Adenosine diphosphate ribose (BioDeep_00000004259)
Secondary id: BioDeep_00001869126
human metabolite PANOMIX_OTCML-2023 Endogenous
代谢物信息卡片
化学式: C15H23N5O14P2 (559.0717)
中文名称: 腺苷5'-二磷酸核糖
谱图信息:
最多检出来源 Homo sapiens(otcml) 5.72%
分子结构信息
SMILES: C1=NC(=C2C(=N1)N(C=N2)C3C(C(C(O3)COP(=O)(O)OP(=O)(O)OCC4C(C(C(O4)O)O)O)O)O)N
InChI: InChI=1S/C15H23N5O14P2/c16-12-7-13(18-3-17-12)20(4-19-7)14-10(23)8(21)5(32-14)1-30-35(26,27)34-36(28,29)31-2-6-9(22)11(24)15(25)33-6/h3-6,8-11,14-15,21-25H,1-2H2,(H,26,27)(H,28,29)(H2,16,17,18)/t5-,6-,8-,9-,10-,11-,14-,15-/m1/s1
描述信息
Adenosine diphosphate ribose is a molecule formed into poly(ADP-ribose) or PAR chains by the enzyme poly ADP ribose polymerase or PARP. PARP is found in every cell nucleus. Its main role is to detect and signal single-strand DNA breaks (SSB) to the enzymatic machinery involved in the SSB repair. PARP activation is an immediate cellular response to metabolic, chemical, or radiation-induced DNA SSB damage. Once PARP detects a SSB, it binds to the DNA, and, after a structural change, begins the synthesis of a poly (ADP-ribose) chain (PAR) as a signal for the other DNA-repairing enzymes such as DNA ligase III (LigIII), DNA polymerase beta, and scaffolding proteins such as X-ray cross-complementing gene 1 (XRCC1). After repairing, the PAR chains are degraded via PAR glycohydrolase (PARG). ADP-ribose binds to and activates the TRPM2 ion channel. Adenosine diphosphate ribose is an intermediate in NAD metabolism. The enzyme NAD(P)+ nucleosidase [EC:3.2.2.6] catalyzes the production of this metabolite from nicotinamide adenine dinucleotide phosphate. This reaction is irreversible and occurs in the cytosol.
Adenosine diphosphate ribose is a molecule formed into chains by the enzyme poly ADP ribose polymerase.
COVID info from PDB, Protein Data Bank
Corona-virus
Coronavirus
SARS-CoV-2
COVID-19
SARS-CoV
COVID19
SARS2
SARS
同义名列表
25 个代谢物同义名
{[5-(6-amino-9H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}({hydroxy[(3,4,5-trihydroxyoxolan-2-yl)methoxy]phosphoryl}oxy)phosphinic acid; [5-(6-Aminopurin-9-yl)-3,4-dihydroxyoxolan-2-yl]methyl [hydroxy-[(3,4,5-trihydroxyoxolan-2-yl)methoxy]phosphoryl] hydrogen phosphate; 5-(Adenosine 5-pyrophosphoryl)-D-ribose; Adenosine diphosphoric acid ribose; Ribose, adenosine diphosphate; Diphosphate ribose, adenosine; 5-Diphosphoribose, adenosine; Adenosine diphosphate ribose; Ribose adenosine diphosphate; Adenosine 5 diphosphoribose; Adenosine 5-diphosphoribose; Diphosphoribose, adenosine; Adenosine diphosphoribose; D-Ribofuranos-5-yl-ADP; ADP-D-ribose; Ribose, ADP; ADP Ribose; ADP-Ribose; ADPribose; (Rib5)ppa; AdoPPRib; a5pp5RIb; ADP-Rib; ADPR; Adenosine diphosphate ribose(ADP-ribose)
数据库引用编号
20 个数据库交叉引用编号
- ChEBI: CHEBI:191409
- KEGG: C00301
- PubChem: 445794
- PubChem: 192
- HMDB: HMDB0001178
- Metlin: METLIN3595
- ChEMBL: CHEMBL1231026
- Wikipedia: Adenosine diphosphate ribose
- MeSH: Adenosine Diphosphate Ribose
- foodb: FDB022468
- chemspider: 187
- CAS: 26656-46-2
- CAS: 47775-00-8
- CAS: 20762-30-5
- PMhub: MS000016194
- ChEBI: CHEBI:16960
- PubChem: 3595
- PDB-CCD: APR
- 3DMET: B01211
- NIKKAJI: J17.074G
分类词条
相关代谢途径
Reactome(0)
PlantCyc(0)
代谢反应
75 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(1)
- pyridine nucleotide cycling:
ATP + ammonia + nicotinate adenine dinucleotide ⟶ AMP + H+ + NAD+ + diphosphate
WikiPathways(0)
Plant Reactome(0)
INOH(2)
- Nicotinate and Nicotinamide metabolism ( Nicotinate and Nicotinamide metabolism ):
ATP + Deamido-NAD+ + H2O + L-Glutamine ⟶ AMP + L-Glutamic acid + NAD+ + Pyrophosphate
- Purine nucleotides and Nucleosides metabolism ( Purine nucleotides and Nucleosides metabolism ):
H2O + XTP ⟶ Pyrophosphate + XMP
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(72)
- Glutamate Metabolism:
Adenosine triphosphate + L-Glutamine + Nicotinic acid adenine dinucleotide + Water ⟶ Adenosine monophosphate + L-Glutamic acid + NAD + Pyrophosphate
- 4-Hydroxybutyric Aciduria/Succinic Semialdehyde Dehydrogenase Deficiency:
Adenosine triphosphate + L-Glutamine + Nicotinic acid adenine dinucleotide + Water ⟶ Adenosine monophosphate + L-Glutamic acid + NAD + Pyrophosphate
- Homocarnosinosis:
Adenosine triphosphate + L-Glutamine + Nicotinic acid adenine dinucleotide + Water ⟶ Adenosine monophosphate + L-Glutamic acid + NAD + Pyrophosphate
- Hyperinsulinism-Hyperammonemia Syndrome:
Adenosine triphosphate + L-Glutamine + Nicotinic acid adenine dinucleotide + Water ⟶ Adenosine monophosphate + L-Glutamic acid + NAD + Pyrophosphate
- 2-Hydroxyglutric Aciduria (D and L Form):
Adenosine triphosphate + L-Glutamine + Nicotinic acid adenine dinucleotide + Water ⟶ Adenosine monophosphate + L-Glutamic acid + NAD + Pyrophosphate
- Succinic Semialdehyde Dehydrogenase Deficiency:
Adenosine triphosphate + L-Glutamine + Nicotinic acid adenine dinucleotide + Water ⟶ Adenosine monophosphate + L-Glutamic acid + NAD + Pyrophosphate
- Glutamate Metabolism:
Adenosine triphosphate + L-Glutamine ⟶ Adenosine monophosphate + Pyrophosphate
- 2-Hydroxyglutric Aciduria (D and L Form):
Adenosine triphosphate + L-Glutamine + Water + Xanthylic acid ⟶ Adenosine monophosphate + Guanosine monophosphate + L-Glutamic acid + Pyrophosphate
- 4-Hydroxybutyric Aciduria/Succinic Semialdehyde Dehydrogenase Deficiency:
Adenosine triphosphate + L-Glutamine + Water + Xanthylic acid ⟶ Adenosine monophosphate + Guanosine monophosphate + L-Glutamic acid + Pyrophosphate
- Homocarnosinosis:
Adenosine triphosphate + L-Glutamine + Water + Xanthylic acid ⟶ Adenosine monophosphate + Guanosine monophosphate + L-Glutamic acid + Pyrophosphate
- Hyperinsulinism-Hyperammonemia Syndrome:
Adenosine triphosphate + L-Glutamine + Water + Xanthylic acid ⟶ Adenosine monophosphate + Guanosine monophosphate + L-Glutamic acid + Pyrophosphate
- Succinic Semialdehyde Dehydrogenase Deficiency:
Adenosine triphosphate + L-Glutamine + Water + Xanthylic acid ⟶ Adenosine monophosphate + Guanosine monophosphate + L-Glutamic acid + Pyrophosphate
- Glutamate Metabolism:
Adenosine triphosphate + L-Glutamine + Water + Xanthylic acid ⟶ Adenosine monophosphate + Guanosine monophosphate + L-Glutamic acid + Pyrophosphate
- Glutamate Metabolism:
Adenosine triphosphate + L-Glutamine + Water + Xanthylic acid ⟶ Adenosine monophosphate + Guanosine monophosphate + L-Glutamic acid + Pyrophosphate
- Glutamate Metabolism:
Adenosine triphosphate + L-Glutamine + Water + Xanthylic acid ⟶ Adenosine monophosphate + Guanosine monophosphate + L-Glutamic acid + Pyrophosphate
- Glutamate Metabolism:
Adenosine triphosphate + L-Glutamine + Water + Xanthylic acid ⟶ Adenosine monophosphate + Guanosine monophosphate + L-Glutamic acid + Pyrophosphate
- 2-Hydroxyglutric Aciduria (D and L Form):
Adenosine triphosphate + L-Glutamine ⟶ Adenosine monophosphate + Pyrophosphate
- 4-Hydroxybutyric Aciduria/Succinic Semialdehyde Dehydrogenase Deficiency:
Adenosine triphosphate + L-Glutamine ⟶ Adenosine monophosphate + Pyrophosphate
- Homocarnosinosis:
Adenosine triphosphate + L-Glutamine ⟶ Adenosine monophosphate + Pyrophosphate
- Hyperinsulinism-Hyperammonemia Syndrome:
Adenosine triphosphate + L-Glutamine ⟶ Adenosine monophosphate + Pyrophosphate
- Succinic Semialdehyde Dehydrogenase Deficiency:
Adenosine triphosphate + L-Glutamine ⟶ Adenosine monophosphate + Pyrophosphate
- Nicotinate and Nicotinamide Metabolism:
NAD + Water ⟶ Adenosine monophosphate + Nicotinamide ribotide
- Nicotinate and Nicotinamide Metabolism:
Adenosine triphosphate + L-Glutamine + Nicotinic acid adenine dinucleotide + Water ⟶ Adenosine monophosphate + L-Glutamic acid + NAD + Pyrophosphate
- Nicotinate and Nicotinamide Metabolism:
Adenosine triphosphate + L-Glutamine + Nicotinic acid adenine dinucleotide + Water ⟶ Adenosine monophosphate + L-Glutamic acid + NAD + Pyrophosphate
- Nicotinate and Nicotinamide Metabolism:
Adenosine triphosphate + L-Glutamine + Nicotinic acid adenine dinucleotide + Water ⟶ Adenosine monophosphate + L-Glutamic acid + NAD + Pyrophosphate
- Nicotinate and Nicotinamide Metabolism:
Adenosine triphosphate + L-Glutamine + Nicotinic acid adenine dinucleotide + Water ⟶ Adenosine monophosphate + L-Glutamic acid + NAD + Pyrophosphate
- Purine Metabolism:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Adenosine Deaminase Deficiency:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Adenylosuccinate Lyase Deficiency:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Gout or Kelley-Seegmiller Syndrome:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Lesch-Nyhan Syndrome (LNS):
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Molybdenum Cofactor Deficiency:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Xanthine Dehydrogenase Deficiency (Xanthinuria):
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Purine Nucleoside Phosphorylase Deficiency:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- AICA-Ribosiduria:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Azathioprine Action Pathway:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Mercaptopurine Action Pathway:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Thioguanine Action Pathway:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Xanthinuria Type I:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Xanthinuria Type II:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Adenine Phosphoribosyltransferase Deficiency (APRT):
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Mitochondrial DNA Depletion Syndrome-3:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Myoadenylate Deaminase Deficiency:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Purine Metabolism:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Adenosine Deaminase Deficiency:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Adenylosuccinate Lyase Deficiency:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- AICA-Ribosiduria:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Gout or Kelley-Seegmiller Syndrome:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Xanthine Dehydrogenase Deficiency (Xanthinuria):
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Lesch-Nyhan Syndrome (LNS):
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Molybdenum Cofactor Deficiency:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Purine Nucleoside Phosphorylase Deficiency:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Xanthinuria Type I:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Xanthinuria Type II:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Adenine Phosphoribosyltransferase Deficiency (APRT):
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Mitochondrial DNA Depletion Syndrome:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Myoadenylate Deaminase Deficiency:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Purine Metabolism:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Purine Metabolism:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Adenosine Deaminase Deficiency:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Adenylosuccinate Lyase Deficiency:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- AICA-Ribosiduria:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Gout or Kelley-Seegmiller Syndrome:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Xanthine Dehydrogenase Deficiency (Xanthinuria):
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Lesch-Nyhan Syndrome (LNS):
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Molybdenum Cofactor Deficiency:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Purine Nucleoside Phosphorylase Deficiency:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Xanthinuria Type I:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Xanthinuria Type II:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Adenine Phosphoribosyltransferase Deficiency (APRT):
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Mitochondrial DNA Depletion Syndrome:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Myoadenylate Deaminase Deficiency:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
PharmGKB(0)
2 个相关的物种来源信息
- 9606 - Homo sapiens: -
- 9606 - Homo sapiens: 10.1007/S11306-016-1051-4
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Agata Jacewicz, Swathi Dantuluri, Stewart Shuman. Structural basis for Tpt1-catalyzed 2'-PO4 transfer from RNA and NADP(H) to NAD.
Proceedings of the National Academy of Sciences of the United States of America.
2023 Oct; 120(44):e2312999120. doi:
10.1073/pnas.2312999120
. [PMID: 37883434] - Andras Szollosi, János Almássy. Functional characterization of the transient receptor potential melastatin 2 (TRPM2) cation channel from Nematostella vectensis reconstituted into lipid bilayer.
Scientific reports.
2023 Jul; 13(1):11471. doi:
10.1038/s41598-023-38640-6
. [PMID: 37454209] - Nadezhda Spechenkova, Natalya O Kalinina, Sergey K Zavriev, Andrew J Love, Michael Taliansky. ADP-Ribosylation and Antiviral Resistance in Plants.
Viruses.
2023 01; 15(1):. doi:
10.3390/v15010241
. [PMID: 36680280] - Sarah Vogt, Karla Feijs, Sebastian Hosch, Raffaella De Masi, Ruth Lintermann, Bernhard Loll, Lennart Wirthmueller. The superior salinity tolerance of bread wheat cultivar Shanrong No. 3 is unlikely to be caused by elevated Ta-sro1 poly-(ADP-ribose) polymerase activity.
The Plant cell.
2022 10; 34(11):4130-4137. doi:
10.1093/plcell/koac261
. [PMID: 35980152] - Nilabhra Mitra, Sanghamitra Dey. Understanding the catalytic abilities of class IV sirtuin OsSRT1 and its linkage to the DNA repair system under stress conditions.
Plant science : an international journal of experimental plant biology.
2022 Oct; 323(?):111398. doi:
10.1016/j.plantsci.2022.111398
. [PMID: 35917976] - Mizanur Rahman, Martin Irmler, Micol Introna, Johannes Beckers, Lena Palmberg, Gunnar Johanson, Swapna Upadhyay, Koustav Ganguly. Insight into the pulmonary molecular toxicity of heated tobacco products using human bronchial and alveolar mucosa models at air-liquid interface.
Scientific reports.
2022 09; 12(1):16396. doi:
10.1038/s41598-022-20657-y
. [PMID: 36180488] - Lavinia M Sherrill, Elva E Joya, AnnMarie Walker, Anuradha Roy, Yousef M Alhammad, Moriama Atobatele, Sarah Wazir, George Abbas, Patrick Keane, Junlin Zhuo, Anthony K L Leung, David K Johnson, Lari Lehtiö, Anthony R Fehr, Dana Ferraris. Design, synthesis and evaluation of inhibitors of the SARS-CoV-2 nsp3 macrodomain.
Bioorganic & medicinal chemistry.
2022 08; 67(?):116788. doi:
10.1016/j.bmc.2022.116788
. [PMID: 35597097] - Anu Roy, Yousef M Alhammad, Peter McDonald, David K Johnson, Junlin Zhuo, Sarah Wazir, Dana Ferraris, Lari Lehtiö, Anthony K L Leung, Anthony R Fehr. Discovery of compounds that inhibit SARS-CoV-2 Mac1-ADP-ribose binding by high-throughput screening.
Antiviral research.
2022 07; 203(?):105344. doi:
10.1016/j.antiviral.2022.105344
. [PMID: 35598780] - Catherine S Nation, Akram A Da'Dara, Patrick J Skelly. NAD-catabolizing ectoenzymes of Schistosoma mansoni.
The Biochemical journal.
2022 06; 479(11):1165-1180. doi:
10.1042/bcj20210784
. [PMID: 35593185] - Özgür Öcal, Mustafa Nazıroğlu. Eicosapentaenoic acid enhanced apoptotic and oxidant effects of cisplatin via activation of TRPM2 channel in brain tumor cells.
Chemico-biological interactions.
2022 May; 359(?):109914. doi:
10.1016/j.cbi.2022.109914
. [PMID: 35395232] - Moona Sakari, Mai T Tran, Jamie Rossjohn, Arto T Pulliainen, Travis Beddoe, Dene R Littler. Crystal structures of pertussis toxin with NAD+ and analogs provide structural insights into the mechanism of its cytosolic ADP-ribosylation activity.
The Journal of biological chemistry.
2022 05; 298(5):101892. doi:
10.1016/j.jbc.2022.101892
. [PMID: 35378130] - Alperen Emre Akgün, Yalın Tolga Yaylalı, Mücahit Seçme, Yavuz Dodurga, Hande Şenol. Kynurenine-PARP-1 Link Mediated by MicroRNA 210 May Be Dysregulated in Pulmonary Hypertension.
Anatolian journal of cardiology.
2022 05; 26(5):388-393. doi:
10.5152/anatoljcardiol.2021.861
. [PMID: 35552175] - Jingjing Fu, Fan Qiu, Cati Raluca Stolniceanu, Fei Yu, Shiming Zang, Yili Xiang, Yue Huang, Milovan Matovic, Cipriana Stefanescu, Qiyun Tang, Feng Wang. Combined use of 177 Lu-DOTATATE peptide receptor radionuclide therapy and fluzoparib for treatment of well-differentiated neuroendocrine tumors: A preclinical study.
Journal of neuroendocrinology.
2022 04; 34(4):e13109. doi:
10.1111/jne.13109
. [PMID: 35304807] - Aikaterini C Tsika, Nikolaos K Fourkiotis, Periklis Charalampous, Angelo Gallo, Georgios A Spyroulias. NMR study of macro domains (MDs) from betacoronavirus: backbone resonance assignments of SARS-CoV and MERS-CoV MDs in the free and the ADPr-bound state.
Biomolecular NMR assignments.
2022 04; 16(1):9-16. doi:
10.1007/s12104-021-10052-5
. [PMID: 34686999] - Anthony D Rish, Zhangfei Shen, Tian-Min Fu. It takes two to Tango: Two gates orchestrate the opening of human TRPM2.
Cell calcium.
2022 01; 101(?):102523. doi:
10.1016/j.ceca.2021.102523
. [PMID: 34973600] - Neel R Nabar, Christopher N Heijjer, Chong-Shan Shi, Il-Young Hwang, Sundar Ganesan, Mikael C I Karlsson, John H Kehrl. LRRK2 is required for CD38-mediated NAADP-Ca2+ signaling and the downstream activation of TFEB (transcription factor EB) in immune cells.
Autophagy.
2022 01; 18(1):204-222. doi:
10.1080/15548627.2021.1954779
. [PMID: 34313548] - Ahmet Hatipoglu, Deepak Menon, Talia Levy, Maria A Frias, David A Foster. Inhibiting glutamine utilization creates a synthetic lethality for suppression of ATP citrate lyase in KRas-driven cancer cells.
PloS one.
2022; 17(10):e0276579. doi:
10.1371/journal.pone.0276579
. [PMID: 36269753] - Yener Yazğan, Mustafa Nazıroğlu. Involvement of TRPM2 in the Neurobiology of Experimental Migraine: Focus on Oxidative Stress and Apoptosis.
Molecular neurobiology.
2021 Nov; 58(11):5581-5601. doi:
10.1007/s12035-021-02503-w
. [PMID: 34370177] - David Hutin, Alexandra S Long, Kim Sugamori, Peng Shao, Sachin Kumar Singh, Marit Rasmussen, Ninni Elise Olafsen, Solveig Pettersen, Giulia Grimaldi, Denis M Grant, Jason Matthews. 2,3,7,8-Tetrachlorodibenzo-p-Dioxin (TCDD)-Inducible Poly-ADP-Ribose Polymerase (TIPARP/PARP7) Catalytic Mutant Mice (TiparpH532A) Exhibit Increased Sensitivity to TCDD-Induced Hepatotoxicity and Lethality.
Toxicological sciences : an official journal of the Society of Toxicology.
2021 08; 183(1):154-169. doi:
10.1093/toxsci/kfab075
. [PMID: 34129049] - Chandrabose Selvaraj, Dhurvas Chandrasekaran Dinesh, Umesh Panwar, Evzen Boura, Sanjeev Kumar Singh. High-Throughput Screening and Quantum Mechanics for Identifying Potent Inhibitors Against Mac1 Domain of SARS-CoV-2 Nsp3.
IEEE/ACM transactions on computational biology and bioinformatics.
2021 Jul; 18(4):1262-1270. doi:
10.1109/tcbb.2020.3037136
. [PMID: 33306471] - Stephanie C Lüthi, Anna Howald, Kathrin Nowak, Robert Graage, Giody Bartolomei, Christine Neupert, Xaver Sidler, Deena Leslie Pedrioli, Michael O Hottiger. Establishment of a Mass-Spectrometry-Based Method for the Identification of the In Vivo Whole Blood and Plasma ADP-Ribosylomes.
Journal of proteome research.
2021 06; 20(6):3090-3101. doi:
10.1021/acs.jproteome.0c00923
. [PMID: 34032442] - Yousef M O Alhammad, Maithri M Kashipathy, Anuradha Roy, Jean-Philippe Gagné, Peter McDonald, Philip Gao, Louis Nonfoux, Kevin P Battaile, David K Johnson, Erik D Holmstrom, Guy G Poirier, Scott Lovell, Anthony R Fehr. The SARS-CoV-2 Conserved Macrodomain Is a Mono-ADP-Ribosylhydrolase.
Journal of virology.
2021 01; 95(3):. doi:
10.1128/jvi.01969-20
. [PMID: 33158944] - Vinay Ayyappan, Ricky Wat, Calvin Barber, Christina A Vivelo, Kathryn Gauch, Pat Visanpattanasin, Garth Cook, Christos Sazeides, Anthony K L Leung. ADPriboDB 2.0: an updated database of ADP-ribosylated proteins.
Nucleic acids research.
2021 01; 49(D1):D261-D265. doi:
10.1093/nar/gkaa941
. [PMID: 33137182] - Collin D Heer, Daniel J Sanderson, Lynden S Voth, Yousef M O Alhammad, Mark S Schmidt, Samuel A J Trammell, Stanley Perlman, Michael S Cohen, Anthony R Fehr, Charles Brenner. Coronavirus infection and PARP expression dysregulate the NAD metabolome: An actionable component of innate immunity.
The Journal of biological chemistry.
2020 12; 295(52):17986-17996. doi:
10.1074/jbc.ra120.015138
. [PMID: 33051211] - Meng-Hsuan Lin, San-Chi Chang, Yi-Chih Chiu, Bo-Chen Jiang, Tsung-Han Wu, Chun-Hua Hsu. Structural, Biophysical, and Biochemical Elucidation of the SARS-CoV-2 Nonstructural Protein 3 Macro Domain.
ACS infectious diseases.
2020 11; 6(11):2970-2978. doi:
10.1021/acsinfecdis.0c00441
. [PMID: 32946224] - Johannes Gregor Matthias Rack, Valentina Zorzini, Zihan Zhu, Marion Schuller, Dragana Ahel, Ivan Ahel. Viral macrodomains: a structural and evolutionary assessment of the pharmacological potential.
Open biology.
2020 11; 10(11):200237. doi:
10.1098/rsob.200237
. [PMID: 33202171] - David N Frick, Rajdeep S Virdi, Nemanja Vuksanovic, Narayan Dahal, Nicholas R Silvaggi. Molecular Basis for ADP-Ribose Binding to the Mac1 Domain of SARS-CoV-2 nsp3.
Biochemistry.
2020 07; 59(28):2608-2615. doi:
10.1021/acs.biochem.0c00309
. [PMID: 32578982] - Magdolna Szántó, Peter Bai. The role of ADP-ribose metabolism in metabolic regulation, adipose tissue differentiation, and metabolism.
Genes & development.
2020 03; 34(5-6):321-340. doi:
10.1101/gad.334284.119
. [PMID: 32029456] - Kyaw Aung, Panya Kim, Zhongpeng Li, Anna Joe, Brian Kvitko, James R Alfano, Sheng Yang He. Pathogenic Bacteria Target Plant Plasmodesmata to Colonize and Invade Surrounding Tissues.
The Plant cell.
2020 03; 32(3):595-611. doi:
10.1105/tpc.19.00707
. [PMID: 31888968] - Shiyu Xia, Longfei Wang, Tian-Min Fu, Hao Wu. Mechanism of TRPM2 channel gating revealed by cryo-EM.
The FEBS journal.
2019 09; 286(17):3333-3339. doi:
10.1111/febs.14939
. [PMID: 31144442] - Peilin Yu, Zhenming Liu, Xiafei Yu, Peiwu Ye, Huan Liu, Xiwen Xue, Lixin Yang, Zhongtang Li, Yang Wu, Cheng Fang, Yong Juan Zhao, Fan Yang, Jian Hong Luo, Lin-Hua Jiang, Liangren Zhang, Lihe Zhang, Wei Yang. Direct Gating of the TRPM2 Channel by cADPR via Specific Interactions with the ADPR Binding Pocket.
Cell reports.
2019 06; 27(12):3684-3695.e4. doi:
10.1016/j.celrep.2019.05.067
. [PMID: 31216484] - Ercan Baş, Mustafa Nazıroğlu, László Pecze. ADP-Ribose and oxidative stress activate TRPM8 channel in prostate cancer and kidney cells.
Scientific reports.
2019 03; 9(1):4100. doi:
10.1038/s41598-018-37552-0
. [PMID: 30858386] - Elizabeth Njuguna, Griet Coussens, Pia Neyt, Stijn Aesaert, Veronique Storme, Kirin Demuynck, Hannes Vanhaeren, Stijn Dhondt, Yolaine Van Haver, Linus Paul, Dirk Inzé, Hilde Nelissen, Mieke Van Lijsebettens. Functional analysis of Arabidopsis and maize transgenic lines overexpressing the ADP-ribose/NADH pyrophosphohydrolase, AtNUDX7.
The International journal of developmental biology.
2019; 63(1-2):45-55. doi:
10.1387/ijdb.180360mv
. [PMID: 30919915] - Katharina Danhauser, Bader Alhaddad, Christine Makowski, Dorota Piekutowska-Abramczuk, Steffen Syrbe, Natalia Gomez-Ospina, Melanie A Manning, Anna Kostera-Pruszczyk, Claudia Krahn-Peper, Riccardo Berutti, Reka Kovács-Nagy, Mirjana Gusic, Elisabeth Graf, Lucia Laugwitz, Michaela Röblitz, Andreas Wroblewski, Hans Hartmann, Anibh M Das, Eva Bültmann, Fang Fang, Manting Xu, Ulrich A Schatz, Daniela Karall, Herta Zellner, Edda Haberlandt, René G Feichtinger, Johannes A Mayr, Thomas Meitinger, Holger Prokisch, Tim M Strom, Rafał Płoski, Georg F Hoffmann, Maciej Pronicki, Penelope E Bonnen, Susanne Morlot, Tobias B Haack. Bi-allelic ADPRHL2 Mutations Cause Neurodegeneration with Developmental Delay, Ataxia, and Axonal Neuropathy.
American journal of human genetics.
2018 11; 103(5):817-825. doi:
10.1016/j.ajhg.2018.10.005
. [PMID: 30401461] - Yihe Huang, Paige A Winkler, Weinan Sun, Wei Lü, Juan Du. Architecture of the TRPM2 channel and its activation mechanism by ADP-ribose and calcium.
Nature.
2018 10; 562(7725):145-149. doi:
10.1038/s41586-018-0558-4
. [PMID: 30250252] - Kanako Chishiki, Sachiko Kamakura, Junya Hayase, Satoru Yuzawa, Hideki Sumimoto. Ric-8A-mediated stabilization of the trimeric G protein subunit Gαi is inhibited by pertussis toxin-catalyzed ADP-ribosylation.
Biochemical and biophysical research communications.
2017 02; 483(3):941-945. doi:
10.1016/j.bbrc.2017.01.036
. [PMID: 28082199] - Vi N Nguyen, Annsea Park, Anting Xu, John R Srouji, Steven E Brenner, Jack F Kirsch. Substrate specificity characterization for eight putative nudix hydrolases. Evaluation of criteria for substrate identification within the Nudix family.
Proteins.
2016 12; 84(12):1810-1822. doi:
10.1002/prot.25163
. [PMID: 27618147] - Juliette Martin, Maria L Balmer, Saranya Rajendran, Olivier Maurhofer, Jean-François Dufour, Marie V St-Pierre. Nutritional stress exacerbates hepatic steatosis induced by deletion of the histidine nucleotide-binding (Hint2) mitochondrial protein.
American journal of physiology. Gastrointestinal and liver physiology.
2016 04; 310(7):G497-509. doi:
10.1152/ajpgi.00178.2015
. [PMID: 26767982] - Stephan Menzel, Björn Rissiek, Peter Bannas, Thomas Jakoby, Maria Miksiewicz, Nicole Schwarz, Marion Nissen, Friedrich Haag, Andreas Tholey, Friedrich Koch-Nolte. Nucleotide-Induced Membrane-Proximal Proteolysis Controls the Substrate Specificity of T Cell Ecto-ADP-Ribosyltransferase ARTC2.2.
Journal of immunology (Baltimore, Md. : 1950).
2015 Sep; 195(5):2057-66. doi:
10.4049/jimmunol.1401677
. [PMID: 26209623] - Hyun Jun Jung, Sang-Yeob Kim, Hyo-Jung Choi, Eui-Jung Park, Jung-Suk Lim, Jørgen Frøkiaer, Søren Nielsen, Tae-Hwan Kwon. Tankyrase-mediated β-catenin activity regulates vasopressin-induced AQP2 expression in kidney collecting duct mpkCCDc14 cells.
American journal of physiology. Renal physiology.
2015 Mar; 308(5):F473-86. doi:
10.1152/ajprenal.00052.2014
. [PMID: 25520007] - Sangheon Yu, Ingyu Hwang, Sangkee Rhee. The crystal structure of type III effector protein XopQ from Xanthomonas oryzae complexed with adenosine diphosphate ribose.
Proteins.
2014 Nov; 82(11):2910-4. doi:
10.1002/prot.24656
. [PMID: 25079351] - Marina Noris, Miriam Galbusera, Sara Gastoldi, Paolo Macor, Federica Banterla, Elena Bresin, Claudio Tripodo, Serena Bettoni, Roberta Donadelli, Elisabetta Valoti, Francesco Tedesco, Alessandro Amore, Rosanna Coppo, Piero Ruggenenti, Eliana Gotti, Giuseppe Remuzzi. Dynamics of complement activation in aHUS and how to monitor eculizumab therapy.
Blood.
2014 Sep; 124(11):1715-26. doi:
10.1182/blood-2014-02-558296
. [PMID: 25037630] - Nathan C Simon, Klaus Aktories, Joseph T Barbieri. Novel bacterial ADP-ribosylating toxins: structure and function.
Nature reviews. Microbiology.
2014 Sep; 12(9):599-611. doi:
10.1038/nrmicro3310
. [PMID: 25023120] - Shannon M Bailey, Uduak S Udoh, Martin E Young. Circadian regulation of metabolism.
The Journal of endocrinology.
2014 Aug; 222(2):R75-96. doi:
10.1530/joe-14-0200
. [PMID: 24928941] - Nady Braidy, Anne Poljak, Ross Grant, Tharusha Jayasena, Hussein Mansour, Tailoi Chan-Ling, Gilles J Guillemin, George Smythe, Perminder Sachdev. Mapping NAD(+) metabolism in the brain of ageing Wistar rats: potential targets for influencing brain senescence.
Biogerontology.
2014 Apr; 15(2):177-98. doi:
10.1007/s10522-013-9489-5
. [PMID: 24337988] - Nathan C Simon, Joseph T Barbieri. Exoenzyme S ADP-ribosylates Rab5 effector sites to uncouple intracellular trafficking.
Infection and immunity.
2014 Jan; 82(1):21-8. doi:
10.1128/iai.01059-13
. [PMID: 24101692] - Jing Xiong, Min Xia, Ming Xu, Yang Zhang, Justine M Abais, Guangbi Li, Christopher R Riebling, Joseph K Ritter, Krishna M Boini, Pin-Lan Li. Autophagy maturation associated with CD38-mediated regulation of lysosome function in mouse glomerular podocytes.
Journal of cellular and molecular medicine.
2013 Dec; 17(12):1598-607. doi:
10.1111/jcmm.12173
. [PMID: 24238063] - Yuki Ohsaki, Jinglei Cheng, Kazushi Yamairi, Xiaoyue Pan, M Mahmood Hussain, Toyoshi Fujimoto. Inhibition of ADP-ribosylation suppresses aberrant accumulation of lipidated apolipoprotein B in the endoplasmic reticulum.
FEBS letters.
2013 Nov; 587(22):3696-702. doi:
10.1016/j.febslet.2013.09.036
. [PMID: 24100140] - Taek-Keun Kim, Joo Hyun Nam, Won-Gyun Ahn, Nam-Ho Kim, Hwa-Yong Ham, Chang-Won Hong, Ju-Suk Nam, Jongho Lee, Sung-Oh Huh, Insuk So, Sung Joon Kim, Dong-Keun Song. Lys1110 of TRPM2 is critical for channel activation.
The Biochemical journal.
2013 Nov; 455(3):319-27. doi:
10.1042/bj20130303
. [PMID: 23957292] - Sandro Argüelles, Simonetta Camandola, Emmette R Hutchison, Roy G Cutler, Antonio Ayala, Mark P Mattson. Molecular control of the amount, subcellular location, and activity state of translation elongation factor 2 in neurons experiencing stress.
Free radical biology & medicine.
2013 Aug; 61(?):61-71. doi:
10.1016/j.freeradbiomed.2013.03.016
. [PMID: 23542375] - Hoa Le, Kevin A Ford, S Cyrus Khojasteh, Peter W Fan. Elucidation of the mechanism of ribose conjugation in a pyrazole-containing compound in rodent liver.
Xenobiotica; the fate of foreign compounds in biological systems.
2013 Mar; 43(3):236-45. doi:
10.3109/00498254.2012.715211
. [PMID: 22931212] - Hai Wang, Yuqing Lu, Pei Liu, Wei Wen, Jianhua Zhang, Xiaochun Ge, Yiji Xia. The ammonium/nitrate ratio is an input signal in the temperature-modulated, SNC1-mediated and EDS1-dependent autoimmunity of nudt6-2 nudt7.
The Plant journal : for cell and molecular biology.
2013 Jan; 73(2):262-75. doi:
10.1111/tpj.12032
. [PMID: 23004358] - Yixiang Li, Pan Wang, Ping Zhao, Sijia Zhu, Xiaobing Wang, Quanhong Liu. Apoptosis induced by sonodynamic treatment by protoporphyrin IX on MDA-MB-231 cells.
Ultrasonics.
2012 Apr; 52(4):490-6. doi:
10.1016/j.ultras.2011.10.013
. [PMID: 22115526] - Suomeng Dong, Weixiao Yin, Guanghui Kong, Xinyu Yang, Dinah Qutob, Qinghe Chen, Shiv D Kale, Yangyang Sui, Zhengguang Zhang, Daolong Dou, Xiaobo Zheng, Mark Gijzen, Brett M Tyler, Yuanchao Wang. Phytophthora sojae avirulence effector Avr3b is a secreted NADH and ADP-ribose pyrophosphorylase that modulates plant immunity.
PLoS pathogens.
2011 Nov; 7(11):e1002353. doi:
10.1371/journal.ppat.1002353
. [PMID: 22102810] - Catello Di Martino, Maria Luigia Pallotta. Mitochondria-localized NAD biosynthesis by nicotinamide mononucleotide adenylyltransferase in Jerusalem artichoke (Helianthus tuberosus L.) heterotrophic tissues.
Planta.
2011 Oct; 234(4):657-70. doi:
10.1007/s00425-011-1428-6
. [PMID: 21598001] - Adriana Sumoza-Toledo, Ingo Lange, Hanna Cortado, Harivadan Bhagat, Yasuo Mori, Andrea Fleig, Reinhold Penner, Santiago Partida-Sánchez. Dendritic cell maturation and chemotaxis is regulated by TRPM2-mediated lysosomal Ca2+ release.
FASEB journal : official publication of the Federation of American Societies for Experimental Biology.
2011 Oct; 25(10):3529-42. doi:
10.1096/fj.10-178483
. [PMID: 21753080] - Ida Casella, Caterina Ambrosio, Maria Cristina Grò, Paola Molinari, Tommaso Costa. Divergent agonist selectivity in activating β1- and β2-adrenoceptors for G-protein and arrestin coupling.
The Biochemical journal.
2011 Aug; 438(1):191-202. doi:
10.1042/bj20110374
. [PMID: 21561432] - Hai Wang, Qin Liang, Kaiming Cao, Xiaochun Ge. Endogenous protein mono-ADP-ribosylation in Arabidopsis thaliana.
Planta.
2011 Jun; 233(6):1287-92. doi:
10.1007/s00425-011-1415-y
. [PMID: 21519881] - Nadia Dani, Emilia Mayo, Annalisa Stilla, Adriano Marchegiani, Simone Di Paola, Daniela Corda, Maria Di Girolamo. Mono-ADP-ribosylation of the G protein betagamma dimer is modulated by hormones and inhibited by Arf6.
The Journal of biological chemistry.
2011 Feb; 286(8):5995-6005. doi:
10.1074/jbc.m110.112466
. [PMID: 21148312] - Sung-Liang YU, Shih-bin LIN, Yung-luen YU, Min-hui CHIEN, Kuo-jung SU, Ching-Ju LIN, Tzong-der WAY, Giou-Teng YIANG, Chai-Ching LIN, De-Chuan CHAN, Horng-Jyh HARN, Yi-Lin Sophia CHEN. Isochaihulactone protects PC12 cell against H(2)O(2) induced oxidative stress and exerts the potent anti-aging effects in D-galactose aging mouse model.
Acta pharmacologica Sinica.
2010 Dec; 31(12):1532-40. doi:
10.1038/aps.2010.152
. [PMID: 21042289] - Mehmet Yasar, Bulent Uysal, Umit Kaldirim, Yesim Oztas, Serdar Sadir, Mehmet Ozler, Turgut Topal, Omer Coskun, Abdullah Kilic, Tuncer Cayci, Yavuz Poyrazoglu, Sukru Oter, Ahmet Korkmaz, Ahmet Guven. Poly(ADP-ribose) polymerase inhibition modulates experimental acute necrotizing pancreatitis-induced oxidative stress, bacterial translocation and neopterin concentrations in rats.
Experimental biology and medicine (Maywood, N.J.).
2010 Sep; 235(9):1126-33. doi:
10.1258/ebm.2010.010091
. [PMID: 20705631] - Niranjani Jambunathan, Anuradha Penaganti, Yuhong Tang, Ramamurthy Mahalingam. Modulation of redox homeostasis under suboptimal conditions by Arabidopsis nudix hydrolase 7.
BMC plant biology.
2010 Aug; 10(?):173. doi:
10.1186/1471-2229-10-173
. [PMID: 20704736] - Seul Ki Lim, Jong Chun Kim, Chang Jong Moon, Gye Yeop Kim, Ho Jae Han, Soo Hyun Park. Formaldehyde induces apoptosis through decreased Prx 2 via p38 MAPK in lung epithelial cells.
Toxicology.
2010 May; 271(3):100-6. doi:
10.1016/j.tox.2010.03.011
. [PMID: 20347000] - Fanghua Qi, Anyuan Li, Lin Zhao, Huanli Xu, Yoshinori Inagaki, Dongliang Wang, Xiaoyan Cui, Bo Gao, Norihiro Kokudo, Munehiro Nakata, Wei Tang. Cinobufacini, an aqueous extract from Bufo bufo gargarizans Cantor, induces apoptosis through a mitochondria-mediated pathway in human hepatocellular carcinoma cells.
Journal of ethnopharmacology.
2010 Apr; 128(3):654-61. doi:
10.1016/j.jep.2010.02.022
. [PMID: 20193751] - Kazuya Ishikawa, Kazuya Yoshimura, Kazuo Harada, Eiichiro Fukusaki, Takahisa Ogawa, Masahiro Tamoi, Shigeru Shigeoka. AtNUDX6, an ADP-ribose/NADH pyrophosphohydrolase in Arabidopsis, positively regulates NPR1-dependent salicylic acid signaling.
Plant physiology.
2010 Apr; 152(4):2000-12. doi:
10.1104/pp.110.153569
. [PMID: 20181750] - Srinath Pashikanti, David R de Alba, Gilbert A Boissonneault, Daniel Cervantes-Laurean. Rutin metabolites: novel inhibitors of nonoxidative advanced glycation end products.
Free radical biology & medicine.
2010 Mar; 48(5):656-63. doi:
10.1016/j.freeradbiomed.2009.11.019
. [PMID: 19969069] - Zhu-Zhong Mei, Lin-Hua Jiang. Requirement for the N-terminal coiled-coil domain for expression and function, but not subunit interaction of, the ADPR-activated TRPM2 channel.
The Journal of membrane biology.
2009 Jul; 230(2):93-9. doi:
10.1007/s00232-009-9190-4
. [PMID: 19652898] - Ingo Lange, Shinichiro Yamamoto, Santiago Partida-Sanchez, Yasuo Mori, Andrea Fleig, Reinhold Penner. TRPM2 functions as a lysosomal Ca2+-release channel in beta cells.
Science signaling.
2009 May; 2(71):ra23. doi:
10.1126/scisignal.2000278
. [PMID: 19454650] - Till K Pellny, Vittoria Locato, Pedro Diaz Vivancos, Jelena Markovic, Laura De Gara, Federico V Pallardó, Christine H Foyer. Pyridine nucleotide cycling and control of intracellular redox state in relation to poly (ADP-ribose) polymerase activity and nuclear localization of glutathione during exponential growth of Arabidopsis cells in culture.
Molecular plant.
2009 May; 2(3):442-56. doi:
10.1093/mp/ssp008
. [PMID: 19825628] - Takahisa Ogawa, Kazuya Ishikawa, Kazuo Harada, Eiichiro Fukusaki, Kazuya Yoshimura, Shigeru Shigeoka. Overexpression of an ADP-ribose pyrophosphatase, AtNUDX2, confers enhanced tolerance to oxidative stress in Arabidopsis plants.
The Plant journal : for cell and molecular biology.
2009 Jan; 57(2):289-301. doi:
10.1111/j.1365-313x.2008.03686.x
. [PMID: 18798872] - Blanka Szurmak, Aleksandra Wysłouch-Cieszyńska, Małgorzata Wszelaka-Rylik, Wojciech Bal, Marta Dobrzańska. A diadenosine 5',5''-P1P4 tetraphosphate (Ap4A) hydrolase from Arabidopsis thaliana that is activated preferentially by Mn2+ ions.
Acta biochimica Polonica.
2008; 55(1):151-60. doi:
10.18388/abp.2008_3173
. [PMID: 18345354] - Santiago Partida-Sanchez, Andreas Gasser, Ralf Fliegert, Cornelia C Siebrands, Werner Dammermann, Guixiu Shi, Betty J Mousseau, Adriana Sumoza-Toledo, Harivadan Bhagat, Timothy F Walseth, Andreas H Guse, Frances E Lund. Chemotaxis of mouse bone marrow neutrophils and dendritic cells is controlled by adp-ribose, the major product generated by the CD38 enzyme reaction.
Journal of immunology (Baltimore, Md. : 1950).
2007 Dec; 179(11):7827-39. doi:
10.4049/jimmunol.179.11.7827
. [PMID: 18025229] - Mustafa Naziroğlu. New molecular mechanisms on the activation of TRPM2 channels by oxidative stress and ADP-ribose.
Neurochemical research.
2007 Nov; 32(11):1990-2001. doi:
10.1007/s11064-007-9386-x
. [PMID: 17562166] - Xiaochun Ge, Guo-Jing Li, Sheng-Bing Wang, Huifen Zhu, Tong Zhu, Xun Wang, Yiji Xia. AtNUDT7, a negative regulator of basal immunity in Arabidopsis, modulates two distinct defense response pathways and is involved in maintaining redox homeostasis.
Plant physiology.
2007 Sep; 145(1):204-15. doi:
10.1104/pp.107.103374
. [PMID: 17660350] - René Bartz, Joachim Seemann, John K Zehmer, Ginette Serrero, Kent D Chapman, Richard G W Anderson, Pingsheng Liu. Evidence that mono-ADP-ribosylation of CtBP1/BARS regulates lipid storage.
Molecular biology of the cell.
2007 Aug; 18(8):3015-25. doi:
10.1091/mbc.e06-09-0869
. [PMID: 17538025] - Zheng Qing Fu, Ming Guo, Byeong-ryool Jeong, Fang Tian, Thomas E Elthon, Ronald L Cerny, Dorothee Staiger, James R Alfano. A type III effector ADP-ribosylates RNA-binding proteins and quells plant immunity.
Nature.
2007 May; 447(7142):284-8. doi:
10.1038/nature05737
. [PMID: 17450127] - Yukinori Yabuta, Takahisa Ogawa, Kazuya Yoshimura, Shigeru Shigeoka. [Regulation mechanism of the intercellular redox status involved in the response to environmental stress in higher plants].
Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme.
2007 May; 52(6 Suppl):578-84. doi:
"
. [PMID: 17566357] - Claudia Cerella, Cristina Mearelli, Sergio Ammendola, Milena De Nicola, Maria D'Alessio, Andrea Magrini, Antonio Bergamaschi, Lina Ghibelli. Molecular determinants involved in the increase of damage-induced apoptosis and delay of secondary necrosis due to inhibition of mono(ADP-ribosyl)ation.
Annals of the New York Academy of Sciences.
2006 Dec; 1090(?):50-8. doi:
10.1196/annals.1378.005
. [PMID: 17384246] - Zhu-Zhong Mei, Hong-Ju Mao, Lin-Hua Jiang. Conserved cysteine residues in the pore region are obligatory for human TRPM2 channel function.
American journal of physiology. Cell physiology.
2006 Nov; 291(5):C1022-8. doi:
10.1152/ajpcell.00606.2005
. [PMID: 16822940] - A Srivastava, A K Tripathi. Adenosine diphosphate ribosylation of dinitrogenase reductase and adenylylation of glutamine synthetase control ammonia excretion in ethylenediamine-resistant mutants of Azospirillum brasilense Sp7.
Current microbiology.
2006 Oct; 53(4):317-23. doi:
10.1007/s00284-006-0058-x
. [PMID: 16972125] - Hui-Zhong Zhou, Raymond A Swanson, Ursula Simonis, Xiaokui Ma, Gary Cecchini, Mary O Gray. Poly(ADP-ribose) polymerase-1 hyperactivation and impairment of mitochondrial respiratory chain complex I function in reperfused mouse hearts.
American journal of physiology. Heart and circulatory physiology.
2006 Aug; 291(2):H714-23. doi:
10.1152/ajpheart.00823.2005
. [PMID: 16582021] - Mairéad A Carroll, Anabel B Doumad, Jing Li, Monica K Cheng, J R Falck, John C McGiff. Adenosine2A receptor vasodilation of rat preglomerular microvessels is mediated by EETs that activate the cAMP/PKA pathway.
American journal of physiology. Renal physiology.
2006 Jul; 291(1):F155-61. doi:
10.1152/ajprenal.00231.2005
. [PMID: 16478979] - Masakazu Ishii, Shunichi Shimizu, Tamio Hagiwara, Teruaki Wajima, Akira Miyazaki, Yasuo Mori, Yuji Kiuchi. Extracellular-added ADP-ribose increases intracellular free Ca2+ concentration through Ca2+ release from stores, but not through TRPM2-mediated Ca2+ entry, in rat beta-cell line RIN-5F.
Journal of pharmacological sciences.
2006 Jun; 101(2):174-8. doi:
10.1254/jphs.scj06001x
. [PMID: 16766853] - Andreas Gasser, Günter Glassmeier, Ralf Fliegert, Matthias F Langhorst, Stephan Meinke, Dörte Hein, Sylvia Krüger, Karin Weber, Inka Heiner, Norman Oppenheimer, Jürgen R Schwarz, Andreas H Guse. Activation of T cell calcium influx by the second messenger ADP-ribose.
The Journal of biological chemistry.
2006 Feb; 281(5):2489-96. doi:
10.1074/jbc.m506525200
. [PMID: 16316998] - Michael Leuber, Frank Orlik, Bettina Schiffler, Albert Sickmann, Roland Benz. Vegetative insecticidal protein (Vip1Ac) of Bacillus thuringiensis HD201: evidence for oligomer and channel formation.
Biochemistry.
2006 Jan; 45(1):283-8. doi:
10.1021/bi051351z
. [PMID: 16388604] - Muammer Kendirci, Zsuzsanna Zsengellér, Trinity J Bivalacqua, Serap Gur, Mustafa F Usta, Min Chen, Csaba Szabó, Wayne J G Hellstrom. Poly(Adenosine diphosphate-ribose) polymerase inhibition preserves erectile function in rats after cavernous nerve injury.
The Journal of urology.
2005 Nov; 174(5):2054-9. doi:
10.1097/01.ju.0000176484.35636.e5
. [PMID: 16217393] - Kamil Olejnik, Elzbieta Kraszewska. Cloning and characterization of an Arabidopsis thaliana Nudix hydrolase homologous to the mammalian GFG protein.
Biochimica et biophysica acta.
2005 Sep; 1752(2):133-41. doi:
10.1016/j.bbapap.2005.07.021
. [PMID: 16154395] - Claudia L Rocha, Elizabeth A Rucks, Deanne M Vincent, Joan C Olson. Examination of the coordinate effects of Pseudomonas aeruginosa ExoS on Rac1.
Infection and immunity.
2005 Sep; 73(9):5458-67. doi:
10.1128/iai.73.9.5458-5467.2005
. [PMID: 16113262] - Takahisa Ogawa, Yayoi Ueda, Kazuya Yoshimura, Shigeru Shigeoka. Comprehensive analysis of cytosolic Nudix hydrolases in Arabidopsis thaliana.
The Journal of biological chemistry.
2005 Jul; 280(26):25277-83. doi:
10.1074/jbc.m503536200
. [PMID: 15878881] - L C Freytag, J D Clements. Mucosal adjuvants.
Vaccine.
2005 Mar; 23(15):1804-13. doi:
10.1016/j.vaccine.2004.11.010
. [PMID: 15734046] - Sookhee Bang, Satoshi Nagata, Masanori Onda, Robert J Kreitman, Ira Pastan. HA22 (R490A) is a recombinant immunotoxin with increased antitumor activity without an increase in animal toxicity.
Clinical cancer research : an official journal of the American Association for Cancer Research.
2005 Feb; 11(4):1545-50. doi:
10.1158/1078-0432.ccr-04-1939
. [PMID: 15746059] - Xianfeng Gu, Zhenjun Yang, Liangren Zhang, Svenja Kunerth, Ralf Fliegert, Karin Weber, Andreas H Guse, Lihe Zhang. Synthesis and biological evaluation of novel membrane-permeant cyclic ADP-ribose mimics: N1-[(5''-O-phosphorylethoxy)methyl]-5'-O-phosphorylinosine 5',5''-cyclicpyrophosphate (cIDPRE) and 8-substituted derivatives.
Journal of medicinal chemistry.
2004 Nov; 47(23):5674-82. doi:
10.1021/jm040092t
. [PMID: 15509166] - K Hill, C D Benham, S McNulty, A D Randall. Flufenamic acid is a pH-dependent antagonist of TRPM2 channels.
Neuropharmacology.
2004 Sep; 47(3):450-60. doi:
10.1016/j.neuropharm.2004.04.014
. [PMID: 15275834] - Khurram Ayub, Maurice B Hallett. The mitochondrial ADPR link between Ca2+ store release and Ca2+ influx channel opening in immune cells.
FASEB journal : official publication of the Federation of American Societies for Experimental Biology.
2004 Sep; 18(12):1335-8. doi:
10.1096/fj.04-1888hyp
. [PMID: 15333576] - Elena Fonfria, Ian C B Marshall, Christopher D Benham, Izzy Boyfield, Jason D Brown, Kerstin Hill, Jane P Hughes, Stephen D Skaper, Shaun McNulty. TRPM2 channel opening in response to oxidative stress is dependent on activation of poly(ADP-ribose) polymerase.
British journal of pharmacology.
2004 Sep; 143(1):186-92. doi:
10.1038/sj.bjp.0705914
. [PMID: 15302683] - Philip Ian Padilla, Gustavo Pacheco-Rodriguez, Joel Moss, Martha Vaughan. Nuclear localization and molecular partners of BIG1, a brefeldin A-inhibited guanine nucleotide-exchange protein for ADP-ribosylation factors.
Proceedings of the National Academy of Sciences of the United States of America.
2004 Mar; 101(9):2752-7. doi:
10.1073/pnas.0307345101
. [PMID: 14973189] - Michiyo Sugiyama, Atsushi Imai, Tatsuro Furui, Teruhiko Tamaya. Evidence for tight coupling of Gi protein-mediated lysophosphatidic acid receptor to stimulated cytokine production in ovarian cancer cell.
American journal of obstetrics and gynecology.
2004 Mar; 190(3):680-5. doi:
10.1016/j.ajog.2003.09.069
. [PMID: 15041999] - Işil Albeniz, Ozlem Demir, Rüstem Nurten, Engin Bermek. NAD glycohydrolase activities and ADP-ribose uptake in erythrocytes from normal subjects and cancer patients.
Bioscience reports.
2004 Feb; 24(1):41-53. doi:
10.1023/b:bire.0000037755.42767.a4
. [PMID: 15499831] - Jeffrey O Urieto, TieFu Liu, Jennifer H Black, Kimberley A Cohen, Philip D Hall, Mark C Willingham, Lewis K Pennell, Donna E Hogge, Robert J Kreitman, Arthur E Frankel. Expression and purification of the recombinant diphtheria fusion toxin DT388IL3 for phase I clinical trials.
Protein expression and purification.
2004 Jan; 33(1):123-33. doi:
10.1016/j.pep.2003.09.003
. [PMID: 14680969]