxidations:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- Phase I - Functionalization of compounds:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- Ethanol oxidation:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- Biological oxidations:
H+ + Oxygen + TPNH + progesterone ⟶ 11DCORST + H2O + TPN
- Phase I - Functionalization of compounds:
H+ + Oxygen + TPNH + progesterone ⟶ 11DCORST + H2O + TPN
- Ethanol oxidation:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Ethanol oxidation:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Ethanol oxidation:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Biological oxidations:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Phase I - Functionalization of compounds:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Ethanol oxidation:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Ethanol oxidation:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- Metabolism:
CAR + propionyl CoA ⟶ CoA-SH + Propionylcarnitine
- Biological oxidations:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- Phase I - Functionalization of compounds:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- Ethanol oxidation:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- Metabolism:
GAA + SAM ⟶ CRET + H+ + SAH
- Biological oxidations:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- Phase I - Functionalization of compounds:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- Ethanol oxidation:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Ethanol oxidation:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Biological oxidations:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Phase I - Functionalization of compounds:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Ethanol oxidation:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Ethanol oxidation:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Pentose phosphate pathway:
PDG + TPN ⟶ H+ + RU5P + TPNH + carbon dioxide
- Phospholipid metabolism:
H2O + PETA ⟶ CH3CHO + Pi + ammonia
- Glycerophospholipid biosynthesis:
H2O + PETA ⟶ CH3CHO + Pi + ammonia
- Synthesis of PE:
H2O + PETA ⟶ CH3CHO + Pi + ammonia
- Cytochrome P450 - arranged by substrate type:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Xenobiotics:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- CYP2E1 reactions:
EtOH + H+ + Oxygen + TPNH ⟶ CH3CHO + H2O + TPN
- Carbohydrate metabolism:
L-gulonate + NAD ⟶ 3-dehydro-L-gulonate + H+ + NADH
- Pentose phosphate pathway:
PDG + TPN ⟶ H+ + RU5P + TPNH + carbon dioxide
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Phospholipid metabolism:
H2O + PETA ⟶ CH3CHO + Pi + ammonia
- Glycerophospholipid biosynthesis:
H2O + PETA ⟶ CH3CHO + Pi + ammonia
- Synthesis of PE:
H2O + PETA ⟶ CH3CHO + Pi + ammonia
- Cytochrome P450 - arranged by substrate type:
ANDST + H+ + Oxygen + TPNH ⟶ H2O + HCOOH + TPN + estrone
- Xenobiotics:
EtOH + H+ + Oxygen + TPNH ⟶ CH3CHO + H2O + TPN
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Pentose phosphate pathway:
PDG + TPN ⟶ H+ + RU5P + TPNH + carbon dioxide
- Phospholipid metabolism:
H2O + PETA ⟶ CH3CHO + Pi + ammonia
- Glycerophospholipid biosynthesis:
H2O + PETA ⟶ CH3CHO + Pi + ammonia
- Synthesis of PE:
H2O + PETA ⟶ CH3CHO + Pi + ammonia
- Cytochrome P450 - arranged by substrate type:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Xenobiotics:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- CYP2E1 reactions:
EtOH + H+ + Oxygen + TPNH ⟶ CH3CHO + H2O + TPN
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Pentose phosphate pathway:
PDG + TPN ⟶ H+ + RU5P + TPNH + carbon dioxide
- Phospholipid metabolism:
H2O + PETA ⟶ CH3CHO + Pi + ammonia
- Glycerophospholipid biosynthesis:
H2O + PETA ⟶ CH3CHO + Pi + ammonia
- Synthesis of PE:
H2O + PETA ⟶ CH3CHO + Pi + ammonia
- Cytochrome P450 - arranged by substrate type:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Xenobiotics:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- CYP2E1 reactions:
EtOH + H+ + Oxygen + TPNH ⟶ CH3CHO + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
EtOH + H+ + Oxygen + TPNH ⟶ CH3CHO + H2O + TPN
- Xenobiotics:
EtOH + H+ + Oxygen + TPNH ⟶ CH3CHO + H2O + TPN
- Carbohydrate metabolism:
L-gulonate + NAD ⟶ 3-dehydro-L-gulonate + H+ + NADH
- Pentose phosphate pathway:
PDG + TPN ⟶ H+ + RU5P + TPNH + carbon dioxide
- Metabolism of lipids:
3-oxopristanoyl-CoA + CoA-SH ⟶ 4,8,12-trimethyltridecanoyl-CoA + propionyl CoA
- Phospholipid metabolism:
H2O + PETA ⟶ CH3CHO + Pi + ammonia
- Glycerophospholipid biosynthesis:
H2O + PETA ⟶ CH3CHO + Pi + ammonia
- Synthesis of PE:
H2O + PETA ⟶ CH3CHO + Pi + ammonia
- Cytochrome P450 - arranged by substrate type:
ANDST + H+ + Oxygen + TPNH ⟶ H2O + HCOOH + TPN + estrone
- Xenobiotics:
DEXM + H+ + Oxygen + TPNH ⟶ CH2O + DEXT + H2O + TPN
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Pentose phosphate pathway:
PDG + TPN ⟶ H+ + RU5P + TPNH + carbon dioxide
- Phospholipid metabolism:
H2O + PETA ⟶ CH3CHO + Pi + ammonia
- Glycerophospholipid biosynthesis:
H2O + PETA ⟶ CH3CHO + Pi + ammonia
- Synthesis of PE:
H2O + PETA ⟶ CH3CHO + Pi + ammonia
- Cytochrome P450 - arranged by substrate type:
H+ + Oxygen + TPNH + progesterone ⟶ 11DCORST + H2O + TPN
- Xenobiotics:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- CYP2E1 reactions:
EtOH + H+ + Oxygen + TPNH ⟶ CH3CHO + H2O + TPN
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Pentose phosphate pathway:
PDG + TPN ⟶ H+ + RU5P + TPNH + carbon dioxide
- Phospholipid metabolism:
H2O + PETA ⟶ CH3CHO + Pi + ammonia
- Glycerophospholipid biosynthesis:
H2O + PETA ⟶ CH3CHO + Pi + ammonia
- Synthesis of PE:
H2O + PETA ⟶ CH3CHO + Pi + ammonia
- Cytochrome P450 - arranged by substrate type:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Xenobiotics:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- CYP2E1 reactions:
EtOH + H+ + Oxygen + TPNH ⟶ CH3CHO + H2O + TPN
- DNA Repair:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- DNA Damage Reversal:
2OG + Fe2+ + N6-methyladenosine ⟶ CH2O + SUCCA + adenosine + carbon dioxide
- Reversal of alkylation damage by DNA dioxygenases:
2OG + Fe2+ + N6-methyladenosine ⟶ CH2O + SUCCA + adenosine + carbon dioxide
- ALKBH2 mediated reversal of alkylation damage:
2OG + ALKBH2:Fe2+:1-meA-dsDNA + Oxygen ⟶ ALKBH2:Fe2+ + CH2O + SUCCA + carbon dioxide
- ALKBH3 mediated reversal of alkylation damage:
2OG + ALKBH3:Fe2+:ASCC1:ASCC2:ASCC3:1-meA-dsDNA + Oxygen ⟶ ALKBH3:Fe2+:ASCC1:ASCC2:ASCC3 + CH2O + SUCCA + carbon dioxide
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Pentose phosphate pathway:
PDG + TPN ⟶ H+ + RU5P + TPNH + carbon dioxide
- Phospholipid metabolism:
H2O + PETA ⟶ CH3CHO + Pi + ammonia
- Glycerophospholipid biosynthesis:
H2O + PETA ⟶ CH3CHO + Pi + ammonia
- Synthesis of PE:
H2O + PETA ⟶ CH3CHO + Pi + ammonia
- Cytochrome P450 - arranged by substrate type:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Xenobiotics:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- CYP2E1 reactions:
EtOH + H+ + Oxygen + TPNH ⟶ CH3CHO + H2O + TPN
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Pentose phosphate pathway:
PDG + TPN ⟶ H+ + RU5P + TPNH + carbon dioxide
- Phospholipid metabolism:
H2O + PETA ⟶ CH3CHO + Pi + ammonia
- Glycerophospholipid biosynthesis:
H2O + PETA ⟶ CH3CHO + Pi + ammonia
- Synthesis of PE:
H2O + PETA ⟶ CH3CHO + Pi + ammonia
- Cytochrome P450 - arranged by substrate type:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Xenobiotics:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- CYP2E1 reactions:
EtOH + H+ + Oxygen + TPNH ⟶ CH3CHO + H2O + TPN
- Carbohydrate metabolism:
ATP + PYR + carbon dioxide ⟶ ADP + OAA + Pi
- Pentose phosphate pathway:
PDG + TPN ⟶ H+ + RU5P + TPNH + carbon dioxide
- Phospholipid metabolism:
H2O + PETA ⟶ CH3CHO + Pi + ammonia
- Glycerophospholipid biosynthesis:
H2O + PETA ⟶ CH3CHO + Pi + ammonia
- Synthesis of PE:
H2O + PETA ⟶ CH3CHO + Pi + ammonia
- Cytochrome P450 - arranged by substrate type:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Xenobiotics:
CAF + H+ + Oxygen + TPNH ⟶ CH2O + H2O + Paraxanthine + TPN
- CYP2E1 reactions:
EtOH + H+ + Oxygen + TPNH ⟶ CH3CHO + H2O + TPN
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Pentose phosphate pathway:
ATP + R5P ⟶ AMP + PRPP
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Phospholipid metabolism:
H2O + PETA ⟶ CH3CHO + Pi + ammonia
- Glycerophospholipid biosynthesis:
H2O + PETA ⟶ CH3CHO + Pi + ammonia
- Synthesis of PE:
H2O + PETA ⟶ CH3CHO + Pi + ammonia
- Cytochrome P450 - arranged by substrate type:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Xenobiotics:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- CYP2E1 reactions:
EtOH + H+ + Oxygen + TPNH ⟶ CH3CHO + H2O + TPN
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Pentose phosphate pathway:
PDG + TPN ⟶ H+ + RU5P + TPNH + carbon dioxide
- Phospholipid metabolism:
H2O + PETA ⟶ CH3CHO + Pi + ammonia
- Glycerophospholipid biosynthesis:
H2O + PETA ⟶ CH3CHO + Pi + ammonia
- Synthesis of PE:
H2O + PETA ⟶ CH3CHO + Pi + ammonia
- Cytochrome P450 - arranged by substrate type:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Xenobiotics:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- CYP2E1 reactions:
EtOH + H+ + Oxygen + TPNH ⟶ CH3CHO + H2O + TPN
- CYP2E1 reactions:
EtOH + H+ + Oxygen + TPNH ⟶ CH3CHO + H2O + TPN
- CYP2E1 reactions:
EtOH + H+ + Oxygen + TPNH ⟶ CH3CHO + H2O + TPN
- CYP2E1 reactions:
tetrachloromethane ⟶ Cl-
BioCyc(372)
- alkylnitronates degradation:
aci-nitroethane + O2 ⟶ [unspecified degradation products] + acetaldehyde + nitrite
- alkylnitronates degradation:
O2 + ethylnitronate ⟶ [unspecified degradation products] + acetaldehyde + nitrite
- alkylnitronates degradation:
O2 + ethylnitronate ⟶ [unspecified degradation products] + acetaldehyde + nitrite
- alkylnitronates degradation:
H+ + NAD(P)H + nitrite ⟶ H2O + NAD(P)+ + ammonium
- alkylnitronates degradation:
H+ + NAD(P)H + nitrite ⟶ H2O + NAD(P)+ + ammonium
- alkylnitronates degradation:
O2 + ethylnitronate ⟶ [unspecified degradation products] + acetaldehyde + nitrite
- superpathway of ribose and deoxyribose phosphate degradation:
H2O + deoxycytidine ⟶ ammonia + deoxyuridine
- (deoxy)ribose phosphate degradation:
H2O + deoxycytidine ⟶ ammonia + deoxyuridine
- (deoxy)ribose phosphate degradation:
deoxyuridine + phosphate ⟶ deoxyribose 1-phosphate + uracil
- superpathway of ribose and deoxyribose phosphate degradation:
deoxyuridine + phosphate ⟶ deoxyribose 1-phosphate + uracil
- superpathway of threonine degradation:
thr ⟶ 2-oxobutanoate + H+ + ammonia
- threonine degradation I:
thr ⟶ acetaldehyde + gly
- threonine degradation IV:
thr ⟶ acetaldehyde + gly
- superpathway of threonine metabolism:
2-oxobutanoate + coenzyme A ⟶ formate + propanoyl-CoA
- heterolactic fermentation:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- androgen biosynthesis:
NAD+ + dehydroepiandrosterone ⟶ 5-androstene-3,17-dione + H+ + NADH
- superpathway of dimethylsulfoniopropanoate degradation:
DMSP ⟶ H+ + acrylate + dimethyl sulfide
- methylthiopropanoate degradation I (cleavage):
3-(methylsulfanyl)acryloyl-CoA + H2O ⟶ CO2 + acetaldehyde + coenzyme A + methanethiol
- long chain fatty acid ester synthesis (engineered):
UQ + ethanol ⟶ UQH2 + acetaldehyde
- 2'-deoxy-α-D-ribose 1-phosphate degradation:
NAD+ + acetaldehyde + coenzyme A ⟶ H+ + NADH + acetyl-CoA
- oxidative ethanol degradation III:
O2 + a reduced [NADPH-hemoprotein reductase] + ethanol ⟶ H2O + acetaldehyde + an oxidized [NADPH-hemoprotein reductase]
- ethanol degradation IV:
ethanol + hydrogen peroxide ⟶ H2O + acetaldehyde
- ethanol degradation II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- NAD/NADP-NADH/NADPH cytosolic interconversion (yeast):
D-glucopyranose 6-phosphate + NADP+ ⟶ 6-phospho D-glucono-1,5-lactone + H+ + NADPH
- superpathway NAD/NADP - NADH/NADPH interconversion (yeast):
D-glucopyranose 6-phosphate + NADP+ ⟶ 6-phospho D-glucono-1,5-lactone + H+ + NADPH
- fluoroacetate and fluorothreonine biosynthesis:
SAM + fluoride ⟶ 5'-deoxy-5'-fluoroadenosine + met
- hypotaurine degradation:
2-sulfinoacetaldehyde + H2O ⟶ H+ + acetaldehyde + sulfite
- chitin degradation to ethanol:
H2O + chitin ⟶ acetate + chitosan
- 2-aminoethylphosphonate degradation I:
NAD+ + acetaldehyde + coenzyme A ⟶ H+ + NADH + acetyl-CoA
- pyruvate fermentation to acetate VIII:
H2O + NADP+ + acetaldehyde ⟶ H+ + NADPH + acetate
- glycine biosynthesis IV:
thr ⟶ acetaldehyde + gly
- superpathway of pyrimidine deoxyribonucleosides degradation:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- ethanol degradation II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- ethanol degradation I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- homofuraneol biosynthesis:
NADP+ + homofuraneol ⟶ (2E)-2-ethylidene-4-hydroxy-5-methyl-3(2H)-furanone + H+ + NADPH
- ethanol degradation III:
O2 + a reduced [NADPH-hemoprotein reductase] + ethanol ⟶ H2O + acetaldehyde + an oxidized [NADPH-hemoprotein reductase]
- pyruvate fermentation to acetoin III:
acetaldehyde ⟶ acetoin
- ethanol degradation IV:
ethanol + hydrogen peroxide ⟶ H2O + acetaldehyde
- atrazine degradation II:
A(H2) + O2 + atrazine ⟶ A + H2O + acetone + deethylsimazine
- preQ0 biosynthesis:
GTP + H2O ⟶ 7,8-dihydroneopterin 3'-triphosphate + H+ + formate
- ethanolamine utilization:
ethanolamine ⟶ acetaldehyde + ammonium
- triethylamine degradation:
H+ + diethylamine N-oxide ⟶ acetaldehyde + ethylamine
- superpathway of Clostridium acetobutylicum acidogenic and solventogenic fermentation:
H+ + acetoacetate ⟶ CO2 + acetone
- superpathway of fermentation (Chlamydomonas reinhardtii):
H2 + an oxidized ferredoxin [iron-sulfur] cluster ⟶ H+ + a reduced ferredoxin [iron-sulfur] cluster
- superpathway of Clostridium acetobutylicum solventogenic fermentation:
H+ + acetoacetate ⟶ CO2 + acetone
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- acetaldehyde biosynthesis I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- choline degradation III:
choline ⟶ acetaldehyde + trimethylamine
- superpathway of purine deoxyribonucleosides degradation:
2'-deoxyadenosine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + adenine
- geraniol and nerol degradation:
H2O + neral ⟶ acetaldehyde + sulcatone
- p-cymene degradation:
p-cymene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ 4-isopropylbenzyl alcohol + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- hexitol fermentation to lactate, formate, ethanol and acetate:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- acetylene degradation:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- superpathway of aromatic compound degradation via 2-hydroxypentadienoate:
O2 + catechol ⟶ H+ + HMS
- p-cumate degradation:
NAD+ + acetaldehyde + coenzyme A ⟶ H+ + NADH + acetyl-CoA
- mixed acid fermentation:
ATP + pyruvate ⟶ ADP + H+ + phosphoenolpyruvate
- superpathway of aromatic compound degradation via 3-oxoadipate:
O2 + catechol ⟶ H+ + HMS
- 3-phenylpropanoate and 3-(3-hydroxyphenyl)propanoate degradation:
NAD+ + acetaldehyde + coenzyme A ⟶ H+ + NADH + acetyl-CoA
- 2-hydroxypenta-2,4-dienoate degradation:
NAD+ + acetaldehyde + coenzyme A ⟶ H+ + NADH + acetyl-CoA
- naphthalene degradation to acetyl-CoA:
O2 + catechol ⟶ H+ + HMS
- superpathway of N-acetylneuraminate degradation:
ATP + pyruvate ⟶ ADP + H+ + phosphoenolpyruvate
- L-threonine degradation IV:
NAD+ + acetaldehyde + coenzyme A ⟶ H+ + NADH + acetyl-CoA
- meta cleavage pathway of aromatic compounds:
O2 + catechol ⟶ H+ + HMS
- cob(II)yrinate a,c-diamide biosynthesis I (early cobalt insertion):
H2O + cobalt-precorrin-5A ⟶ H+ + acetaldehyde + cobalt-precorrin-5B
- nitroethane degradation:
H2O + O2 + nitroethane ⟶ H+ + acetaldehyde + hydrogen peroxide + nitrite
- catechol degradation II (meta-cleavage pathway):
O2 + catechol ⟶ H+ + HMS
- catechol degradation I (meta-cleavage pathway):
O2 + catechol ⟶ H+ + HMS
- toluene degradation I (aerobic) (via o-cresol):
NAD+ + acetaldehyde + coenzyme A ⟶ H+ + NADH + acetyl-CoA
- L-tryptophan degradation IX:
N-Formyl-L-kynurenine + H2O ⟶ H+ + L-kynurenine + formate
- toluene degradation IV (aerobic) (via catechol):
O2 + catechol ⟶ H+ + HMS
- mandelate degradation to acetyl-CoA:
O2 + catechol ⟶ H+ + HMS
- L-tryptophan degradation XII (Geobacillus):
N-Formyl-L-kynurenine + H2O ⟶ H+ + L-kynurenine + formate
- heterolactic fermentation:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- toluene degradation II (aerobic) (via 4-methylcatechol):
H+ + NADH + O2 + toluene ⟶ 4-methylphenol + H2O + NAD+
- toluene degradation V (aerobic) (via toluene-cis-diol):
NAD+ + acetaldehyde + coenzyme A ⟶ H+ + NADH + acetyl-CoA
- superpathway of L-threonine metabolism:
NAD+ + thr ⟶ H+ + L-2-amino-3-oxobutanoate + NADH
- superpathway of anaerobic sucrose degradation:
β-D-fructofuranose + ATP ⟶ ADP + F6P + H+
- superpathway of aerobic toluene degradation:
4-methylphenol + H2O + an oxidized azurin ⟶ 4-hydroxybenzyl alcohol + H+ + a reduced azurin
- acetoin degradation:
NAD+ + acetoin + coenzyme A ⟶ H+ + NADH + acetaldehyde + acetyl-CoA
- 2'-deoxy-α-D-ribose 1-phosphate degradation:
2-deoxy-D-ribose 5-phosphate ⟶ D-glyceraldehyde 3-phosphate + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol III:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- ethanolamine utilization:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- 2'-deoxy-α-D-ribose 1-phosphate degradation:
NAD+ + acetaldehyde + coenzyme A ⟶ H+ + NADH + acetyl-CoA
- mixed acid fermentation:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- superpathway of L-threonine metabolism:
2-oxobutanoate + coenzyme A ⟶ formate + propanoyl-CoA
- 3-phenylpropanoate and 3-(3-hydroxyphenyl)propanoate degradation:
3-(3-hydroxyphenyl)propanoate + H+ + NADH + O2 ⟶ 2,3-DHP + H2O + NAD+
- preQ0 biosynthesis:
GTP + H2O ⟶ 7,8-dihydroneopterin 3'-triphosphate + H+ + formate
- ethanol degradation I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- L-threonine degradation IV:
NAD+ + acetaldehyde + coenzyme A ⟶ H+ + NADH + acetyl-CoA
- 2-hydroxypenta-2,4-dienoate degradation:
(S)-4-hydroxy-2-oxopentanoate ⟶ acetaldehyde + pyruvate
- superpathway of pyrimidine deoxyribonucleosides degradation:
2'-deoxyuridine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + uracil
- superpathway of purine deoxyribonucleosides degradation:
2'-deoxyadenosine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + adenine
- glycine biosynthesis from threonine:
thr ⟶ acetaldehyde + gly
- homofuraneol biosynthesis:
NADP+ + homofuraneol ⟶ (2E)-2-ethylidene-4-hydroxy-5-methyl-3(2H)-furanone + H+ + NADPH
- superpathway NAD/NADP - NADH/NADPH interconversion:
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- ethanol degradation II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- NAD/NADP-NADH/NADPH cytosolic interconversion:
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- threonine degradation:
NAD+ + acetaldehyde + coenzyme A ⟶ H+ + NADH + acetyl-CoA
- acetoin biosynthesis III:
H+ + acetaldehyde + pyruvate ⟶ CO2 + acetoin
- superpathway of acetoin and butanediol biosynthesis:
H+ + acetaldehyde + pyruvate ⟶ CO2 + acetoin
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- chitin degradation to ethanol:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to acetate VIII:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- pyruvate fermentation to ethanol II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- glycine biosynthesis:
thr ⟶ acetaldehyde + gly
- ethanol degradation I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- acetaldehyde biosynthesis I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- ethanol degradation II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- ethanol degradation II (cytosol):
ATP + acetate + coenzyme A ⟶ AMP + H+ + acetyl-CoA + diphosphate
- oxidative ethanol degradation III (microsomal):
H2O + NAD+ + acetaldehyde ⟶ H+ + NADH + acetate
- ethanol degradation IV (peroxisomal):
H2O + NAD+ + acetaldehyde ⟶ H+ + NADH + acetate
- ethanol degradation II (cytosol):
H2O + NAD+ + acetaldehyde ⟶ H+ + NADH + acetate
- sucrose degradation to ethanol and lactate (anaerobic):
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- superpathway of pyrimidine deoxyribonucleosides degradation:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- ethanol degradation II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- ethanol degradation I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- 2'-deoxy-α-D-ribose 1-phosphate degradation:
NAD+ + acetaldehyde + coenzyme A ⟶ H+ + NADH + acetyl-CoA
- superpathway of purine deoxyribonucleosides degradation:
2'-deoxyadenosine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + adenine
- 2-aminoethylphosphonate degradation I:
(2-aminoethyl)phosphonate + pyruvate ⟶ ala + phosphonoacetaldehyde
- superpathway of N-acetylneuraminate degradation:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- superpathway of purine deoxyribonucleosides degradation:
2'-deoxyadenosine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + adenine
- 2'-deoxy-α-D-ribose 1-phosphate degradation:
NAD+ + acetaldehyde + coenzyme A ⟶ H+ + NADH + acetyl-CoA
- pyruvate fermentation to ethanol I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- superpathway of pyrimidine deoxyribonucleosides degradation:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- hexitol fermentation to lactate, formate, ethanol and acetate:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- mixed acid fermentation:
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- ethanol degradation I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- superpathway of N-acetylneuraminate degradation:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- ethanol degradation IV (peroxisomal):
ethanol + hydrogen peroxide ⟶ H2O + acetaldehyde
- ethanol fermentation to acetate:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- oxidative ethanol degradation III (microsomal):
H+ + NADPH + O2 + ethanol ⟶ H2O + NADP+ + acetaldehyde
- heterolactic fermentation:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- (deoxy)ribose phosphate degradation:
H2O + deoxycytidine ⟶ ammonia + deoxyuridine
- ethanol degradation II (cytosol):
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- sucrose degradation to ethanol and lactate (anaerobic):
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- mixed acid fermentation:
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- ethanol degradation I:
NAD+ + acetaldehyde + coenzyme A ⟶ H+ + NADH + acetyl-CoA
- ethanol degradation II:
H2O + NAD+ + acetaldehyde ⟶ H+ + NADH + acetate
- pyruvate fermentation to ethanol II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- superpathway of purine deoxyribonucleosides degradation:
2'-deoxyadenosine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + adenine
- superpathway of pyrimidine deoxyribonucleosides degradation:
2'-deoxyuridine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + uracil
- 2'-deoxy-α-D-ribose 1-phosphate degradation:
2-deoxy-D-ribose 5-phosphate ⟶ D-glyceraldehyde 3-phosphate + acetaldehyde
- mixed acid fermentation:
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- ethanol degradation I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- ethanol degradation II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- superpathway of purine deoxyribonucleosides degradation:
2'-deoxyadenosine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + adenine
- superpathway of pyrimidine deoxyribonucleosides degradation:
2'-deoxyuridine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + uracil
- 2-oxopentenoate degradation:
4-hydroxy-2-oxopentanoate ⟶ acetaldehyde + pyruvate
- 2'-deoxy-α-D-ribose 1-phosphate degradation:
NAD+ + acetaldehyde + coenzyme A ⟶ H+ + NADH + acetyl-CoA
- ethanol degradation IV:
ethanol + hydrogen peroxide ⟶ H2O + acetaldehyde
- 2'-deoxy-α-D-ribose 1-phosphate degradation:
NAD+ + acetaldehyde + coenzyme A ⟶ H+ + NADH + acetyl-CoA
- 2'-deoxy-α-D-ribose 1-phosphate degradation:
NAD+ + acetaldehyde + coenzyme A ⟶ H+ + NADH + acetyl-CoA
- ethanol degradation I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- ethanol degradation II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- superpathway of purine deoxyribonucleosides degradation:
2'-deoxyadenosine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + adenine
- pyruvate fermentation to ethanol I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- superpathway of pyrimidine deoxyribonucleosides degradation:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- hexitol fermentation to lactate, formate, ethanol and acetate:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- mixed acid fermentation:
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- ethanolamine utilization:
ethanolamine ⟶ acetaldehyde + ammonium
- 2-oxopentenoate degradation:
4-hydroxy-2-oxopentanoate ⟶ acetaldehyde + pyruvate
- superpathway of N-acetylneuraminate degradation:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- 3-phenylpropionate and 3-(3-hydroxyphenyl)propionate degradation:
3-(3-hydroxyphenyl)propionate + H+ + NADH + O2 ⟶ 2,3-DHP + H2O + NAD+
- cob(II)yrinate a,c-diamide biosynthesis I (early cobalt insertion):
H+ + SAM + cobalt-precorrin-6B ⟶ CO2 + SAH + cobalt-precorrin-7
- threonine degradation IV:
NAD+ + acetaldehyde + coenzyme A ⟶ H+ + NADH + acetyl-CoA
- pyruvate fermentation to ethanol I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- 2'-deoxy-α-D-ribose 1-phosphate degradation:
NAD+ + acetaldehyde + coenzyme A ⟶ H+ + NADH + acetyl-CoA
- glycine biosynthesis IV:
thr ⟶ acetaldehyde + gly
- ethanol degradation I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- mixed acid fermentation:
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- ethanol degradation II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- ethanolamine utilization:
ethanolamine ⟶ acetaldehyde + ammonium
- superpathway of pyrimidine deoxyribonucleosides degradation:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of purine deoxyribonucleosides degradation:
2'-deoxyadenosine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + adenine
- threonine degradation IV:
NAD+ + acetaldehyde + coenzyme A ⟶ H+ + NADH + acetyl-CoA
- 2-oxopentenoate degradation:
4-hydroxy-2-oxopentanoate ⟶ acetaldehyde + pyruvate
- mixed acid fermentation:
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- acetoin degradation:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- 2'-deoxy-α-D-ribose 1-phosphate degradation:
NAD+ + acetaldehyde + coenzyme A ⟶ H+ + NADH + acetyl-CoA
- pyruvate fermentation to ethanol III:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- ethanol degradation I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- ethanol degradation II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- superpathway of pyrimidine deoxyribonucleosides degradation:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of purine deoxyribonucleosides degradation:
2'-deoxyadenosine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + adenine
- mixed acid fermentation:
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- acetoin degradation:
NAD+ + acetoin + coenzyme A ⟶ H+ + NADH + acetaldehyde + acetyl-CoA
- superpathway of purine deoxyribonucleosides degradation:
2'-deoxyadenosine + H+ + H2O ⟶ 2'-deoxyinosine + ammonium
- 2'-deoxy-α-D-ribose 1-phosphate degradation:
2-deoxy-D-ribose 5-phosphate ⟶ D-glyceraldehyde 3-phosphate + acetaldehyde
- ethanol degradation I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- ethanol degradation II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- mixed acid fermentation:
oxaloacetate + phosphate ⟶ hydrogencarbonate + phosphoenolpyruvate
- glycine biosynthesis IV:
thr ⟶ acetaldehyde + gly
- L-threonine degradation IV:
NAD+ + acetaldehyde + coenzyme A ⟶ H+ + NADH + acetyl-CoA
- superpathway of pyrimidine deoxyribonucleosides degradation:
2'-deoxyuridine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + uracil
- cob(II)yrinate a,c-diamide biosynthesis I (early cobalt insertion):
H2O + cobalt-precorrin-5A ⟶ H+ + acetaldehyde + cobalt-precorrin-5B
- 2'-deoxy-α-D-ribose 1-phosphate degradation:
NAD+ + acetaldehyde + coenzyme A ⟶ H+ + NADH + acetyl-CoA
- glycine biosynthesis IV:
thr ⟶ acetaldehyde + gly
- cob(II)yrinate a,c-diamide biosynthesis I (early cobalt insertion):
SAM + cobalt-sirohydrochlorin ⟶ H+ + SAH + cobalt-factor III
- superpathway of pyrimidine deoxyribonucleosides degradation:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of purine deoxyribonucleosides degradation:
2'-deoxyadenosine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + adenine
- (deoxy)ribose phosphate degradation:
H2O + deoxycytidine ⟶ ammonia + deoxyuridine
- ethanol degradation II (cytosol):
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyrimidine deoxyribonucleosides degradation:
H2O + deoxycytidine ⟶ ammonia + deoxyuridine
- glycine biosynthesis IV:
thr ⟶ acetaldehyde + gly
- oxidative ethanol degradation III (microsomal):
H+ + NADPH + O2 + ethanol ⟶ H2O + NADP+ + acetaldehyde
- purine deoxyribonucleosides degradation:
adenine + deoxyribose 1-phosphate ⟶ deoxyadenosine + phosphate
- pyrimidine deoxyribonucleosides degradation:
H2O + deoxycytidine ⟶ ammonia + deoxyuridine
- heterolactic fermentation:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- superpathway of ribose and deoxyribose phosphate degradation:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- (deoxy)ribose phosphate degradation:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of aromatic compound degradation via 3-oxoadipate:
O2 + trp ⟶ N-formylkynurenine
- 2-oxopentenoate degradation:
4-hydroxy-2-oxopentanoate ⟶ acetaldehyde + pyruvate
- hexitol fermentation to lactate, formate, ethanol and acetate:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- ethanol degradation II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- ethanol fermentation to acetate:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- ethanol degradation I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- mixed acid fermentation:
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- mixed acid fermentation:
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- 2'-deoxy-α-D-ribose 1-phosphate degradation:
NAD+ + acetaldehyde + coenzyme A ⟶ H+ + NADH + acetyl-CoA
- preQ0 biosynthesis:
GTP + H2O ⟶ 7,8-dihydroneopterin 3'-triphosphate + H+ + formate
- acetoin degradation:
NAD+ + acetoin + coenzyme A ⟶ H+ + NADH + acetaldehyde + acetyl-CoA
- ethanol degradation II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- ethanol degradation IV:
ethanol + hydrogen peroxide ⟶ H2O + acetaldehyde
- glycine biosynthesis IV:
thr ⟶ acetaldehyde + gly
- superpathway of purine deoxyribonucleosides degradation:
2'-deoxyadenosine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + adenine
- superpathway of pyrimidine deoxyribonucleosides degradation:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyruvate fermentation to ethanol I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- 2'-deoxy-α-D-ribose 1-phosphate degradation:
NAD+ + acetaldehyde + coenzyme A ⟶ H+ + NADH + acetyl-CoA
- superpathway of N-acetylneuraminate degradation:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- ethanol degradation IV (peroxisomal):
ethanol + hydrogen peroxide ⟶ H2O + acetaldehyde
- ethanol degradation II (cytosol):
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- alkylnitronates degradation:
FMNH2 + O2 + ethylnitronate ⟶ FMN + H2O + H+ + acetaldehyde + nitrite
- mixed acid fermentation:
citrate ⟶ cis-aconitate + H2O
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- acetaldehyde biosynthesis I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- glycine biosynthesis IV:
thr ⟶ acetaldehyde + gly
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- ethanol degradation I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- ethanol degradation II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- 2'-deoxy-α-D-ribose 1-phosphate degradation:
NAD+ + acetaldehyde + coenzyme A ⟶ H+ + NADH + acetyl-CoA
- mixed acid fermentation:
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- superpathway of pyrimidine deoxyribonucleosides degradation:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- preQ0 biosynthesis:
GTP + H2O ⟶ 7,8-dihydroneopterin triphosphate + H+ + formate
- ethanol degradation I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- ethanolamine utilization:
ethanolamine ⟶ acetaldehyde + ammonium
- 2-oxopentenoate degradation:
4-hydroxy-2-oxopentanoate ⟶ acetaldehyde + pyruvate
- threonine degradation IV:
NAD+ + acetaldehyde + coenzyme A ⟶ H+ + NADH + acetyl-CoA
- 2'-deoxy-α-D-ribose 1-phosphate degradation:
NAD+ + acetaldehyde + coenzyme A ⟶ H+ + NADH + acetyl-CoA
- superpathway of threonine metabolism:
H2O + O2 + aminoacetone ⟶ ammonium + hydrogen peroxide + methylglyoxal
- 3-phenylpropionate and 3-(3-hydroxyphenyl)propionate degradation:
3-(3-hydroxyphenyl)propionate + H+ + NADH + O2 ⟶ 2,3-DHP + H2O + NAD+
- superpathway of threonine metabolism:
H2O + O2 + aminoacetone ⟶ ammonium + hydrogen peroxide + methylglyoxal
- pyruvate fermentation to ethanol I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- superpathway of purine deoxyribonucleosides degradation:
2'-deoxyadenosine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + adenine
- ethanolamine utilization:
ethanolamine ⟶ acetaldehyde + ammonium
- superpathway of pyrimidine deoxyribonucleosides degradation:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- ethanol degradation I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- 2'-deoxy-α-D-ribose 1-phosphate degradation:
NAD+ + acetaldehyde + coenzyme A ⟶ H+ + NADH + acetyl-CoA
- mixed acid fermentation:
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- preQ0 biosynthesis:
GTP + H2O ⟶ 7,8-dihydroneopterin triphosphate + H+ + formate
- acetoin degradation:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- 2-oxopentenoate degradation:
4-hydroxy-2-oxopentanoate ⟶ acetaldehyde + pyruvate
- threonine degradation IV:
NAD+ + acetaldehyde + coenzyme A ⟶ H+ + NADH + acetyl-CoA
- 3-phenylpropionate and 3-(3-hydroxyphenyl)propionate degradation:
3-(3-hydroxyphenyl)propionate + H+ + NADH + O2 ⟶ 2,3-DHP + H2O + NAD+
- mixed acid fermentation:
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- adenosylcobalamin biosynthesis I (early cobalt insertion):
(R)-1-amino-2-propanol O-2-phosphate + ATP + adenosyl-cobyrate ⟶ ADP + H+ + adenosyl-cobinamide phosphate + phosphate
- purine deoxyribonucleosides degradation:
deoxyadenosine + phosphate ⟶ adenine + deoxyribose 1-phosphate
- mixed acid fermentation:
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- glycine biosynthesis IV:
thr ⟶ acetaldehyde + gly
- threonine degradation IV:
NAD+ + acetaldehyde + coenzyme A ⟶ H+ + NADH + acetyl-CoA
- superpathway of N-acetylneuraminate degradation:
D-glucosamine 6-phosphate + H2O ⟶ D-fructose 6-phosphate + H+ + ammonia
- adenosylcobalamin biosynthesis I (early cobalt insertion):
β-nicotinate D-ribonucleotide + 5,6-dimethylbenzimidazole ⟶ α-ribazole-5'-phosphate + H+ + nicotinate
- pyruvate fermentation to ethanol I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- heterolactic fermentation:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- ethanolamine utilization:
ethanolamine ⟶ H+ + acetaldehyde + ammonia
- ethanol degradation I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyrimidine deoxyribonucleosides degradation:
deoxyuridine + phosphate ⟶ deoxyribose 1-phosphate + uracil
- ethanol degradation I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- purine deoxyribonucleosides degradation:
deoxyadenosine + phosphate ⟶ adenine + deoxyribose 1-phosphate
- ethanol degradation IV:
ethanol + hydrogen peroxide ⟶ H2O + acetaldehyde
- ethanol degradation II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- glycine biosynthesis IV:
thr ⟶ acetaldehyde + gly
- acetaldehyde biosynthesis I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- heterolactic fermentation:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- fluoroacetate and fluorothreonine biosynthesis:
5'-deoxy-5'-fluoroadenosine + phosphate ⟶ 5-fluoro-5-deoxy-D-ribose-1-phosphate + adenine
- threonine degradation IV:
NAD+ + acetaldehyde + coenzyme A ⟶ H+ + NADH + acetyl-CoA
- mixed acid fermentation:
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- pyruvate fermentation to ethanol I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- adenosylcobalamin biosynthesis I (early cobalt insertion):
β-nicotinate D-ribonucleotide + 5,6-dimethylbenzimidazole ⟶ α-ribazole-5'-phosphate + H+ + nicotinate
- preQ0 biosynthesis:
7-carboxy-7-deazaguanine + ATP + ammonia ⟶ ADP + H2O + phosphate + preQ0
- pyruvate fermentation to ethanol I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- superpathway of purine deoxyribonucleosides degradation:
2'-deoxyadenosine + phosphate ⟶ 2'-deoxy-α-D-ribose 1-phosphate + adenine
- superpathway of N-acetylneuraminate degradation:
D-glucosamine 6-phosphate + H2O ⟶ D-fructose 6-phosphate + H+ + ammonia
- hexitol fermentation to lactate, formate, ethanol and acetate:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- ethanolamine utilization:
ethanolamine ⟶ H+ + acetaldehyde + ammonia
- mixed acid fermentation:
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- heterolactic fermentation:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- ethanol degradation II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- superpathway of pyrimidine deoxyribonucleosides degradation:
2'-deoxycytidine + H2O ⟶ 2'-deoxyuridine + ammonia
- fluoroacetate and fluorothreonine biosynthesis:
5'-deoxy-5'-fluoroadenosine + phosphate ⟶ 5-fluoro-5-deoxy-D-ribose-1-phosphate + adenine
- threonine degradation IV:
NAD+ + acetaldehyde + coenzyme A ⟶ H+ + NADH + acetyl-CoA
- glycine biosynthesis IV:
thr ⟶ acetaldehyde + gly
- 2'-deoxy-α-D-ribose 1-phosphate degradation:
NAD+ + acetaldehyde + coenzyme A ⟶ H+ + NADH + acetyl-CoA
- ethanol degradation I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- 2-aminoethylphosphonate degradation I:
2-aminoethylphosphonate + pyruvate ⟶ ala + phosphonoacetaldehyde
- cob(II)yrinate a,c-diamide biosynthesis I (early cobalt insertion):
H+ + SAM + cobalt-precorrin-6B ⟶ CO2 + SAH + cobalt-precorrin-7
- cob(II)yrinate a,c-diamide biosynthesis I (early cobalt insertion):
SAM + cobalt-sirohydrochlorin ⟶ H+ + SAH + cobalt-factor III
- L-threonine degradation IV:
NAD+ + acetaldehyde + coenzyme A ⟶ H+ + NADH + acetyl-CoA
- ethanol degradation II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- ethanol degradation I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- 2-aminoethylphosphonate degradation I:
(2-aminoethyl)phosphonate + pyruvate ⟶ ala + phosphonoacetaldehyde
- 2'-deoxy-α-D-ribose 1-phosphate degradation:
NAD+ + acetaldehyde + coenzyme A ⟶ H+ + NADH + acetyl-CoA
- superpathway of pyrimidine deoxyribonucleosides degradation:
2'-deoxyuridine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + uracil
- superpathway of purine deoxyribonucleosides degradation:
2'-deoxyadenosine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + adenine
- glycine biosynthesis IV:
thr ⟶ acetaldehyde + gly
- ethanolamine utilization:
ethanolamine ⟶ acetaldehyde + ammonium
- pyruvate fermentation to ethanol III:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- 2'-deoxy-α-D-ribose 1-phosphate degradation:
NAD+ + acetaldehyde + coenzyme A ⟶ H+ + NADH + acetyl-CoA
- superpathway of purine deoxyribonucleosides degradation:
2'-deoxyadenosine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + adenine
- mixed acid fermentation:
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- glycine biosynthesis IV:
thr ⟶ acetaldehyde + gly
- ethanol degradation II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- 2'-deoxy-α-D-ribose 1-phosphate degradation:
NAD+ + acetaldehyde + coenzyme A ⟶ H+ + NADH + acetyl-CoA
- mixed acid fermentation:
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- superpathway of pyrimidine deoxyribonucleosides degradation:
2'-deoxyuridine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + uracil
- ethanol degradation I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- 2'-deoxy-α-D-ribose 1-phosphate degradation:
NAD+ + acetaldehyde + coenzyme A ⟶ H+ + NADH + acetyl-CoA
- heterolactic fermentation:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- superpathway of purine deoxyribonucleosides degradation:
2'-deoxyadenosine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + adenine
- pyruvate fermentation to ethanol I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- ethanol degradation I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- L-threonine degradation IV:
NAD+ + acetaldehyde + coenzyme A ⟶ H+ + NADH + acetyl-CoA
- heterolactic fermentation:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- pyruvate fermentation to ethanol I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- 2'-deoxy-α-D-ribose 1-phosphate degradation:
NAD+ + acetaldehyde + coenzyme A ⟶ H+ + NADH + acetyl-CoA
- superpathway of pyrimidine deoxyribonucleosides degradation:
2'-deoxyuridine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + uracil
- ethanolamine utilization:
ethanolamine ⟶ acetaldehyde + ammonium
- preQ0 biosynthesis:
GTP + H2O ⟶ 7,8-dihydroneopterin 3'-triphosphate + H+ + formate
- ethanolamine utilization:
ethanolamine ⟶ acetaldehyde + ammonium
- 2'-deoxy-α-D-ribose 1-phosphate degradation:
NAD+ + acetaldehyde + coenzyme A ⟶ H+ + NADH + acetyl-CoA
- superpathway of pyrimidine deoxyribonucleosides degradation:
2'-deoxyuridine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + uracil
- superpathway of purine deoxyribonucleosides degradation:
2'-deoxyadenosine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + adenine
- preQ0 biosynthesis:
GTP + H2O ⟶ 7,8-dihydroneopterin 3'-triphosphate + H+ + formate
- 2'-deoxy-α-D-ribose 1-phosphate degradation:
NAD+ + acetaldehyde + coenzyme A ⟶ H+ + NADH + acetyl-CoA
- mixed acid fermentation:
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- ethanol degradation II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- cob(II)yrinate a,c-diamide biosynthesis I (early cobalt insertion):
SAM + cobalt-sirohydrochlorin ⟶ H+ + SAH + cobalt-factor III
- ethanol degradation I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- ethanol degradation II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- 2'-deoxy-α-D-ribose 1-phosphate degradation:
NAD+ + acetaldehyde + coenzyme A ⟶ H+ + NADH + acetyl-CoA
- heterolactic fermentation:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- pyruvate fermentation to ethanol I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- preQ0 biosynthesis:
GTP + H2O ⟶ 7,8-dihydroneopterin 3'-triphosphate + H+ + formate
- mixed acid fermentation:
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- superpathway of pyrimidine deoxyribonucleosides degradation:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- ethanolamine utilization:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- superpathway of purine deoxyribonucleosides degradation:
2'-deoxyadenosine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + adenine
- pyruvate fermentation to ethanol I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- ethanol degradation I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- ethanol degradation II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- mixed acid fermentation:
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- 2'-deoxy-α-D-ribose 1-phosphate degradation:
NAD+ + acetaldehyde + coenzyme A ⟶ H+ + NADH + acetyl-CoA
WikiPathways(5)
- Ethanol metabolism resulting in production of ROS by CYP2E1:
Ethanol ⟶ acetaldehyde
- Ethanol metabolism resulting in production of ROS by CYP2E1:
ethanol ⟶ acetaldehyde
- Folate-alcohol and cancer pathway hypotheses:
Cysteine ⟶ Cystathionine
- Ethanol effects on histone modifications:
Ethanol ⟶ Acetaldehyde
- Ethanol metabolism production of ROS by CYP2E1:
Ethanol ⟶ Acetaldehyde
Plant Reactome(296)
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- threonine catabolism:
L-Thr ⟶ CH3CHO + Gly
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- threonine catabolism:
H2O + Oxygen + aminoacetone ⟶ H2O2 + MGXL + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- threonine catabolism:
L-Thr ⟶ CH3CHO + Gly
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- threonine catabolism:
H2O + Oxygen + aminoacetone ⟶ H2O2 + MGXL + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- threonine catabolism:
H2O + Oxygen + aminoacetone ⟶ H2O2 + MGXL + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- threonine catabolism:
H2O + Oxygen + aminoacetone ⟶ H2O2 + MGXL + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
H2O + L-Asn ⟶ L-Asp + ammonia
- threonine catabolism:
H2O + Oxygen + aminoacetone ⟶ H2O2 + MGXL + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- threonine catabolism:
H2O + Oxygen + aminoacetone ⟶ H2O2 + MGXL + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- threonine catabolism:
H2O + Oxygen + aminoacetone ⟶ H2O2 + MGXL + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- threonine catabolism:
H2O + Oxygen + aminoacetone ⟶ H2O2 + MGXL + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- threonine catabolism:
H2O + Oxygen + aminoacetone ⟶ H2O2 + MGXL + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- threonine catabolism:
L-Thr ⟶ CH3CHO + Gly
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- threonine catabolism:
H2O + Oxygen + aminoacetone ⟶ H2O2 + MGXL + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- threonine catabolism:
H2O + Oxygen + aminoacetone ⟶ H2O2 + MGXL + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- threonine catabolism:
H2O + Oxygen + aminoacetone ⟶ H2O2 + MGXL + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- threonine catabolism:
L-Thr ⟶ CH3CHO + Gly
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- threonine catabolism:
H2O + Oxygen + aminoacetone ⟶ H2O2 + MGXL + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
2OG + L-Val ⟶ Glu + KIV
- threonine catabolism:
H2O + Oxygen + aminoacetone ⟶ H2O2 + MGXL + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- threonine catabolism:
H2O + Oxygen + aminoacetone ⟶ H2O2 + MGXL + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- threonine catabolism:
H2O + Oxygen + aminoacetone ⟶ H2O2 + MGXL + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- threonine catabolism:
H2O + Oxygen + aminoacetone ⟶ H2O2 + MGXL + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- threonine catabolism:
H2O + Oxygen + aminoacetone ⟶ H2O2 + MGXL + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- threonine catabolism:
H2O + Oxygen + aminoacetone ⟶ H2O2 + MGXL + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- threonine catabolism:
H2O + Oxygen + aminoacetone ⟶ H2O2 + MGXL + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- threonine catabolism:
H2O + Oxygen + aminoacetone ⟶ H2O2 + MGXL + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- threonine catabolism:
L-Thr ⟶ CH3CHO + Gly
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- threonine catabolism:
H2O + Oxygen + aminoacetone ⟶ H2O2 + MGXL + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- threonine catabolism:
H2O + Oxygen + aminoacetone ⟶ H2O2 + MGXL + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- threonine catabolism:
H2O + Oxygen + aminoacetone ⟶ H2O2 + MGXL + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- threonine catabolism:
H2O + Oxygen + aminoacetone ⟶ H2O2 + MGXL + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- threonine catabolism:
H2O + Oxygen + aminoacetone ⟶ H2O2 + MGXL + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- threonine catabolism:
H2O + Oxygen + aminoacetone ⟶ H2O2 + MGXL + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
H2O + L-Asn ⟶ L-Asp + ammonia
- threonine catabolism:
H2O + Oxygen + aminoacetone ⟶ H2O2 + MGXL + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- threonine catabolism:
H2O + Oxygen + aminoacetone ⟶ H2O2 + MGXL + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
H2O + L-Asn ⟶ L-Asp + ammonia
- threonine catabolism:
H2O + Oxygen + aminoacetone ⟶ H2O2 + MGXL + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- threonine catabolism:
H2O + Oxygen + aminoacetone ⟶ H2O2 + MGXL + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- threonine catabolism:
H2O + Oxygen + aminoacetone ⟶ H2O2 + MGXL + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- threonine catabolism:
H2O + Oxygen + aminoacetone ⟶ H2O2 + MGXL + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- threonine catabolism:
H2O + Oxygen + aminoacetone ⟶ H2O2 + MGXL + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- threonine catabolism:
H2O + Oxygen + aminoacetone ⟶ H2O2 + MGXL + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- threonine catabolism:
H2O + Oxygen + aminoacetone ⟶ H2O2 + MGXL + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- threonine catabolism:
H2O + Oxygen + aminoacetone ⟶ H2O2 + MGXL + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- threonine catabolism:
H2O + Oxygen + aminoacetone ⟶ H2O2 + MGXL + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- threonine catabolism:
H2O + Oxygen + aminoacetone ⟶ H2O2 + MGXL + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- threonine catabolism:
H2O + Oxygen + aminoacetone ⟶ H2O2 + MGXL + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- threonine catabolism:
H2O + Oxygen + aminoacetone ⟶ H2O2 + MGXL + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- threonine catabolism:
H2O + Oxygen + aminoacetone ⟶ H2O2 + MGXL + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- threonine catabolism:
H2O + Oxygen + aminoacetone ⟶ H2O2 + MGXL + ammonia
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid metabolism:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid catabolism:
2OG + L-Val ⟶ Glu + KIV
- threonine catabolism:
L-Thr ⟶ CH3CHO + Gly
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- threonine catabolism:
H2O + Oxygen + aminoacetone ⟶ H2O2 + MGXL + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- threonine catabolism:
H2O + Oxygen + aminoacetone ⟶ H2O2 + MGXL + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- threonine catabolism:
H2O + Oxygen + aminoacetone ⟶ H2O2 + MGXL + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- threonine catabolism:
H2O + Oxygen + aminoacetone ⟶ H2O2 + MGXL + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- threonine catabolism:
H2O + Oxygen + aminoacetone ⟶ H2O2 + MGXL + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- threonine catabolism:
L-Thr ⟶ CH3CHO + Gly
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- threonine catabolism:
H2O + Oxygen + aminoacetone ⟶ H2O2 + MGXL + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- threonine catabolism:
H2O + Oxygen + aminoacetone ⟶ H2O2 + MGXL + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- threonine catabolism:
H2O + Oxygen + aminoacetone ⟶ H2O2 + MGXL + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- threonine catabolism:
H2O + Oxygen + aminoacetone ⟶ H2O2 + MGXL + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- threonine catabolism:
L-Thr ⟶ CH3CHO + Gly
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- threonine catabolism:
H2O + Oxygen + aminoacetone ⟶ H2O2 + MGXL + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- threonine catabolism:
L-Thr ⟶ CH3CHO + Gly
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- threonine catabolism:
H2O + Oxygen + aminoacetone ⟶ H2O2 + MGXL + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- threonine catabolism:
L-Thr ⟶ CH3CHO + Gly
- Metabolism and regulation:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Amino acid metabolism:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- threonine catabolism:
H2O + Oxygen + aminoacetone ⟶ H2O2 + MGXL + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- threonine catabolism:
H2O + Oxygen + aminoacetone ⟶ H2O2 + MGXL + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- threonine catabolism:
H2O + Oxygen + aminoacetone ⟶ H2O2 + MGXL + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- threonine catabolism:
H2O + Oxygen + aminoacetone ⟶ H2O2 + MGXL + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- threonine catabolism:
L-Thr ⟶ CH3CHO + Gly
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- threonine catabolism:
H2O + Oxygen + aminoacetone ⟶ H2O2 + MGXL + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- threonine catabolism:
H2O + Oxygen + aminoacetone ⟶ H2O2 + MGXL + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- threonine catabolism:
H2O + Oxygen + aminoacetone ⟶ H2O2 + MGXL + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- threonine catabolism:
H2O + Oxygen + aminoacetone ⟶ H2O2 + MGXL + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- threonine catabolism:
H2O + Oxygen + aminoacetone ⟶ H2O2 + MGXL + ammonia
INOH(2)
- Pyruvate metabolism ( Pyruvate metabolism ):
ATP + Acetic acid + CoA ⟶ AMP + Acetyl-CoA + Pyrophosphate
- NAD+ + Acetaldehyde + H2O = NADH + Acetic acid ( Pyruvate metabolism ):
Acetaldehyde + NAD+ ⟶ Acetic acid + NADH
PlantCyc(527)
- polyvinyl alcohol degradation:
H2O + oxidized polyvinyl alcohol(n) ⟶ acetate + oxidized polyvinyl alcohol(n)
- polyvinyl alcohol degradation:
H2O + oxidized polyvinyl alcohol(n) ⟶ acetate + oxidized polyvinyl alcohol(n)
- polyvinyl alcohol degradation:
H2O + oxidized polyvinyl alcohol(n) ⟶ acetate + oxidized polyvinyl alcohol(n)
- polyvinyl alcohol degradation:
H2O + oxidized polyvinyl alcohol(n) ⟶ acetate + oxidized polyvinyl alcohol(n)
- polyvinyl alcohol degradation:
H2O + oxidized polyvinyl alcohol(n) ⟶ acetate + oxidized polyvinyl alcohol(n)
- polyvinyl alcohol degradation:
H2O + oxidized polyvinyl alcohol(n) ⟶ acetate + oxidized polyvinyl alcohol(n)
- polyvinyl alcohol degradation:
H2O + oxidized polyvinyl alcohol(n) ⟶ acetate + oxidized polyvinyl alcohol(n)
- polyvinyl alcohol degradation:
H2O + oxidized polyvinyl alcohol(n) ⟶ acetate + oxidized polyvinyl alcohol(n)
- polyvinyl alcohol degradation:
H2O + oxidized polyvinyl alcohol(n) ⟶ acetate + oxidized polyvinyl alcohol(n)
- polyvinyl alcohol degradation:
H2O + oxidized polyvinyl alcohol(n) ⟶ acetate + oxidized polyvinyl alcohol(n)
- polyvinyl alcohol degradation:
H2O + oxidized polyvinyl alcohol(n) ⟶ acetate + oxidized polyvinyl alcohol(n)
- polyvinyl alcohol degradation:
H2O + oxidized polyvinyl alcohol(n) ⟶ acetate + oxidized polyvinyl alcohol(n)
- polyvinyl alcohol degradation:
H2O + oxidized polyvinyl alcohol(n) ⟶ acetate + oxidized polyvinyl alcohol(n)
- polyvinyl alcohol degradation:
H2O + oxidized polyvinyl alcohol(n) ⟶ acetate + oxidized polyvinyl alcohol(n)
- polyvinyl alcohol degradation:
H2O + oxidized polyvinyl alcohol(n) ⟶ acetate + oxidized polyvinyl alcohol(n)
- polyvinyl alcohol degradation:
H2O + oxidized polyvinyl alcohol(n) ⟶ acetate + oxidized polyvinyl alcohol(n)
- acetaldehyde biosynthesis I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- acetaldehyde biosynthesis I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- acetaldehyde biosynthesis I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- acetaldehyde biosynthesis I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- acetaldehyde biosynthesis I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- acetaldehyde biosynthesis I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- ethanol degradation I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- ethanol degradation II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- glycine biosynthesis:
a tetrahydrofolate + ser ⟶ H2O + a 5,10-methylenetetrahydrofolate + gly
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- acetaldehyde biosynthesis I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- acetaldehyde biosynthesis I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- acetaldehyde biosynthesis I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- superpathway of anaerobic sucrose degradation:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- acetaldehyde biosynthesis I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- acetaldehyde biosynthesis I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- acetaldehyde biosynthesis I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- acetaldehyde biosynthesis I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to acetoin III:
H+ + acetaldehyde + pyruvate ⟶ CO2 + acetoin
- acetaldehyde biosynthesis I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- acetaldehyde biosynthesis I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- acetaldehyde biosynthesis I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- acetaldehyde biosynthesis I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- acetaldehyde biosynthesis I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- acetaldehyde biosynthesis I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- acetaldehyde biosynthesis I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- acetaldehyde biosynthesis I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- acetaldehyde biosynthesis I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- superpathway of anaerobic sucrose degradation:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- acetaldehyde biosynthesis I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- acetaldehyde biosynthesis I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- acetaldehyde biosynthesis I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- acetaldehyde biosynthesis I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- acetaldehyde biosynthesis I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- acetaldehyde biosynthesis I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- acetaldehyde biosynthesis I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- acetaldehyde biosynthesis I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- acetaldehyde biosynthesis I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- glycine biosynthesis:
thr ⟶ acetaldehyde + gly
- ethanol degradation II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- acetaldehyde biosynthesis I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- acetaldehyde biosynthesis I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- acetaldehyde biosynthesis I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- acetaldehyde biosynthesis I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- acetaldehyde biosynthesis I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- acetaldehyde biosynthesis I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- acetaldehyde biosynthesis I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- acetaldehyde biosynthesis I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- acetaldehyde biosynthesis I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- acetaldehyde biosynthesis I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- acetaldehyde biosynthesis I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- acetaldehyde biosynthesis I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- acetaldehyde biosynthesis I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- acetaldehyde biosynthesis I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- acetaldehyde biosynthesis I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- acetaldehyde biosynthesis I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- acetaldehyde biosynthesis I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- acetaldehyde biosynthesis I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- acetaldehyde biosynthesis I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- acetaldehyde biosynthesis I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- acetaldehyde biosynthesis I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- acetaldehyde biosynthesis I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- acetaldehyde biosynthesis I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- acetaldehyde biosynthesis I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- superpathway of anaerobic sucrose degradation:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- acetaldehyde biosynthesis I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- acetaldehyde biosynthesis I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- acetaldehyde biosynthesis I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- superpathway of anaerobic sucrose degradation:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- acetaldehyde biosynthesis I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- glycine biosynthesis:
thr ⟶ acetaldehyde + gly
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- acetaldehyde biosynthesis I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- acetaldehyde biosynthesis I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- acetaldehyde biosynthesis I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- acetaldehyde biosynthesis I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- ethanol degradation I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- ethanol degradation II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- ethanol degradation IV:
ethanol + hydrogen peroxide ⟶ H2O + acetaldehyde
- acetaldehyde biosynthesis I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- glycine biosynthesis:
thr ⟶ acetaldehyde + gly
- pyruvate fermentation to acetoin III:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- pyruvate fermentation to ethanol II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- superpathway of anaerobic sucrose degradation:
β-D-fructofuranose + ATP ⟶ ADP + F6P + H+
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- acetaldehyde biosynthesis I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- ethanol degradation IV:
ethanol + hydrogen peroxide ⟶ H2O + acetaldehyde
- ethanol degradation II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- acetaldehyde biosynthesis I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- acetaldehyde biosynthesis I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- acetaldehyde biosynthesis I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- acetaldehyde biosynthesis I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- acetaldehyde biosynthesis I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- acetaldehyde biosynthesis I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- acetaldehyde biosynthesis I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- acetaldehyde biosynthesis I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- acetaldehyde biosynthesis I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- acetaldehyde biosynthesis I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- superpathway of anaerobic sucrose degradation:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- acetaldehyde biosynthesis I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- acetaldehyde biosynthesis I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- glycine biosynthesis:
thr ⟶ acetaldehyde + gly
- acetaldehyde biosynthesis I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- ethanol degradation II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- superpathway of anaerobic sucrose degradation:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- acetaldehyde biosynthesis I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- acetaldehyde biosynthesis I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- acetaldehyde biosynthesis I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- acetaldehyde biosynthesis I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- acetaldehyde biosynthesis I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- acetaldehyde biosynthesis I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- acetaldehyde biosynthesis I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- acetaldehyde biosynthesis I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- acetaldehyde biosynthesis I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- acetaldehyde biosynthesis I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- acetaldehyde biosynthesis I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- acetaldehyde biosynthesis I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- superpathway of fermentation (Chlamydomonas reinhardtii):
H2 + an oxidized ferredoxin [iron-sulfur] cluster ⟶ H+ + a reduced ferredoxin [iron-sulfur] cluster
- glycine biosynthesis:
thr ⟶ acetaldehyde + gly
- glycine biosynthesis:
thr ⟶ acetaldehyde + gly
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- glycine biosynthesis:
thr ⟶ acetaldehyde + gly
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- glycine biosynthesis:
thr ⟶ acetaldehyde + gly
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- glycine biosynthesis:
thr ⟶ acetaldehyde + gly
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- glycine biosynthesis:
thr ⟶ acetaldehyde + gly
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- glycine biosynthesis:
thr ⟶ acetaldehyde + gly
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- glycine biosynthesis:
thr ⟶ acetaldehyde + gly
- glycine biosynthesis:
thr ⟶ acetaldehyde + gly
- acetaldehyde biosynthesis I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- glycine biosynthesis:
thr ⟶ acetaldehyde + gly
- acetaldehyde biosynthesis I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- glycine biosynthesis:
thr ⟶ acetaldehyde + gly
- glycine biosynthesis:
thr ⟶ acetaldehyde + gly
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- glycine biosynthesis:
thr ⟶ acetaldehyde + gly
- glycine biosynthesis:
thr ⟶ acetaldehyde + gly
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- glycine biosynthesis:
thr ⟶ acetaldehyde + gly
- glycine biosynthesis:
thr ⟶ acetaldehyde + gly
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- glycine biosynthesis:
thr ⟶ acetaldehyde + gly
- acetaldehyde biosynthesis I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- glycine biosynthesis:
thr ⟶ acetaldehyde + gly
- glycine biosynthesis:
thr ⟶ acetaldehyde + gly
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- glycine biosynthesis:
thr ⟶ acetaldehyde + gly
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- glycine biosynthesis:
thr ⟶ acetaldehyde + gly
- glycine biosynthesis:
thr ⟶ acetaldehyde + gly
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- acetaldehyde biosynthesis I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- glycine biosynthesis:
thr ⟶ acetaldehyde + gly
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- glycine biosynthesis:
thr ⟶ acetaldehyde + gly
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- glycine biosynthesis:
thr ⟶ acetaldehyde + gly
- acetaldehyde biosynthesis I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- glycine biosynthesis:
thr ⟶ acetaldehyde + gly
- glycine biosynthesis:
thr ⟶ acetaldehyde + gly
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- glycine biosynthesis:
thr ⟶ acetaldehyde + gly
- acetaldehyde biosynthesis I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- glycine biosynthesis:
thr ⟶ acetaldehyde + gly
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- glycine biosynthesis:
thr ⟶ acetaldehyde + gly
- acetaldehyde biosynthesis I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- glycine biosynthesis:
thr ⟶ acetaldehyde + gly
- glycine biosynthesis:
thr ⟶ acetaldehyde + gly
- glycine biosynthesis:
thr ⟶ acetaldehyde + gly
- acetaldehyde biosynthesis I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- glycine biosynthesis:
thr ⟶ acetaldehyde + gly
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- glycine biosynthesis:
thr ⟶ acetaldehyde + gly
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- glycine biosynthesis:
thr ⟶ acetaldehyde + gly
- acetaldehyde biosynthesis I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- glycine biosynthesis:
thr ⟶ acetaldehyde + gly
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- acetaldehyde biosynthesis I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- glycine biosynthesis:
thr ⟶ acetaldehyde + gly
- glycine biosynthesis:
thr ⟶ acetaldehyde + gly
- glycine biosynthesis:
thr ⟶ acetaldehyde + gly
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- glycine biosynthesis:
thr ⟶ acetaldehyde + gly
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- glycine biosynthesis:
thr ⟶ acetaldehyde + gly
- acetaldehyde biosynthesis I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- glycine biosynthesis:
thr ⟶ acetaldehyde + gly
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- glycine biosynthesis:
thr ⟶ acetaldehyde + gly
- acetaldehyde biosynthesis I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- acetaldehyde biosynthesis I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- glycine biosynthesis:
thr ⟶ acetaldehyde + gly
- acetaldehyde biosynthesis I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- glycine biosynthesis:
thr ⟶ acetaldehyde + gly
- glycine biosynthesis:
thr ⟶ acetaldehyde + gly
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- glycine biosynthesis:
thr ⟶ acetaldehyde + gly
- acetaldehyde biosynthesis I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- glycine biosynthesis:
thr ⟶ acetaldehyde + gly
- glycine biosynthesis:
thr ⟶ acetaldehyde + gly
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- glycine biosynthesis:
thr ⟶ acetaldehyde + gly
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- acetaldehyde biosynthesis I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- glycine biosynthesis:
thr ⟶ acetaldehyde + gly
- glycine biosynthesis:
thr ⟶ acetaldehyde + gly
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- glycine biosynthesis:
thr ⟶ acetaldehyde + gly
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- glycine biosynthesis:
thr ⟶ acetaldehyde + gly
- acetaldehyde biosynthesis I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- glycine biosynthesis:
thr ⟶ acetaldehyde + gly
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- glycine biosynthesis:
thr ⟶ acetaldehyde + gly
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- glycine biosynthesis:
thr ⟶ acetaldehyde + gly
- glycine biosynthesis:
thr ⟶ acetaldehyde + gly
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- glycine biosynthesis:
thr ⟶ acetaldehyde + gly
- glycine biosynthesis:
thr ⟶ acetaldehyde + gly
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- pyruvate fermentation to ethanol I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- glycine biosynthesis:
thr ⟶ acetaldehyde + gly
- acetaldehyde biosynthesis I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- glycine biosynthesis:
thr ⟶ acetaldehyde + gly
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- glycine biosynthesis:
thr ⟶ acetaldehyde + gly
- glycine biosynthesis:
thr ⟶ acetaldehyde + gly
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- acetaldehyde biosynthesis I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- glycine biosynthesis:
thr ⟶ acetaldehyde + gly
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- glycine biosynthesis:
thr ⟶ acetaldehyde + gly
- glycine biosynthesis:
thr ⟶ acetaldehyde + gly
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- acetaldehyde biosynthesis I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- glycine biosynthesis:
thr ⟶ acetaldehyde + gly
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- glycine biosynthesis:
thr ⟶ acetaldehyde + gly
- glycine biosynthesis:
thr ⟶ acetaldehyde + gly
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- acetaldehyde biosynthesis I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- glycine biosynthesis:
thr ⟶ acetaldehyde + gly
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- glycine biosynthesis:
thr ⟶ acetaldehyde + gly
- acetaldehyde biosynthesis I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- glycine biosynthesis:
thr ⟶ acetaldehyde + gly
- acetaldehyde biosynthesis I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- acetaldehyde biosynthesis I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- glycine biosynthesis:
thr ⟶ acetaldehyde + gly
- glycine biosynthesis:
thr ⟶ acetaldehyde + gly
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- glycine biosynthesis:
thr ⟶ acetaldehyde + gly
- acetaldehyde biosynthesis I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- glycine biosynthesis:
thr ⟶ acetaldehyde + gly
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- glycine biosynthesis:
thr ⟶ acetaldehyde + gly
- glycine biosynthesis:
thr ⟶ acetaldehyde + gly
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- glycine biosynthesis:
thr ⟶ acetaldehyde + gly
- glycine biosynthesis:
thr ⟶ acetaldehyde + gly
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- glycine biosynthesis:
thr ⟶ acetaldehyde + gly
- superpathway of anaerobic sucrose degradation:
ATP + pyruvate ⟶ ADP + H+ + phosphoenolpyruvate
- glycine biosynthesis:
thr ⟶ acetaldehyde + gly
- glycine biosynthesis:
thr ⟶ acetaldehyde + gly
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- glycine biosynthesis:
thr ⟶ acetaldehyde + gly
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- glycine biosynthesis:
thr ⟶ acetaldehyde + gly
- glycine biosynthesis:
thr ⟶ acetaldehyde + gly
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- glycine biosynthesis:
thr ⟶ acetaldehyde + gly
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- glycine biosynthesis:
thr ⟶ acetaldehyde + gly
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- glycine biosynthesis:
thr ⟶ acetaldehyde + gly
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- glycine biosynthesis:
thr ⟶ acetaldehyde + gly
- glycine biosynthesis:
thr ⟶ acetaldehyde + gly
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- glycine biosynthesis:
thr ⟶ acetaldehyde + gly
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- glycine biosynthesis:
thr ⟶ acetaldehyde + gly
- glycine biosynthesis:
thr ⟶ acetaldehyde + gly
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- glycine biosynthesis:
thr ⟶ acetaldehyde + gly
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- glycine biosynthesis:
thr ⟶ acetaldehyde + gly
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- glycine biosynthesis:
thr ⟶ acetaldehyde + gly
- fluoroacetate and fluorothreonine biosynthesis:
5'-deoxy-5'-fluoroadenosine + phosphate ⟶ 5-fluoro-5-deoxy-D-ribose 1-phosphate + adenine
- glycine biosynthesis:
thr ⟶ acetaldehyde + gly
- acetaldehyde biosynthesis I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- glycine biosynthesis:
thr ⟶ acetaldehyde + gly
- glycine biosynthesis:
thr ⟶ acetaldehyde + gly
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- glycine biosynthesis:
thr ⟶ acetaldehyde + gly
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- glycine biosynthesis:
thr ⟶ acetaldehyde + gly
- superpathway of fermentation (Chlamydomonas reinhardtii):
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- glycine biosynthesis:
thr ⟶ acetaldehyde + gly
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- glycine biosynthesis:
thr ⟶ acetaldehyde + gly
- pyruvate fermentation to ethanol I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- glycine biosynthesis:
thr ⟶ acetaldehyde + gly
- glycine biosynthesis:
thr ⟶ acetaldehyde + gly
- acetaldehyde biosynthesis I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- glycine biosynthesis:
thr ⟶ acetaldehyde + gly
- glycine biosynthesis:
thr ⟶ acetaldehyde + gly
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- glycine biosynthesis:
thr ⟶ acetaldehyde + gly
- acetaldehyde biosynthesis I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- glycine biosynthesis:
thr ⟶ acetaldehyde + gly
- ethanol degradation II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- ethanol degradation II:
H2O + NAD+ + acetaldehyde ⟶ H+ + NADH + acetate
- ethanol degradation II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- ethanol degradation II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- ethanol degradation II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- ethanol degradation II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- ethanol degradation II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- ethanol degradation II:
H2O + NAD+ + acetaldehyde ⟶ H+ + NADH + acetate
- ethanol degradation II:
H2O + NAD+ + acetaldehyde ⟶ H+ + NADH + acetate
- ethanol degradation II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- ethanol degradation II:
H2O + NAD+ + acetaldehyde ⟶ H+ + NADH + acetate
- ethanol degradation II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- ethanol degradation II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- ethanol degradation II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- ethanol degradation II:
H2O + NAD+ + acetaldehyde ⟶ H+ + NADH + acetate
- ethanol degradation II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- ethanol degradation II:
H2O + NAD+ + acetaldehyde ⟶ H+ + NADH + acetate
- ethanol degradation II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- ethanol degradation II:
H2O + NAD+ + acetaldehyde ⟶ H+ + NADH + acetate
- ethanol degradation II:
H2O + NAD+ + acetaldehyde ⟶ H+ + NADH + acetate
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- ethanol degradation II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- ethanol degradation II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- ethanol degradation II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
COVID-19 Disease Map(1)
- @COVID-19 Disease
Map["name"]:
2-Methyl-3-acetoacetyl-CoA + Coenzyme A ⟶ Acetyl-CoA + Propanoyl-CoA
PathBank(56)
- 2-Oxopent-4-enoate Metabolism:
Pyruvic acid ⟶ 2-Acetolactate + Carbon dioxide
- 2-Oxopent-4-enoate Metabolism 2:
Pyruvic acid ⟶ 2-Acetolactate + Carbon dioxide
- Pyruvate Metabolism:
2-Isopropylmalic acid + Coenzyme A ⟶ -Ketoisovaleric acid + Acetyl-CoA + Water
- Ethanol Fermentation:
Adenosine triphosphate + D-Glucose ⟶ Adenosine diphosphate + Glucose 6-phosphate
- 2-Oxopent-4-enoate Metabolism:
4-hydroxy-2-oxopentanoate ⟶ Acetaldehyde + Pyruvic acid
- 2-Oxopent-4-enoate Metabolism 2:
4-hydroxy-2-oxopentanoate ⟶ Acetaldehyde + Pyruvic acid
- Pentose Phosphate Pathway:
Adenosine triphosphate + D-Ribose 5-phosphate ⟶ Adenosine monophosphate + Phosphoribosyl pyrophosphate
- Glucose-6-phosphate Dehydrogenase Deficiency:
Adenosine triphosphate + D-Ribose 5-phosphate ⟶ Adenosine monophosphate + Phosphoribosyl pyrophosphate
- Ribose-5-phosphate Isomerase Deficiency:
Adenosine triphosphate + D-Ribose 5-phosphate ⟶ Adenosine monophosphate + Phosphoribosyl pyrophosphate
- Transaldolase Deficiency:
Adenosine triphosphate + D-Ribose 5-phosphate ⟶ Adenosine monophosphate + Phosphoribosyl pyrophosphate
- Purine Deoxyribonucleosides Degradation:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Pentose Phosphate Pathway:
Adenosine triphosphate + D-Ribose 5-phosphate ⟶ Adenosine monophosphate + Phosphoribosyl pyrophosphate
- Glucose-6-phosphate Dehydrogenase Deficiency:
Adenosine triphosphate + D-Ribose 5-phosphate ⟶ Adenosine monophosphate + Phosphoribosyl pyrophosphate
- Ribose-5-phosphate Isomerase Deficiency:
Adenosine triphosphate + D-Ribose 5-phosphate ⟶ Adenosine monophosphate + Phosphoribosyl pyrophosphate
- Transaldolase Deficiency:
Adenosine triphosphate + D-Ribose 5-phosphate ⟶ Adenosine monophosphate + Phosphoribosyl pyrophosphate
- Pentose Phosphate Pathway:
Adenosine triphosphate + D-Ribose 5-phosphate ⟶ Adenosine monophosphate + Phosphoribosyl pyrophosphate
- Pentose Phosphate Pathway:
Adenosine triphosphate + D-Ribose 5-phosphate ⟶ Adenosine monophosphate + Phosphoribosyl pyrophosphate
- Pentose Phosphate Pathway:
Adenosine triphosphate + D-Ribose 5-phosphate ⟶ Adenosine monophosphate + Phosphoribosyl pyrophosphate
- Pentose Phosphate Pathway:
Adenosine triphosphate + D-Ribose 5-phosphate ⟶ Adenosine monophosphate + Phosphoribosyl pyrophosphate
- Glucose-6-phosphate Dehydrogenase Deficiency:
Adenosine triphosphate + D-Ribose 5-phosphate ⟶ Adenosine monophosphate + Phosphoribosyl pyrophosphate
- Ribose-5-phosphate Isomerase Deficiency:
Adenosine triphosphate + D-Ribose 5-phosphate ⟶ Adenosine monophosphate + Phosphoribosyl pyrophosphate
- Transaldolase Deficiency:
Adenosine triphosphate + D-Ribose 5-phosphate ⟶ Adenosine monophosphate + Phosphoribosyl pyrophosphate
- Threonine Metabolism:
L-Threonine ⟶ Acetaldehyde + Glycine
- Threonine Metabolism:
2-iminobutanoate + Hydrogen Ion + Water ⟶ 2-Ketobutyric acid + Ammonium
- Ethanolamine Metabolism:
Ethanolamine ⟶ Acetaldehyde + Ammonium
- Ethanolamine Metabolism:
Ethanolamine ⟶ Acetaldehyde + Ammonium
- Pyruvate Metabolism:
Acetic acid + Coenzyme A ⟶ Acetyl-CoA + Water
- Ethanol Degradation:
Acetaldehyde + NAD + Water ⟶ Acetic acid + Hydrogen Ion + NADH
- Leigh Syndrome:
Acetic acid + Coenzyme A ⟶ Acetyl-CoA + Water
- Pyruvate Decarboxylase E1 Component Deficiency (PDHE1 Deficiency):
Acetic acid + Coenzyme A ⟶ Acetyl-CoA + Water
- Pyruvate Dehydrogenase Complex Deficiency:
Acetic acid + Coenzyme A ⟶ Acetyl-CoA + Water
- Disulfiram Action Pathway:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Primary Hyperoxaluria II, PH2:
Acetic acid + Coenzyme A ⟶ Acetyl-CoA + Water
- Pyruvate Kinase Deficiency:
Acetic acid + Coenzyme A ⟶ Acetyl-CoA + Water
- PreQ0 Metabolism:
S-Adenosylmethionine ⟶ Adenine + Hydrogen Ion + L-Methionine + epoxyqueuosine
- Glycine Metabolism:
DL-O-Phosphoserine + Water ⟶ L-Serine + Phosphate
- Glycine Metabolism:
L-Serine + Tetrahydrofolic acid ⟶ 5,10-Methylene-THF + Glycine + Water
- Ethanol Degradation:
Acetaldehyde + NAD + Water ⟶ Acetic acid + Hydrogen Ion + NADH
- Pyruvate Metabolism:
Acetaldehyde + NAD + Water ⟶ Acetic acid + Hydrogen Ion + NADH
- Leigh Syndrome:
Acetaldehyde + NAD + Water ⟶ Acetic acid + Hydrogen Ion + NADH
- Pyruvate Dehydrogenase Complex Deficiency:
Acetaldehyde + NAD + Water ⟶ Acetic acid + Hydrogen Ion + NADH
- Pyruvate Decarboxylase E1 Component Deficiency (PDHE1 Deficiency):
Acetaldehyde + NAD + Water ⟶ Acetic acid + Hydrogen Ion + NADH
- Primary Hyperoxaluria II, PH2:
Acetaldehyde + NAD + Water ⟶ Acetic acid + Hydrogen Ion + NADH
- Pyruvate Kinase Deficiency:
Acetaldehyde + NAD + Water ⟶ Acetic acid + Hydrogen Ion + NADH
- Ethanol Degradation:
Acetaldehyde + NAD + Water ⟶ Acetic acid + Hydrogen Ion + NADH
- Pyruvate Metabolism:
Acetaldehyde + NAD + Water ⟶ Acetic acid + Hydrogen Ion + NADH
- Ethanol Degradation:
Acetaldehyde + NAD + Water ⟶ Acetic acid + Hydrogen Ion + NADH
- Pyruvate Metabolism:
Acetaldehyde + NAD + Water ⟶ Acetic acid + Hydrogen Ion + NADH
- Pyruvate Metabolism:
Acetic acid + Coenzyme A ⟶ Acetyl-CoA + Water
- Pyruvate Metabolism:
Acetic acid + Coenzyme A ⟶ Acetyl-CoA + Water
- Leigh Syndrome:
Acetaldehyde + NAD + Water ⟶ Acetic acid + Hydrogen Ion + NADH
- Pyruvate Dehydrogenase Complex Deficiency:
Acetaldehyde + NAD + Water ⟶ Acetic acid + Hydrogen Ion + NADH
- Pyruvate Decarboxylase E1 Component Deficiency (PDHE1 Deficiency):
Acetaldehyde + NAD + Water ⟶ Acetic acid + Hydrogen Ion + NADH
- Primary Hyperoxaluria II, PH2:
Acetaldehyde + NAD + Water ⟶ Acetic acid + Hydrogen Ion + NADH
- Pyruvate Kinase Deficiency:
Acetaldehyde + NAD + Water ⟶ Acetic acid + Hydrogen Ion + NADH
- PreQ0 Metabolism:
S-Adenosylmethionine ⟶ Adenine + Hydrogen Ion + L-Methionine + epoxyqueuosine
PharmGKB(0)
40 个相关的物种来源信息
- 260130 - Acca sellowiana: 10.1016/S0031-9422(00)97781-1
- 4681 - Allium ampeloprasum: 10.1080/10412905.1991.9697935
- 4679 - Allium cepa: 10.3891/ACTA.CHEM.SCAND.15-1280
- 4682 - Allium sativum: 10.1021/JF00059A033
- 385370 - Aster scaber: 10.1021/JF00034A033
- 28974 - Averrhoa carambola: 10.1021/JF00062A009
- 3589 - Basella alba: 10.1016/0889-1575(91)90017-Z
- 3708 - Brassica napus: 10.1046/J.1365-2222.1998.00234.X
- 4442 - Camellia sinensis: 10.1021/JF00035A028
- 3483 - Cannabis sativa: 10.1021/NP50008A001
- 13443 - Coffea arabica:
- 4312 - Corynocarpus laevigatus: 10.1080/0028825X.1984.10425264
- 3656 - Cucumis melo: 10.1111/J.1365-2621.1987.TB14284.X
- 4039 - Daucus carota:
- 99501 - Echinophora tenuifolia: 10.1080/10412905.1994.9698406
- 33161 - Gyromitra esculenta: 10.1021/JF60211A006
- 9606 - Homo sapiens:
- 9606 - Homo sapiens: -
- 2849048 - Lucensosergia lucens: 10.1080/00021369.1984.10866348
- 3750 - Malus domestica: 10.1021/JF00035A028
- 283210 - Malus pumila: 10.1021/JF00035A028
- 29780 - Mangifera indica: 10.1016/0031-9422(88)80124-9
- 30548 - Mephitis mephitis: 10.1016/0040-4020(82)80046-X
- 182387 - Monarda punctata: 10.1002/JPS.3080200506
- 4097 - Nicotiana tabacum: 10.1016/0378-8741(88)90069-4
- 4146 - Olea europaea: 10.1016/S0031-9422(97)00730-9
- 371859 - Opuntia ficus-indica: 10.1021/JF60218A053
- 174549 - Polygala senega: 10.1002/FFJ.2730100408
- 120290 - Psidium guajava: 10.1016/0031-9422(82)80138-6
- 589641 - Sergia lucens: 10.1080/00021369.1984.10866348
- 547782 - Symphyotrichum undulatum: 10.1021/JF00034A033
- 3641 - Theobroma cacao:
- 39416 - Tuber melanosporum: 10.1021/JF00077A031
- 945837 - Vaccinium ashei: 10.1111/J.1365-2621.1985.TB13419.X
- 69266 - Vaccinium corymbosum: 10.1111/J.1365-2621.1985.TB13419.X
- 1493660 - Vaccinium virgatum: 10.1111/J.1365-2621.1985.TB13419.X
- 103349 - Vitis rotundifolia: 10.1111/J.1365-2621.1984.TB13669.X
- 354530 - Zanthoxylum schinifolium: 10.1021/JF0728101
- 136225 - Zingiber mioga: 10.1271/BBB1961.55.1655
- 94328 - Zingiber officinale: 10.1016/S0031-9422(00)86412-2
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Meiyue Qiu, Lili Yang, Zhiqiang Jiang, Yu Chen, Qinxin Liu, Xia Wang, Weidong Qu. Mixed exposure to haloacetaldehyde disinfection by-products exacerbates lipid aggregation in the liver of mice.
Environmental pollution (Barking, Essex : 1987).
2024 Jun; 350(?):123971. doi:
10.1016/j.envpol.2024.123971
. [PMID: 38641033] - Héléna Alamil, Marie-Lise Colsoul, Natacha Heutte, Marie Van Der Schueren, Laurence Galanti, Mathilde Lechevrel. Exocyclic DNA adducts and oxidative stress parameters: useful tools for biomonitoring exposure to aldehydes in smokers.
Biomarkers : biochemical indicators of exposure, response, and susceptibility to chemicals.
2024 May; 29(3):154-160. doi:
10.1080/1354750x.2024.2333361
. [PMID: 38506499] - Pavel Pospíšil, Ankush Prasad, Julie Belková, Renuka Ramalingam Manoharan, Michaela Sedlářová. Formation of free acetaldehydes derived from lipid peroxidation in U937 monocyte-like cells.
Biochimica et biophysica acta. General subjects.
2024 Feb; 1868(2):130527. doi:
10.1016/j.bbagen.2023.130527
. [PMID: 38043915] - Elham Farghal Elkady, Haytham A Ayoub, Amina M Ibrahim. Molluscicidal activity of calcium borate nanoparticles with kodom ball-flower structure on hematological, histological and biochemical parameters of Eobania vermiculata snails.
Pesticide biochemistry and physiology.
2024 Jan; 198(?):105716. doi:
10.1016/j.pestbp.2023.105716
. [PMID: 38225073] - Shiyong Li, Chaodong Song, Hongyan Zhang, Yan Qin, Mingguo Jiang, Naikun Shen. Comparative Transcriptome Analysis Reveals the Molecular Mechanisms of Acetic Acid Reduction by Adding NaHSO3 in Actinobacillus succinogenes GXAS137.
Polish journal of microbiology.
2023 Dec; 72(4):399-411. doi:
10.33073/pjm-2023-036
. [PMID: 38000010] - Mengyun Xing, Kangkang Huang, Chen Zhang, Dujun Xi, Huifeng Luo, Jiabo Pei, Ruoxin Ruan, Hui Liu. Transcriptome Analysis Reveals the Molecular Mechanism and Responsive Genes of Waterlogging Stress in Actinidia deliciosa Planch Kiwifruit Plants.
International journal of molecular sciences.
2023 Nov; 24(21):. doi:
10.3390/ijms242115887
. [PMID: 37958870] - Rosario Zamora, Esmeralda Alcon, Francisco J Hidalgo. Malondialdehyde trapping by food phenolics.
Food chemistry.
2023 Aug; 417(?):135915. doi:
10.1016/j.foodchem.2023.135915
. [PMID: 36933433] - V D Prokopieva, T P Vetlugina. Features of oxidative stress in alcoholism.
Biomeditsinskaia khimiia.
2023 Apr; 69(2):83-96. doi:
10.18097/pbmc20236902083
. [PMID: 37132490] - Tomoya Kitakaze, Masako Inoue, Hitoshi Ashida. Aged Garlic Extract Prevents Alcohol-Induced Cytotoxicity through Induction of Aldehyde Dehydrogenase 2 in the Liver of Mice.
Molecular nutrition & food research.
2023 Mar; ?(?):e2200627. doi:
10.1002/mnfr.202200627
. [PMID: 36856009] - Kyeong Jin Kim, Soo-Yeon Park, Tae Gwon Park, Hyeon-Ju Park, Young-Jun Kim, Eun Ji Kim, Wonsuk Shin, Anhye Kim, Hyounggyoon Yoo, MinSon Kweon, Jihwan Jang, Su-Young Choi, Ji Yeon Kim. Noni fruit extract ameliorates alcohol-induced hangover symptoms by reducing the concentrations of alcohol and acetaldehyde in a Sprague Dawley rat model and a human intervention study.
Food & function.
2023 Feb; 14(3):1750-1760. doi:
10.1039/d2fo02835b
. [PMID: 36727425] - Mayrel Palestino-Domínguez, Alejandro Escobedo-Calvario, Soraya Salas-Silva, Moises Vergara-Mendoza, Veronica Souza-Arroyo, Roberto Lazzarini, Roxana Miranda-Labra, Leticia Bucio-Ortiz, María Concepción Gutiérrez-Ruiz, Luis E Gomez-Quiroz. Erk1/2 signaling mediates the HGF-induced protection against ethanol and acetaldehyde-induced toxicity in the pancreatic RINm5F cell line.
Journal of biochemical and molecular toxicology.
2023 Jan; ?(?):e23302. doi:
10.1002/jbt.23302
. [PMID: 36636782] - Michael A McQuillan, Alessia Ranciaro, Matthew E B Hansen, Shaohua Fan, William Beggs, Gurja Belay, Dawit Woldemeskel, Sarah A Tishkoff. Signatures of Convergent Evolution and Natural Selection at the Alcohol Dehydrogenase Gene Region are Correlated with Agriculture in Ethnically Diverse Africans.
Molecular biology and evolution.
2022 10; 39(10):. doi:
10.1093/molbev/msac183
. [PMID: 36026493] - M Meischner, S Haberstroh, L E Daber, J Kreuzwieser, M C Caldeira, J-P Schnitzler, C Werner. Soil VOC emissions of a Mediterranean woodland are sensitive to shrub invasion.
Plant biology (Stuttgart, Germany).
2022 Oct; 24(6):967-978. doi:
10.1111/plb.13445
. [PMID: 35661369] - Oksal Macar, Tuğçe Kalefetoğlu Macar, Emine Yalçin, Kültiğin Çavuşoğlu, Ali Acar. Molecular docking and spectral shift supported toxicity profile of metaldehyde mollucide and the toxicity-reducing effects of bitter melon extract.
Pesticide biochemistry and physiology.
2022 Oct; 187(?):105201. doi:
10.1016/j.pestbp.2022.105201
. [PMID: 36127072] - Yuming Wei, Xuchao Yin, Huiting Wu, Mengjie Zhao, Junlan Huang, Jixin Zhang, Tiehan Li, Jingming Ning. Improving the flavor of summer green tea (Camellia sinensis L.) using the yellowing process.
Food chemistry.
2022 Sep; 388(?):132982. doi:
10.1016/j.foodchem.2022.132982
. [PMID: 35447593] - Martin H Rau, Paula Gaspar, Maiken Lund Jensen, Asger Geppel, Ana Rute Neves, Ahmad A Zeidan. Genome-Scale Metabolic Modeling Combined with Transcriptome Profiling Provides Mechanistic Understanding of Streptococcus thermophilus CH8 Metabolism.
Applied and environmental microbiology.
2022 08; 88(16):e0078022. doi:
10.1128/aem.00780-22
. [PMID: 35924931] - Xuan Yu, Xiaocong Zeng, Feng Xiao, Ri Chen, Pritam Sinharoy, Eric R Gross. E-cigarette aerosol exacerbates cardiovascular oxidative stress in mice with an inactive aldehyde dehydrogenase 2 enzyme.
Redox biology.
2022 08; 54(?):102369. doi:
10.1016/j.redox.2022.102369
. [PMID: 35751982] - Hannah E Lomzenski, Geoffrey M Thiele, Michael J Duryee, Sheau-Chiann Chen, Fei Ye, Daniel R Anderson, Ted R Mikuls, Michelle J Ormseth. Serum anti-malondialdehyde-acetaldehyde IgA antibody concentration improves prediction of coronary atherosclerosis beyond traditional risk factors in patients with rheumatoid arthritis.
Scientific reports.
2022 06; 12(1):10547. doi:
10.1038/s41598-022-14954-9
. [PMID: 35732827] - Gerhard Eisenbrand, Matthias Baum, Alexander T Cartus, Patrick Diel, Karl-Heinz Engel, Barbara Engeli, Bernd Epe, Tilman Grune, Sabine Guth, Dirk Haller, Volker Heinz, Michael Hellwig, Jan G Hengstler, Thomas Henle, Hans-Ulrich Humpf, Henry Jäger, Hans-Georg Joost, Sabine Kulling, Dirk W Lachenmeier, Alfonso Lampen, Marcel Leist, Angela Mally, Doris Marko, Ute Nöthlings, Elke Röhrdanz, Angelika Roth, Joachim Spranger, Richard Stadler, Stefan Vieths, Wim Wätjen, Pablo Steinberg. Salivary nitrate/nitrite and acetaldehyde in humans: potential combination effects in the upper gastrointestinal tract and possible consequences for the in vivo formation of N-nitroso compounds-a hypothesis.
Archives of toxicology.
2022 06; 96(6):1905-1914. doi:
10.1007/s00204-022-03296-0
. [PMID: 35504979] - Nagaraj M BhatB. Serum IgA levels and IgA/IgG ratio in Alcoholic Liver Disease.
The Journal of the Association of Physicians of India.
2022 Apr; 70(4):11-12. doi:
. [PMID: 35443491]
- Zhongliang Liu, Baogui Xu, Yaping Ding, Xianjun Ding, Zuisu Yang. Guizhi Fuling pill attenuates liver fibrosis in vitro and in vivo via inhibiting TGF-β1/Smad2/3 and activating IFN-γ/Smad7 signaling pathways.
Bioengineered.
2022 04; 13(4):9357-9368. doi:
10.1080/21655979.2022.2054224
. [PMID: 35387552] - Michael J Duryee, Dahn L Clemens, Patrick J Opperman, Geoffrey M Thiele, Logan M Duryee, Robert P Garvin, Daniel R Anderson. Malondialdehyde-Acetaldehyde Modified (MAA) Proteins Differentially Effect the Inflammatory Response in Macrophage, Endothelial Cells and Animal Models of Cardiovascular Disease.
International journal of molecular sciences.
2021 Nov; 22(23):. doi:
10.3390/ijms222312948
. [PMID: 34884754] - Weifeng Lin, Louis P Conway, Miroslav Vujasinovic, J-Matthias Löhr, Daniel Globisch. Chemoselective and Highly Sensitive Quantification of Gut Microbiome and Human Metabolites.
Angewandte Chemie (International ed. in English).
2021 10; 60(43):23232-23240. doi:
10.1002/anie.202107101
. [PMID: 34339587] - Harriet Rumgay, Neil Murphy, Pietro Ferrari, Isabelle Soerjomataram. Alcohol and Cancer: Epidemiology and Biological Mechanisms.
Nutrients.
2021 Sep; 13(9):. doi:
10.3390/nu13093173
. [PMID: 34579050] - Aleksandra Ostapiuk, Łukasz Kurach, Maciej Strzemski, Jacek Kurzepa, Anna Hordyjewska. Evaluation of Antioxidative Mechanisms In Vitro and Triterpenes Composition of Extracts from Silver Birch (Betula pendula Roth) and Black Birch (Betula obscura Kotula) Barks by FT-IR and HPLC-PDA.
Molecules (Basel, Switzerland).
2021 Jul; 26(15):. doi:
10.3390/molecules26154633
. [PMID: 34361786] - Jiaman Liu, Bo Teng, Xiaofeng Zhang, Minghui Dai, Yue Lin, Yang Liu, Jacqui M McRae. Anthocyanins from purple passion fruit (Passiflora edulia Sims) rind-An innovative source for nonbleachable pigment production.
Journal of food science.
2021 Jul; 86(7):2978-2989. doi:
10.1111/1750-3841.15807
. [PMID: 34155646] - Yasser Abobakr, Amira F Gad, Hamza S Abou-Elnasr, Gaber M Abdelgalil, Hamdy I Hussein, Shady Selim. Contact toxicity and biochemical impact of metaldehyde against the white garden snail Theba pisana (Müller, 1774).
Pest management science.
2021 Jul; 77(7):3208-3215. doi:
10.1002/ps.6359
. [PMID: 33683007] - Xiao Liu, Hui-Ming Fan, Dong-He Liu, Jing Liu, Yan Shen, Jing Zhang, Jun Wei, Chun-Lei Wang. Transcriptome and Metabolome Analyses Provide Insights into the Watercore Disorder on "Akibae" Pear Fruit.
International journal of molecular sciences.
2021 May; 22(9):. doi:
10.3390/ijms22094911
. [PMID: 34066340] - Timothy J Tse, Fina B Nelson, Martin J T Reaney. Analyses of Commercially Available Alcohol-Based Hand Rubs Formulated with Compliant and Non-Compliant Ethanol.
International journal of environmental research and public health.
2021 04; 18(7):. doi:
10.3390/ijerph18073766
. [PMID: 33916568] - Tae-Joong Lim, Sanghyun Lim, Jong Hyun Yoon, Myung Jun Chung. Effects of multi-species probiotic supplementation on alcohol metabolism in rats.
Journal of microbiology (Seoul, Korea).
2021 Apr; 59(4):417-425. doi:
10.1007/s12275-021-0573-2
. [PMID: 33779954] - Lexiao Jin, Jordan Lynch, Andre Richardson, Pawel Lorkiewicz, Shweta Srivastava, Whitney Theis, Gregg Shirk, Alexis Hand, Aruni Bhatnagar, Sanjay Srivastava, Daniel J Conklin. Electronic cigarette solvents, pulmonary irritation, and endothelial dysfunction: role of acetaldehyde and formaldehyde.
American journal of physiology. Heart and circulatory physiology.
2021 04; 320(4):H1510-H1525. doi:
10.1152/ajpheart.00878.2020
. [PMID: 33543686] - Koji Ishida, Kosuke Kaji, Shinya Sato, Hiroyuki Ogawa, Hirotetsu Takagi, Hiroaki Takaya, Hideto Kawaratani, Kei Moriya, Tadashi Namisaki, Takemi Akahane, Hitoshi Yoshiji. Sulforaphane ameliorates ethanol plus carbon tetrachloride-induced liver fibrosis in mice through the Nrf2-mediated antioxidant response and acetaldehyde metabolization with inhibition of the LPS/TLR4 signaling pathway.
The Journal of nutritional biochemistry.
2021 03; 89(?):108573. doi:
10.1016/j.jnutbio.2020.108573
. [PMID: 33388347] - Alison D Petro, Joseph Dougherty, Bryant R England, Harlan Sayles, Michael J Duryee, Carlos D Hunter, Joel M Kremer, Dimitrios A Pappas, William H Robinson, Jeffrey R Curtis, Geoffrey M Thiele, Ted R Mikuls. Associations between an expanded autoantibody profile and treatment responses to biologic therapies in patients with rheumatoid arthritis.
International immunopharmacology.
2021 Feb; 91(?):107260. doi:
10.1016/j.intimp.2020.107260
. [PMID: 33360371] - Su-Mei Kou, Rong Jin, Ying-Ying Wu, Jing-Wen Huang, Qiu-Yun Zhang, Ning-Jing Sun, Yong Yang, Chang-Fei Guan, Wen-Qiu Wang, Chang-Qing Zhu, Qing-Gang Zhu, Xue-Ren Yin. Transcriptome Analysis Revealed the Roles of Carbohydrate Metabolism on Differential Acetaldehyde Production Capacity in Persimmon Fruit in Response to High-CO2 Treatment.
Journal of agricultural and food chemistry.
2021 Jan; 69(2):836-845. doi:
10.1021/acs.jafc.0c06001
. [PMID: 33416310] - Takahito Takase, Tsudoi Toyoda, Naoyuki Kobayashi, Takashi Inoue, Tomoko Ishijima, Keiko Abe, Hiroshi Kinoshita, Youichi Tsuchiya, Shinji Okada. Dietary iso-α-acids prevent acetaldehyde-induced liver injury through Nrf2-mediated gene expression.
PloS one.
2021; 16(2):e0246327. doi:
10.1371/journal.pone.0246327
. [PMID: 33544749] - Hsin-Wen Liang, Tsung-Yuan Yang, Chia-Sheng Teng, Yi-Ju Lee, Meng-Hsun Yu, Huei-Jane Lee, Li-Sung Hsu, Chau-Jong Wang. Mulberry leaves extract ameliorates alcohol-induced liver damages through reduction of acetaldehyde toxicity and inhibition of apoptosis caused by oxidative stress signals.
International journal of medical sciences.
2021; 18(1):53-64. doi:
10.7150/ijms.50174
. [PMID: 33390773] - Ted R Mikuls, Jess Edison, Elizabeth Meeshaw, Harlan Sayles, Bryant R England, Michael J Duryee, Carlos D Hunter, Lindsay B Kelmenson, Laura Kay Moss, Marie L Feser, Brandie Wagner, Mark C Parish, Kevin D Deane, Geoffrey M Thiele. Autoantibodies to Malondialdehyde-Acetaldehyde Are Detected Prior to Rheumatoid Arthritis Diagnosis and After Other Disease Specific Autoantibodies.
Arthritis & rheumatology (Hoboken, N.J.).
2020 12; 72(12):2025-2029. doi:
10.1002/art.41424
. [PMID: 32621635] - Kai Peng, Dan Guo, Qianqian Lou, Xiaoyun Lu, Jian Cheng, Jing Qiao, Lina Lu, Tao Cai, Yuwan Liu, Huifeng Jiang. Synthesis of Ligustrazine from Acetaldehyde by a Combined Biological-Chemical Approach.
ACS synthetic biology.
2020 11; 9(11):2902-2908. doi:
10.1021/acssynbio.0c00113
. [PMID: 33156612] - Anne Landmesser, Gerhard Scherer, Nikola Pluym, Reinhard Niessner, Max Scherer. A novel quantification method for sulfur-containing biomarkers of formaldehyde and acetaldehyde exposure in human urine and plasma samples.
Analytical and bioanalytical chemistry.
2020 Nov; 412(27):7535-7546. doi:
10.1007/s00216-020-02888-y
. [PMID: 32840653] - Grażyna Kubiak-Tomaszewska, Piotr Tomaszewski, Jan Pachecka, Marta Struga, Wioletta Olejarz, Magdalena Mielczarek-Puta, Grażyna Nowicka. Molecular mechanisms of ethanol biotransformation: enzymes of oxidative and nonoxidative metabolic pathways in human.
Xenobiotica; the fate of foreign compounds in biological systems.
2020 Oct; 50(10):1180-1201. doi:
10.1080/00498254.2020.1761571
. [PMID: 32338108] - J A Custodio-Mendoza, J Aja-Macaya, I M Valente, J A Rodrigues, P J Almeida, R A Lorenzo, A M Carro. Determination of malondialdehyde, acrolein and four other products of lipid peroxidation in edible oils by Gas-Diffusion Microextraction combined with Dispersive Liquid-Liquid Microextraction.
Journal of chromatography. A.
2020 Sep; 1627(?):461397. doi:
10.1016/j.chroma.2020.461397
. [PMID: 32823102] - Hardik Naik Jinal, Natrajan Amaresan. In Silico and In Vitro Analyses of Glucosamine and Indole Acetaldehyde Inhibit Pathogenic Regulator Gene phcA of Ralstonia solanacearum, a Causative Agent of Bacterial Wilt of Tomato.
Applied biochemistry and biotechnology.
2020 Sep; 192(1):230-242. doi:
10.1007/s12010-020-03328-4
. [PMID: 32367442] - Harumi Uto-Kondo, Ayaka Sakurai, Kazuki Ogawa, Yusuke Yamaguchi, Takeshi Saito, Hitomi Kumagai. Suppressive Effect of Shiitake Extract on Plasma Ethanol Elevation.
Nutrients.
2020 Aug; 12(9):. doi:
10.3390/nu12092647
. [PMID: 32878044] - Danyun Xu, Qing Liu, Gang Chen, Zhiqiang Yan, Honghong Hu. Aldehyde dehydrogenase ALDH3F1 involvement in flowering time regulation through histone acetylation modulation on FLOWERING LOCUS C.
Journal of integrative plant biology.
2020 Aug; 62(8):1080-1092. doi:
10.1111/jipb.12893
. [PMID: 31829514] - Sibren Haesen, Ümare Cöl, Wouter Schurgers, Lize Evens, Maxim Verboven, Ronald B Driesen, Annelies Bronckaers, Ivo Lambrichts, Dorien Deluyker, Virginie Bito. Glycolaldehyde-modified proteins cause adverse functional and structural aortic remodeling leading to cardiac pressure overload.
Scientific reports.
2020 07; 10(1):12220. doi:
10.1038/s41598-020-68974-4
. [PMID: 32699285] - Kaisa Rissanen, Anni Vanhatalo, Yann Salmon, Jaana Bäck, Teemu Hölttä. Stem emissions of monoterpenes, acetaldehyde and methanol from Scots pine (Pinus sylvestris L.) affected by tree-water relations and cambial growth.
Plant, cell & environment.
2020 07; 43(7):1751-1765. doi:
10.1111/pce.13778
. [PMID: 32335919] - Geoffrey M Thiele, Michael J Duryee, Carlos D Hunter, Bryant R England, Benjamin S Fletcher, Eric C Daubach, Taylor P Pospisil, Lynell W Klassen, Ted R Mikuls. Immunogenic and inflammatory responses to citrullinated proteins are enhanced following modification with malondialdehyde-acetaldehyde adducts.
International immunopharmacology.
2020 Jun; 83(?):106433. doi:
10.1016/j.intimp.2020.106433
. [PMID: 32224441] - Xueshuang Li, Man Li, Zhen Peng, Kewen Zheng, Li Xu, Junguo Dong, Guofa Ren, Ping Cheng. Reaction kinetic study of nonthermal plasma continuous degradation of acetone in a closed-loop reactor.
Chemosphere.
2020 Jun; 249(?):126215. doi:
10.1016/j.chemosphere.2020.126215
. [PMID: 32088460] - Paula Silva, Norbert Latruffe, Giovanni de Gaetano. Wine Consumption and Oral Cavity Cancer: Friend or Foe, Two Faces of Janus.
Molecules (Basel, Switzerland).
2020 May; 25(11):. doi:
10.3390/molecules25112569
. [PMID: 32486484] - Aldo Tava, Elisa Biazzi, Domenico Ronga, Pinarosa Avato. Identification of the Volatile Components of Galium verum L. and Cruciata leavipes Opiz from the Western Italian Alps.
Molecules (Basel, Switzerland).
2020 May; 25(10):. doi:
10.3390/molecules25102333
. [PMID: 32429453] - Ana Flávia Machado Botelho, Amanda Milhomem Donato Machado, Rayanne Henrique Santana da Silva, Amanda Carvalho Faria, Lucas Santos Machado, Heloa Santos, Sandro de Melo Braga, Bruno Benetti Junta Torres, Marina Pacheco Miguel, Andrea Rodrigues Chaves, Marília Martins Melo. Fatal metaldehyde poisoning in a dog confirmed by gas chromatography.
BMC veterinary research.
2020 May; 16(1):139. doi:
10.1186/s12917-020-02348-w
. [PMID: 32414366] - Xiaohua Zhao, Hong Ma, Qiusha Pan, Haiyi Wang, Xingkai Qian, Peifang Song, Liwei Zou, Mingqing Mao, Shuyue Xia, Guangbo Ge, Ling Yang. Theophylline Acetaldehyde as the Initial Product in Doxophylline Metabolism in Human Liver.
Drug metabolism and disposition: the biological fate of chemicals.
2020 05; 48(5):345-352. doi:
10.1124/dmd.119.089565
. [PMID: 32086296] - Hyun-Jin Kim, Semi Kim, Jin-Sook Seo, Gun-Won Bae, Keun-Nam Kim, Ju-Seop Kang. Effect of Single-Dose, Oral Enzymatic Porcine Placental Extract on Pharmacokinetics of Alcohol and Liver Function in Rats.
Alcoholism, clinical and experimental research.
2020 05; 44(5):1018-1024. doi:
10.1111/acer.14319
. [PMID: 32154587] - Deolinda Santinha, Anna Klopot, Igor Marques, Ewa Ellis, Carl Jorns, Helene Johansson, Tânia Melo, Per Antonson, Tomas Jakobsson, Vítor Félix, Jan-Åke Gustafsson, Maria Rosário Domingues, Agneta Mode, Luisa A Helguero. Lipidomic analysis of human primary hepatocytes following LXR activation with GW3965 identifies AGXT2L1 as a main target associated to changes in phosphatidylethanolamine.
The Journal of steroid biochemistry and molecular biology.
2020 04; 198(?):105558. doi:
10.1016/j.jsbmb.2019.105558
. [PMID: 31783151] - Dian Huang, Chen Yu, Zongze Shao, Minmin Cai, Guangyu Li, Longyu Zheng, Ziniu Yu, Jibin Zhang. Identification and Characterization of Nematicidal Volatile Organic Compounds from Deep-Sea Virgibacillus dokdonensis MCCC 1A00493.
Molecules (Basel, Switzerland).
2020 02; 25(3):. doi:
10.3390/molecules25030744
. [PMID: 32050419] - Rosario Zamora, Cristina M Lavado-Tena, Francisco J Hidalgo. Oligomerization of reactive carbonyls in the presence of ammonia-producing compounds: A route for the production of pyridines in foods.
Food chemistry.
2020 Jan; 304(?):125284. doi:
10.1016/j.foodchem.2019.125284
. [PMID: 31476546] - Ligia Shimabukuro Okuda, Rodrigo Tallada Iborra, Paula Ramos Pinto, Ubiratan Fabres Machado, Maria Lucia Corrêa-Giannella, Russell Pickford, Tom Woods, Margaret Anne Brimble, Kerry-Anne Rye, Marisa Passarelli. Advanced Glycated apoA-IV Loses Its Ability to Prevent the LPS-Induced Reduction in Cholesterol Efflux-Related Gene Expression in Macrophages.
Mediators of inflammation.
2020; 2020(?):6515401. doi:
10.1155/2020/6515401
. [PMID: 32410861] - Anderson Weber, Fabio Rodrigo Thewes, Marc Sellwig, Auri Brackmann, Jens Norbert Wünsche, Dominikus Kittemann, Daniel Alexandre Neuwald. Dynamic controlled atmosphere: Impact of elevated storage temperature on anaerobic metabolism and quality of 'Nicoter' apples.
Food chemistry.
2019 Nov; 298(?):125017. doi:
10.1016/j.foodchem.2019.125017
. [PMID: 31260967] - Jossiê Zamperetti Donadel, Fabio Rodrigo Thewes, Rogerio de Oliveira Anese, Erani Eliseu Schultz, Magno Roberto Pasquetti Berghetti, Vagner Ludwig, Bruna Klein, Alexandre José Cichoski, Juliano Smanioto Barin, Vanderlei Both, Auri Brackmann, Roger Wagner. Key volatile compounds of 'Fuji Kiku' apples as affected by the storage conditions and shelf life: Correlation between volatile emission by intact fruit and juice extracted from the fruit.
Food research international (Ottawa, Ont.).
2019 11; 125(?):108625. doi:
10.1016/j.foodres.2019.108625
. [PMID: 31554098] - Sana Waris, Safia Habib, Shifa Khan, Tasneem Kausar, Shahid M Naeem, Shahid A Siddiqui, Moinuddin, Asif Ali. Molecular docking explores heightened immunogenicity and structural dynamics of acetaldehyde human immunoglobulin G adduct.
IUBMB life.
2019 10; 71(10):1522-1536. doi:
10.1002/iub.2078
. [PMID: 31185142] - Bryant R England, Michael J Duryee, Punyasha Roul, Tina D Mahajan, Namrata Singh, Jill A Poole, Dana P Ascherman, Liron Caplan, M Kristen Demoruelle, Kevin D Deane, Lynell W Klassen, Geoffrey M Thiele, Ted R Mikuls. Malondialdehyde-Acetaldehyde Adducts and Antibody Responses in Rheumatoid Arthritis-Associated Interstitial Lung Disease.
Arthritis & rheumatology (Hoboken, N.J.).
2019 09; 71(9):1483-1493. doi:
10.1002/art.40900
. [PMID: 30933423] - Bo Teng, Yoji Hayasaka, Paul A Smith, Keren A Bindon. Effect of Grape Seed and Skin Tannin Molecular Mass and Composition on the Rate of Reaction with Anthocyanin and Subsequent Formation of Polymeric Pigments in the Presence of Acetaldehyde.
Journal of agricultural and food chemistry.
2019 Aug; 67(32):8938-8949. doi:
10.1021/acs.jafc.9b01498
. [PMID: 31361121] - Zhengyi Chen, Gongke Li, Zhuomin Zhang. Miniaturized array gas membrane separation strategy for rapid analysis of complex samples by surface-enhanced Raman scattering.
Analytica chimica acta.
2019 Aug; 1065(?):29-39. doi:
10.1016/j.aca.2019.03.031
. [PMID: 31005148] - Li Chen, Xiaojuan Xiong, Xingyun Hou, Hua Wei, Jianxiu Zhai, Tianyi Xia, Xiaobin Gong, Shouhong Gao, Ge Feng, Xia Tao, Feng Zhang, Wansheng Chen. Wuzhi capsule regulates chloroacetaldehyde pharmacokinetics behaviour and alleviates high-dose cyclophosphamide-induced nephrotoxicity and neurotoxicity in rats.
Basic & clinical pharmacology & toxicology.
2019 Aug; 125(2):142-151. doi:
10.1111/bcpt.13211
. [PMID: 30793490] - Xiang Sheng, Fahmi Himo. Enzymatic Pictet-Spengler Reaction: Computational Study of the Mechanism and Enantioselectivity of Norcoclaurine Synthase.
Journal of the American Chemical Society.
2019 07; 141(28):11230-11238. doi:
10.1021/jacs.9b04591
. [PMID: 31265268] - Fabio Vivarelli, Donatella Canistro, Silvia Cirillo, Vladimiro Cardenia, Maria Teresa Rodriguez-Estrada, Moreno Paolini. Impairment of testicular function in electronic cigarette (e-cig, e-cigs) exposed rats under low-voltage and nicotine-free conditions.
Life sciences.
2019 Jul; 228(?):53-65. doi:
10.1016/j.lfs.2019.04.059
. [PMID: 31029780] - Hui Han, Yuxin He, Heather Johnson, Pratibha Mishra, Harrison Lee, Cheng Ji. Protective Effects of Facilitated Removal of Blood Alcohol and Acetaldehyde Against Liver Injury in Animal Models Fed Alcohol and Anti-HIV Drugs.
Alcoholism, clinical and experimental research.
2019 06; 43(6):1091-1102. doi:
10.1111/acer.14034
. [PMID: 30908665] - Minmin Wang, Lei Zhang, Kyung Hwan Boo, Eunsook Park, Georgia Drakakaki, Florence Zakharov. PDC1, a pyruvate/α-ketoacid decarboxylase, is involved in acetaldehyde, propanal and pentanal biosynthesis in melon (Cucumis melo L.) fruit.
The Plant journal : for cell and molecular biology.
2019 04; 98(1):112-125. doi:
10.1111/tpj.14204
. [PMID: 30556202] - Xueshuang Li, Teng Guo, Zhen Peng, Li Xu, Junguo Dong, Ping Cheng, Zhen Zhou. Real-time monitoring and quantification of organic by-products and mechanism study of acetone decomposition in a dielectric barrier discharge reactor.
Environmental science and pollution research international.
2019 Mar; 26(7):6773-6781. doi:
10.1007/s11356-019-04127-z
. [PMID: 30628003] - Daniel Dörler, Agnes Scheucher, Johann G Zaller. Efficacy of chemical and biological slug control measures in response to watering and earthworms.
Scientific reports.
2019 02; 9(1):2954. doi:
10.1038/s41598-019-39585-5
. [PMID: 30814638] - Ki Hoon Kim, Abid Farooq, Min Young Song, Sang-Chul Jung, Ki-Joon Jeon, JiHyeon Song, Chang Hyun Ko, Jungho Jae, Young-Kwon Park. Acetaldehyde removal and increased H2/CO gas yield from biomass gasification over metal-loaded Kraft lignin char catalyst.
Journal of environmental management.
2019 Feb; 232(?):330-335. doi:
10.1016/j.jenvman.2018.11.054
. [PMID: 30496962] - Glenn D Castle, Graham A Mills, Anthony Gravell, Alister Leggatt, Jeff Stubbs, Richard Davis, Gary R Fones. Comparison of different monitoring methods for the measurement of metaldehyde in surface waters.
Environmental monitoring and assessment.
2019 Jan; 191(2):75. doi:
10.1007/s10661-019-7221-x
. [PMID: 30648204] - Amarjeet Kumar, Vithal Balavant Kudachikar. Development, characterisation and efficacy evaluation of biochemical fungicidal formulations for postharvest control of anthracnose (Colletotrichum gloeosporioides Penz) disease in mango.
Journal of microencapsulation.
2019 Jan; 36(1):83-95. doi:
10.1080/02652048.2019.1600593
. [PMID: 30920322] - Che-Hong Chen, Julio C B Ferreira, Daria Mochly-Rosen. ALDH2 and Cardiovascular Disease.
Advances in experimental medicine and biology.
2019; 1193(?):53-67. doi:
10.1007/978-981-13-6260-6_3
. [PMID: 31368097] - Moustafa El-Shenawy, Mohamed T Fouad, Laila K Hassan, Faten L Seleet, Mahmoud Abd El-Aziz. A Probiotic Beverage Made from Tiger-nut Extract and Milk Permeate.
Pakistan journal of biological sciences : PJBS.
2019 Jan; 22(4):180-187. doi:
10.3923/pjbs.2019.180.187
. [PMID: 31930819] - Ippo Otoyama, Hironobu Hamada, Tatsushi Kimura, Haruchi Namba, Kiyokazu Sekikawa, Norimichi Kamikawa, Teruki Kajiwara, Fumiya Aizawa, Yoshinobu M Sato. L-cysteine improves blood fluidity impaired by acetaldehyde: In vitro evaluation.
PloS one.
2019; 14(3):e0214585. doi:
10.1371/journal.pone.0214585
. [PMID: 30925182] - Jan Günther, Axel Schmidt, Jonathan Gershenzon, Tobias G Köllner. Phenylacetaldehyde synthase 2 does not contribute to the constitutive formation of 2-phenylethyl-β-D-glucopyranoside in poplar.
Plant signaling & behavior.
2019; 14(11):1668233. doi:
10.1080/15592324.2019.1668233
. [PMID: 31532355] - Renny Reji Mammen, Johannah Natinga Mulakal, Ratheesh Mohanan, Balu Maliakel, Krishnakumar Illathu Madhavamenon. Clove Bud Polyphenols Alleviate Alterations in Inflammation and Oxidative Stress Markers Associated with Binge Drinking: A Randomized Double-Blinded Placebo-Controlled Crossover Study.
Journal of medicinal food.
2018 Nov; 21(11):1188-1196. doi:
10.1089/jmf.2017.4177
. [PMID: 30234415] - K Rissanen, T Hölttä, J Bäck. Transpiration directly regulates the emissions of water-soluble short-chained OVOCs.
Plant, cell & environment.
2018 10; 41(10):2288-2298. doi:
10.1111/pce.13318
. [PMID: 29676016] - Lahiru N Jayakody, Timothy Lee Turner, Eun Ju Yun, In Iok Kong, Jing-Jing Liu, Yong-Su Jin. Expression of Gre2p improves tolerance of engineered xylose-fermenting Saccharomyces cerevisiae to glycolaldehyde under xylose metabolism.
Applied microbiology and biotechnology.
2018 Sep; 102(18):8121-8133. doi:
10.1007/s00253-018-9216-x
. [PMID: 30027490] - Joan Domingo-Espín, Oktawia Nilsson, Katja Bernfur, Rita Del Giudice, Jens O Lagerstedt. Site-specific glycations of apolipoprotein A-I lead to differentiated functional effects on lipid-binding and on glucose metabolism.
Biochimica et biophysica acta. Molecular basis of disease.
2018 09; 1864(9 Pt B):2822-2834. doi:
10.1016/j.bbadis.2018.05.014
. [PMID: 29802959] - Pablo Giménez-Gómez, Mercedes Pérez-Hernández, María Dolores Gutiérrez-López, Rebeca Vidal, Cristina Abuin-Martínez, Esther O'Shea, María Isabel Colado. Increasing kynurenine brain levels reduces ethanol consumption in mice by inhibiting dopamine release in nucleus accumbens.
Neuropharmacology.
2018 06; 135(?):581-591. doi:
10.1016/j.neuropharm.2018.04.016
. [PMID: 29705534] - Mio Takayama, Brian Waters, Hiroshi Fujii, Kenji Hara, Masayuki Kashiwagi, Aya Matsusue, Natsuki Ikematsu, Shin-Ichi Kubo. Subarachnoid hemorrhage in a Japanese cocaine abuser: Cocaine-related sudden death.
Legal medicine (Tokyo, Japan).
2018 May; 32(?):43-47. doi:
10.1016/j.legalmed.2018.02.008
. [PMID: 29518652] - Ramona B Rudnick, Qian Chen, Emma Diletta Stea, Andrea Hartmann, Nikolina Papac-Milicevic, Fermin Person, Michael Wiesener, Christoph J Binder, Thorsten Wiech, Christine Skerka, Peter F Zipfel. FHR5 Binds to Laminins, Uses Separate C3b and Surface-Binding Sites, and Activates Complement on Malondialdehyde-Acetaldehyde Surfaces.
Journal of immunology (Baltimore, Md. : 1950).
2018 04; 200(7):2280-2290. doi:
10.4049/jimmunol.1701641
. [PMID: 29483359] - Harumi Uto-Kondo, Ayumu Hase, Yusuke Yamaguchi, Ayaka Sakurai, Makoto Akao, Takeshi Saito, Hitomi Kumagai. S-Allyl-L-cysteine sulfoxide, a garlic odor precursor, suppresses elevation in blood ethanol concentration by accelerating ethanol metabolism and preventing ethanol absorption from gut.
Bioscience, biotechnology, and biochemistry.
2018 Apr; 82(4):724-731. doi:
10.1080/09168451.2018.1447357
. [PMID: 29616890] - Liuyi Hao, Qian Sun, Wei Zhong, Wenliang Zhang, Xinguo Sun, Zhanxiang Zhou. Mitochondria-targeted ubiquinone (MitoQ) enhances acetaldehyde clearance by reversing alcohol-induced posttranslational modification of aldehyde dehydrogenase 2: A molecular mechanism of protection against alcoholic liver disease.
Redox biology.
2018 04; 14(?):626-636. doi:
10.1016/j.redox.2017.11.005
. [PMID: 29156373] - Tagnon D Missihoun, Simeon O Kotchoni. Aldehyde dehydrogenases and the hypothesis of a glycolaldehyde shunt pathway of photorespiration.
Plant signaling & behavior.
2018 03; 13(3):e1449544. doi:
10.1080/15592324.2018.1449544
. [PMID: 29521550] - Michael J Duryee, Benjamin M Wiese, Jordan R Bowman, Jared D Vanlandingham, Lynell W Klassen, Geoffrey E Thiele, Carlos D Hunter, Daniel R Anderson, Ted R Mikuls, Geoffrey M Thiele. Liver tissue metabolically transformed by alcohol induces immune recognition of liver self-proteins but not in vivo inflammation.
American journal of physiology. Gastrointestinal and liver physiology.
2018 03; 314(3):G418-G430. doi:
10.1152/ajpgi.00183.2017
. [PMID: 29351393] - Ted R Mikuls, Michael J Duryee, Bryant R England, Daniel R Anderson, Michelene Hearth-Holmes, Kaihong Su, Kaleb Michaud, Jeffrey B Payne, Harlan Sayles, Carlos Hunter, Jacob D McGowan, Lynell W Klassen, Geoffrey M Thiele. Malondialdehyde-acetaldehyde antibody concentrations in rheumatoid arthritis and other rheumatic conditions.
International immunopharmacology.
2018 Mar; 56(?):113-118. doi:
10.1016/j.intimp.2018.01.022
. [PMID: 29414640] - Teng Guo, Xueshuang Li, Jianquan Li, Zhen Peng, Li Xu, Junguo Dong, Ping Cheng, Zhen Zhou. On-line quantification and human health risk assessment of organic by-products from the removal of toluene in air using non-thermal plasma.
Chemosphere.
2018 Mar; 194(?):139-146. doi:
10.1016/j.chemosphere.2017.11.173
. [PMID: 29202266] - Alexander Klaus, Tim Baldensperger, Roman Fiedler, Matthias Girndt, Marcus A Glomb. Influence of Transketolase-Catalyzed Reactions on the Formation of Glycolaldehyde and Glyoxal Specific Posttranslational Modifications under Physiological Conditions.
Journal of agricultural and food chemistry.
2018 Feb; 66(6):1498-1508. doi:
10.1021/acs.jafc.7b05472
. [PMID: 29400466] - Le Yang, Chenyang Yan, Feng Zhang, Bo Jiang, Shouhong Gao, Youtian Liang, Lifeng Huang, Wansheng Chen. Effects of ketoconazole on cyclophosphamide metabolism: evaluation of CYP3A4 inhibition effect using the in vitro and in vivo models.
Experimental animals.
2018 Feb; 67(1):71-82. doi:
10.1538/expanim.17-0048
. [PMID: 29129847] - Xue Zou, Yan Lu, Lei Xia, Yating Zhang, Aiyue Li, Hongmei Wang, Chaoqun Huang, Chengyin Shen, Yannan Chu. Detection of Volatile Organic Compounds in a Drop of Urine by Ultrasonic Nebulization Extraction Proton Transfer Reaction Mass Spectrometry.
Analytical chemistry.
2018 02; 90(3):2210-2215. doi:
10.1021/acs.analchem.7b04563
. [PMID: 29281786] - Max L Senders, Xuchu Que, Young Seok Cho, Calvin Yeang, Hannah Groenen, Francois Fay, Claudia Calcagno, Anu E Meerwaldt, Simone Green, Phuong Miu, Mark E Lobatto, Thomas Reiner, Zahi A Fayad, Joseph L Witztum, Willem J M Mulder, Carlos Pérez-Medina, Sotirios Tsimikas. PET/MR Imaging of Malondialdehyde-Acetaldehyde Epitopes With a Human Antibody Detects Clinically Relevant Atherothrombosis.
Journal of the American College of Cardiology.
2018 01; 71(3):321-335. doi:
10.1016/j.jacc.2017.11.036
. [PMID: 29348025] - Young-Moo Choo, Pingxi Xu, Justin K Hwang, Fangfang Zeng, Kaiming Tan, Ganga Bhagavathy, Kamlesh R Chauhan, Walter S Leal. Reverse chemical ecology approach for the identification of an oviposition attractant for Culex quinquefasciatus.
Proceedings of the National Academy of Sciences of the United States of America.
2018 01; 115(4):714-719. doi:
10.1073/pnas.1718284115
. [PMID: 29311316] - Qi He, Yan Diao, Tingting Zhao, Baoyu Hou, Linel Darrel Ngokana, Huan Liang, Junhui Nie, Peizhu Tan, Hui Huang, Yanze Li, Lin Qi, Yuanyuan Zhao, Ying Liu, Xu Gao, Lingyun Zhou. SREBP1c mediates the effect of acetaldehyde on Cidea expression in Alcoholic fatty liver Mice.
Scientific reports.
2018 01; 8(1):1200. doi:
10.1038/s41598-018-19466-z
. [PMID: 29352167] - Jianxiu Zhai, Feng Zhang, Shouhong Gao, Li Chen, Ge Feng, Jun Yin, Wansheng Chen. Schisandra chinensis extract decreases chloroacetaldehyde production in rats and attenuates cyclophosphamide toxicity in liver, kidney and brain.
Journal of ethnopharmacology.
2018 Jan; 210(?):223-231. doi:
10.1016/j.jep.2017.08.020
. [PMID: 28821392] - Michael P Torrens-Spence, Tomáš Pluskal, Fu-Shuang Li, Valentina Carballo, Jing-Ke Weng. Complete Pathway Elucidation and Heterologous Reconstitution of Rhodiola Salidroside Biosynthesis.
Molecular plant.
2018 01; 11(1):205-217. doi:
10.1016/j.molp.2017.12.007
. [PMID: 29277428] - Mikael Kyrklund, Outi Kummu, Jari Kankaanpää, Ramin Akhi, Antti Nissinen, S Pauliina Turunen, Pirkko Pussinen, Chunguang Wang, Sohvi Hörkkö. Immunization with gingipain A hemagglutinin domain of Porphyromonas gingivalis induces IgM antibodies binding to malondialdehyde-acetaldehyde modified low-density lipoprotein.
PloS one.
2018; 13(1):e0191216. doi:
10.1371/journal.pone.0191216
. [PMID: 29329335]