Catechol (BioDeep_00000002951)
Secondary id: BioDeep_00000014388, BioDeep_00000405407
natural product PANOMIX_OTCML-2023 BioNovoGene_Lab2019
代谢物信息卡片
化学式: C6H6O2 (110.0368)
中文名称: 邻苯二酚, 儿茶酚
谱图信息:
最多检出来源 Homo sapiens(plant) 16.61%
分子结构信息
SMILES: C1=CC=C(C(=C1)O)O
InChI: InChI=1/C6H6O2/c7-5-3-1-2-4-6(5)8/h1-4,7-8H
描述信息
A benzenediol comprising of a benzene core carrying two hydroxy substituents ortho to each other.
Acquisition and generation of the data is financially supported in part by CREST/JST.
同义名列表
86 个代谢物同义名
Pyrocatechol suppliers in China; Catechol; InChI=1\C6H6O2\c7-5-3-1-2-4-6(5)8\h1-4,7-8; Durafur Developer CFouramine PCH; Pyrocatechinic acidPyrocatechol; C.I. Oxidation Base 26; ortho-Dihydroxybenzene; Catechol-pyrocatechol; Benzene, o-dihydroxy-; Pyrokatechin [Czech]; CI Oxidation Base 26; 1,2-Dihydroxybenzene; Pyrokatechol [Czech]; Pyrocatechinic acid; ortho-Hydroxyphenol; Durafur developer C; ortho-Phenylenediol; pyrocatechol-ul-14C; nchembio801-comp10; ortho-Dioxybenzene; Phthalhydroquinone; O-Dihydroxybenzene; ortho-Hydroquinone; ortho-Benzenediol; Catechol (phenol); Catechin (phenol); Benzene-1,2-diol; Katechol [Czech]; EINECS 204-427-5; Catechol-UL-14C; NCGC00091262-01; AB-131\40235236; 1,2-Benzenediol; O-Phenylenediol; NCGC00015283-01; 2-Hydroxyphenol; O-Hydroxyphenol; Oxyphenic acid; Pelagol grey C; O-Hydroquinone; O-Dioxybenzene; 430749_ALDRICH; Pyrocatechine; Fouramine PCH; O-Benzenediol; Lopac0_000280; Brenzcatechin; Lopac-C-9510; Pyrocatechin; pyrocatechol; ZINC00330145; Fourrine 68; BRN 0471401; CHEBI:18135; AIDS-108194; benzenediol; C9593_SIGMA; 135011_SIAL; EU-0100280; C9510_SIAL; 37349-32-9; o-Diphenol; 16474-89-8; NCI-C55856; C3561_SIAL; AIDS108194; C.I. 76500; 12385-08-9; WLN: QR BQ; 16474-90-1; HSDB 1436; CCRIS 741; AI3-03995; ST5214346; NSC 1573; 120-80-9; CI 76500; NSC1573; C00090; C15571; C01785; c0097; CAQ; Benzenediol; Catechol; Catechol
数据库引用编号
58 个数据库交叉引用编号
- ChEBI: CHEBI:33566
- ChEBI: CHEBI:18135
- KEGG: C00090
- KEGG: C15571
- KEGG: C01785
- KEGGdrug: D91943
- PubChem: 289
- Metlin: METLIN282
- DrugBank: DB02232
- ChEMBL: CHEMBL280998
- MetaCyc: CATECHOL
- CAS: 26982-53-6
- CAS: 12385-08-9
- CAS: 120-80-9
- MoNA: CCMSLIB00005720813
- MoNA: MoNA038370
- MoNA: MoNA036983
- MoNA: MoNA036981
- MoNA: MoNA036980
- MoNA: MoNA035549
- MoNA: MoNA035548
- MoNA: MoNA035547
- MoNA: MoNA034394
- MoNA: MoNA034392
- MoNA: MoNA034391
- MoNA: EMBL-MCF_spec74202
- MoNA: EMBL-MCF_spec74105
- MoNA: RIKENPlaSMA005511
- MoNA: RIKENPlaSMA005504
- MoNA: RIKENPlaSMA005497
- MoNA: RIKENPlaSMA005478
- MoNA: RIKENPlaSMA005471
- MoNA: RIKENPlaSMA005453
- MoNA: RIKENPlaSMA005446
- MoNA: FiehnHILIC001108
- MoNA: PT203943
- MoNA: PT203940
- MoNA: CCMSLIB00000578318
- MoNA: PS039401
- MoNA: PR100636
- MoNA: PR100635
- MoNA: PS039402
- PMhub: MS000007316
- MetaboLights: MTBLC18135
- PubChem: 3390
- KNApSAcK: C00002644
- PDB-CCD: CAQ
- 3DMET: B00023
- NIKKAJI: J2.921A
- ChEBI: CHEBI:17701
- PubChem: 4915
- 3DMET: B00351
- PubChem: 17396563
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-427
- KNApSAcK: 17701
- KNApSAcK: 18135
- HERB: HBIN000735
- LOTUS: LTS0178554
分类词条
相关代谢途径
Reactome(0)
BioCyc(18)
- diphenylamine degradation
- alkylnitronates degradation
- superpathway of aromatic compound degradation
- dibenzo-p-dioxin degradation
- phenol degradation I (aerobic)
- o-diquinones biosynthesis
- superpathway of aromatic compound degradation via 2-hydroxypentadienoate
- superpathway of aromatic compound degradation via 3-oxoadipate
- meta cleavage pathway of aromatic compounds
- 2-nitrophenol degradation
- catechol degradation II (meta-cleavage pathway)
- catechol degradation I (meta-cleavage pathway)
- aromatic compounds degradation via β-ketoadipate
- catechol degradation III (ortho-cleavage pathway)
- catechol degradation to β-ketoadipate
- mandelate degradation to acetyl-CoA
- benzene degradation
- indole-3-acetate degradation
代谢反应
190 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(55)
- 2-nitrobenzoate degradation II:
H+ + NAD(P)H + O2 + anthranilate ⟶ CO2 + NAD(P)+ + ammonium + catechol
- anthranilate degradation I (aerobic):
H+ + NAD(P)H + O2 + anthranilate ⟶ CO2 + NAD(P)+ + ammonium + catechol
- phenol degradation I (aerobic):
H+ + NADPH + O2 + phenol ⟶ H2O + NADP+ + catechol
- nitrobenzene degradation II:
NADH + O2 + nitrobenzene ⟶ NAD+ + catechol + nitrite
- indole-3-acetate degradation:
H+ + NAD(P)H + O2 + anthranilate ⟶ CO2 + NAD(P)+ + ammonium + catechol
- dibenzo-p-dioxin degradation:
H+ + NADH + O2 + dibenzo-p-dioxin ⟶ 4,4a-dihydroxy-dihydro-dibenzo-p-dioxin + NAD+
- superpathway of aromatic compound degradation via 2-hydroxypentadienoate:
O2 + catechol ⟶ H+ + HMS
- diphenylamine degradation:
H+ + NADH + O2 + diphenylamine ⟶ NAD+ + aniline + catechol
- superpathway of aromatic compound degradation via 3-oxoadipate:
O2 + catechol ⟶ H+ + HMS
- superpathway of salicylate degradation:
O2 + catechol ⟶ H+ + cis,cis-muconate
- naphthalene degradation to acetyl-CoA:
O2 + catechol ⟶ H+ + HMS
- benzene degradation:
(1R,2S)-cyclohexa-3,5-diene-1,2-diol + NAD+ ⟶ H+ + NADH + catechol
- aniline degradation:
1-aminocyclohexa-3,5-diene-1,2-diol ⟶ ammonium + catechol
- salicylate degradation I:
H+ + NADH + O2 + salicylate ⟶ CO2 + H2O + NAD+ + catechol
- benzoate degradation I (aerobic):
3,5-cyclohexadiene-1,2-diol-1-carboxylate + NAD+ ⟶ CO2 + NADH + catechol
- meta cleavage pathway of aromatic compounds:
O2 + catechol ⟶ H+ + HMS
- 2-nitrophenol degradation:
2-nitrophenol + H+ + NADPH + O2 ⟶ H2O + NADP+ + catechol + nitrite
- catechol degradation to 2-hydroxypentadienoate II:
O2 + catechol ⟶ H+ + HMS
- catechol degradation to 2-hydroxypentadienoate I:
O2 + catechol ⟶ H+ + HMS
- catechol degradation II (meta-cleavage pathway):
O2 + catechol ⟶ H+ + HMS
- catechol degradation I (meta-cleavage pathway):
O2 + catechol ⟶ H+ + HMS
- aromatic compounds degradation via β-ketoadipate:
O2 + catechol ⟶ H+ + cis,cis-muconate
- catechol degradation III (ortho-cleavage pathway):
O2 + catechol ⟶ H+ + cis,cis-muconate
- catechol degradation to β-ketoadipate:
O2 + catechol ⟶ H+ + cis,cis-muconate
- toluene degradation IV (aerobic) (via catechol):
O2 + catechol ⟶ H+ + HMS
- mandelate degradation to acetyl-CoA:
O2 + catechol ⟶ H+ + HMS
- 2-chlorobenzoate degradation:
2-chlorobenzoate + H+ + NADH + O2 ⟶ CO2 + NAD+ + catechol + chloride
- superpathway of aerobic toluene degradation:
4-methylphenol + H2O + an oxidized azurin ⟶ 4-hydroxybenzyl alcohol + H+ + a reduced azurin
- benzenesulfonate degradation:
NADH + O2 + benzenesulfonate ⟶ NAD+ + catechol + sulfite
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- nitrobenzene degradation II:
NADH + O2 + nitrobenzene ⟶ NAD+ + catechol + nitrite
- anthranilate degradation I (aerobic):
H+ + NAD(P)H + O2 + anthranilate ⟶ CO2 + NAD(P)+ + ammonia + catechol
- benzoate degradation I (aerobic):
(1R,6S)-1,6-dihydroxycyclohexa-2,4-diene-1-carboxylate + NAD+ ⟶ CO2 + NADH + catechol
- benzenesulfonate degradation:
NADH + O2 + benzenesulfonate ⟶ NAD+ + catechol + sulfite
- catechol degradation to β-ketoadipate:
O2 + catechol ⟶ H+ + cis,cis-muconate
- catechol degradation to β-ketoadipate:
O2 + catechol ⟶ H+ + cis,cis-muconate
- catechol degradation to β-ketoadipate:
O2 + catechol ⟶ H+ + cis,cis-muconate
- aromatic compounds degradation via β-ketoadipate:
O2 + protocatechuate ⟶ 3-carboxy-cis,cis-muconate + H+
- catechol degradation to β-ketoadipate:
O2 + catechol ⟶ H+ + cis,cis-muconate
- catechol degradation III (ortho-cleavage pathway):
O2 + catechol ⟶ H+ + cis,cis-muconate
- salicylate degradation I:
H+ + NADH + O2 + salicylate ⟶ CO2 + H2O + NAD+ + catechol
- salicylate degradation I:
H+ + NADH + O2 + salicylate ⟶ CO2 + H2O + NAD+ + catechol
- anthranilate degradation I (aerobic):
H+ + NAD(P)H + O2 + anthranilate ⟶ CO2 + NAD(P)+ + ammonium + catechol
- superpathway of aromatic compound degradation via 3-oxoadipate:
O2 + trp ⟶ N-formylkynurenine
- benzoate degradation I (aerobic):
3,5-cyclohexadiene-1,2-diol-1-carboxylate + NAD+ ⟶ CO2 + NADH + catechol
- catechol degradation to β-ketoadipate:
O2 + catechol ⟶ H+ + cis,cis-muconate
- catechol degradation to 2-oxopent-4-enoate I:
O2 + catechol ⟶ H+ + HMS
- salicylate degradation I:
H+ + NADH + O2 + salicylate ⟶ CO2 + H2O + NAD+ + catechol
- phenol degradation I (aerobic):
H+ + NADPH + O2 + phenol ⟶ H2O + NADP+ + catechol
- salicylate degradation I:
H+ + NADH + O2 + salicylate ⟶ CO2 + H2O + NAD+ + catechol
- phenol degradation I (aerobic):
H+ + NADPH + O2 + phenol ⟶ H2O + NADP+ + catechol
- catechol degradation to β-ketoadipate:
O2 + catechol ⟶ H+ + cis,cis-muconate
- phenol degradation I (aerobic):
H+ + NADPH + O2 + phenol ⟶ H2O + NADP+ + catechol
- superpathway of aromatic compound degradation:
O2 + protocatechuate ⟶ 3-carboxy-cis,cis-muconate + H+
- benzoate degradation I (aerobic):
3,5-cyclohexadiene-1,2-diol-1-carboxylate + NAD+ ⟶ CO2 + NADH + catechol
WikiPathways(3)
- Benzene metabolism:
1,2-Benzoquinone ⟶ Catechol
- Vanillin and isovanillin metabolism:
Protocatechuic acid ⟶ Catechol
- Flavan-3-ol metabolic pathway:
(-)-Epicatechin ⟶ (-)-Epicatechin-3'-sulfate
Plant Reactome(0)
INOH(0)
PlantCyc(108)
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- nitrobenzene degradation II:
NADH + O2 + nitrobenzene ⟶ NAD+ + catechol + nitrite
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- anthranilate degradation I (aerobic):
H+ + NAD(P)H + O2 + anthranilate ⟶ CO2 + NAD(P)+ + ammonium + catechol
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- anthranilate degradation I (aerobic):
H+ + NAD(P)H + O2 + anthranilate ⟶ CO2 + NAD(P)+ + ammonium + catechol
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- nitrobenzene degradation II:
NADH + O2 + nitrobenzene ⟶ NAD+ + catechol + nitrite
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- guaiacol biosynthesis:
SAM + catechol ⟶ H+ + SAH + guaiacol
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- guaiacol biosynthesis:
SAM + catechol ⟶ H+ + SAH + guaiacol
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- guaiacol biosynthesis:
SAM + catechol ⟶ H+ + SAH + guaiacol
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- guaiacol biosynthesis:
SAM + catechol ⟶ H+ + SAH + guaiacol
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
COVID-19 Disease Map(0)
PathBank(24)
- Tyrosine Metabolism:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Alkaptonuria:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Hawkinsinuria:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Tyrosinemia Type I:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Disulfiram Action Pathway:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Tyrosinemia, Transient, of the Newborn:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Dopamine beta-Hydroxylase Deficiency:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Monoamine Oxidase-A Deficiency (MAO-A):
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Tyrosine Metabolism:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Alkaptonuria:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Hawkinsinuria:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Tyrosinemia Type I:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Tyrosinemia, Transient, of the Newborn:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Dopamine beta-Hydroxylase Deficiency:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Monoamine Oxidase-A Deficiency (MAO-A):
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Tyrosine Metabolism:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Tyrosine Metabolism:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Tyrosine Metabolism:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Alkaptonuria:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Hawkinsinuria:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Tyrosinemia Type I:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Tyrosinemia, Transient, of the Newborn:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Dopamine beta-Hydroxylase Deficiency:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Monoamine Oxidase-A Deficiency (MAO-A):
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
PharmGKB(0)
151 个相关的物种来源信息
- 3808 - Acacia: LTS0178554
- 13328 - Achillea: LTS0178554
- 282720 - Achillea aspleniifolia: 10.1007/BF02908196
- 13329 - Achillea millefolium: 10.1007/BF02908196
- 13329 - Achillea millefolium: LTS0178554
- 482479 - Achillea millefolium var. borealis: 10.1007/BF02908196
- 482479 - Achillea millefolium var. borealis: LTS0178554
- 282770 - Achillea virescens: 10.1007/BF02908196
- 212275 - Alchornea: LTS0178554
- 681403 - Alchornea latifolia: 10.1016/S0367-326X(99)00133-1
- 681403 - Alchornea latifolia: LTS0178554
- 25641 - Aloe: LTS0178554
- 1080010 - Aloe africana: 10.1590/S1517-838220090004000023
- 1080010 - Aloe africana: LTS0178554
- 117798 - Aloe ferox: 10.1271/BBB.60659
- 117798 - Aloe ferox: LTS0178554
- 4056 - Apocynaceae: LTS0178554
- 3702 - Arabidopsis thaliana: 10.1111/TPJ.14594
- 51383 - Asphodelaceae: LTS0178554
- 4210 - Asteraceae: LTS0178554
- 137670 - Bistorta: LTS0178554
- 125587 - Bistorta officinalis: 10.4268/CJCMM20161721
- 125587 - Bistorta officinalis: LTS0178554
- 3700 - Brassicaceae: LTS0178554
- 313923 - Caesulia: LTS0178554
- 313924 - Caesulia axillaris: 10.1007/BF01990427
- 313924 - Caesulia axillaris: LTS0178554
- 7711 - Chordata: LTS0178554
- 13442 - Coffea: 10.1021/JF060460X
- 13442 - Coffea: LTS0178554
- 23159 - Crataegus: LTS0178554
- 510735 - Crataegus pinnatifida: LTS0178554
- 510735 - Crataegus pinnatifida: NA
- 126747 - Cynanchum: LTS0178554
- 59319 - Dactylorhiza: LTS0178554
- 1219355 - Dactylorhiza hatagirea: 10.1248/CPB.47.1618
- 3039 - Euglena gracilis: 10.3389/FBIOE.2021.662655
- 2759 - Eukaryota: LTS0178554
- 3977 - Euphorbiaceae: LTS0178554
- 3803 - Fabaceae: LTS0178554
- 3503 - Fagaceae: LTS0178554
- 3746 - Fragaria: 10.1016/J.JFF.2014.08.013
- 4751 - Fungi: LTS0178554
- 59323 - Gymnadenia: LTS0178554
- 59324 - Gymnadenia conopsea: 10.1248/CPB.54.506
- 59324 - Gymnadenia conopsea: LTS0178554
- 9604 - Hominidae: LTS0178554
- 9605 - Homo: LTS0178554
- 9606 - Homo sapiens: 10.1007/S11306-015-0840-5
- 9606 - Homo sapiens: LTS0178554
- 629714 - Hypericaceae: LTS0178554
- 55962 - Hypericum: LTS0178554
- 65561 - Hypericum perforatum: 10.1055/S-2007-969352
- 65561 - Hypericum perforatum: LTS0178554
- 13097 - Illicium: LTS0178554
- 124774 - Illicium fargesii: 10.1248/CPB.56.1201
- 124774 - Illicium fargesii: LTS0178554
- 1202800 - Illicium simonsii: 10.1248/CPB.56.1201
- 124778 - Illicium verum: 10.1248/CPB.56.1201
- 4447 - Liliopsida: LTS0178554
- 3398 - Magnoliopsida: LTS0178554
- 40674 - Mammalia: LTS0178554
- 33208 - Metazoa: LTS0178554
- 2212703 - Mucoromycetes: LTS0178554
- 1913637 - Mucoromycota: LTS0178554
- 4747 - Orchidaceae: LTS0178554
- 1219355 - Orchis latifolia: 10.1248/CPB.47.1618
- 254780 - Persicaria amphibia: 10.4268/CJCMM20161721
- 4836 - Phycomyces: LTS0178554
- 4837 - Phycomyces blakesleeanus: 10.1016/0031-9422(96)00146-X
- 4837 - Phycomyces blakesleeanus: LTS0178554
- 1344966 - Phycomycetaceae: LTS0178554
- 3318 - Pinaceae: LTS0178554
- 58019 - Pinopsida: LTS0178554
- 3337 - Pinus: LTS0178554
- 77912 - Pinus densiflora: 10.3186/JJPHYTOPATH.50.166
- 77912 - Pinus densiflora: LTS0178554
- 3615 - Polygonaceae: LTS0178554
- 46786 - Polygonum: LTS0178554
- 3689 - Populus: LTS0178554
- 77070 - Populus lasiocarpa: 10.1016/0031-9422(88)80758-1
- 77070 - Populus lasiocarpa: LTS0178554
- 113636 - Populus tremula:
- 113636 - Populus tremula: 10.1016/S0031-9422(00)94801-5
- 113636 - Populus tremula: 10.1111/J.1399-3054.1971.TB01100.X
- 113636 - Populus tremula: LTS0178554
- 3693 - Populus tremuloides: 10.1139/B94-060
- 3693 - Populus tremuloides: LTS0178554
- 55487 - Posidonia: LTS0178554
- 55489 - Posidonia oceanica: 10.1016/S0031-9422(97)01118-7
- 55489 - Posidonia oceanica: LTS0178554
- 55435 - Posidoniaceae: LTS0178554
- 22663 - Punica granatum: 10.3390/MOLECULES22101606
- 3511 - Quercus: LTS0178554
- 38942 - Quercus robur: 10.1055/S-2007-969352
- 38942 - Quercus robur: LTS0178554
- 50495 - Rorippa: LTS0178554
- 50499 - Rorippa indica: 10.1016/0031-9422(95)00005-R
- 50499 - Rorippa indica: LTS0178554
- 3745 - Rosaceae: LTS0178554
- 24966 - Rubiaceae: LTS0178554
- 3618 - Rumex: LTS0178554
- 174651 - Rumex japonicus: 10.1248/BPB.28.2225
- 174651 - Rumex japonicus: LTS0178554
- 3688 - Salicaceae: LTS0178554
- 40685 - Salix: LTS0178554
- 75712 - Salix interior: 10.1007/BF00566096
- 75712 - Salix interior: LTS0178554
- 77065 - Salix purpurea: 10.1002/PCA.1220
- 1112091 - Salix × rubra: 10.1007/BF00566096
- 16733 - Schisandraceae: LTS0178554
- 23224 - Spiraea: LTS0178554
- 409512 - Spiraea hypericifolia: 10.1007/BF00563836
- 409512 - Spiraea hypericifolia: LTS0178554
- 1883 - Streptomyces: 10.1016/J.BIORTECH.2012.02.059
- 35493 - Streptophyta: LTS0178554
- 58023 - Tracheophyta: LTS0178554
- 468162 - Vachellia: LTS0178554
- 138033 - Vachellia nilotica: 10.1055/S-2007-969797
- 138033 - Vachellia nilotica: LTS0178554
- 648865 - Vincetoxicum mongolicum: 10.1016/S0031-9422(00)95106-9
- 13757 - Viola: LTS0178554
- 97415 - Viola arvensis: 10.1007/S11094-005-0104-1
- 97415 - Viola arvensis: LTS0178554
- 24921 - Violaceae: LTS0178554
- 33090 - Viridiplantae: LTS0178554
- 3602 - Vitaceae: LTS0178554
- 3603 - Vitis: 10.1080/13102818.2006.10817302
- 3603 - Vitis: LTS0178554
- 29760 - Vitis vinifera: 10.1080/13102818.2006.10817302
- 29760 - Vitis vinifera: LTS0178554
- 36590 - Xanthium: LTS0178554
- 1534734 - Xanthium orientale: LTS0178554
- 1534735 - Xanthium orientale subsp. italicum: LTS0178554
- 318068 - Xanthium strumarium: LTS0178554
- 552636 - Xanthium strumarium var. canadense: 10.1021/NP50041A038
- 552636 - Xanthium strumarium var. canadense: LTS0178554
- 37334 - 化橘红: -
- 199225 - 半夏: -
- 33090 - 大枣: -
- 33090 - 月季花: -
- 33090 - 杜仲: -
- 33090 - 白果: -
- 33090 - 红花: -
- 33090 - 草果: -
- 33090 - 荷叶: -
- 33090 - 西红花: -
- 569774 - 金线莲: -
- 3311 - 银杏叶: -
- 33090 - 香附: -
- 33090 - 黑芝麻: -
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Zuwu Tang, Xinxing Lin, Meiqiong Yu, Jinbei Yang, Shiqian Li, Ajoy Kanti Mondal, Hui Wu. A review of cellulose-based catechol-containing functional materials for advanced applications.
International journal of biological macromolecules.
2024 May; 266(Pt 2):131243. doi:
10.1016/j.ijbiomac.2024.131243
. [PMID: 38554917] - Kun Yu, Wei He, Xiaoli Ma, Qi Zhang, Chunxu Chen, Peiyan Li, Di Wu. Purification and Biochemical Characterization of Polyphenol Oxidase Extracted from Wheat Bran (Wan grano).
Molecules (Basel, Switzerland).
2024 Mar; 29(6):. doi:
10.3390/molecules29061334
. [PMID: 38542970] - Jing Hu, Kokoette Effiong, Muyuan Liu, Xi Xiao. Broad spectrum and species specificity of plant allelochemicals 1,2-benzenediol and 3-indoleacrylic acid against marine and freshwater harmful algae.
The Science of the total environment.
2023 Nov; 898(?):166356. doi:
10.1016/j.scitotenv.2023.166356
. [PMID: 37595905] - Hui Liu, Mu Pan, Yang Lu, Mei Wang, Shan Huang, Jun Li, Ke Luo, Linli Luo, Mingyong Yao, Deyu Hua, Hui Wang. Purification and comparison of soluble and membrane-bound polyphenol oxidase from potato (Solanum tuberosum) tubers.
Protein expression and purification.
2023 02; 202(?):106195. doi:
10.1016/j.pep.2022.106195
. [PMID: 36270466] - Verena Krauth, Ferdinando Bruno, Simona Pace, Paul M Jordan, Veronika Temml, Maria Preziosa Romano, Haroon Khan, Daniela Schuster, Antonietta Rossi, Rosanna Filosa, Oliver Werz. Highly potent and selective 5-lipoxygenase inhibition by new, simple heteroaryl-substituted catechols for treatment of inflammation.
Biochemical pharmacology.
2023 02; 208(?):115385. doi:
10.1016/j.bcp.2022.115385
. [PMID: 36535528] - Roelant Hilgers, Judith Bijlsma, Luana Malacaria, Jean-Paul Vincken, Emilia Furia, Wouter J C de Bruijn. Transition metal cations catalyze 16O/18O exchange of catechol motifs with H218O.
Organic & biomolecular chemistry.
2022 11; 20(46):9093-9097. doi:
10.1039/d2ob01884e
. [PMID: 36378241] - Ana Amić, Denisa Mastiľák Cagardová. DFT Study of the Direct Radical Scavenging Potency of Two Natural Catecholic Compounds.
International journal of molecular sciences.
2022 Nov; 23(22):. doi:
10.3390/ijms232214497
. [PMID: 36430975] - Faraziehan Senusi, Norhaslinda Nasuha, Ahmad Husain, Suzylawati Ismail. Synthesis of catechol-amine coating solution for membrane surface modification.
Environmental science and pollution research international.
2022 May; ?(?):. doi:
10.1007/s11356-022-20167-4
. [PMID: 35604600] - Ivan V Smolyaninov, Daria A Burmistrova, Maxim V Arsenyev, Maria A Polovinkina, Nadezhda P Pomortseva, Georgy K Fukin, Andrey I Poddel'sky, Nadezhda T Berberova. Synthesis and Antioxidant Activity of New Catechol Thioethers with the Methylene Linker.
Molecules (Basel, Switzerland).
2022 May; 27(10):. doi:
10.3390/molecules27103169
. [PMID: 35630646] - M Shahnawaz Khan, Mohd Khalid, M Shahwaz Ahmad, Samrah Kamal, M Shahid, Musheer Ahmad. Effect of structural variation on enzymatic activity in tetranuclear (Cu4) clusters with defective cubane core.
Journal of biomolecular structure & dynamics.
2022; 40(19):9067-9080. doi:
10.1080/07391102.2021.1924263
. [PMID: 34042018] - Ravi Jothi, Ravichellam Sangavi, Ponnuchamy Kumar, Shunmugiah Karutha Pandian, Shanmugaraj Gowrishankar. Catechol thwarts virulent dimorphism in Candida albicans and potentiates the antifungal efficacy of azoles and polyenes.
Scientific reports.
2021 10; 11(1):21049. doi:
10.1038/s41598-021-00485-2
. [PMID: 34702898] - Serap Beyaztaş Uzunoğlu, Tayfun Uzunoğlu, Samet Koçsuz, Murat Evyapan, Oktay Arslan. Metal ion effects on Polyphenol Oxidase Covalently immobilized on a Bio-Composite.
Cellular and molecular biology (Noisy-le-Grand, France).
2021 Sep; 67(2):50-55. doi:
10.14715/cmb/2021.67.2.8
. [PMID: 34817339] - Adriany das Graças Nascimento Amorim, Marta Sánchez-Paniagua, Taiane Maria de Oliveira, Ana Carolina Mafud, Durcilene Alves da Silva, José Roberto de Souza de Almeida Leite, Beatriz López-Ruiz. Synthesis, characterization and use of enzyme cashew gum nanoparticles for biosensing applications.
Journal of materials chemistry. B.
2021 09; 9(34):6825-6835. doi:
10.1039/d1tb01164b
. [PMID: 34369539] - Peng Yang, Jianhua Zhang, Siying Xiang, Zhekai Jin, Fang Zhu, Tianyou Wang, Gaigai Duan, Xianhu Liu, Zhipeng Gu, Yiwen Li. Green Nanoparticle Scavengers against Oxidative Stress.
ACS applied materials & interfaces.
2021 Aug; 13(33):39126-39134. doi:
10.1021/acsami.1c12176
. [PMID: 34383476] - Alexander M Goldberg, Miranda K Robinson, Erykah S Starr, Ryan N Marasco, Alexa C Alana, C Skyler Cochrane, Kameron L Klugh, David J Strzeminski, Muxue Du, Keri L Colabroy, Larryn W Peterson. L-DOPA Dioxygenase Activity on 6-Substituted Dopamine Analogues.
Biochemistry.
2021 08; 60(32):2492-2507. doi:
10.1021/acs.biochem.1c00310
. [PMID: 34324302] - Jinyang Li, Sally P Wang, Guanghui Zong, Eunkyoung Kim, Chen-Yu Tsao, Eric VanArsdale, Lai-Xi Wang, William E Bentley, Gregory F Payne. Interactive Materials for Bidirectional Redox-Based Communication.
Advanced materials (Deerfield Beach, Fla.).
2021 May; 33(18):e2007758. doi:
10.1002/adma.202007758
. [PMID: 33788338] - Fahad Y Al-Juhaimi, Kashif Ghafoor, Mehmet Musa Özcan, Nurhan Uslu, Elfadıl E Babiker, Isam A Mohamed Ahmed, Omer N Alsawmahi. Phenolic Compounds, Antioxidant Activity and Fatty Acid Composition of Roasted Alyanak Apricot Kernel.
Journal of oleo science.
2021 May; 70(5):607-613. doi:
10.5650/jos.ess20294
. [PMID: 33840664] - Mark J Henderson, Kathleen A Trychta, Shyh-Ming Yang, Susanne Bäck, Adam Yasgar, Emily S Wires, Carina Danchik, Xiaokang Yan, Hideaki Yano, Lei Shi, Kuo-Jen Wu, Amy Q Wang, Dingyin Tao, Gergely Zahoránszky-Kőhalmi, Xin Hu, Xin Xu, David Maloney, Alexey V Zakharov, Ganesha Rai, Fumihiko Urano, Mikko Airavaara, Oksana Gavrilova, Ajit Jadhav, Yun Wang, Anton Simeonov, Brandon K Harvey. A target-agnostic screen identifies approved drugs to stabilize the endoplasmic reticulum-resident proteome.
Cell reports.
2021 04; 35(4):109040. doi:
10.1016/j.celrep.2021.109040
. [PMID: 33910017] - Fei Zhou, Robert L Last, Eran Pichersky. Degradation of salicylic acid to catechol in Solanaceae by SA 1-hydroxylase.
Plant physiology.
2021 04; 185(3):876-891. doi:
10.1093/plphys/kiaa096
. [PMID: 33793924] - Peng Xiao, Wei Yan, Lu Gou, Ya-Ni Zhong, Liangliang Kong, Chao Wu, Xin Wen, Yuan Yuan, Sheng Cao, Changxiu Qu, Xin Yang, Chuan-Cheng Yang, Anjie Xia, Zhenquan Hu, Qianqian Zhang, Yong-Hao He, Dao-Lai Zhang, Chao Zhang, Gui-Hua Hou, Huanxiang Liu, Lizhe Zhu, Ping Fu, Shengyong Yang, Daniel M Rosenbaum, Jin-Peng Sun, Yang Du, Lei Zhang, Xiao Yu, Zhenhua Shao. Ligand recognition and allosteric regulation of DRD1-Gs signaling complexes.
Cell.
2021 02; 184(4):943-956.e18. doi:
10.1016/j.cell.2021.01.028
. [PMID: 33571432] - In Kyung Yoo, Keumyeon Kim, Gawon Song, Mi-Young Koh, Moon Sue Lee, Abdullah Özgür Yeniova, Haeshin Lee, Joo Young Cho. Endoscopic application of mussel-inspired phenolic chitosan as a hemostatic agent for gastrointestinal bleeding: A preclinical study in a heparinized pig model.
PloS one.
2021; 16(5):e0251145. doi:
10.1371/journal.pone.0251145
. [PMID: 33989307] - Qincao Chen, Jiang Shi, Bing Mu, Zhen Chen, Weidong Dai, Zhi Lin. Metabolomics combined with proteomics provides a novel interpretation of the changes in nonvolatile compounds during white tea processing.
Food chemistry.
2020 Dec; 332(?):127412. doi:
10.1016/j.foodchem.2020.127412
. [PMID: 32623128] - Veronica F Salau, Ochuko L Erukainure, Neil A Koorbanally, Md Shahidul Islam. Catechol protects against iron-mediated oxidative brain injury by restoring antioxidative metabolic pathways; and modulation of purinergic and cholinergic enzymes activities.
The Journal of pharmacy and pharmacology.
2020 Dec; 72(12):1787-1797. doi:
10.1111/jphp.13352
. [PMID: 32902887] - Ludovica Antiga, Sonia Roberta La Starza, Cecilia Miccoli, Simone D'Angeli, Valeria Scala, Marco Zaccaria, Xiaomei Shu, Gregory Obrian, Marzia Beccaccioli, Gary A Payne, Massimo Reverberi. Aspergillus flavus Exploits Maize Kernels Using an 'Orphan' Secondary Metabolite Cluster.
International journal of molecular sciences.
2020 Nov; 21(21):. doi:
10.3390/ijms21218213
. [PMID: 33153018] - Duraiyarasu Maheshwaran, Thavasilingam Nagendraraj, T Sekar Balaji, Ganesan Kumaresan, S Senthil Kumaran, Ramasamy Mayilmurugan. Smart dual T1 MRI-optical imaging agent based on a rhodamine appended Fe(III)-catecholate complex.
Dalton transactions (Cambridge, England : 2003).
2020 Oct; 49(41):14680-14689. doi:
10.1039/d0dt02364g
. [PMID: 33064113] - Yu Jin Kim, Eunjin Sohn, Joo-Hwan Kim, MinKyun Na, Soo-Jin Jeong. Catechol-Type Flavonoids from the Branches of Elaeagnus glabra f. oxyphylla Exert Antioxidant Activity and an Inhibitory Effect on Amyloid-β Aggregation.
Molecules (Basel, Switzerland).
2020 Oct; 25(21):. doi:
10.3390/molecules25214917
. [PMID: 33114256] - Yinghui Ma, Lijun Li, Mukesh Kumar Awasthi, Haixia Tian, Meihuan Lu, Mallavarapu Megharaj, Yalei Pan, Wenxiang He. Time-course transcriptome analysis reveals the mechanisms of Burkholderia sp. adaptation to high phenol concentrations.
Applied microbiology and biotechnology.
2020 Jul; 104(13):5873-5887. doi:
10.1007/s00253-020-10672-2
. [PMID: 32415321] - Yuting Li, Haiping Qi, Meiqi Fan, Zixing Zhu, Shijie Zhan, Lin Li, Bing Li, Xia Zhang, Xianglong Zhao, Jingjing Ma, Lifeng Wang. Quantifying the efficiency of o-benzoquinones reaction with amino acids and related nucleophiles by cyclic voltammetry.
Food chemistry.
2020 Jul; 317(?):126454. doi:
10.1016/j.foodchem.2020.126454
. [PMID: 32113140] - Kristen Van Gelder, Taylor Forrester, Tariq A Akhtar. Evidence from stable-isotope labeling that catechol is an intermediate in salicylic acid catabolism in the flowers of Silene latifolia (white campion).
Planta.
2020 Jun; 252(1):3. doi:
10.1007/s00425-020-03410-5
. [PMID: 32514846] - Jiayi Sun, Toshihiro Murata, Hideyuki Shigemori. Inhibitory activities of phenylpropanoids from Lycopus lucidus on amyloid aggregation related to Alzheimer's disease and type 2 diabetes.
Journal of natural medicines.
2020 Jun; 74(3):579-583. doi:
10.1007/s11418-020-01398-6
. [PMID: 32219646] - Weidong Dai, Zhengyan Hu, Dongchao Xie, Junfeng Tan, Zhi Lin. A novel spatial-resolution targeted metabolomics method in a single leaf of the tea plant (Camellia sinensis).
Food chemistry.
2020 May; 311(?):126007. doi:
10.1016/j.foodchem.2019.126007
. [PMID: 31855776] - Petteri Parkkila, Tapani Viitala. Partitioning of Catechol Derivatives in Lipid Membranes: Implications for Substrate Specificity to Catechol-O-methyltransferase.
ACS chemical neuroscience.
2020 03; 11(6):969-978. doi:
10.1021/acschemneuro.0c00049
. [PMID: 32101397] - András Táncsics, Milán Farkas, Balázs Horváth, Gergely Maróti, Lauren M Bradford, Tillmann Lueders, Balázs Kriszt. Genome analysis provides insights into microaerobic toluene-degradation pathway of Zoogloea oleivorans BucT.
Archives of microbiology.
2020 Mar; 202(2):421-426. doi:
10.1007/s00203-019-01743-8
. [PMID: 31659381] - Jiayuan Zhao, Dongying Jia, Yuanlong Chi, Kai Yao. Co-metabolic enzymes and pathways of 3-phenoxybenzoic acid degradation by Aspergillus oryzae M-4.
Ecotoxicology and environmental safety.
2020 Feb; 189(?):109953. doi:
10.1016/j.ecoenv.2019.109953
. [PMID: 31759741] - Romina Romero, David Contreras, Mónica Sepúlveda, Nataly Moreno, Cristina Segura, Victoria Melin. Assessment of a Fenton reaction driven by insoluble tannins from pine bark in treating an emergent contaminant.
Journal of hazardous materials.
2020 01; 382(?):120982. doi:
10.1016/j.jhazmat.2019.120982
. [PMID: 31450209] - Dorian Blondeau, Annabelle St-Pierre, Nathalie Bourdeau, Julien Bley, André Lajeunesse, Isabel Desgagné-Penix. Antimicrobial activity and chemical composition of white birch (Betula papyrifera Marshall) bark extracts.
MicrobiologyOpen.
2020 01; 9(1):e00944. doi:
10.1002/mbo3.944
. [PMID: 31580010] - M A Morosanova, A S Bashkatova, E I Morosanova. Spectrophotometric and Smartphone-Assisted Determination of Phenolic Compounds Using Crude Eggplant Extract.
Molecules (Basel, Switzerland).
2019 Dec; 24(23):. doi:
10.3390/molecules24234407
. [PMID: 31810325] - Shosuke Ito, Yui Fujiki, Nina Matsui, Makoto Ojika, Kazumasa Wakamatsu. Tyrosinase-catalyzed oxidation of resveratrol produces a highly reactive ortho-quinone: Implications for melanocyte toxicity.
Pigment cell & melanoma research.
2019 11; 32(6):766-776. doi:
10.1111/pcmr.12808
. [PMID: 31264351] - Yushu Huang, Yanyun Xu, Yanqian Wu, Tiandong Chen, Wei Lu, Jiahui Yu. Bioinspired nanoplatform for enhanced delivery efficiency of doxorubicin into nucleus with fast endocytosis, lysosomal pH-triggered drug release, and reduced efflux.
Colloids and surfaces. B, Biointerfaces.
2019 Nov; 183(?):110413. doi:
10.1016/j.colsurfb.2019.110413
. [PMID: 31401461] - Maofang He, Yinmao Wei, Rong Wang, Chunyang Wang, Bo Zhang, Lu Han. Boronate affinity magnetic nanoparticles with hyperbranched polymer brushes for the adsorption of cis-diol biomolecules.
Mikrochimica acta.
2019 09; 186(10):683. doi:
10.1007/s00604-019-3785-y
. [PMID: 31529296] - Qian-Yun Han, Fang Liu, Mo Li, Kun-Li Wang, Yuan-Ying Ni. Comparison of biochemical properties of membrane-bound and soluble polyphenol oxidase from Granny Smith apple (Malus × domestica Borkh.).
Food chemistry.
2019 Aug; 289(?):657-663. doi:
10.1016/j.foodchem.2019.02.064
. [PMID: 30955661] - Chengyuan Su, Yuxiang Lu, Qiujin Deng, Shenglong Chen, Gange Pang, Wuyang Chen, Menglin Chen, Zhi Huang. Performance of a novel ABR-bioelectricity-Fenton coupling reactor for treating traditional Chinese medicine wastewater containing catechol.
Ecotoxicology and environmental safety.
2019 Aug; 177(?):39-46. doi:
10.1016/j.ecoenv.2019.03.112
. [PMID: 30959311] - Ivan V Smolyaninov, Olga V Pitikova, Eugenia O Korchagina, Andrey I Poddel'sky, Georgy K Fukin, Svetlana A Luzhnova, Andrey M Tichkomirov, Elena N Ponomareva, Nadezhda T Berberova. Catechol thioethers with physiologically active fragments: Electrochemistry, antioxidant and cryoprotective activities.
Bioorganic chemistry.
2019 08; 89(?):103003. doi:
10.1016/j.bioorg.2019.103003
. [PMID: 31132599] - Tianzhen Xiong, Pu Jia, Jing Jiang, Yajun Bai, Tai-Ping Fan, Xiaohui Zheng, Yujie Cai. One-pot, three-step cascade synthesis of D-danshensu using engineered Escherichia coli whole cells.
Journal of biotechnology.
2019 Jul; 300(?):48-54. doi:
10.1016/j.jbiotec.2019.05.008
. [PMID: 31125578] - Urszula Czuba, Robert Quintana, Patricia Lassaux, Radoslaw Bombera, Giacomo Ceccone, Jorge Bañuls-Ciscar, Maryline Moreno-Couranjou, Christophe Detrembleur, Patrick Choquet. Anti-biofouling activity of Ranaspumin-2 bio-surfactant immobilized on catechol-functional PMMA thin layers prepared by atmospheric plasma deposition.
Colloids and surfaces. B, Biointerfaces.
2019 Jun; 178(?):120-128. doi:
10.1016/j.colsurfb.2019.02.049
. [PMID: 30852263] - Youngho Wee, Seunghwan Park, Young Hyeon Kwon, Youngjun Ju, Kyung-Min Yeon, Jungbae Kim. Tyrosinase-immobilized CNT based biosensor for highly-sensitive detection of phenolic compounds.
Biosensors & bioelectronics.
2019 May; 132(?):279-285. doi:
10.1016/j.bios.2019.03.008
. [PMID: 30884314] - Donglin Gan, Wensi Xing, Lili Jiang, Ju Fang, Cancan Zhao, Fuzeng Ren, Liming Fang, Kefeng Wang, Xiong Lu. Plant-inspired adhesive and tough hydrogel based on Ag-Lignin nanoparticles-triggered dynamic redox catechol chemistry.
Nature communications.
2019 04; 10(1):1487. doi:
10.1038/s41467-019-09351-2
. [PMID: 30940814] - Sang Gyu Roh, Akhmad Irhas Robby, Pham Thi My Phuong, Insik In, Sung Young Park. Photoluminescence-tunable fluorescent carbon dots-deposited silver nanoparticle for detection and killing of bacteria.
Materials science & engineering. C, Materials for biological applications.
2019 Apr; 97(?):613-623. doi:
10.1016/j.msec.2018.12.070
. [PMID: 30678948] - Denilson F Oliveira, Viviane A Costa, Willian C Terra, Vicente P Campos, Pacelli M Paula, Samuel J Martins. Impact of phenolic compounds on Meloidogyne incognita in vitro and in tomato plants.
Experimental parasitology.
2019 Apr; 199(?):17-23. doi:
10.1016/j.exppara.2019.02.009
. [PMID: 30790574] - W P D Wass Thilakarathna, H P Vasantha Rupasinghe. Microbial metabolites of proanthocyanidins reduce chemical carcinogen-induced DNA damage in human lung epithelial and fetal hepatic cells in vitro.
Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.
2019 Mar; 125(?):479-493. doi:
10.1016/j.fct.2019.02.010
. [PMID: 30735747] - Ronald C van Gaal, Michele Fedecostante, Peter-Paul K H Fransen, Rosalinde Masereeuw, Patricia Y W Dankers. Renal Epithelial Monolayer Formation on Monomeric and Polymeric Catechol Functionalized Supramolecular Biomaterials.
Macromolecular bioscience.
2019 02; 19(2):e1800300. doi:
10.1002/mabi.201800300
. [PMID: 30430737] - Jia-Hao Feng, Xiao-Long Hu, Xian-Yu Lv, Bao-Lin Wang, Jun Lin, Xiao-Qi Zhang, Wen-Cai Ye, Fei Xiong, Hao Wang. Synthesis and biological evaluation of clovamide analogues with catechol functionality as potent Parkinson's disease agents in vitro and in vivo.
Bioorganic & medicinal chemistry letters.
2019 01; 29(2):302-312. doi:
10.1016/j.bmcl.2018.11.030
. [PMID: 30470490] - Kazuya Fukuyama, Shota Kakio, Yosuke Nakazawa, Kenji Kobata, Megumi Funakoshi-Tago, Toshiharu Suzuki, Hiroomi Tamura. Roasted Coffee Reduces β-Amyloid Production by Increasing Proteasomal β-Secretase Degradation in Human Neuroblastoma SH-SY5Y Cells.
Molecular nutrition & food research.
2018 11; 62(21):e1800238. doi:
10.1002/mnfr.201800238
. [PMID: 30144352] - Chunhua Cao, Eunkyoung Kim, Yi Liu, Mijeong Kang, Jinyang Li, Jun-Jie Yin, Huan Liu, Xue Qu, Changsheng Liu, William E Bentley, Gregory F Payne. Radical Scavenging Activities of Biomimetic Catechol-Chitosan Films.
Biomacromolecules.
2018 08; 19(8):3502-3514. doi:
10.1021/acs.biomac.8b00809
. [PMID: 29928797] - Masahiro Miyawaki, Hiroyuki Sano, Hisashi Imbe, Reiko Fujisawa, Keiji Tanimoto, Jungo Terasaki, Mari Maeda-Yamamoto, Hirofumi Tachibana, Toshiaki Hanafusa, Akihisa Imagawa. 'Benifuuki' Extract Reduces Serum Levels of Lectin-Like Oxidized Low-Density Lipoprotein Receptor-1 Ligands Containing Apolipoprotein B: A Double-Blind Placebo-Controlled Randomized Trial.
Nutrients.
2018 Jul; 10(7):. doi:
10.3390/nu10070924
. [PMID: 30029523] - Zhen Zhang, Jin Liu, Jin Fan, Zhiyong Wang, Lin Li. Detection of catechol using an electrochemical biosensor based on engineered Escherichia coli cells that surface-display laccase.
Analytica chimica acta.
2018 Jun; 1009(?):65-72. doi:
10.1016/j.aca.2018.01.008
. [PMID: 29422133] - Mari Maeda-Yamamoto, Mie Nishimura, Nobuyoshi Kitaichi, Atsushi Nesumi, Manami Monobe, Sachiko Nomura, Yukihiro Horie, Hirofumi Tachibana, Jun Nishihira. A Randomized, Placebo-Controlled Study on the Safety and Efficacy of Daily Ingestion of Green Tea (Camellia sinensis L.) cv. 'Yabukita' and 'Sunrouge' on Eyestrain and Blood Pressure in Healthy Adults.
Nutrients.
2018 May; 10(5):. doi:
10.3390/nu10050569
. [PMID: 29734777] - Daiheon Lee, Joseph P Park, Mi-Young Koh, Pureum Kim, Junhee Lee, Mikyung Shin, Haeshin Lee. Chitosan-catechol: a writable bioink under serum culture media.
Biomaterials science.
2018 May; 6(5):1040-1047. doi:
10.1039/c8bm00174j
. [PMID: 29666857] - Yanier Nuñez-Figueredo, Jeney Ramirez-Sanchez, Yeniceis Alcantara Issac, Estael Ochoa-Rodriguez, Yamila Verdecia-Reyes, Rene Delgado-Hernandez, Diogo O Souza, Gilberto L Pardo Andreu. Antioxidant and Neuroprotective Effects of KM-34, A Novel Synthetic Catechol, Against Oxidative Stress-Induced Neurotoxicity.
Drug research.
2018 May; 68(5):263-269. doi:
10.1055/s-0043-121220
. [PMID: 29100263] - Huan Liu, Xue Qu, Eunkyoung Kim, Miao Lei, Kai Dai, Xiaoli Tan, Miao Xu, Jinyang Li, Yangping Liu, Xiaowen Shi, Peng Li, Gregory F Payne, Changsheng Liu. Bio-inspired redox-cycling antimicrobial film for sustained generation of reactive oxygen species.
Biomaterials.
2018 04; 162(?):109-122. doi:
10.1016/j.biomaterials.2017.12.027
. [PMID: 29438879] - Preeti Jain, Amit Nale, Rajesh Dabur. Antimicrobial metabolites from Saraca asoca impairs the membrane transport system and quorum-sensing system in Pseudomonas aeruginosa.
Archives of microbiology.
2018 Mar; 200(2):237-253. doi:
10.1007/s00203-017-1435-5
. [PMID: 28993916] - Yulei Cui, Yanduo Tao, Lei Jiang, Na Shen, Shuo Wang, Huaixiu Wen, Zenggen Liu. Antihypoxic activities of constituents from Arenaria kansuensis.
Phytomedicine : international journal of phytotherapy and phytopharmacology.
2018 Jan; 38(?):175-182. doi:
10.1016/j.phymed.2017.12.008
. [PMID: 29425650] - Louis A Cox, A Robert Schnatter, Peter J Boogaard, Marcy Banton, Hans B Ketelslegers. Non-parametric estimation of low-concentration benzene metabolism.
Chemico-biological interactions.
2017 Dec; 278(?):242-255. doi:
10.1016/j.cbi.2017.08.007
. [PMID: 28882553] - K McNally, C Sams, G D Loizou, K Jones. Evidence for non-linear metabolism at low benzene exposures? A reanalysis of data.
Chemico-biological interactions.
2017 Dec; 278(?):256-268. doi:
10.1016/j.cbi.2017.09.002
. [PMID: 28899792] - Jing Li, Cuiting Zhang, Weiming He, Hongzhi Qiao, Jiahui Chen, KaiKai Wang, David Oupický, Minjie Sun. Coordination-driven assembly of catechol-modified chitosan for the kidney-specific delivery of salvianolic acid B to treat renal fibrosis.
Biomaterials science.
2017 Dec; 6(1):179-188. doi:
10.1039/c7bm00811b
. [PMID: 29170782] - Wenwu Xiao, Nell Suby, Kai Xiao, Tzu-Yin Lin, Nasir Al Awwad, Kit S Lam, Yuanpei Li. Extremely long tumor retention, multi-responsive boronate crosslinked micelles with superior therapeutic efficacy for ovarian cancer.
Journal of controlled release : official journal of the Controlled Release Society.
2017 Oct; 264(?):169-179. doi:
10.1016/j.jconrel.2017.08.028
. [PMID: 28847739] - Bo Xu, Caiyun Xiong, Meng Deng, Junjun Li, Xianghua Tang, Qian Wu, Junpei Zhou, Yunjuan Yang, Junmei Ding, Nanyu Han, Zunxi Huang. Genetic diversity of catechol 1,2-dioxygenase in the fecal microbial metagenome.
Journal of basic microbiology.
2017 Oct; 57(10):883-895. doi:
10.1002/jobm.201700106
. [PMID: 28745827] - Zhong Wang, Shujun Zhao, Ruyuan Song, Wei Zhang, Shifeng Zhang, Jianzhang Li. The synergy between natural polyphenol-inspired catechol moieties and plant protein-derived bio-adhesive enhances the wet bonding strength.
Scientific reports.
2017 08; 7(1):9664. doi:
10.1038/s41598-017-10007-8
. [PMID: 28852023] - Muhammad R Haque, Jiwoong Kim, Hyojun Park, Han Sin Lee, Kyo Won Lee, Taslim A Al-Hilal, Jee-Heon Jeong, Cheol-Hee Ahn, Doo Sung Lee, Sung Joo Kim, Youngro Byun. Xenotransplantation of layer-by-layer encapsulated non-human primate islets with a specified immunosuppressive drug protocol.
Journal of controlled release : official journal of the Controlled Release Society.
2017 07; 258(?):10-21. doi:
10.1016/j.jconrel.2017.04.021
. [PMID: 28433740] - Hua Liu, Weidan Na, Ziping Liu, Xueqian Chen, Xingguang Su. A novel turn-on fluorescent strategy for sensing ascorbic acid using graphene quantum dots as fluorescent probe.
Biosensors & bioelectronics.
2017 Jun; 92(?):229-233. doi:
10.1016/j.bios.2017.02.005
. [PMID: 28222367] - Rafael De la Torre, Dolores Corella, Olga Castañer, Miguel A Martínez-González, Jordi Salas-Salvado, Joan Vila, Ramón Estruch, José V Sorli, Fernando Arós, Miquel Fiol, Emili Ros, Lluís Serra-Majem, Xavier Pintó, Enrique Gómez-Gracia, José Lapetra, Miguel Ruiz-Canela, José Basora, Eva Maria Asensio, Maria Isabel Covas, Montserrat Fitó. Protective effect of homovanillyl alcohol on cardiovascular disease and total mortality: virgin olive oil, wine, and catechol-methylation.
The American journal of clinical nutrition.
2017 06; 105(6):1297-1304. doi:
10.3945/ajcn.116.145813
. [PMID: 28446500] - Honglei Zhan, Tina Jagtiani, Jun F Liang. A new targeted delivery approach by functionalizing drug nanocrystals through polydopamine coating.
European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.
2017 May; 114(?):221-229. doi:
10.1016/j.ejpb.2017.01.020
. [PMID: 28161549] - Thomas E Winkler, Sarah L Lederer, Eunkyoung Kim, Hadar Ben-Yoav, Deanna L Kelly, Gregory F Payne, Reza Ghodssi. Molecular processes in an electrochemical clozapine sensor.
Biointerphases.
2017 05; 12(2):02B401. doi:
10.1116/1.4982709
. [PMID: 28460529] - Maria Betzabeth Espina-Benitez, Jérôme Randon, Claire Demesmay, Vincent Dugas. Development and application of a new in-line coupling of a miniaturized boronate affinity monolithic column with capillary zone electrophoresis for the selective enrichment and analysis of cis-diol-containing compounds.
Journal of chromatography. A.
2017 Apr; 1494(?):65-76. doi:
10.1016/j.chroma.2017.03.014
. [PMID: 28325490] - C Schwienheer, J Krause, G Schembecker, J Merz. Modelling centrifugal partition chromatography separation behavior to characterize influencing hydrodynamic effects on separation efficiency.
Journal of chromatography. A.
2017 Apr; 1492(?):27-40. doi:
10.1016/j.chroma.2017.02.055
. [PMID: 28285711] - Liang Xu, Zheming Ying, Wenjuan Wei, Dong Hao, Haibo Wang, Wenjie Zhang, Cuiyu Li, Mingyue Jiang, Xixiang Ying, Jing Liu. A novel alkaloid from Portulaca oleracea L.
Natural product research.
2017 Apr; 31(8):902-908. doi:
10.1080/14786419.2016.1253081
. [PMID: 27806650] - Ming Wang, Matthias Schoettner, Shuqing Xu, Christian Paetz, Julia Wilde, Ian T Baldwin, Karin Groten. Catechol, a major component of smoke, influences primary root growth and root hair elongation through reactive oxygen species-mediated redox signaling.
The New phytologist.
2017 Mar; 213(4):1755-1770. doi:
10.1111/nph.14317
. [PMID: 27878986] - Hongmei Jiang, Shuqin Wang, Wenfang Deng, Youming Zhang, Yueming Tan, Qingji Xie, Ming Ma. Graphene-like carbon nanosheets as a new electrode material for electrochemical determination of hydroquinone and catechol.
Talanta.
2017 Mar; 164(?):300-306. doi:
10.1016/j.talanta.2016.11.052
. [PMID: 28107933] - Joon-Yung Cha, Tae-Wan Kim, Jung Hoon Choi, Kyoung-Soon Jang, Laila Khaleda, Woe-Yeon Kim, Jong-Rok Jeon. Fungal Laccase-Catalyzed Oxidation of Naturally Occurring Phenols for Enhanced Germination and Salt Tolerance of Arabidopsis thaliana: A Green Route for Synthesizing Humic-like Fertilizers.
Journal of agricultural and food chemistry.
2017 Feb; 65(6):1167-1177. doi:
10.1021/acs.jafc.6b04700
. [PMID: 28112921] - Vani Nagaraja, M Kiran Kumar, Nagendrappa Giddappa. Spectrophotometric determination of gold(III) in forensic and pharmaceutical samples and results complemented with ICP AES and EDXRF analysis.
Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.
2017 Feb; 173(?):407-417. doi:
10.1016/j.saa.2016.09.045
. [PMID: 27701047] - Hector H F Koolen, Elizabeth M F Pral, Silvia C Alfieri, Jane V N Marinho, Alessandra F Serain, Alvaro J Hernández-Tasco, Nathalia L Andreazza, Marcos J Salvador. Antiprotozoal and antioxidant alkaloids from Alternanthera littoralis.
Phytochemistry.
2017 Feb; 134(?):106-113. doi:
10.1016/j.phytochem.2016.11.008
. [PMID: 27889243] - Jinke Xu, Mifong Tam, Sepideh Samaei, Sophie Lerouge, Jake Barralet, Mary M Stevenson, Marta Cerruti. Mucoadhesive chitosan hydrogels as rectal drug delivery vessels to treat ulcerative colitis.
Acta biomaterialia.
2017 01; 48(?):247-257. doi:
10.1016/j.actbio.2016.10.026
. [PMID: 27769943] - Luca Mazzei, Michele Cianci, Francesco Musiani, Gábor Lente, Marta Palombo, Stefano Ciurli. Inactivation of urease by catechol: Kinetics and structure.
Journal of inorganic biochemistry.
2017 01; 166(?):182-189. doi:
10.1016/j.jinorgbio.2016.11.016
. [PMID: 27888701] - R Gul Guven, N Aslan, K Guven, F Matpan Bekler, O Acer. Purification and characterization of polyphenol oxidase from corn tassel.
Cellular and molecular biology (Noisy-le-Grand, France).
2016 Nov; 62(13):6-11. doi:
10.14715/cmb/2016.62.13.2
. [PMID: 28040055] - S L Mathews, C E Smithson, A M Grunden. Purification and characterization of a recombinant laccase-like multi-copper oxidase from Paenibacillus glucanolyticus SLM1.
Journal of applied microbiology.
2016 Nov; 121(5):1335-1345. doi:
10.1111/jam.13241
. [PMID: 27451019] - Bin Guo, Chen Liu, Hua Li, Keke Yi, Nengfei Ding, Ningyu Li, Yicheng Lin, Qinglin Fu. Endogenous salicylic acid is required for promoting cadmium tolerance of Arabidopsis by modulating glutathione metabolisms.
Journal of hazardous materials.
2016 10; 316(?):77-86. doi:
10.1016/j.jhazmat.2016.05.032
. [PMID: 27209521] - Mateus Dassie Maximino, Cibely Silva Martin, Fernando Vieira Paulovich, Priscila Alessio. Layer-by-Layer Thin Film of Iron Phthalocyanine as a Simple and Fast Sensor for Polyphenol Determination in Tea Samples.
Journal of food science.
2016 Oct; 81(10):C2344-C2351. doi:
10.1111/1750-3841.13394
. [PMID: 27636549] - Wenjing Yang, Harihara S Sundaram, Jean-Rene Ella, Nongyue He, Shaoyi Jiang. Low-fouling electrospun PLLA films modified with zwitterionic poly(sulfobetaine methacrylate)-catechol conjugates.
Acta biomaterialia.
2016 08; 40(?):92-99. doi:
10.1016/j.actbio.2016.05.035
. [PMID: 27265149] - Namita Wadke, Dineshkumar Kandasamy, Heiko Vogel, Ljerka Lah, Brenda D Wingfield, Christian Paetz, Louwrance P Wright, Jonathan Gershenzon, Almuth Hammerbacher. The Bark-Beetle-Associated Fungus, Endoconidiophora polonica, Utilizes the Phenolic Defense Compounds of Its Host as a Carbon Source.
Plant physiology.
2016 06; 171(2):914-31. doi:
10.1104/pp.15.01916
. [PMID: 27208235] - Md Iqbal Alam, Mohammed A Alam, Ozair Alam, Amit Nargotra, Subhash Chandra Taneja, Surrinder Koul. Molecular modeling and snake venom phospholipase A2 inhibition by phenolic compounds: Structure-activity relationship.
European journal of medicinal chemistry.
2016 May; 114(?):209-19. doi:
10.1016/j.ejmech.2016.03.008
. [PMID: 26986086] - Lu Chen, Liang Chen, Ting Wang, Pulong Yuan, Kaixian Chen, Qi Jia, Heyao Wang, Yiming Li. Preparation of Methylated Products of A-type Procyanidin Trimers in Cinnamon Bark and Their Protective Effects on Pancreatic β-Cell.
Journal of food science.
2016 May; 81(5):C1062-9. doi:
10.1111/1750-3841.13294
. [PMID: 27074527] - Jun Zhong, Hua Ji, Jiang Duan, Haiyang Tu, Aidong Zhang. Coating morphology and surface composition of acrylic terpolymers with pendant catechol, OEG and perfluoroalkyl groups in varying ratio and the effect on protein adsorption.
Colloids and surfaces. B, Biointerfaces.
2016 Apr; 140(?):254-261. doi:
10.1016/j.colsurfb.2015.12.051
. [PMID: 26764109] - Qiongqiong Zhou, Weijiang Sun, Zhongxiong Lai. Differential expression of genes in purple-shoot tea tender leaves and mature leaves during leaf growth.
Journal of the science of food and agriculture.
2016 Apr; 96(6):1982-9. doi:
10.1002/jsfa.7308
. [PMID: 26084622] - Neil Shearer, Nicholas J Walton. Dietary Catechols and their Relationship to Microbial Endocrinology.
Advances in experimental medicine and biology.
2016; 874(?):101-19. doi:
10.1007/978-3-319-20215-0_4
. [PMID: 26589215] - Mohammad Mazloum-Ardakani, Laleh Hosseinzadeh, Zahra Taleat. Synthesis and electrocatalytic effect of Ag@Pt core-shell nanoparticles supported on reduced graphene oxide for sensitive and simple label-free electrochemical aptasensor.
Biosensors & bioelectronics.
2015 Dec; 74(?):30-6. doi:
10.1016/j.bios.2015.05.072
. [PMID: 26094037] - Lu-Yi Jin, Yu-Ming Dong, Xiu-Ming Wu, Gen-Xia Cao, Guang-Li Wang. Versatile and Amplified Biosensing through Enzymatic Cascade Reaction by Coupling Alkaline Phosphatase in Situ Generation of Photoresponsive Nanozyme.
Analytical chemistry.
2015 Oct; 87(20):10429-36. doi:
10.1021/acs.analchem.5b02728
. [PMID: 26419907] - Na Huang, Si Zhang, Liuqing Yang, Meiling Liu, Haitao Li, Youyu Zhang, Shouzhuo Yao. Multifunctional Electrochemical Platforms Based on the Michael Addition/Schiff Base Reaction of Polydopamine Modified Reduced Graphene Oxide: Construction and Application.
ACS applied materials & interfaces.
2015 Aug; 7(32):17935-46. doi:
10.1021/acsami.5b04597
. [PMID: 26222894] - Yun Xue, Wenjun Shi, Bangjie Zhu, Xue Gu, Yan Wang, Chao Yan. Polyethyleneimine-grafted boronate affinity materials for selective enrichment of cis-diol-containing compounds.
Talanta.
2015 Aug; 140(?):1-9. doi:
10.1016/j.talanta.2015.03.008
. [PMID: 26048816] - Ali Ahmad Aghapour, Gholamreza Moussavi, Kamyar Yaghmaeian. Degradation and COD removal of catechol in wastewater using the catalytic ozonation process combined with the cyclic rotating-bed biological reactor.
Journal of environmental management.
2015 Jul; 157(?):262-6. doi:
10.1016/j.jenvman.2015.02.036
. [PMID: 25913467]