Sparteine (BioDeep_00000002013)

 

Secondary id: BioDeep_00000171951, BioDeep_00000409931, BioDeep_00000859195

natural product PANOMIX_OTCML-2023


代谢物信息卡片


7,14-METHANO-2H,6H-DIPYRIDO(1,2-A:1,2-E)(1,5)DIAZOCINE, DODECAHYDRO-, (7S-(7.ALPHA.,7A.BETA.,14.ALPHA.,14A.BETA.))-

化学式: C15H26N2 (234.2096)
中文名称: (-)-鹰爪豆碱, (+)-鹰爪豆碱, 鹰爪豆碱, (-)-金雀花碱, (-)-司巴丁, (+)-金雀花碱, β-异斯巴丁
谱图信息: 最多检出来源 Chinese Herbal Medicine(otcml) 48.25%

分子结构信息

SMILES: C1CCN2CC3CC(C2C1)CN4C3CCCC4
InChI: InChI=1S/C15H26N2/c1-3-7-16-11-13-9-12(14(16)5-1)10-17-8-4-2-6-15(13)17/h12-15H,1-11H2

描述信息

Sparteine is a quinolizidine alkaloid and a quinolizidine alkaloid fundamental parent.
Sparteine is a plant alkaloid derived from Cytisus scoparius and Lupinus mutabilis which may chelate calcium and magnesium. It is a sodium channel blocker, so it falls in the category of class 1a antiarrhythmic agents. Sparteine is not currently FDA-approved for human use, and its salt, sparteine sulfate, is one of the products that have been withdrawn or removed from the market for reasons of safety or effectiveness.
Sparteine is a natural product found in Ormosia coarctata, Thermopsis chinensis, and other organisms with data available.
A quinolizidine alkaloid isolated from several FABACEAE including LUPINUS; SPARTIUM; and CYTISUS. It has been used as an oxytocic and an anti-arrhythmia agent. It has also been of interest as an indicator of CYP2D6 genotype.
See also: Cytisus scoparius flowering top (part of).
C - Cardiovascular system > C01 - Cardiac therapy > C01B - Antiarrhythmics, class i and iii > C01BA - Antiarrhythmics, class ia
C78274 - Agent Affecting Cardiovascular System > C47793 - Antiarrhythmic Agent
D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents
D012102 - Reproductive Control Agents > D010120 - Oxytocics
Annotation level-1
CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 53
CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 39
CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 32
INTERNAL_ID 24; CONFIDENCE Reference Standard (Level 1)
CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 24
CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 17
CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 9
CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2
relative retention time with respect to 9-anthracene Carboxylic Acid is 0.395
beta-Isosparteine is a natural product found in Ulex airensis, Ulex densus, and other organisms with data available.
A quinolizidine alkaloid isolated from several FABACEAE including LUPINUS; SPARTIUM; and CYTISUS. It has been used as an oxytocic and an anti-arrhythmia agent. It has also been of interest as an indicator of CYP2D6 genotype.
(+)-Sparteine is a natural product found in Baptisia australis, Dermatophyllum secundiflorum, and other organisms with data available.
A quinolizidine alkaloid isolated from several FABACEAE including LUPINUS; SPARTIUM; and CYTISUS. It has been used as an oxytocic and an anti-arrhythmia agent. It has also been of interest as an indicator of CYP2D6 genotype.
(-)-Sparteine is a natural alkaloid isolated from beans.
(-)-Sparteine is a natural alkaloid isolated from beans.
(+)-Sparteine is a natural alkaloid acting as a ganglionic blocking agent. (+)-Sparteine competitively blocks nicotinic ACh receptor in the neurons.
(+)-Sparteine is a natural alkaloid acting as a ganglionic blocking agent. (+)-Sparteine competitively blocks nicotinic ACh receptor in the neurons.
(+)-Sparteine is a natural alkaloid acting as a ganglionic blocking agent. (+)-Sparteine competitively blocks nicotinic ACh receptor in the neurons.

同义名列表

115 个代谢物同义名

7,14-Methano-2H,6H-dipyrido(1,2-a:1,2-e)(1,5)diazocine, dodecahydro-, (7S-(7alpha,7aalpha,14alpha,14abeta))-; 7,14-Methano-2H,6H-dipyrido[1,2-a:1,2-e][1,5]diazocine, dodecahydro-, [7S-(7alpha,7aalpha,14alpha,14abeta)]-; (7S-(7alpha,7aalpha,14alpha,14abeta))-dodecahydro-7,14-methano-2H,6H-dipyrido(1,2-a:1,2-e)(1,5)diazocine; [7S-(7alpha,7aalpha,14alpha,14abeta)]-Dodecahydro-7,14-methano-2H,6H-dipyrido[1,2-a:1,2-e][1,5]diazocine; 7,14-methano-2H,6H-dipyrido[1,2-a:1,2-e][1,5]diazocine, dodecahydro-, (7S,7aR,14S,14aS)-; 7,14-METHANO-2H,6H-DIPYRIDO(1,2-A:1,2-E)(1,5)DIAZOCINE, DODECAHYDRO-, (7S,7AR,14S,14AS); Pachycarpine Sulfate (1:1), Pentahydrate, (7S-(7alpha,7aalpha,14alpha,14abeta))-Isomer; (7S,7aS,14S,14aR)-dodecahydro-7,14-methano-2H,6H-dipyrido[1,2-a:1,2-e][1,5]diazocine; (7S,7aR,14S,14aS)-Dodecahydro-7,14-methano-2H,6H-dipyrido[1,2-a:1,2-e][1,5]diazocine; (7S,7aS,14S,14aR)-dodecahydro-7,14-methano-2H,6H-dipyrido(1,2-a:1,2-e)(1,5)diazocine; (7S,7aR,14S,14aS)-Tetradecahydro-7,14-methanodipyrido[1,2-a:1,2-e][1,5]diazocine; Sparteine Monohydrochloride, (7R-(7alpha,7aalpha,14alpha,14abeta))-Isomer; Sparteine Monohydroiodide, (7R-(7alpha,7aalpha,14alpha,14abeta))-Isomer; Sparteine Sulfate (1:1), (7S-(7alpha,7aalpha,14alpha,14aalpha))-Isomer; Sparteine Hydrochloride, (7R-(7alpha,7aalpha,14alpha,14abeta))-Isomer; Sparteine Sulfate (1:1), (7S-(7alpha,7aalpha,14alpha,14abeta))-Isomer; Sparteine Hydrochloride, (7S-(7alpha,7aalpha,14alpha,14abeta))-Isomer; 7,14-Methano-2H,6H-dipyrido(1,2-a:1,2-e)(1,5)diazocine, dodecahydro-; Sparteine Hydroiodide, (7R-(7alpha,7aalpha,14alpha,14abeta))-Isomer; (1S,2R,9S,10S)-7,15-diazatetracyclo[7.7.1.02,7.010,15]heptadecane; Sparteine, (7S-(7alpha,7aalpha,14alpha,14aalpha))-Isomer; Sparteine, (7S-(7alpha,7aalpha,14alpha,14abeta))-Isomer; Sparteine, (7R-(7alpha,7aalpha,14alpha,14abeta))-Isomer; Sparteine, (7R-(7alpha,7abeta,14alpha,14abeta))-Isomer; Sparteine, (7S-(7alpha,7abeta,14alpha,14abeta))-Isomer; 6-beta,7-alpha,9-alpha,11-alpha-Pachycarpine; 6beta,7alpha,9alpha,11alpha-Pachycarpine; Sulfate Anhydrous, Sparteine; Anhydrous, Sparteine Sulfate; (-)-Sparteine, >=98.0\\% (GC); Sparteine sulfate anhydrous; SLRCCWJSBJZJBV-ZQDZILKHSA-N; Esparteina [INN-Spanish]; Sparteinum [INN-Latin]; Sparteine, (-)-Isomer; Sparteine, (+)-Isomer; Sparteine (6CI,8CI); Genisteine Alkaloid; alpha-Isosparteine; SPARTEINE [WHO-DD]; alpha Isosparteine; beta-Isosparteine; beta Isosparteine; Prestwick3_000618; Sparteine sulfate; Sparteina [DCIT]; Sparteine [INN]; (-)-Lupinidine; Depasan Retard; Tox21_110386_1; SPARTEINE [MI]; (-) sparteine; sparteine-(-); BPBio1_000612; Sparteine (-); (-)-Sparteine; (-)sparteine; (+)-Spartein; Pachycarpine; Tox21_110386; D-sparteine; L-Sparteine; CAS-90-39-1; Esparteina; Sparteinum; Lupinidine; Sparteine; Sparteina; Lupinidin; Spartein; C01BA04; 7,14-METHANO-2H,6H-DIPYRIDO(1,2-A:1,2-E)(1,5)DIAZOCINE, DODECAHYDRO-, (7S-(7.ALPHA.,7A.BETA.,14.ALPHA.,14A.BETA.))-; 7,14-Methano-2H,6H-dipyrido(1,2-a:1,2-e)(1,5)diazocine, dodecahydro-, (7S-(7alpha,7abeta,14alpha,14abeta))-; Dodecahydro-7,14-methano-2H,6H-dipyrido(1,2-a:1,2-e)(1,5)diazocine (7S-(7alpha,7abeta,14alpha,14abeta))-; 7,14-METHANO-2H,6H-DIPYRIDO(1,2-A:1,2-E)(1,5)DIAZOCINE, DODECAHYDRO-, (7S,7AS,14S,14AS)-; (7S,7AS,14S,14aS)-dodecahydro-2H,6H-7,14-methanodipyrido[1,2-a:1,2-e][1,5]diazocine; (1S,2S,9S,10S)-7,15-diazatetracyclo[7.7.1.02,7.010,15]heptadecane; (1S,2S,9S,10S)-7,15-diazatetracyclo[7.7.1.0?,?.0??,??]heptadecane; 4-Chloro-8-methoxyquinoline-3-carbonyl chloride; .BETA.-ISOSPARTEINE, (+)-; .BETA.-ISOSPARTEINE [MI]; (+)-beta-isosparteine; (-)-beta-Isosparteine; .beta.-Isosparteine; .BETA.-SPARTEINE; UNII-HPV1ED2WZQ; Isosparteine; HPV1ED2WZQ; Nonalupine; [7S-(7.alpha.,7a.alpha.,14.alpha.,14a.beta.)]-Dodecahydro-7,14-methano-2H,6H-dipyrido[1,2-a:1,2-e][1,5]diazocine; (7R-(7alpha,7aalpha,14alpha,14abeta))-Dodecahydro-7,14-methano-2H,6H-dipyrido (1,2-a:1,2-e)(1,5)diazocine; 7,14-Methano-2H,6H-dipyrido(1,2-a:1,2-e)(1,5)diazocine, decahydro-, (7R,7aR,14R,14aS)-; (7R,7aR,14R,14aS)-Dodecahydro-7,14-methano-2H,6H-dipyrido[1,2-a:1,2-e][1,5]diazocine; (7R,7aR,14R,14aS)-Dodecahydro-2H,6H-7,14-methanodipyrido[1,2-a:1,2-e][1,5]diazocine; (7r,7ar,14r,14as)-dodecahydro-2h,6h-7,14-methanodipyrido[1,2-a:1,2-e][1,5]diazocine; (1R,2R,9R,10S)-7,15-diazatetracyclo[7.7.1.0^{2,7}.0^{10,15}]heptadecane; (10S,1R,2R,9R)-7,15-diazatetracyclo[7.7.1.0<2,7>.0<10,15>]heptadecane; (1R,2S,9R,10R)-7,15-diazatetracyclo[7.7.1.02,7.010,15]heptadecane; 5-23-05-00497 (Beilstein Handbook Reference); 6-alpha,7-beta,9-beta,11-beta-Sparteine; Tocosamine (Sulfate pentahydrate); Depasan (Sulfate pentahydrate); (+)-Sparteine (Pachycarpine); (+)-Sparteine, >=98.0\\% (GC); SLRCCWJSBJZJBV-TUVASFSCSA-N; (-)-Sparteine sulfate salt; Sparteine, d-isomer; sparteine-(+); (+)-Sparteine; DivK1c_000631; KBio1_000631; IDI1_000631; (-)-Sparteine; beta-Isosparteine; Sparteine



数据库引用编号

88 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

549 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 13 AXIN2, CA1, CA3, CYP1A1, CYP2A6, CYP2C19, CYP2C9, CYP2D6, CYP2E1, CYP3A4, GFAP, PTTG1IP, RBFOX3
Peripheral membrane protein 3 ACHE, CYP1A1, CYP2E1
Endoplasmic reticulum membrane 8 CYP1A1, CYP1A2, CYP2A6, CYP2C19, CYP2C9, CYP2D6, CYP2E1, CYP3A4
Nucleus 5 ACHE, AXIN2, PTTG1IP, RBFOX3, VEZF1
cytosol 4 AXIN2, CA1, CA3, GFAP
centrosome 1 AXIN2
nucleoplasm 3 PTTG1IP, SCNN1G, VEZF1
Cell membrane 1 ACHE
Multi-pass membrane protein 1 SCNN1G
Synapse 1 ACHE
cell surface 1 ACHE
Golgi apparatus 1 ACHE
Golgi membrane 1 INS
mitochondrial inner membrane 2 CYP1A1, CYP2E1
neuromuscular junction 1 ACHE
plasma membrane 7 ACHE, ACVR1, AXIN2, BCHE, CYP2C19, CYP2C9, SCNN1G
Membrane 6 ACHE, ACVR1, CYP2A6, CYP2D6, CYP3A4, PTTG1IP
apical plasma membrane 1 SCNN1G
extracellular exosome 3 CA1, PTTG1IP, SCNN1G
endoplasmic reticulum 1 CYP2D6
extracellular space 3 ACHE, BCHE, INS
perinuclear region of cytoplasm 1 ACHE
mitochondrion 2 CYP1A1, CYP2D6
intracellular membrane-bounded organelle 8 CYP1A1, CYP1A2, CYP2A6, CYP2C19, CYP2C9, CYP2D6, CYP2E1, CYP3A4
Microsome membrane 6 CYP1A1, CYP1A2, CYP2C9, CYP2D6, CYP2E1, CYP3A4
Single-pass type I membrane protein 2 ACVR1, PTTG1IP
Secreted 3 ACHE, BCHE, INS
extracellular region 3 ACHE, BCHE, INS
Single-pass membrane protein 1 CYP2D6
astrocyte end-foot 1 GFAP
Extracellular side 1 ACHE
external side of plasma membrane 1 SCNN1G
perikaryon 1 RBFOX3
beta-catenin destruction complex 1 AXIN2
apical part of cell 1 ACVR1
Apical cell membrane 1 SCNN1G
Mitochondrion inner membrane 2 CYP1A1, CYP2E1
basement membrane 1 ACHE
intermediate filament 1 GFAP
cell projection 1 GFAP
blood microparticle 1 BCHE
Lipid-anchor, GPI-anchor 1 ACHE
endosome lumen 1 INS
sodium channel complex 1 SCNN1G
cell body 1 GFAP
side of membrane 1 ACHE
intermediate filament cytoskeleton 1 GFAP
secretory granule lumen 1 INS
Golgi lumen 1 INS
endoplasmic reticulum lumen 2 BCHE, INS
transport vesicle 1 INS
Endoplasmic reticulum-Golgi intermediate compartment membrane 1 INS
nuclear envelope lumen 1 BCHE
cytoplasmic microtubule 1 CYP2A6
synaptic cleft 1 ACHE
cytoplasmic side of lysosomal membrane 1 GFAP
BMP receptor complex 1 ACVR1
[Isoform H]: Cell membrane 1 ACHE
activin receptor complex 1 ACVR1


文献列表

  • Davide Mancinotti, Karen Michiko Frick, Fernando Geu-Flores. Biosynthesis of quinolizidine alkaloids in lupins: mechanistic considerations and prospects for pathway elucidation. Natural product reports. 2022 07; 39(7):1423-1437. doi: 10.1039/d1np00069a. [PMID: 35302146]
  • Stella Parmaki, Argyro Tsipa, Marlen I Vasquez, João M J Gonçalves, Ioanna Hadjiadamou, Frederico C Ferreira, Carlos A M Afonso, Chrysoulla Drouza, Michalis Koutinas. Resolution of alkaloid racemate: a novel microbial approach for the production of enantiopure lupanine via industrial wastewater valorization. Microbial cell factories. 2020 Mar; 19(1):67. doi: 10.1186/s12934-020-01324-1. [PMID: 32169079]
  • Stella Parmaki, Ioannis Vyrides, Marlen I Vasquez, Viki Hartman, Irene Zacharia, Ioanna Hadjiadamou, Catarina B M Barbeitos, Frederico C Ferreira, Carlos A M Afonso, Chrysoulla Drouza, Michalis Koutinas. Bioconversion of alkaloids to high-value chemicals: Comparative analysis of newly isolated lupanine degrading strains. Chemosphere. 2018 Feb; 193(?):50-59. doi: 10.1016/j.chemosphere.2017.10.165. [PMID: 29126065]
  • Benedict T Green, Stephen T Lee, Kevin D Welch, Daniel Cook. Anagyrine desensitization of peripheral nicotinic acetylcholine receptors. A potential biomarker of quinolizidine alkaloid teratogenesis in cattle. Research in veterinary science. 2017 Dec; 115(?):195-200. doi: 10.1016/j.rvsc.2017.04.019. [PMID: 28494312]
  • Sumira Jan, Azra N Kamili, Javid A Parray, Yashbir S Bedi, Parvaiz Ahmad. Microclimatic variation in UV perception and related disparity in tropane and quinolizidine alkaloid composition of Atropa acuminata, Lupinus polyphyllus and Hyoscyamus niger. Journal of photochemistry and photobiology. B, Biology. 2016 Aug; 161(?):230-5. doi: 10.1016/j.jphotobiol.2016.04.028. [PMID: 27285814]
  • M R Silva, C M Alvarez, P M García, M A Ruiz. Assessing the genotoxicities of sparteine and compounds isolated from Lupinus mexicanus and L. montanus seeds by using comet assay. Genetics and molecular research : GMR. 2014 Dec; 13(4):10510-7. doi: 10.4238/2014.december.12.12. [PMID: 25511034]
  • Sarah E J Arnold, M Eduardo Peralta Idrovo, Luis J Lomas Arias, Steven R Belmain, Philip C Stevenson. Herbivore defence compounds occur in pollen and reduce bumblebee colony fitness. Journal of chemical ecology. 2014 Aug; 40(8):878-81. doi: 10.1007/s10886-014-0467-4. [PMID: 24952086]
  • Yasuto Kido, Pär Matsson, Kathleen M Giacomini. Profiling of a prescription drug library for potential renal drug-drug interactions mediated by the organic cation transporter 2. Journal of medicinal chemistry. 2011 Jul; 54(13):4548-58. doi: 10.1021/jm2001629. [PMID: 21599003]
  • C Kragelund, C Hansen, J Reibel, B Nauntofte, K Brosen, S B Jensen, L A Torpet. Can the genotype or phenotype of two polymorphic drug metabolising cytochrome P450-enzymes identify oral lichenoid drug eruptions?. Journal of oral pathology & medicine : official publication of the International Association of Oral Pathologists and the American Academy of Oral Pathology. 2010 Jul; 39(6):497-505. doi: 10.1111/j.1600-0714.2010.00897.x. [PMID: 20492431]
  • Takashi Ito, Motohiro Kato, Koji Chiba, Osamu Okazaki, Yuichi Sugiyama. Estimation of the interindividual variability of cytochrome 2D6 activity from urinary metabolic ratios in the literature. Drug metabolism and pharmacokinetics. 2010; 25(3):243-53. doi: 10.2133/dmpk.25.243. [PMID: 20610883]
  • Dolores Pérez-Laínez, Rosario García-Mateos, Ruben San Miguel-Chávez, Marcos Soto-Hernández, Enrique Rodríguez-Pérez, Geofrey Kite. Bactericidal and fungicidal activities of Calia secundiflora (Ort.) Yakovlev. Zeitschrift fur Naturforschung. C, Journal of biosciences. 2008 Sep; 63(9-10):653-7. doi: 10.1515/znc-2008-9-1007. [PMID: 19040102]
  • Teresa Bobkiewicz-Kozłowska, Marzena Dworacka, Sebastian Kuczyński, Małgorzata Abramczyk, Renata Kolanoś, Waleria Wysocka, Pedro M Garcia Lopez, Hanna Winiarska. Hypoglycaemic effect of quinolizidine alkaloids--lupanine and 2-thionosparteine on non-diabetic and streptozotocin-induced diabetic rats. European journal of pharmacology. 2007 Jun; 565(1-3):240-4. doi: 10.1016/j.ejphar.2007.02.032. [PMID: 17379208]
  • Clive C Gay, Kip E Panter, Katrina L Mealey, John M Gay, Steven W Hjartarson, Ahmed Tibary, Ernie S Motteram, Terrie Wierenga, Lynn F James. Comparison of plasma disposition of alkaloids after lupine challenge in cattle that had given birth to calves with lupine-induced arthrogryposis or clinically normal calves. American journal of veterinary research. 2004 Nov; 65(11):1580-3. doi: 10.2460/ajvr.2004.65.1580. [PMID: 15566098]
  • Martina Herrmann, Holger Joppe, Gerhard Schmaus. Thesinine-4'-O-beta-D-glucoside the first glycosylated plant pyrrolizidine alkaloid from Borago officinalis. Phytochemistry. 2002 Jun; 60(4):399-402. doi: 10.1016/s0031-9422(02)00069-9. [PMID: 12031432]
  • Filomena M C Santana, Teresa Pinto, Arsénio M Fialho, Isabel Sá-Correia, José M A Empis. Bacterial removal of quinolizidine alkaloids and other carbon sources from a Lupinus albus aqueous extract. Journal of agricultural and food chemistry. 2002 Apr; 50(8):2318-23. doi: 10.1021/jf011371h. [PMID: 11929291]
  • Gesche Jürgens, Kai Henrik Wiborg Lange, Lene Ørskov Reuther, Birgitte Buur Rasmussen, Kim Brøsen, Hanne Rolighed Christensen. Effect of growth hormone on hepatic cytochrome P450 activity in healthy elderly men. Clinical pharmacology and therapeutics. 2002 Mar; 71(3):162-8. doi: 10.1067/mcp.2002.121373. [PMID: 11907490]
  • F Kees, L Färber, M Bucher, G Mair, K Mörike, H Grobecker. Pharmacokinetics of therapeutic doses of tropisetron in healthy volunteers. British journal of clinical pharmacology. 2001 Dec; 52(6):705-7. doi: 10.1046/j.0306-5251.2001.01512.x. [PMID: 11736884]
  • K Laine, G Tybring, S Härtter, K Andersson, J O Svensson, J Widén, L Bertilsson. Inhibition of cytochrome P4502D6 activity with paroxetine normalizes the ultrarapid metabolizer phenotype as measured by nortriptyline pharmacokinetics and the debrisoquin test. Clinical pharmacology and therapeutics. 2001 Oct; 70(4):327-35. doi: . [PMID: 11673748]
  • E Baltes, R Coupez, H Giezek, G Voss, C Meyerhoff, M Strolin Benedetti. Absorption and disposition of levocetirizine, the eutomer of cetirizine, administered alone or as cetirizine to healthy volunteers. Fundamental & clinical pharmacology. 2001 Aug; 15(4):269-77. doi: 10.1046/j.1472-8206.2001.00035.x. [PMID: 11564134]
  • P L Lohmann, M L Rao, M Ludwig, E U Griese, U M Zanger, K Mörike, W Maier, M Bagli. Influence of CYP2D6 genotype and medication on the sparteine metabolic ratio of psychiatric patients. European journal of clinical pharmacology. 2001 Jul; 57(4):289-95. doi: 10.1007/s002280100299. [PMID: 11549206]
  • T K Bergmann, L Bathum, K Brosen. Duplication of CYP2D6 predicts high clearance of desipramine but high clearance does not predict duplication of CYP2D6. European journal of clinical pharmacology. 2001 May; 57(2):123-7. doi: 10.1007/s002280100284. [PMID: 11417443]
  • O Slanar, F Perlík, V Jirásek. Phenotype of cytochrome P450 CYP2D6 in patients with familial adenomatous polyposis. Methods and findings in experimental and clinical pharmacology. 2001 Apr; 23(3):145-7. doi: 10.1358/mf.2001.23.3.627948. [PMID: 11523314]
  • J M Pozuelo, M M Lucas, C de Lorenzo, M Fernández-Pascual, S Maldonado, M R de Felipe. Immunolocalization of alkaloids and X-ray microanalysis of elements in lupin seeds. Protoplasma. 2001; 218(1-2):104-11. doi: 10.1007/bf01288366. [PMID: 11732315]
  • S Ohmiya, K Saito, I Murakoshi. [Recent progress on the lupine alkaloids in leguminous plants growing mainly in Japan]. Yakugaku zasshi : Journal of the Pharmaceutical Society of Japan. 2000 Oct; 120(10):923-34. doi: 10.1248/yakushi1947.120.10_923. [PMID: 11082704]
  • P Milejski, K Orzechowska-Juzwenko, J Kamienowski, E Horoch, P Niewiński, M Hurkacz, Z Rzemisławska. [Clinical significance of oxidation and acetylation genetic polymorphism in patients with Parkinson's disease]. Neurologia i neurochirurgia polska. 1999 Sep; 33(5):1015-24. doi: . [PMID: 10672554]
  • . Clomipramine dose-effect study in patients with depression: clinical end points and pharmacokinetics. Danish University Antidepressant Group (DUAG). Clinical pharmacology and therapeutics. 1999 Aug; 66(2):152-65. doi: 10.1016/s0009-9236(99)90053-x. [PMID: 10460069]
  • A Rostami-Hodjegan, H K Kroemer, G T Tucker. In-vivo indices of enzyme activity: the effect of renal impairment on the assessment of CYP2D6 activity. Pharmacogenetics. 1999 Jun; 9(3):277-86. doi: 10.1097/00008571-199906000-00002. [PMID: 10471059]
  • S Tsiodras, R K Shin, M Christian, L M Shaw, D A Sass. Anticholinergic toxicity associated with lupine seeds as a home remedy for diabetes mellitus. Annals of emergency medicine. 1999 Jun; 33(6):715-7. doi: NULL. [PMID: 10339689]
  • H A Oboh, M Muzquiz, C Burbano, C Cuadrado, M M Pedrosa, G Ayet, A U Osagie. Anti-nutritional constituents of six underutilized legumes grown in Nigeria. Journal of chromatography. A. 1998 Oct; 823(1-2):307-12. doi: 10.1016/s0021-9673(98)00542-1. [PMID: 9818409]
  • J Pothier, S L Cheav, N Galand, C Dormeau, C Viel. A comparative study of the effects of sparteine, lupanine and lupin extract on the central nervous system of the mouse. The Journal of pharmacy and pharmacology. 1998 Aug; 50(8):949-54. doi: 10.1111/j.2042-7158.1998.tb04013.x. [PMID: 9751462]
  • L Poulsen, L Riishede, K Brøsen, S Clemensen, S H Sindrup. Codeine in post-operative pain. Study of the influence of sparteine phenotype and serum concentrations of morphine and morphine-6-glucuronide. European journal of clinical pharmacology. 1998 Aug; 54(6):451-4. doi: 10.1007/s002280050491. [PMID: 9776433]
  • K Droll, K Bruce-Mensah, S V Otton, A Gaedigk, E M Sellers, R F Tyndale. Comparison of three CYP2D6 probe substrates and genotype in Ghanaians, Chinese and Caucasians. Pharmacogenetics. 1998 Aug; 8(4):325-33. doi: 10.1097/00008571-199808000-00006. [PMID: 9731719]
  • E U Griese, U M Zanger, U Brudermanns, A Gaedigk, G Mikus, K Mörike, T Stüven, M Eichelbaum. Assessment of the predictive power of genotypes for the in-vivo catalytic function of CYP2D6 in a German population. Pharmacogenetics. 1998 Feb; 8(1):15-26. doi: 10.1097/00008571-199802000-00003. [PMID: 9511177]
  • J Holomán, J Glasa, M Veningerová, V Prachar, M Lukácsová. [Genetic polymorphism in sparteine oxidation--occurrence in healthy volunteers in Slovakia]. Bratislavske lekarske listy. 1997 Feb; 98(2):86-90. doi: . [PMID: 9264814]
  • O B Abdel-Halim, H A Fattah, A F Halim, I Murakoshi. (+)-Sparteine N-16-oxide, a lupin alkaloid from Lygos raetam var. sarcocarpa. Acta pharmaceutica Hungarica. 1997 Jan; 67(1):9-12. doi: . [PMID: 9100387]
  • W D Paar, S Poche, J Gerloff, H J Dengler. Polymorphic CYP2D6 mediates O-demethylation of the opioid analgesic tramadol. European journal of clinical pharmacology. 1997; 53(3-4):235-9. doi: 10.1007/s002280050368. [PMID: 9476037]
  • L Poulsen, L Arendt-Nielsen, K Brøsen, S H Sindrup. The hypoalgesic effect of tramadol in relation to CYP2D6. Clinical pharmacology and therapeutics. 1996 Dec; 60(6):636-44. doi: 10.1016/s0009-9236(96)90211-8. [PMID: 8988065]
  • H Madsen, T S Hansen, K Brøsen. Imipramine metabolism in relation to the sparteine oxidation polymorphism--a family study. Pharmacogenetics. 1996 Dec; 6(6):513-9. doi: 10.1097/00008571-199612000-00004. [PMID: 9014200]
  • A Bozkurt, N E Basçi, A Işimer, A Sayal, S O Kayaalp. Metabolic ratios of four probes of CYP2D6 in Turkish subjects: a cross-over study. European journal of drug metabolism and pharmacokinetics. 1996 Oct; 21(4):309-14. doi: 10.1007/bf03189732. [PMID: 9074895]
  • T Yokoi, Y Kosaka, M Chida, K Chiba, H Nakamura, T Ishizaki, M Kinoshita, K Sato, F J Gonzalez, T Kamataki. A new CYP2D6 allele with a nine base insertion in exon 9 in a Japanese population associated with poor metabolizer phenotype. Pharmacogenetics. 1996 Oct; 6(5):395-401. doi: 10.1097/00008571-199610000-00003. [PMID: 8946471]
  • J C Ritchie, S C Mitchell, R L Smith, A Q Zhang. Use of site-specified tritium labelling to confirm the formation of 17-oxosparteine as a minor urinary metabolite of sparteine in man. Xenobiotica; the fate of foreign compounds in biological systems. 1996 Sep; 26(9):977-82. doi: 10.3109/00498259609052499. [PMID: 8893044]
  • M C Robbins, D S Petterson, P G Brantom. A 90-day feeding study of the alkaloids of Lupinus angustifolius in the rat. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association. 1996 Aug; 34(8):679-86. doi: 10.1016/0278-6915(96)00040-3. [PMID: 8883468]
  • P Milejski, K Orzechowska-Juzwenko, J Pawlik, J Kamienowski, E Horoch, P Niewiński, M Hurkacz. [Clinical significance of the determination of oxidation and acetylation phenotype in patients with multiple sclerosis]. Neurologia i neurochirurgia polska. 1996 Jul; 30(4):571-9. doi: NULL. [PMID: 9045059]
  • J P Kévorkian, C Michel, U Hofmann, E Jacqz-Aigrain, H K Kroemer, M N Peraldi, M Eichelbaum, P Jaillon, C Funck-Brentano. Assessment of individual CYP2D6 activity in extensive metabolizers with renal failure: comparison of sparteine and dextromethorphan. Clinical pharmacology and therapeutics. 1996 May; 59(5):583-92. doi: 10.1016/s0009-9236(96)90187-3. [PMID: 8646830]
  • L Poulsen, K Brøsen, L Arendt-Nielsen, L F Gram, K Elbaek, S H Sindrup. Codeine and morphine in extensive and poor metabolizers of sparteine: pharmacokinetics, analgesic effect and side effects. European journal of clinical pharmacology. 1996; 51(3-4):289-95. doi: 10.1007/s002280050200. [PMID: 9010701]
  • U Jeppesen, L F Gram, K Vistisen, S Loft, H E Poulsen, K Brøsen. Dose-dependent inhibition of CYP1A2, CYP2C19 and CYP2D6 by citalopram, fluoxetine, fluvoxamine and paroxetine. European journal of clinical pharmacology. 1996; 51(1):73-8. doi: 10.1007/s002280050163. [PMID: 8880055]
  • S H Sindrup, U Hofmann, J Asmussen, G Mikus, K Brøsen, F Nielsen, S H Ingwersen, C Broen Christensen. Impact of quinidine on plasma and cerebrospinal fluid concentrations of codeine and morphine after codeine intake. European journal of clinical pharmacology. 1996; 49(6):503-9. doi: 10.1007/bf00195938. [PMID: 8706777]
  • D Pelclová, J Mráz, V Patzelová, J Pícková, J Pospísil, L Vodicková, M Hornychová, J Vejlupková. Oxidative phenotype polymorphism (P450 2D6) and metabolism of toluene. International journal of clinical pharmacology and therapeutics. 1996 Jan; 34(1):38-42. doi: NULL. [PMID: 8688995]
  • J C Ritchie, S C Mitchell, R L Smith. Sparteine metabolism in a Nigerian population. Drug metabolism and drug interactions. 1996; 13(2):129-35. doi: 10.1515/dmdi.1996.13.2.129. [PMID: 8905244]
  • S H Sindrup, K Brøsen. The pharmacogenetics of codeine hypoalgesia. Pharmacogenetics. 1995 Dec; 5(6):335-46. doi: 10.1097/00008571-199512000-00001. [PMID: 8845855]
  • T Ebner, C O Meese, M Eichelbaum. Mechanism of cytochrome P450 2D6-catalyzed sparteine metabolism in humans. Molecular pharmacology. 1995 Dec; 48(6):1078-86. doi: NULL. [PMID: 8848008]
  • K Mörike, S Magadum, T Mettang, E U Griese, C Machleidt, U Kuhlmann. Propafenone in a usual dose produces severe side-effects: the impact of genetically determined metabolic status on drug therapy. Journal of internal medicine. 1995 Nov; 238(5):469-72. doi: 10.1111/j.1365-2796.1995.tb01225.x. [PMID: 7595187]
  • M F Fromm, U Hofmann, E U Griese, G Mikus. Dihydrocodeine: a new opioid substrate for the polymorphic CYP2D6 in humans. Clinical pharmacology and therapeutics. 1995 Oct; 58(4):374-82. doi: 10.1016/0009-9236(95)90049-7. [PMID: 7586928]
  • H Madsen, K K Nielsen, K Brøsen. Imipramine metabolism in relation to the sparteine and mephenytoin oxidation polymorphisms--a population study. British journal of clinical pharmacology. 1995 Apr; 39(4):433-9. doi: 10.1111/j.1365-2125.1995.tb04473.x. [PMID: 7640151]
  • M M al-Azizi, M S al-Said, M M el-Olemy, E Abdel Sattar, A S Khalifa. Rhombifoline and 5,6-dehydrolupanine from Anagyrus foetida L. Archives of pharmacal research. 1994 Dec; 17(6):393-7. doi: 10.1007/bf02979113. [PMID: 10319146]
  • N E Basci, K Brosen, A Bozkurt, A Isimer, A Sayal, S O Kayaalp. S-mephenytoin, sparteine and debrisoquine oxidation: genetic polymorphisms in a Turkish population. British journal of clinical pharmacology. 1994 Nov; 38(5):463-5. doi: 10.1111/j.1365-2125.1994.tb04383.x. [PMID: 7893589]
  • K K Nielsen, K Brøsen, M G Hansen, L F Gram. Single-dose kinetics of clomipramine: relationship to the sparteine and S-mephenytoin oxidation polymorphisms. Clinical pharmacology and therapeutics. 1994 May; 55(5):518-27. doi: 10.1038/clpt.1994.65. [PMID: 8181196]
  • M Veningerová, V Prachar, M Lukácsová, J Glasa, J Holomán. Rapid determination of sparteine and its metabolites in urine. Journal of chromatography. 1993 Dec; 622(2):274-7. doi: 10.1016/0378-4347(93)80277-b. [PMID: 8150877]
  • H Yokota, S Tamura, H Furuya, S Kimura, M Watanabe, I Kanazawa, I Kondo, F J Gonzalez. Evidence for a new variant CYP2D6 allele CYP2D6J in a Japanese population associated with lower in vivo rates of sparteine metabolism. Pharmacogenetics. 1993 Oct; 3(5):256-63. doi: 10.1097/00008571-199310000-00005. [PMID: 8287064]
  • K Brøsen, E Skjelbo, H Flachs. Proguanil metabolism is determined by the mephenytoin oxidation polymorphism in Vietnamese living in Denmark. British journal of clinical pharmacology. 1993 Aug; 36(2):105-8. doi: 10.1111/j.1365-2125.1993.tb04204.x. [PMID: 8398577]
  • E Koyama, Y Kikuchi, H Echizen, K Chiba, T Ishizaki. Simultaneous high-performance liquid chromatography-electrochemical detection determination of imipramine, desipramine, their 2-hydroxylated metabolites, and imipramine N-oxide in human plasma and urine: preliminary application to oxidation pharmacogenetics. Therapeutic drug monitoring. 1993 Jun; 15(3):224-35. doi: 10.1097/00007691-199306000-00009. [PMID: 8333003]
  • L F Gram, K Brøsen. Moclobemide treatment causes a substantial rise in the sparteine metabolic ratio. Danish University Antidepressant Group. British journal of clinical pharmacology. 1993 Jun; 35(6):649-52. doi: 10.1111/j.1365-2125.1993.tb04196.x. [PMID: 8329293]
  • H Yoshino, Y Hattori, H Imai, H Narabayashi, K Chiba. [Sparteine oxidation by hepatic cytochrome P-450 in patients with Parkinson's disease]. Rinsho shinkeigaku = Clinical neurology. 1993 Mar; 33(3):261-5. doi: . [PMID: 8334787]
  • E Skjelbo, L F Gram, K Brøsen. The N-demethylation of imipramine correlates with the oxidation of S-mephenytoin (S/R-ratio). A population study. British journal of clinical pharmacology. 1993 Mar; 35(3):331-4. doi: NULL. [PMID: 8471415]
  • S H Sindrup, K Brøsen, M G Hansen, T Aaes-Jørgensen, K F Overø, L F Gram. Pharmacokinetics of citalopram in relation to the sparteine and the mephenytoin oxidation polymorphisms. Therapeutic drug monitoring. 1993 Feb; 15(1):11-7. doi: 10.1097/00007691-199302000-00002. [PMID: 8451774]
  • K Brøsen, J G Hansen, K K Nielsen, S H Sindrup, L F Gram. Inhibition by paroxetine of desipramine metabolism in extensive but not in poor metabolizers of sparteine. European journal of clinical pharmacology. 1993; 44(4):349-55. doi: 10.1007/bf00316471. [PMID: 8513845]
  • V K Piotrovskiĭ, V G Belolipetskaia, D O Rumiantsev, V I Metelitsa. [The polymorphism of pachycarpine oxidation]. Eksperimental'naia i klinicheskaia farmakologiia. 1992 Jul; 55(4):56-8. doi: NULL. [PMID: 1458193]
  • P M Mrozikiewicz. [Clinical aspects of the polymorphism of oxidation phenotype]. Polski tygodnik lekarski (Warsaw, Poland : 1960). 1992 Jul; 47(27-28):608-10. doi: NULL. [PMID: 1488339]
  • S H Sindrup, K Brøsen, L F Gram. Pharmacokinetics of the selective serotonin reuptake inhibitor paroxetine: nonlinearity and relation to the sparteine oxidation polymorphism. Clinical pharmacology and therapeutics. 1992 Mar; 51(3):288-95. doi: 10.1038/clpt.1992.24. [PMID: 1531951]
  • S H Sindrup, K Brøsen, L F Gram, J Hallas, E Skjelbo, A Allen, G D Allen, S M Cooper, G Mellows, T C Tasker. The relationship between paroxetine and the sparteine oxidation polymorphism. Clinical pharmacology and therapeutics. 1992 Mar; 51(3):278-87. doi: 10.1038/clpt.1992.23. [PMID: 1531950]
  • J Pospísil, V Patzelová, B Máca. New evidence of sparteine metabolites in humans. Drug metabolism and disposition: the biological fate of chemicals. 1992 Mar; 20(2):330-2. doi: NULL. [PMID: 1352230]
  • K K Nielsen, K Brøsen, L F Gram. Steady-state plasma levels of clomipramine and its metabolites: impact of the sparteine/debrisoquine oxidation polymorphism. Danish University Antidepressant Group. European journal of clinical pharmacology. 1992; 43(4):405-11. doi: 10.1007/bf02220617. [PMID: 1451721]
  • J H Schellens, H Ghabrial, H H van der Wart, E N Bakker, G R Wilkinson, D D Breimer. Differential effects of quinidine on the disposition of nifedipine, sparteine, and mephenytoin in humans. Clinical pharmacology and therapeutics. 1991 Nov; 50(5 Pt 1):520-8. doi: 10.1038/clpt.1991.177. [PMID: 1934865]
  • F Broly, N Vandamme, C Libersa, M Lhermitte. The metabolism of mexiletine in relation to the debrisoquine/sparteine-type polymorphism of drug oxidation. British journal of clinical pharmacology. 1991 Oct; 32(4):459-66. doi: 10.1111/j.1365-2125.1991.tb03931.x. [PMID: 1958440]
  • K Brøsen, T Zeugin, U A Meyer. Role of P450IID6, the target of the sparteine-debrisoquin oxidation polymorphism, in the metabolism of imipramine. Clinical pharmacology and therapeutics. 1991 Jun; 49(6):609-17. doi: 10.1038/clpt.1991.77. [PMID: 2060250]
  • S A Ward, N A Helsby, E Skjelbo, K Brøsen, L F Gram, A M Breckenridge. The activation of the biguanide antimalarial proguanil co-segregates with the mephenytoin oxidation polymorphism--a panel study. British journal of clinical pharmacology. 1991 Jun; 31(6):689-92. doi: 10.1111/j.1365-2125.1991.tb05594.x. [PMID: 1867963]
  • K Clasen, L Madsen, K Brøsen, K Albøge, S Misfeldt, L F Gram. Sparteine and mephenytoin oxidation: genetic polymorphisms in east and west Greenland. Clinical pharmacology and therapeutics. 1991 Jun; 49(6):624-31. doi: 10.1038/clpt.1991.79. [PMID: 2060251]
  • P Petersen, K Brøsen. [Severe nortriptyline poisoning in poor metabolizers of the sparteine type]. Ugeskrift for laeger. 1991 Feb; 153(6):443-4. doi: . [PMID: 2000655]
  • J H Schellens, P A Soons, J H van der Wart, J W Hoevers, D D Breimer. Lack of pharmacokinetic interaction between nifedipine, sparteine and phenytoin in man. British journal of clinical pharmacology. 1991 Feb; 31(2):175-8. doi: 10.1111/j.1365-2125.1991.tb05508.x. [PMID: 2049233]
  • G T Tan, J M Pezzuto, A D Kinghorn, S H Hughes. Evaluation of natural products as inhibitors of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase. Journal of natural products. 1991 Jan; 54(1):143-54. doi: 10.1021/np50073a012. [PMID: 1710653]
  • A Herchuelz, D Gangji, F Derenne, J P Jeanniot, J Douchamps. Metabolism of almitrine in extensive and poor metabolisers of debrisoquine/sparteine. British journal of clinical pharmacology. 1991 Jan; 31(1):73-6. doi: 10.1111/j.1365-2125.1991.tb03859.x. [PMID: 2015173]
  • A S Gross, G Mikus, C Fischer, M Eichelbaum. Polymorphic flecainide disposition under conditions of uncontrolled urine flow and pH. European journal of clinical pharmacology. 1991; 40(2):155-62. doi: 10.1007/bf00280070. [PMID: 1906003]
  • S H Sindrup, K Brøsen, P Bjerring, L Arendt-Nielsen, U Larsen, H R Angelo, L F Gram. Codeine increases pain thresholds to copper vapor laser stimuli in extensive but not poor metabolizers of sparteine. Clinical pharmacology and therapeutics. 1990 Dec; 48(6):686-93. doi: 10.1038/clpt.1990.212. [PMID: 2249379]
  • K Ganzler, I Szinai, A Salgó. Effective sample preparation method for extracting biologically active compounds from different matrices by a microwave technique. Journal of chromatography. 1990 Nov; 520(?):257-62. doi: 10.1016/0021-9673(90)85109-9. [PMID: 2086582]
  • S H Sindrup, L F Gram, T Skjold, E Grodum, K Brøsen, H Beck-Nielsen. Clomipramine vs desipramine vs placebo in the treatment of diabetic neuropathy symptoms. A double-blind cross-over study. British journal of clinical pharmacology. 1990 Nov; 30(5):683-91. doi: 10.1111/j.1365-2125.1990.tb03836.x. [PMID: 2271367]
  • S H Sindrup, K Brøsen, L F Gram. Nonlinear kinetics of imipramine in low and medium plasma level ranges. Therapeutic drug monitoring. 1990 Sep; 12(5):445-9. doi: 10.1097/00007691-199009000-00007. [PMID: 2293406]
  • J Moncrieff. Simultaneous determination of sparteine and its 2-dehydro and 5-dehydro metabolites in urine by high-performance liquid chromatography with electrochemical detection. Journal of chromatography. 1990 Jul; 529(1):194-200. doi: 10.1016/s0378-4347(00)83822-0. [PMID: 2211932]
  • M Manns, U Zanger, G Gerken, K F Sullivan, K H Meyer zum Büschenfelde, U A Meyer, M Eichelbaum. Patients with type II autoimmune hepatitis express functionally intact cytochrome P-450 db1 that is inhibited by LKM-1 autoantibodies in vitro but not in vivo. Hepatology (Baltimore, Md.). 1990 Jul; 12(1):127-32. doi: 10.1002/hep.1840120120. [PMID: 2373473]
  • W E Haefeli, M J Bargetzi, F Follath, U A Meyer. Potent inhibition of cytochrome P450IID6 (debrisoquin 4-hydroxylase) by flecainide in vitro and in vivo. Journal of cardiovascular pharmacology. 1990 May; 15(5):776-9. doi: 10.1097/00005344-199005000-00013. [PMID: 1692938]
  • M D Nielsen, K Brøsen, L F Gram. A dose-effect study of the in vivo inhibitory effect of quinidine on sparteine oxidation in man. British journal of clinical pharmacology. 1990 Mar; 29(3):299-304. doi: 10.1111/j.1365-2125.1990.tb03639.x. [PMID: 2310654]
  • K Brøsen, F Davidsen, L F Gram. Quinidine kinetics after a single oral dose in relation to the sparteine oxidation polymorphism in man. British journal of clinical pharmacology. 1990 Feb; 29(2):248-53. doi: 10.1111/j.1365-2125.1990.tb03628.x. [PMID: 2306418]
  • A Chaudhuri, W J Keller. New mammalian metabolites of sparteine. Life sciences. 1990; 47(4):319-25. doi: 10.1016/0024-3205(90)90590-n. [PMID: 2388532]
  • M Eichelbaum, A S Gross. The genetic polymorphism of debrisoquine/sparteine metabolism--clinical aspects. Pharmacology & therapeutics. 1990; 46(3):377-94. doi: 10.1016/0163-7258(90)90025-w. [PMID: 2188269]
  • Y Horai, J Taga, T Ishizaki, K Ishikawa. Correlations among the metabolic ratios of three test probes (metoprolol, debrisoquine and sparteine) for genetically determined oxidation polymorphism in a Japanese population. British journal of clinical pharmacology. 1990 Jan; 29(1):111-5. doi: 10.1111/j.1365-2125.1990.tb03609.x. [PMID: 2297455]
  • C Köppel, J Tenczer, I Arndt. Metabolic disposition of ajmaline. European journal of drug metabolism and pharmacokinetics. 1989 Oct; 14(4):309-16. doi: 10.1007/bf03190117. [PMID: 2633926]
  • L F Gram, K Brøsen, P Kragh-Sørensen, P Christensen. Steady-state plasma levels of E- and Z-10-OH-nortriptyline in nortriptyline-treated patients: significance of concurrent medication and the sparteine oxidation phenotype. Therapeutic drug monitoring. 1989 Sep; 11(5):508-14. doi: 10.1097/00007691-198909000-00003. [PMID: 2815225]
  • G Mikus, A S Gross, J Beckmann, R Hertrampf, U Gundert-Remy, M Eichelbaum. The influence of the sparteine/debrisoquin phenotype on the disposition of flecainide. Clinical pharmacology and therapeutics. 1989 May; 45(5):562-7. doi: 10.1038/clpt.1989.73. [PMID: 2498026]
  • J H Schellens, J H van der Wart, M Brugman, D D Breimer. Influence of enzyme induction and inhibition on the oxidation of nifedipine, sparteine, mephenytoin and antipyrine in humans as assessed by a "cocktail" study design. The Journal of pharmacology and experimental therapeutics. 1989 May; 249(2):638-45. doi: . [PMID: 2724144]
  • A Drøhse, L Bathum, K Brøsen, L F Gram. Mephenytoin and sparteine oxidation: genetic polymorphisms in Denmark. British journal of clinical pharmacology. 1989 May; 27(5):620-5. doi: 10.1111/j.1365-2125.1989.tb03426.x. [PMID: 2757884]