Phenol (BioDeep_00000002879)
Secondary id: BioDeep_00000014328
PANOMIX_OTCML-2023 natural product BioNovoGene_Lab2019 Volatile Flavor Compounds
代谢物信息卡片
化学式: C6H6O (94.0418626)
中文名称: 酚, 苯酚
谱图信息:
最多检出来源 Homo sapiens(blood) 0.44%
Last reviewed on 2024-08-09.
Cite this Page
Phenol. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China.
https://query.biodeep.cn/s/phenol (retrieved
2024-11-25) (BioDeep RN: BioDeep_00000002879). Licensed
under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
分子结构信息
SMILES: C1=CC=C(C=C1)O
InChI: InChI=1S/C6H6O/c7-6-4-2-1-3-5-6/h1-5,7H
描述信息
D - Dermatologicals > D08 - Antiseptics and disinfectants > D08A - Antiseptics and disinfectants > D08AE - Phenol and derivatives
C - Cardiovascular system > C05 - Vasoprotectives > C05B - Antivaricose therapy > C05BB - Sclerosing agents for local injection
An organic hydroxy compound that consists of benzene bearing a single hydroxy substituent. The parent of the class of phenols.
R - Respiratory system > R02 - Throat preparations > R02A - Throat preparations > R02AA - Antiseptics
D019999 - Pharmaceutical Solutions > D012597 - Sclerosing Solutions
N - Nervous system > N01 - Anesthetics > N01B - Anesthetics, local
D000890 - Anti-Infective Agents
D002317 - Cardiovascular Agents
D004202 - Disinfectants
CONFIDENCE standard compound; INTERNAL_ID 225
同义名列表
9 个代谢物同义名
Phenol crude; Phenol; Hydroxybenzene; Phenylic acid; Phenic acid; Benzenol; Phenol; Phenol; Phenol
数据库引用编号
29 个数据库交叉引用编号
- ChEBI: CHEBI:33853
- ChEBI: CHEBI:15882
- KEGG: C00146
- KEGG: C15584
- KEGGdrug: D00033
- KEGGdrug: D01960
- PubChem: 996
- Metlin: METLIN128
- DrugBank: DB03255
- ChEMBL: CHEMBL14060
- MeSH: Phenol
- CAS: 108-95-2
- MoNA: RP022503
- MoNA: RP022502
- MoNA: RP022501
- MoNA: HMDB0000228_ms_ms_381
- MoNA: HMDB0000228_ms_ms_380
- MoNA: HMDB0000228_ms_ms_379
- PMhub: MS000006761
- MetaboLights: MTBLC15882
- KNApSAcK: C00002664
- PDB-CCD: IPH
- 3DMET: B00040
- NIKKAJI: J2.873H
- RefMet: Phenol
- LOTUS: LTS0092642
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-413
- PubChem: 3446
- KNApSAcK: 15882
分类词条
相关代谢途径
Reactome(8)
BioCyc(5)
PlantCyc(0)
代谢反应
107 个相关的代谢反应过程信息。
Reactome(98)
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase II - Conjugation of compounds:
H2O + PNPB ⟶ BUT + PNP
- Cytosolic sulfonation of small molecules:
H2O + PNPB ⟶ BUT + PNP
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase II - Conjugation of compounds:
H2O + PNPB ⟶ BUT + PNP
- Cytosolic sulfonation of small molecules:
H2O + PNPB ⟶ BUT + PNP
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase II - Conjugation of compounds:
H2O + PNPB ⟶ BUT + PNP
- Cytosolic sulfonation of small molecules:
H2O + PNPB ⟶ BUT + PNP
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Biological oxidations:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- Phase II - Conjugation of compounds:
H2O + SAH ⟶ Ade-Rib + HCYS
- Cytosolic sulfonation of small molecules:
H2O + PAP ⟶ AMP + Pi
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Biological oxidations:
H+ + Oxygen + TPNH + progesterone ⟶ 11DCORST + H2O + TPN
- Phase II - Conjugation of compounds:
H2O + PNPB ⟶ BUT + PNP
- Cytosolic sulfonation of small molecules:
H2O + PNPB ⟶ BUT + PNP
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase II - Conjugation of compounds:
H2O + PNPB ⟶ BUT + PNP
- Cytosolic sulfonation of small molecules:
H2O + PNPB ⟶ BUT + PNP
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase II - Conjugation of compounds:
H2O + PNPB ⟶ BUT + PNP
- Cytosolic sulfonation of small molecules:
H2O + PNPB ⟶ BUT + PNP
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase II - Conjugation of compounds:
H2O + PNPB ⟶ BUT + PNP
- Cytosolic sulfonation of small molecules:
H2O + PNPB ⟶ BUT + PNP
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase II - Conjugation of compounds:
PAPS + beta-estradiol ⟶ E2-SO4 + PAP
- Cytosolic sulfonation of small molecules:
PAPS + beta-estradiol ⟶ E2-SO4 + PAP
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase II - Conjugation of compounds:
H2O + PNPB ⟶ BUT + PNP
- Cytosolic sulfonation of small molecules:
H2O + PNPB ⟶ BUT + PNP
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Xenobiotics:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- CYP2E1 reactions:
EtOH + H+ + Oxygen + TPNH ⟶ CH3CHO + H2O + TPN
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Biological oxidations:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Phase I - Functionalization of compounds:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- Cytochrome P450 - arranged by substrate type:
ANDST + H+ + Oxygen + TPNH ⟶ H2O + HCOOH + TPN + estrone
- Xenobiotics:
EtOH + H+ + Oxygen + TPNH ⟶ CH3CHO + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Xenobiotics:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- CYP2E1 reactions:
EtOH + H+ + Oxygen + TPNH ⟶ CH3CHO + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Xenobiotics:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- CYP2E1 reactions:
EtOH + H+ + Oxygen + TPNH ⟶ CH3CHO + H2O + TPN
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Biological oxidations:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Phase I - Functionalization of compounds:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- Cytochrome P450 - arranged by substrate type:
EtOH + H+ + Oxygen + TPNH ⟶ CH3CHO + H2O + TPN
- Xenobiotics:
EtOH + H+ + Oxygen + TPNH ⟶ CH3CHO + H2O + TPN
- Phase I - Functionalization of compounds:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- Cytochrome P450 - arranged by substrate type:
ANDST + H+ + Oxygen + TPNH ⟶ H2O + HCOOH + TPN + estrone
- Xenobiotics:
DEXM + H+ + Oxygen + TPNH ⟶ CH2O + DEXT + H2O + TPN
- Phase I - Functionalization of compounds:
H+ + Oxygen + TPNH + progesterone ⟶ 11DCORST + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
H+ + Oxygen + TPNH + progesterone ⟶ 11DCORST + H2O + TPN
- Xenobiotics:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- CYP2E1 reactions:
EtOH + H+ + Oxygen + TPNH ⟶ CH3CHO + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Xenobiotics:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- CYP2E1 reactions:
EtOH + H+ + Oxygen + TPNH ⟶ CH3CHO + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Xenobiotics:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- CYP2E1 reactions:
EtOH + H+ + Oxygen + TPNH ⟶ CH3CHO + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Xenobiotics:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- CYP2E1 reactions:
EtOH + H+ + Oxygen + TPNH ⟶ CH3CHO + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Xenobiotics:
CAF + H+ + Oxygen + TPNH ⟶ CH2O + H2O + Paraxanthine + TPN
- CYP2E1 reactions:
EtOH + H+ + Oxygen + TPNH ⟶ CH3CHO + H2O + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Biological oxidations:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Phase I - Functionalization of compounds:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Xenobiotics:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- CYP2E1 reactions:
EtOH + H+ + Oxygen + TPNH ⟶ CH3CHO + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Xenobiotics:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- CYP2E1 reactions:
EtOH + H+ + Oxygen + TPNH ⟶ CH3CHO + H2O + TPN
- CYP2E1 reactions:
EtOH + H+ + Oxygen + TPNH ⟶ CH3CHO + H2O + TPN
- CYP2E1 reactions:
EtOH + H+ + Oxygen + TPNH ⟶ CH3CHO + H2O + TPN
- CYP2E1 reactions:
tetrachloromethane ⟶ Cl-
BioCyc(8)
- phenol degradation I (aerobic):
H+ + NADPH + O2 + phenol ⟶ H2O + NADP+ + catechol
- phenol degradation I (aerobic):
H+ + NADPH + O2 + phenol ⟶ H2O + NADP+ + catechol
- phenol degradation I (aerobic):
H+ + NADPH + O2 + phenol ⟶ H2O + NADP+ + catechol
- phenol degradation I (aerobic):
H+ + NADPH + O2 + phenol ⟶ H2O + NADP+ + catechol
- superpathway of aromatic compound degradation:
O2 + protocatechuate ⟶ 3-carboxy-cis,cis-muconate + H+
- diphenyl ethers degradation:
O2 + diphenyl ether 2,3-diol ⟶ (2Z,4E)-2-hydroxy-6-oxo-6-phenoxyhexa-2,4-dienoate + H+
- phenyl adenosylcobamide biosynthesis from adenosylcobinamide-GDP:
NaMN + phenol ⟶ H+ + nicotinate + phenyl ribotide phosphate
- salicylate degradation III:
H+ + salicylate ⟶ CO2 + phenol
Plant Reactome(0)
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
210 个相关的物种来源信息
- 5339 - Agaricaceae: LTS0092642
- 155619 - Agaricomycetes: LTS0092642
- 5340 - Agaricus: LTS0092642
- 314553 - Agaricus moelleri: 10.1016/S0305-1978(98)00058-1
- 314553 - Agaricus moelleri: LTS0092642
- 83518 - Agaricus xanthodermus: 10.1515/ZNC-1984-11-1203
- 83518 - Agaricus xanthodermus: LTS0092642
- 554915 - Amoebozoa: LTS0092642
- 4037 - Apiaceae: LTS0092642
- 7458 - Apidae: LTS0092642
- 7459 - Apis: LTS0092642
- 7461 - Apis cerana: 10.1371/JOURNAL.PONE.0175573
- 7461 - Apis cerana: LTS0092642
- 193297 - Aronia: LTS0092642
- 661339 - Aronia melanocarpa: 10.1002/JSFA.2740360908
- 661339 - Aronia melanocarpa: LTS0092642
- 4219 - Artemisia: LTS0092642
- 265783 - Artemisia capillaris: 10.1002/(SICI)1521-4168(19990401)22:4<222::AID-JHRC222>3.0.CO;2-6
- 265783 - Artemisia capillaris: 10.1016/S0021-9673(01)00513-1
- 265783 - Artemisia capillaris: LTS0092642
- 6656 - Arthropoda: LTS0092642
- 4890 - Ascomycota: LTS0092642
- 70004 - Aspalathus: LTS0092642
- 155124 - Aspalathus linearis: 10.1021/JF00062A024
- 155124 - Aspalathus linearis: LTS0092642
- 4210 - Asteraceae: LTS0092642
- 124942 - Azadirachta: LTS0092642
- 124943 - Azadirachta indica: 10.1246/CL.1979.1137
- 124943 - Azadirachta indica: LTS0092642
- 5204 - Basidiomycota: LTS0092642
- 4071 - Capsicum: LTS0092642
- 4072 - Capsicum annuum: LTS0092642
- 260594 - Cedronella: LTS0092642
- 260595 - Cedronella canariensis: 10.1016/0031-9422(95)00241-X
- 260595 - Cedronella canariensis: LTS0092642
- 3041 - Chlorophyta: LTS0092642
- 7711 - Chordata: LTS0092642
- 13426 - Cichorium: LTS0092642
- 114280 - Cichorium endivia: 10.1021/JF00068A014
- 114280 - Cichorium endivia: LTS0092642
- 13428 - Cinnamomum: LTS0092642
- 128608 - Cinnamomum verum: 10.1021/JF60218A031
- 128608 - Cinnamomum verum: LTS0092642
- 13442 - Coffea: 10.1021/JF060460X
- 13442 - Coffea: LTS0092642
- 13443 - Coffea arabica: 10.1021/JF60160A010
- 13443 - Coffea arabica: LTS0092642
- 3954 - Combretaceae: LTS0092642
- 4609 - Cyperaceae: LTS0092642
- 4610 - Cyperus: LTS0092642
- 1423382 - Cyperus conglomeratus: 10.1002/CHIN.200052207
- 1423382 - Cyperus conglomeratus: LTS0092642
- 66679 - Daphne: LTS0092642
- 329675 - Daphne odora: 10.1271/BBB1961.47.483
- 329675 - Daphne odora: LTS0092642
- 2715869 - Daphne papyracea: 10.1271/BBB1961.47.483
- 2715869 - Daphne papyracea: LTS0092642
- 4345 - Ericaceae: LTS0092642
- 2759 - Eukaryota: LTS0092642
- 142796 - Eumycetozoa: LTS0092642
- 87256 - Evernia: LTS0092642
- 87257 - Evernia prunastri: 10.1021/JF60201A022
- 87257 - Evernia prunastri: LTS0092642
- 2605435 - Evosea: LTS0092642
- 3803 - Fabaceae: LTS0092642
- 3503 - Fagaceae: LTS0092642
- 4605 - Festuca: LTS0092642
- 52153 - Festuca rubra: 10.1016/0031-9422(91)84185-U
- 52153 - Festuca rubra: LTS0092642
- 36668 - Formicidae: LTS0092642
- 4751 - Fungi: LTS0092642
- 46347 - Glycyrrhiza: LTS0092642
- 49827 - Glycyrrhiza glabra: 10.1021/JF60214A042
- 49827 - Glycyrrhiza glabra: LTS0092642
- 3633 - Gossypium: LTS0092642
- 3635 - Gossypium hirsutum: 10.1007/BF00575737
- 3635 - Gossypium hirsutum: 10.1021/JF60200A011
- 3635 - Gossypium hirsutum: LTS0092642
- 629714 - Hypericaceae: LTS0092642
- 55962 - Hypericum: LTS0092642
- 65561 - Hypericum perforatum: 10.1055/S-2007-969352
- 65561 - Hypericum perforatum: LTS0092642
- 50557 - Insecta: LTS0092642
- 405757 - Jacobaea: LTS0092642
- 189227 - Jacobaea alpina: LTS0092642
- 4136 - Lamiaceae: LTS0092642
- 3433 - Lauraceae: LTS0092642
- 147547 - Lecanoromycetes: LTS0092642
- 219782 - Leptogenys: LTS0092642
- 611049 - Leptogenys processionalis: LTS0092642
- 4447 - Liliopsida: LTS0092642
- 3398 - Magnoliopsida: LTS0092642
- 6681 - Malacostraca: LTS0092642
- 3629 - Malvaceae: LTS0092642
- 40674 - Mammalia: LTS0092642
- 43707 - Meliaceae: LTS0092642
- 33208 - Metazoa: LTS0092642
- 1075371 - Monosis: LTS0092642
- 10066 - Muridae: LTS0092642
- 10088 - Mus: LTS0092642
- 10090 - Mus musculus: LTS0092642
- 10090 - Mus musculus: NA
- 3931 - Myrtaceae: LTS0092642
- 119948 - Myrtus: LTS0092642
- 119949 - Myrtus communis: 10.1016/S0021-9673(01)95036-8
- 119949 - Myrtus communis: LTS0092642
- 33680 - Myxogastria: LTS0092642
- 4747 - Orchidaceae: LTS0092642
- 49557 - Osmorhiza: LTS0092642
- 49558 - Osmorhiza aristata: 10.1248/YAKUSHI1947.99.11_1116
- 49558 - Osmorhiza aristata: LTS0092642
- 13625 - Paeonia: LTS0092642
- 35924 - Paeonia lactiflora: 10.1271/BBB1961.48.2847
- 35924 - Paeonia lactiflora: LTS0092642
- 45171 - Paeonia suffruticosa: 10.1080/00021369.1983.10866058
- 45171 - Paeonia suffruticosa: LTS0092642
- 24943 - Paeoniaceae: LTS0092642
- 78060 - Parmeliaceae: LTS0092642
- 125156 - Peristeria: LTS0092642
- 125157 - Peristeria elata: 10.1080/10412905.1992.9698106
- 125157 - Peristeria elata: LTS0092642
- 90951 - Phallaceae: LTS0092642
- 146780 - Phallus: LTS0092642
- 146781 - Phallus impudicus: LTS0092642
- 1115744 - Physaraceae: LTS0092642
- 5790 - Physarum: LTS0092642
- 5791 - Physarum polycephalum: 10.1248/CPB.32.797
- 5791 - Physarum polycephalum: LTS0092642
- 4479 - Poaceae: LTS0092642
- 4275 - Polygala: LTS0092642
- 174549 - Polygala senega: 10.1002/FFJ.2730100408
- 174549 - Polygala senega: LTS0092642
- 4274 - Polygalaceae: LTS0092642
- 55487 - Posidonia: LTS0092642
- 55489 - Posidonia oceanica: 10.1016/0304-3770(95)00504-8
- 55489 - Posidonia oceanica: 10.1016/S0031-9422(97)01118-7
- 55489 - Posidonia oceanica: LTS0092642
- 55435 - Posidoniaceae: LTS0092642
- 3754 - Prunus: LTS0092642
- 36596 - Prunus armeniaca: 10.1021/JF00004A032
- 36596 - Prunus armeniaca: LTS0092642
- 3758 - Prunus domestica: 10.1021/JF00004A032
- 3758 - Prunus domestica: LTS0092642
- 3760 - Prunus persica: 10.1021/JF00004A032
- 3760 - Prunus persica: LTS0092642
- 3892 - Pueraria: LTS0092642
- 132459 - Pueraria montana: LTS0092642
- 3893 - Pueraria montana var. lobata: 10.1080/00021369.1988.10868765
- 3893 - Pueraria montana var. lobata: LTS0092642
- 56534 - Pulicaria: LTS0092642
- 3511 - Quercus: LTS0092642
- 38942 - Quercus robur: 10.1055/S-2007-969352
- 38942 - Quercus robur: LTS0092642
- 3745 - Rosaceae: LTS0092642
- 24966 - Rubiaceae: LTS0092642
- 218135 - Schedonorus: LTS0092642
- 375856 - Scolochloa: LTS0092642
- 375857 - Scolochloa festucacea: 10.1016/0031-9422(91)84185-U
- 375857 - Scolochloa festucacea: LTS0092642
- 39249 - Scrophularia: LTS0092642
- 476207 - Scrophularia buergeriana: 10.1016/S0031-9422(00)00110-2
- 476207 - Scrophularia buergeriana: LTS0092642
- 4149 - Scrophulariaceae: LTS0092642
- 4139 - Scutellaria: LTS0092642
- 65409 - Scutellaria baicalensis: 10.1271/BBB1961.51.1449
- 65409 - Scutellaria baicalensis: LTS0092642
- 111522 - Sergestidae: LTS0092642
- 343321 - Sergia: LTS0092642
- 589641 - Sergia lucens: 10.1080/00021369.1984.10866348
- 589641 - Sergia lucens: LTS0092642
- 4070 - Solanaceae: LTS0092642
- 35493 - Streptophyta: LTS0092642
- 58859 - Tamarindus: LTS0092642
- 58860 - Tamarindus indica: 10.1080/10412905.1990.9697860
- 58860 - Tamarindus indica: LTS0092642
- 39992 - Terminalia: LTS0092642
- 155022 - Terminalia chebula: 10.4103/0974-8490.112421
- 155022 - Terminalia chebula: LTS0092642
- 3640 - Theobroma: LTS0092642
- 3641 - Theobroma cacao: 10.1007/S00217-006-0252-X
- 3641 - Theobroma cacao: 10.1021/JF60160A011
- 3641 - Theobroma cacao: LTS0092642
- 39987 - Thymelaeaceae: LTS0092642
- 58023 - Tracheophyta: LTS0092642
- 78532 - Trigonella: LTS0092642
- 78534 - Trigonella foenum-graecum: 10.1055/S-2007-969591
- 78534 - Trigonella foenum-graecum: LTS0092642
- 3118 - Ulva: LTS0092642
- 63410 - Ulva lactuca: 10.1016/S0031-9422(98)00754-7
- 63410 - Ulva lactuca: LTS0092642
- 3114 - Ulvaceae: LTS0092642
- 33103 - Ulvophyceae: LTS0092642
- 13749 - Vaccinium: LTS0092642
- 13750 - Vaccinium macrocarpon: 10.3891/ACTA.CHEM.SCAND.21-2076
- 13750 - Vaccinium macrocarpon: LTS0092642
- 180772 - Vaccinium vitis-idaea: 10.3891/ACTA.CHEM.SCAND.21-2076
- 180772 - Vaccinium vitis-idaea: LTS0092642
- 21910 - Verbenaceae: LTS0092642
- 33090 - Viridiplantae: LTS0092642
- 3602 - Vitaceae: LTS0092642
- 54476 - Vitex: LTS0092642
- 54477 - Vitex agnus-castus: 10.1002/RCM.1290091307
- 54477 - Vitex agnus-castus: LTS0092642
- 3603 - Vitis: LTS0092642
- 29760 - Vitis vinifera: 10.3389/FMICB.2017.00457
- 29760 - Vitis vinifera: LTS0092642
- 4650 - Zingiber: LTS0092642
- 136225 - Zingiber mioga: 10.1271/BBB1961.55.1655
- 136225 - Zingiber mioga: LTS0092642
- 4642 - Zingiberaceae: LTS0092642
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Jiangwei Ni, Xiaohai Chen, Nengfu Chen, Yawei Yan, Yu Wu, Boyang Li, Hui Huang, Haibin Tong, Yu Liu, Ningfeng Dai. Erianin alleviates LPS-induced acute lung injury via antagonizing P-selectin-mediated neutrophil adhesion function.
Journal of ethnopharmacology.
2024 Sep; 331(?):118336. doi:
10.1016/j.jep.2024.118336
. [PMID: 38750983] - Di Zhang, Minmin Lu, Xuhao Liu, Xiaoou Wei, Guanhua Lv, Jiyong Shi, Maurizio Battino, Kexian Chen, Xiaobo Zou. Effect of Phenol and Alkylamide Interaction on α-Glucosidase Inhibition and Cellular Antioxidant Activity during In Vitro Digestion: Using Szechuan Pepper (Zanthoxylum genus) as a Model.
Journal of agricultural and food chemistry.
2024 May; 72(20):11531-11548. doi:
10.1021/acs.jafc.4c01544
. [PMID: 38700894] - Mohabat Nadaf, Majid Halimi Khalil Abad, Ali Gholami, Mohammad Ehsan Taghavizadeh Yazdi, Marcello Iriti, Javad Mottaghipisheh. Phenolic content and antioxidant activity of different Iranian populations of Anabasis aphylla L.
Natural product research.
2024 May; 38(9):1606-1610. doi:
10.1080/14786419.2022.2150621
. [PMID: 36448308] - Bing-Yuan Yang, Nao Pang, Rui-Jie He, Ya-Feng Wang, Yong-Lin Huang. Triterpene hexahydroxydiphenoyl ester and phenol glucosides from the leaves of Castanopsis eyrie (Champ. ex Benth.) Hutch.
Natural product research.
2024 Apr; 38(7):1177-1183. doi:
10.1080/14786419.2022.2135001
. [PMID: 36272171] - S F Alshahateet, R M Altarawneh, W M Al-Tawarh, S A Al-Trawneh, S Al-Taweel, K Azzaoui, M Merzouki, R Sabbahi, B Hammouti, G Hanbali, S Jodeh. Catalytic green synthesis of Tin(IV) oxide nanoparticles for phenolic compounds removal and molecular docking with EGFR tyrosine kinase.
Scientific reports.
2024 03; 14(1):6519. doi:
10.1038/s41598-024-55460-4
. [PMID: 38499602] - Royee Singha, Dipashree Sharma, Ajay Krishna Saha, Panna Das. Foliar phenols and flavonoids level in pteridophytes: an insight to culturable fungal endophyte colonisation.
Archives of microbiology.
2024 Mar; 206(4):170. doi:
10.1007/s00203-024-03880-1
. [PMID: 38491263] - Cristina Del Burgo-Gutiérrez, Iziar A Ludwig, María-Paz De Peña, Concepción Cid. Industrial and culinary treatments applied to Piquillo pepper (Capsicum annuum cv. Piquillo) impact positively on (poly)phenols' bioaccessibility and gut microbiota catabolism.
Food & function.
2024 Mar; 15(5):2443-2458. doi:
10.1039/d3fo04762h
. [PMID: 38344768] - Nan Liu, Yan-Yan Yao, Jin Zhang, Ji-Guo Zhang, Chao Wu, Du-Juan Ouyang, Chang-Yong Zou, Zhen-Qiang Yang, Ji-Xiang Li. Reduction characteristic of chlorobenzene by a newly isolated Paenarthrobacter ureafaciens LY from a pharmaceutical wastewater treatment plant.
Cell biochemistry and function.
2024 Mar; 42(2):e3965. doi:
10.1002/cbf.3965
. [PMID: 38457283] - Guangpu Sun, Xinru Zhang, Fan Zhang, Yi Wang, Yuyang Wu, Zeyi Jiang, Siyuan Hao, Shiya Ye, Hu Zhang, Xinxin Zhang. Use microalgae to treat coke wastewater for producing biofuel: Influence of phenol on photosynthetic properties and intracellular components of microalgae.
Chemosphere.
2024 Feb; 349(?):140805. doi:
10.1016/j.chemosphere.2023.140805
. [PMID: 38040255] - Przemysław Kopeć, Monika Krzewska, Agnieszka Płażek. Phenol-Based Protein Extraction Method for Plant Proteomic Studies.
Methods in molecular biology (Clifton, N.J.).
2024; 2791(?):107-111. doi:
10.1007/978-1-0716-3794-4_11
. [PMID: 38532097] - Qiangwei Liu, Yuxin Li, Yanan Sun, Kunpeng Xie, Qianzhi Zeng, Yiming Hao, Qing Yang, Yunhong Pu, Shengnan Shi, Zheng Gong. Deterioration of sludge characteristics and promotion of antibiotic resistance genes spread with the co-existing of polyvinylchloride microplastics and tetracycline in the sequencing batch reactor.
The Science of the total environment.
2024 Jan; 906(?):167544. doi:
10.1016/j.scitotenv.2023.167544
. [PMID: 37797771] - Rajeev Kumar, V Visha Kumari, Ranjit Singh Gujjar, Mala Kumari, Sanjay Kumar Goswami, Jhuma Datta, Srikumar Pal, Sudhir Kumar Jha, Ashok Kumar, Ashwini Dutt Pathak, Milan Skalicky, Manzer H Siddiqui, Akbar Hossain. Evaluating the imazethapyr herbicide mediated regulation of phenol and glutathione metabolism and antioxidant activity in lentil seedlings.
PeerJ.
2024; 12(?):e16370. doi:
10.7717/peerj.16370
. [PMID: 38188166] - Merin Susanna James, Anurag Garg. Performance of electro-Fenton process for the treatment of synthetic sulphidic spent caustic waste stream generated from petroleum refineries.
Chemosphere.
2024 Jan; 346(?):140572. doi:
10.1016/j.chemosphere.2023.140572
. [PMID: 38303390] - Nokuthula Ndaba, Marthe Carine Djuidje Fotsing, Penny Poomani Govender. Assessment of Drimia delagoensis (Jessop) Baker Total Phenol, Flavonoids Content and Antioxidant Activity of Both Bulb and Leaves.
Chemistry & biodiversity.
2024 Jan; 21(1):e202301402. doi:
10.1002/cbdv.202301402
. [PMID: 38100129] - Roonak Golabiazar, Safia Yasin Yusif, Chnin Najat Qadir, Rihan S Abduljabar, Karwan Ismael Othman, Faeza Burhan Omar. Photocatalytic evaluation of synthesized MnO2/Fe3O4 NCs by Q. infectoria extract for removal Ni(II) and phenol: Study phytochemical, kinetics, thermodynamics, and antibioactivity.
International journal of biological macromolecules.
2023 Dec; 253(Pt 7):127400. doi:
10.1016/j.ijbiomac.2023.127400
. [PMID: 37848108] - Raquel Lucas-González, Vicente Díez-Riquelme, Manuel Viuda-Martos, José Ángel Pérez-Álvarez, Elena Sánchez-Zapata, Juana Fernández-López. Effect of the food matrix on the (poly)phenol stability of different plant-based meat products and their main ingredients after in vitro gastrointestinal digestion.
Food & function.
2023 Dec; 14(24):10796-10813. doi:
10.1039/d3fo03265e
. [PMID: 37982684] - Dan-Yang Shi, Yu Zheng, Qiang-Sheng Guo, Can Gong, Xu Xu, Jian-Ping Gao. Determination of total phenol and six polyphenolic components in the polyphenol extract of Cinnamomi cortex by quantitative nuclear magnetic resonance spectroscopy.
Analytical methods : advancing methods and applications.
2023 12; 15(47):6561-6570. doi:
10.1039/d3ay01501g
. [PMID: 38009205] - Lu Ma, Menglong Li, Yueteng Zhang, Kangdong Liu. Recent advances of antitumor leading compound Erianin: Mechanisms of action and structural modification.
European journal of medicinal chemistry.
2023 Dec; 261(?):115844. doi:
10.1016/j.ejmech.2023.115844
. [PMID: 37804769] - Luana Rabelo Hollanda, Joyce Azevedo Bezerra de Souza, Edson Luiz Foletto, Guilherme Luiz Dotto, Osvaldo Chiavone-Filho. Applying bottom ash as an alternative Fenton catalyst for effective removal of phenol from aqueous environment.
Environmental science and pollution research international.
2023 Dec; 30(57):120763-120774. doi:
10.1007/s11356-023-30890-1
. [PMID: 37943438] - Maria Pérez, Inés Dominguez-López, Rosa M Lamuela-Raventós. The Chemistry Behind the Folin-Ciocalteu Method for the Estimation of (Poly)phenol Content in Food: Total Phenolic Intake in a Mediterranean Dietary Pattern.
Journal of agricultural and food chemistry.
2023 Nov; 71(46):17543-17553. doi:
10.1021/acs.jafc.3c04022
. [PMID: 37948650] - Shruti Kaushik, Alok Ranjan, Anil Kumar Singh, Geetika Sirhindi. Methyl jasmonate reduces cadmium toxicity by enhancing phenol and flavonoid metabolism and activating the antioxidant defense system in pigeon pea (Cajanus cajan).
Chemosphere.
2023 Nov; ?(?):140681. doi:
10.1016/j.chemosphere.2023.140681
. [PMID: 37951403] - Cesar G Fraga, Patricia I Oteiza, Ezequiel J Hid, Monica Galleano. (Poly)phenols and the regulation of NADPH oxidases.
Redox biology.
2023 11; 67(?):102927. doi:
10.1016/j.redox.2023.102927
. [PMID: 37857000] - Wen Hao Shen, Lu Lu Zhou, Xin Ping Li, Rui Peng Cong, Qun Yan Huang, Li Ping Zheng, Jian Wen Wang. Bamboo polysaccharides elicit hypocrellin A biosynthesis of a bambusicolous fungus Shiraia sp. S9.
World journal of microbiology & biotechnology.
2023 Oct; 39(12):341. doi:
10.1007/s11274-023-03789-9
. [PMID: 37828354] - Cindy H J Yu, Petra C Kienesberger, Thomas Pulinilkunnil, H P Vasantha Rupasinghe. Effect of (poly)phenol-rich 'Daux Belan' apple supplementation on diet-induced obesity and glucose intolerance in C57BL/6NCrl mice.
Scientific reports.
2023 Oct; 13(1):17206. doi:
10.1038/s41598-023-43687-6
. [PMID: 37821510] - Marilina Fernandez, Eduardo A Callegari, María D Paez, Paola S González, Elizabeth Agostini. Proteomic analysis to unravel the biochemical mechanisms triggered by Bacillus toyonensis SFC 500-1E under chromium(VI) and phenol stress.
Biometals : an international journal on the role of metal ions in biology, biochemistry, and medicine.
2023 10; 36(5):1081-1108. doi:
10.1007/s10534-023-00506-9
. [PMID: 37209221] - Yue Kou, Baiyu Yang, Juntao Jiang, He Sun, Rui Zhang, Zhuoyu Li, Qinghong Wang, Quan Shi, Chunmao Chen. Characteristics of dissolved organic matter in point-source wastewaters at a petrochemical plant: Molecular constituents and contributions to the influent of wastewater treatment plant.
Environmental research.
2023 Sep; 238(Pt 1):117157. doi:
10.1016/j.envres.2023.117157
. [PMID: 37726030] - Dorcas O Adenuga, Shepherd M Tichapondwa, Evans M N Chirwa. Influence of wastewater matrix on the visible light degradation of phenol using AgCl/Bi24O31Cl10 photocatalyst.
Environmental science and pollution research international.
2023 Sep; 30(44):98922-98933. doi:
10.1007/s11356-022-23872-2
. [PMID: 36322360] - Dongze Li, Ling Zhu, Qiming Wu, Yiling Chen, Gangcheng Wu, Hui Zhang. Different interactions between Tartary buckwheat protein and Tartary buckwheat phenols during extraction: Alterations in the conformation and antioxidant activity of protein.
Food chemistry.
2023 Aug; 418(?):135711. doi:
10.1016/j.foodchem.2023.135711
. [PMID: 37001350] - Iffat Rashid, Syed Najaf Hasan Naqvi, Hareem Mohsin, Kaneez Fatima, Muhammad Afzal, Fahad Al-Misned, Irshad Bibi, Fawad Ali, Nabeel Khan Niazi. The evaluation of bacterial-augmented floating treatment wetlands for concomitant removal of phenol and chromium from contaminated water.
International journal of phytoremediation.
2023 Jul; ?(?):1-7. doi:
10.1080/15226514.2023.2240428
. [PMID: 37501357] - Krishna Kumar Jaiswal, Vinod Kumar, Neha Arora, Mikhail S Vlaskin. Evaluation of the mechanisms underlying altered fatty acid biosynthesis in heterotrophic microalgal strain Chlorella sorokiniana during biodegradation of phenol and p-nitrophenol.
Environmental science and pollution research international.
2023 Jul; ?(?):. doi:
10.1007/s11356-023-28615-5
. [PMID: 37432577] - Mai Noureldein, Spyros Grigorakis, Abdessamie Kellil, Nikolaos Nenadis. White rice enrichment with phenols upon cooking in olive leaf infusion: A preliminary study.
Journal of the science of food and agriculture.
2023 Jun; ?(?):. doi:
10.1002/jsfa.12821
. [PMID: 37384660] - Ivan V Smolyaninov, Andrey I Poddel'sky, Daria A Burmistrova, Yulia K Voronina, Nadezhda P Pomortseva, Maria A Polovinkina, Nailya R Almyasheva, Maria A Zamkova, Nadezhda T Berberova, Igor L Eremenko. The Synthesis and Biological Activity of Organotin Complexes with Thio-Schiff Bases Bearing Phenol Fragments.
International journal of molecular sciences.
2023 May; 24(9):. doi:
10.3390/ijms24098319
. [PMID: 37176027] - Agnieszka Micek, Ali A Alshatwi, Nadia Paladino, Ida Guerrera, Giuseppe Grosso, Sabrina Castellano, Justyna Godos. Association between alcoholic (poly)phenol-rich beverage consumption and cognitive status in older adults living in a Mediterranean area.
International journal of food sciences and nutrition.
2023 May; 74(3):362-372. doi:
10.1080/09637486.2023.2199182
. [PMID: 37101389] - Yong Li, Yifan Xu, Xuemei Ma, Melanie Le Sayec, Haonan Wu, Paola Dazzan, Chiara Nosarti, Christian Heiss, Rachel Gibson, Ana Rodriguez-Mateos. (Poly)phenol intake, plant-rich dietary patterns and cardiometabolic health: a cross-sectional study.
Food & function.
2023 Apr; ?(?):. doi:
10.1039/d3fo00019b
. [PMID: 37097300] - Xuan Zhang, Keke Geng, Ningning Wu, Gang Hu, Ben Fan, Jian He, Wenjing Qiao. Sustained anaerobic degradation of 4-chloro-2-methylphenoxyacetic acid by acclimated sludge in a continuous-flow reactor.
Chemosphere.
2023 Apr; 330(?):138749. doi:
10.1016/j.chemosphere.2023.138749
. [PMID: 37086982] - Jonas Pereira de Souza Junior, Renato de Mello Prado, Cid Naudi Silva Campos, Gilmar da Silveira Sousa Junior, Milton Garcia Costa, Simone de Pádua Teixeira, Priscila Lupino Gratão. Silicon modulate the non-enzymatic antioxidant defence system and oxidative stress in a similar way as boron in boron-deficient cotton flowers.
Plant physiology and biochemistry : PPB.
2023 Apr; 197(?):107594. doi:
10.1016/j.plaphy.2023.02.024
. [PMID: 37001302] - Mohamed Gomaa, Eman H El-Naeb, Awatief F Hifney, Mahmoud S Adam, Mustafa A Fawzy. Hormesis effects of phenol on growth and cellular metabolites of Chlorella sp. under different nutritional conditions using response surface methodology.
Environmental science and pollution research international.
2023 Mar; ?(?):. doi:
10.1007/s11356-023-26249-1
. [PMID: 36928704] - Vibha Bhardwaj. Taxus wallichiana Zucc. (Himalayan Yew): A Medicinal Plant Exhibiting Antibacterial Properties.
Advances in experimental medicine and biology.
2023 Mar; ?(?):. doi:
10.1007/5584_2023_772
. [PMID: 36922486] - Yumeng Wang, Chunhao Zhang, Yue Zhao, Zimin Wei, Jie Li, Caihong Song, Xiaomeng Chen, Meiyang Zhao. Lignite drove phenol precursors to participate in the formation of humic acid during chicken manure composting.
The Science of the total environment.
2023 Mar; ?(?):162609. doi:
10.1016/j.scitotenv.2023.162609
. [PMID: 36871714] - Xiong Yang, Qian Zhang, Ning Yang, Muxi Chang, Yaoyao Ge, Huirong Zhou, Guolei Li. Traits variation of acorns and cupules during maturation process in Quercus variabilis and Quercus aliena.
Plant physiology and biochemistry : PPB.
2023 Mar; 196(?):531-541. doi:
10.1016/j.plaphy.2023.02.011
. [PMID: 36774909] - Ana Marta de Matos, Regina Menezes. The (Poly)phenol-Carbohydrate Combination for Diabetes: Where Do We Stand?.
Nutrients.
2023 Feb; 15(4):. doi:
10.3390/nu15040996
. [PMID: 36839354] - Noor Ua Nazir, Shah R Abbas. Identification of phenol 2,2-methylene bis, 6 [1,1-D] as breath biomarker of hepatocellular carcinoma (HCC) patients and its electrochemical sensing: E-nose biosensor for HCC.
Analytica chimica acta.
2023 Feb; 1242(?):340752. doi:
10.1016/j.aca.2022.340752
. [PMID: 36657885] - Nikoline J Nielsen, Peter Christensen, Kristoffer G Poulsen, Jan H Christensen. Investigation of micropollutants in household waste fractions processed by anaerobic digestion: target analysis, suspect- and non-target screening.
Environmental science and pollution research international.
2023 Feb; ?(?):. doi:
10.1007/s11356-023-25692-4
. [PMID: 36763273] - Fabian Lanuza, Raul Zamora-Ros, Agnetha Linn Rostgaard-Hansen, Anne Tjønneland, Rikard Landberg, Jytte Halkjær, Cristina Andres-Lacueva. Descriptive analysis of dietary (poly)phenol intake in the subcohort MAX from DCH-NG: 'Diet, Cancer and Health-Next Generations cohort'.
European journal of nutrition.
2023 Feb; 62(1):337-350. doi:
10.1007/s00394-022-02977-x
. [PMID: 35994085] - Samir A Mahgoub, Shaza Y A Qattan, Salma S Salem, Howaida M Abdelbasit, Mohamed Raafat, Mada F Ashkan, Diana A Al-Quwaie, Ebtihal Abdullah Motwali, Fatimah S Alqahtani, Hassan I Abd El-Fattah. Characterization and Biodegradation of Phenol by Pseudomonas aeruginosa and Klebsiella variicola Strains Isolated from Sewage Sludge and Their Effect on Soybean Seeds Germination.
Molecules (Basel, Switzerland).
2023 Jan; 28(3):. doi:
10.3390/molecules28031203
. [PMID: 36770871] - Fekade Beshah Tessema, Yilma Hunde Gonfa, Tilahun Belayneh Asfaw, Tigist Getachew Tadesse, Mesfin Getachew Tadesse, Archana Bachheti, Devi Prasad Pandey, Saikh M Wabaidur, Kholood A Dahlous, Ivan Širić, Pankaj Kumar, Vinod Kumar, Sami Abou Fayssal, Rakesh Kumar Bachheti. Flavonoids and Phenolic Acids from Aerial Part of Ajuga integrifolia (Buch.-Ham. Ex D. Don): Anti-Shigellosis Activity and In Silico Molecular Docking Studies.
Molecules (Basel, Switzerland).
2023 Jan; 28(3):. doi:
10.3390/molecules28031111
. [PMID: 36770779] - Alejandra P Oyarzun Mejia, Michael R Hyman. Diyne inactivators and activity-based fluorescent labeling of phenol hydroxylase in Pseudomonas sp. CF600.
FEMS microbiology letters.
2023 01; 370(?):. doi:
10.1093/femsle/fnad002
. [PMID: 36617235] - Fănică Bălănescu, Andreea Veronica Botezatu, Fernanda Marques, Anna Busuioc, Olivian Marincaş, Costel Vînătoru, Geta Cârâc, Bianca Furdui, Rodica Mihaela Dinica. Bridging the Chemical Profile and Biological Activities of a New Variety of Agastache foeniculum (Pursh) Kuntze Extracts and Essential Oil.
International journal of molecular sciences.
2023 Jan; 24(1):. doi:
10.3390/ijms24010828
. [PMID: 36614269] - Xu Zhang, Xin Shu, Xiaolin Zhou, Cheng Zhou, Pu Yang, Muhe Diao, Haiyang Hu, Xinyu Gan, Chen Zhao, Chunzhen Fan. Magnetic reed biochar materials as adsorbents for aqueous copper and phenol removal.
Environmental science and pollution research international.
2023 Jan; 30(2):3659-3667. doi:
10.1007/s11356-022-22474-2
. [PMID: 35953746] - Baraa Jarwan, Jawad Tawalbeh, Ruba Malkawi. Assessment of Phenol and Antioxidant Content of Olive Varieties and Their Potential Health Benefits for Colon Health.
TheScientificWorldJournal.
2023; 2023(?):9165902. doi:
10.1155/2023/9165902
. [PMID: 37868295] - Srinivasulu Cheemanapalli, Chandrasekaran Palaniappan, Yeshwanth Mahesh, Yuvaraj Iyyappan, Suresh Yarrappagaari, Sekar Kanagaraj. In vitro and in silico perspectives to explain anticancer activity of a novel syringic acid analog ((4-(1H-1, 3-benzodiazol-2-yl)-2, 6-dimethoxy phenol)) through apoptosis activation and NFkB inhibition in K562 leukemia cells.
Computers in biology and medicine.
2023 01; 152(?):106349. doi:
10.1016/j.compbiomed.2022.106349
. [PMID: 36470147] - Paraskevi Siamandoura, Constantina Tzia. Comparative Study of Novel Methods for Olive Leaf Phenolic Compound Extraction Using NADES as Solvents.
Molecules (Basel, Switzerland).
2023 Jan; 28(1):. doi:
10.3390/molecules28010353
. [PMID: 36615544] - Jeehee Lee, Eunsook Park, Kyueui Lee, Mikyung Shin, Soohyeon Lee, Miguel Ángel Moreno-Villaécija, Haeshin Lee. Reversible tissue sticker inspired by chemistry in plant-pathogen relationship.
Acta biomaterialia.
2023 01; 155(?):247-257. doi:
10.1016/j.actbio.2022.09.075
. [PMID: 36216125] - Tusha Tripathi, Abhinav Singh, Mahaveer Dhobi, Vivekanandan Kalaiselvan. Comparative metabolic profiling, isolation of alkylated phenols and antioxidant activity of roots of Plumbago species using GC-MS and NMR based metabolomics study.
Natural product research.
2022 Dec; 36(23):6126-6131. doi:
10.1080/14786419.2022.2055014
. [PMID: 35337230] - De-Feng Liu, Ming Bai, Ning-Ning Du, Shuai Shen, Zhi-Yuan Li, Xin Zhang, Rui Guo, Guo-Dong Yao, Shao-Jiang Song, Xiao-Xiao Huang. Insight into Isolation and Characterization of Phenolic Compounds from Hawthorn (Crataegus pinnatifida Bge.) with Antioxidant, Anti-Acetylcholinesterase, and Neuroprotective Activities.
Plant foods for human nutrition (Dordrecht, Netherlands).
2022 Dec; 77(4):538-544. doi:
10.1007/s11130-022-01004-y
. [PMID: 35986175] - Sangeeta Singh, Tanmay Bharadwaj, Devendra Verma, Kasturi Dutta. Valorization of phenol contaminated wastewater for lipid production by Rhodosporidium toruloides 9564T.
Chemosphere.
2022 Dec; 308(Pt 2):136269. doi:
10.1016/j.chemosphere.2022.136269
. [PMID: 36057352] - Isabel H Chacón-Figueroa, Luis G Medrano-Ruiz, María de Jesús Moreno-Vásquez, Maribel Ovando-Martínez, Nohemí Gámez-Meza, Carmen L Del-Toro-Sánchez, Daniela D Castro-Enríquez, Guadalupe A López-Ahumada, Ramón F Dórame-Miranda. Use of Coffee Bean Bagasse Extracts in the Brewing of Craft Beers: Optimization and Antioxidant Capacity.
Molecules (Basel, Switzerland).
2022 Nov; 27(22):. doi:
10.3390/molecules27227755
. [PMID: 36431856] - Hardeep Singh Tuli, Ajay Kumar, Seema Ramniwas, Renuka Coudhary, Diwakar Aggarwal, Manoj Kumar, Ujjawal Sharma, Nidarshana Chaturvedi Parashar, Shafiul Haque, Katrin Sak. Ferulic Acid: A Natural Phenol That Inhibits Neoplastic Events through Modulation of Oncogenic Signaling.
Molecules (Basel, Switzerland).
2022 Nov; 27(21):. doi:
10.3390/molecules27217653
. [PMID: 36364478] - Salsabil Trigui, Davorka K Hackenberger, Nikolina Stjepanović, Željka Lončarić, Marija Kovačević, Branimir K Hackenberger, Amjad Kallel. Mitigation of OMW toxicity toward Enchytraeus albidus with application of additives.
Environmental science and pollution research international.
2022 Nov; 29(55):83426-83436. doi:
10.1007/s11356-022-21668-y
. [PMID: 35761138] - Stepan Myagkota, Roman Shevchuk, Oleg Sukach, Andriy Pushak, Taras Malyi, Mykhailo Fulmes. Spectral and Luminescence Properties of Linseed Oils of Different Prehistory.
Journal of fluorescence.
2022 Nov; 32(6):1991-1998. doi:
10.1007/s10895-022-02993-4
. [PMID: 35798985] - Melanie Le Sayec, Yifan Xu, Manolo Laiola, Fabiola Alvarez Gallego, Daphne Katsikioti, Chandler Durbidge, Uku Kivisild, Sarah Armes, Manon Lecomte, Pascale Fança-Berthon, Emilie Fromentin, Florian Plaza Oñate, J Kennedy Cruickshank, Ana Rodriguez-Mateos. The effects of Aronia berry (poly)phenol supplementation on arterial function and the gut microbiome in middle aged men and women: Results from a randomized controlled trial.
Clinical nutrition (Edinburgh, Scotland).
2022 11; 41(11):2549-2561. doi:
10.1016/j.clnu.2022.08.024
. [PMID: 36228567] - Jacob Lessard-Lord, Pier-Luc Plante, Yves Desjardins. Purified recombinant enzymes efficiently hydrolyze conjugated urinary (poly)phenol metabolites.
Food & function.
2022 Oct; 13(21):10895-10911. doi:
10.1039/d2fo02229j
. [PMID: 36239175] - Kannayiram Muthukumaravel, Marckasagayam Priyadharshini, Venkatachalam Kanagavalli, Natarajan Vasanthi, Munawar Suhail Ahmed, Mohamed Saiyad Musthafa, Saurabh Shukla, Ramsha Khan, Rajinikanth Rajagopal, Soon Woong Chang, Balasubramani Ravindran. Impact of sublethal phenol in freshwater fish Labeo rohita on biochemical and haematological parameters.
Environmental monitoring and assessment.
2022 Oct; 195(1):10. doi:
10.1007/s10661-022-10554-2
. [PMID: 36269455] - Monika Malicka, Franco Magurno, Zofia Piotrowska-Seget. Phenol and Polyaromatic Hydrocarbons Are Stronger Drivers Than Host Plant Species in Shaping the Arbuscular Mycorrhizal Fungal Component of the Mycorrhizosphere.
International journal of molecular sciences.
2022 Oct; 23(20):. doi:
10.3390/ijms232012585
. [PMID: 36293448] - Pan-Pan Chen, Pan Yang, Chong Liu, Yan-Ling Deng, Qiong Luo, Yu Miao, Min Zhang, Fei-Peng Cui, Jia-Yue Zeng, Tian Shi, Ting-Ting Lu, Da Chen, Long-Qiang Wang, Chun-Ping Liu, Ming Jiang, Qiang Zeng. Urinary concentrations of phenols, oxidative stress biomarkers and thyroid cancer: Exploring associations and mediation effects.
Journal of environmental sciences (China).
2022 Oct; 120(?):30-40. doi:
10.1016/j.jes.2022.01.009
. [PMID: 35623770] - Qi Lu, Qingyuan Luo, Jiaxuan Li, Xu Wang, Chao Ban, Jixiao Qin, Yayuan Tian, Xingzhou Tian, Xiang Chen. Evaluation of the Chemical Composition, Bioactive Substance, Gas Production, and Rumen Fermentation Parameters of Four Types of Distiller's Grains.
Molecules (Basel, Switzerland).
2022 Sep; 27(18):. doi:
10.3390/molecules27186134
. [PMID: 36144867] - Álvaro Cruz-Carrión, Luca Calani, Ma Josefina Ruiz de Azua, Pedro Mena, Daniele Del Rio, Manuel Suárez, Anna Arola-Arnal. (Poly)phenolic composition of tomatoes from different growing locations and their absorption in rats: A comparative study.
Food chemistry.
2022 Sep; 388(?):132984. doi:
10.1016/j.foodchem.2022.132984
. [PMID: 35453013] - Hafssa Ouattar, Otmane Zouirech, Mohammed Kara, Amine Assouguem, Saeedah Musaed Almutairi, Fahad M Al-Hemaid, Rabab Ahmed Rasheed, Riaz Ullah, Arshad Mehmood Abbasi, Mahjoub Aouane, Karima Mikou. In Vitro Study of the Phytochemical Composition and Antioxidant, Immunostimulant, and Hemolytic Activities of Nigella sativa (Ranunculaceae) and Lepidium sativum Seeds.
Molecules (Basel, Switzerland).
2022 Sep; 27(18):. doi:
10.3390/molecules27185946
. [PMID: 36144678] - Xiao Zhang, Qixing Xia, Yang Zhou, Yahui Wang, Zhaohua Jiang, Zhongping Yao. High-activity and excellent-reusability γ-Fe2O3/SiO2 coating on TC4 titanium alloy by plasma electrolytic oxidation for enhanced photo-Fenton degradation.
Chemosphere.
2022 Sep; 303(Pt 2):135105. doi:
10.1016/j.chemosphere.2022.135105
. [PMID: 35640682] - Perla Lopes de Freitas, João Paulo Nascimento Miranda, Lucas Martins França, Antonio Marcus de Andrade Paes. Plant-Derived (Poly)phenols and Their Metabolic Outcomes: The Pursuit of a Role for the Gut Microbiota.
Nutrients.
2022 Aug; 14(17):. doi:
10.3390/nu14173510
. [PMID: 36079768] - Alba Macià, Maria-Paz Romero, Silvia Yuste, Iziar Ludwig, Anna Pedret, Rosa Maria Valls, Patricia Salamanca, Rosa Solà, Maria José Motilva, Laura Rubió. Phenol metabolic fingerprint and selection of intake biomarkers after acute and sustained consumption of red-fleshed apple versus common apple in humans. The AppleCOR study.
Food chemistry.
2022 Aug; 384(?):132612. doi:
10.1016/j.foodchem.2022.132612
. [PMID: 35413774] - Kamilla Silva Oliveira, Renato de Mello Prado, Mirela Vantini Checchio, Priscila Lupino Gratão. Interaction of silicon and manganese in nutritional and physiological aspects of energy cane with high fiber content.
BMC plant biology.
2022 Jul; 22(1):374. doi:
10.1186/s12870-022-03766-8
. [PMID: 35902800] - Yang Liu, Yuting Meng, Jiang Bian, Bolin Liu, Xuefen Li, Qi Guan, Zengqiang Li, Weige Zhang, Yingliang Wu, Daiying Zuo. 2-Methoxy-5((3,4,5-trimethosyphenyl) seleninyl) phenol causes G2/M cell cycle arrest and apoptosis in NSCLC cells through mitochondrial apoptotic pathway and MDM2 inhibition.
Journal of biochemical and molecular toxicology.
2022 Jul; 36(7):e23066. doi:
10.1002/jbt.23066
. [PMID: 35384151] - Priyanka Panchal, Devina Rattan Paul, Shubham Gautam, Poonam Meena, S P Nehra, Sanjeev Maken, Anshu Sharma. Photocatalytic and antibacterial activities of green synthesized Ag doped MgO nanocomposites towards environmental sustainability.
Chemosphere.
2022 Jun; 297(?):134182. doi:
10.1016/j.chemosphere.2022.134182
. [PMID: 35248599] - Yuting Xue, Haotian Zhong, Bin Liu, Ruixue Zhao, Jun Ma, Zhengbo Chen, Kai Li, Xia Zuo. Colorimetric sensing strategy for detection of cysteine, phenol cysteine, and phenol based on synergistic doping of multiple heteroatoms into sponge-like Fe/NPC nanozymes.
Analytical and bioanalytical chemistry.
2022 Jun; 414(14):4217-4225. doi:
10.1007/s00216-022-04074-8
. [PMID: 35462599] - Alan A Ruiz Hernández, Ofelia Rouzaud Sández, Juana Frías, Fernando Ayala Zavala, Humberto Astiazarán García, Maribel Robles Sánchez. Optimization of the Duration and Intensity of UV-A Radiation to Obtain the Highest Free Phenol Content and Antioxidant Activity in Sprouted Sorghum (Sorghum bicolor L. Moench).
Plant foods for human nutrition (Dordrecht, Netherlands).
2022 Jun; 77(2):317-318. doi:
10.1007/s11130-021-00938-z
. [PMID: 35334036] - Asmat Ali, Maria Siddique, Wei Chen, Zhixin Han, Romana Khan, Muhammad Bilal, Ummara Waheed, Irum Shahzadi. Promising Low-Cost Adsorbent from Waste Green Tea Leaves for Phenol Removal in Aqueous Solution.
International journal of environmental research and public health.
2022 05; 19(11):. doi:
10.3390/ijerph19116396
. [PMID: 35681981] - Jiayin Zhang, Kwan-Kit Jason Chan, Wan Chan. Synergistic Interaction of Polycyclic Aromatic Hydrocarbons, Phthalate Esters, or Phenol on DNA Adduct Formation by Aristolochic Acid I: Insights into the Etiology of Balkan Endemic Nephropathy.
Chemical research in toxicology.
2022 05; 35(5):849-857. doi:
10.1021/acs.chemrestox.2c00026
. [PMID: 35471859] - Junjie Ao, Yuqing Wang, Weifeng Tang, Ruxianguli Aimuzi, Kai Luo, Ying Tian, Qianlong Zhang, Jun Zhang. Patterns of environmental exposure to phenols in couples who plan to become pregnant.
The Science of the total environment.
2022 May; 821(?):153520. doi:
10.1016/j.scitotenv.2022.153520
. [PMID: 35101495] - Álvaro Cruz-Carrión, Luca Calani, Ma Josefina Ruiz de Azua, Pedro Mena, Daniele Del Rio, Anna Arola-Arnal, Manuel Suárez. Impact of Seasonal Consumption of Local Tomatoes on the Metabolism and Absorption of (Poly)Phenols in Fischer Rats.
Nutrients.
2022 May; 14(10):. doi:
10.3390/nu14102047
. [PMID: 35631187] - Chunyu Yu, Qian Zhang, Yiwen Zhang, Liyuan Wang, Huarong Xu, Kaishun Bi, Donghao Li, Qing Li. Isotope labelled in suit derivatization-extraction integrated system for amine/phenol submetabolome analysis based on nanoconfinement effect: Application to lung cancer.
Journal of chromatography. A.
2022 May; 1670(?):462954. doi:
10.1016/j.chroma.2022.462954
. [PMID: 35344791] - Silvia Yuste, Iziar A Ludwig, María-Paz Romero, María-José Motilva, Laura Rubió. New red-fleshed apple cultivars: a comprehensive review of processing effects, (poly)phenol bioavailability and biological effects.
Food & function.
2022 May; 13(9):4861-4874. doi:
10.1039/d2fo00130f
. [PMID: 35419577] - Man Zhang, Dong Luo, Hailing Fang, Wei Zhao, Ying Zheng. Effect of light quality on the growth and main chemical composition of Bletilla striata.
Journal of plant physiology.
2022 May; 272(?):153690. doi:
10.1016/j.jplph.2022.153690
. [PMID: 35397464] - Bariş Sevinç, Nurullah Damburaci, Ömer Karahan. Comparison of Curettage Plus Platelet-Rich Plasma Gel and Curettage Plus Phenol Application in Treatment of Pilonidal Sinus Disease: A Randomized Trial.
Diseases of the colon and rectum.
2022 05; 65(5):735-741. doi:
10.1097/dcr.0000000000002082
. [PMID: 34629430] - Jinjie Hua, Huajie Wang, Haibo Yuan, Peng Yin, Jinjin Wang, Guiyi Guo, Yongwen Jiang. New insights into the effect of fermentation temperature and duration on catechins conversion and formation of tea pigments and theasinensins in black tea.
Journal of the science of food and agriculture.
2022 May; 102(7):2750-2760. doi:
10.1002/jsfa.11616
. [PMID: 34719036] - Bing-Bing Liu, Rajivgandhi Govindan, Maruthupandy Muthuchamy, Shuang Cheng, Xuebin Li, Lijing Ye, Lai-You Wang, Shu-Xian Guo, Wen-Jun Li, Naiyf S Alharbi, Jamal M Khaled, Shine Kadaikunnan. Halophilic archaea and their extracellular polymeric compounds in the treatment of high salt wastewater containing phenol.
Chemosphere.
2022 May; 294(?):133732. doi:
10.1016/j.chemosphere.2022.133732
. [PMID: 35101434] - Diwei Chen, Zhiyan Zheng, Feiji Zhang, Rufu Ke, Nan Sun, Yonghao Wang, Yongjing Wang. Fe@Fe2O3-loaded biochar as an efficient heterogeneous Fenton catalyst for organic pollutants removal.
Water science and technology : a journal of the International Association on Water Pollution Research.
2022 May; 85(10):2797-2810. doi:
10.2166/wst.2022.152
. [PMID: 35638788] - S Toutiaee, N Mojgani, N Harzandi, M Moharrami, L Mokhberosafa. In vitro probiotic and safety attributes of Bacillus spp. isolated from beebread, honey samples and digestive tract of honeybees Apis mellifera.
Letters in applied microbiology.
2022 May; 74(5):656-665. doi:
10.1111/lam.13650
. [PMID: 35000212] - Haixia Wu, Ruoyu Liu, Yongjun Sun, Yiyun Wen, Quanfa Zhao, Shaohua Lin, Yong Wang. Effect of MoS2 on phenol decomposition in water after high-voltage pulse discharge treatment.
Chemosphere.
2022 May; 294(?):133808. doi:
10.1016/j.chemosphere.2022.133808
. [PMID: 35114266] - Achilles Ntranos, Hye-Jin Park, Maureen Wentling, Vladimir Tolstikov, Mario Amatruda, Benjamin Inbar, Seunghee Kim-Schulze, Carol Frazier, Judy Button, Michael A Kiebish, Fred Lublin, Keith Edwards, Patrizia Casaccia. Bacterial neurotoxic metabolites in multiple sclerosis cerebrospinal fluid and plasma.
Brain : a journal of neurology.
2022 04; 145(2):569-583. doi:
10.1093/brain/awab320
. [PMID: 34894211] - Bariş Sevinç. Reply.
Diseases of the colon and rectum.
2022 04; 65(4):e249. doi:
10.1097/dcr.0000000000002405
. [PMID: 34985001] - Luigi Basso, Gaetano Gallo. Postoperative Bleeding Following Minimally Invasive Surgery for Pilonidal Disease.
Diseases of the colon and rectum.
2022 04; 65(4):e248. doi:
10.1097/dcr.0000000000002404
. [PMID: 34984999] - Diaaidden Alwadi, Quentin Felty, Deodutta Roy, Changwon Yoo, Alok Deoraj. Environmental Phenol and Paraben Exposure Risks and Their Potential Influence on the Gene Expression Involved in the Prognosis of Prostate Cancer.
International journal of molecular sciences.
2022 Mar; 23(7):. doi:
10.3390/ijms23073679
. [PMID: 35409038] - Seonhwa Park, Da-Eun Kwak, Al-Monsur Jiaul Haque, Nam-Sihk Lee, Young Ho Yoon, Haesik Yang. Phenolic Tyrosinase Substrate with a Formal Potential Lower than That of Phenol to Obtain a Sensitive Electrochemical Immunosensor.
ACS sensors.
2022 03; 7(3):790-796. doi:
10.1021/acssensors.1c02346
. [PMID: 35195397] - Zachary T Schwartz, Peter D Theisen, Olaf T Bjornstal, Mary Rodebaugh, Mauricio A Jemal, Dallas Lee, Spencer D Shelton, Zhenze Zhao, Liqin Du, Sean M Kerwin. Scalable Synthesis and Cancer Cell Cytotoxicity of Rooperol and Analogues.
Molecules (Basel, Switzerland).
2022 Mar; 27(6):. doi:
10.3390/molecules27061792
. [PMID: 35335155] - Jing Hong, Zeyu Xie, Fangyao Yang, Lixiang Jiang, Tiantian Jian, Siyu Wang, Yuanbiao Guo, Xinhe Huang. Erianin suppresses proliferation and migration of cancer cells in a pyruvate carboxylase-dependent manner.
Fitoterapia.
2022 Mar; 157(?):105136. doi:
10.1016/j.fitote.2022.105136
. [PMID: 35093481] - Canbiao Zeng, Guangying Ye, Guochao Li, He Cao, Zaihua Wang, Shengguo Ji. RID serve as a more appropriate measure than phenol sulfuric acid method for natural water-soluble polysaccharides quantification.
Carbohydrate polymers.
2022 Feb; 278(?):118928. doi:
10.1016/j.carbpol.2021.118928
. [PMID: 34973746] - K Chojnacka, K Owczarek, M Caban, D Sosnowska, D Kajszczak, U Lewandowska. Chemoprotective effects of Japanese quince (Chaenomeles japonica L.) phenol leaf extract on colon cancer cells through the modulation of extracellular signal-regulated kinases/AKT signaling pathway.
Journal of physiology and pharmacology : an official journal of the Polish Physiological Society.
2022 Feb; 73(1):. doi:
10.26402/jpp.2022.1.04
. [PMID: 35639036] - Lisiane Martins Volcão, Priscila Cristina Bartolomeu Halicki, Anelise Christ-Ribeiro, Daniela Fernandes Ramos, Eliana Badiale-Furlong, Robson Andreazza, Eduardo Bernardi, Flávio Manoel Rodrigues da Silva Júnior. Mushroom extract of Lactarius deliciosus (L.) Sf. Gray as biopesticide: Antifungal activity and toxicological analysis.
Journal of toxicology and environmental health. Part A.
2022 01; 85(2):43-55. doi:
10.1080/15287394.2021.1970065
. [PMID: 34459359]