NCBI Taxonomy: 53838

Bolusanthus speciosus (ncbi_taxid: 53838)

found 98 associated metabolites at species taxonomy rank level.

Ancestor: Bolusanthus

Child Taxonomies: none taxonomy data.

Biochanin A

5,7-dihydroxy-3-(4-methoxyphenyl)-4H-chromen-4-one

C16H12O5 (284.0685)


Biochanin A is a member of the class of 7-hydroxyisoflavones that is 7-hydroxyisoflavone which is substituted by an additional hydroxy group at position 5 and a methoxy group at position 4. A phytoestrogen, it has putative benefits in dietary cancer prophylaxis. It has a role as a phytoestrogen, a plant metabolite, an EC 3.5.1.99 (fatty acid amide hydrolase) inhibitor, a tyrosine kinase inhibitor and an antineoplastic agent. It is a member of 7-hydroxyisoflavones and a member of 4-methoxyisoflavones. It is a conjugate acid of a biochanin A(1-). Biochanin A is under investigation in clinical trial NCT02174666 (Isoflavone Treatment for Postmenopausal Osteopenia.). biochanin A is a natural product found in Dalbergia oliveri, Dalbergia sissoo, and other organisms with data available. The phytoestrogen biochanin A is an isoflavone derivative isolated from red clover Trifolium pratense with anticarcinogenic properties. Treating MCF-7 human breast carcinoma cells with biochanin A alone caused the accumulation of CYP1A1 mRNA and an increase in CYP1A1-specific 7-ethoxyresorufin O-deethylase (EROD) activity in a dose dependent manner. Biochanin A may be a natural ligand to bind on aryl hydrocarbon receptor acting as an antagonist/agonist of the pathway. (A7920). Biochanin A suppress nuclear factor-kappaB-driven interleukin-6 (IL6) expression. In addition to its physiologic immune function as an acute stress cytokine, sustained elevated expression levels of IL6 promote chronic inflammatory disorders, aging frailty, and tumorigenesis. (A7921). Biochanin A induces a decrease in invasive activity of U87MG cells in a dose-related manner. (A7922). Biochanin A activates peroxisome proliferator-activated receptors (PPAR) PPARalpha, PPARgamma, and adipocyte differentiation in vitro of 3T3-L1 preadipocytes, suggesting potential value of isoflavones, especially biochanin A and their parent botanicals, as antidiabetic agents and for use in regulating lipid metabolism. (A7923). See also: Trifolium pratense flower (part of). The phytoestrogen biochanin A is an isoflavone derivative isolated from red clover Trifolium pratense with anticarcinogenic properties. Treating MCF-7 human breast carcinoma cells with biochanin A alone caused the accumulation of CYP1A1 mRNA and an increase in CYP1A1-specific 7-ethoxyresorufin O-deethylase (EROD) activity in a dose dependent manner. Biochanin A may be a natural ligand to bind on aryl hydrocarbon receptor acting as an antagonist/agonist of the pathway. (PMID: 16903077). Biochanin A suppress nuclear factor-kappaB-driven interleukin-6 (IL6) expression. In addition to its physiologic immune function as an acute stress cytokine, sustained elevated expression levels of IL6 promote chronic inflammatory disorders, aging frailty, and tumorigenesis. (PMID: 16651441). Biochanin A induces a decrease in invasive activity of U87MG cells in a dose-related manner. (PMID: 16598420). Biochanin A activates peroxisome proliferator-activated receptors (PPAR) PPARalpha, PPARgamma, and adipocyte differentiation in vitro of 3T3-L1 preadipocytes, suggesting potential value of isoflavones, especially biochanin A and their parent botanicals, as antidiabetic agents and for use in regulating lipid metabolism. (PMID: 16549448). A member of the class of 7-hydroxyisoflavones that is 7-hydroxyisoflavone which is substituted by an additional hydroxy group at position 5 and a methoxy group at position 4. A phytoestrogen, it has putative benefits in dietary cancer prophylaxis. Widespread isoflavone found in alfalfa (Medicago sativa), chick peas (Cicer arietinum) and white clover (Trifolium repens). Glycosides also widespread. Potential nutriceutical D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens D020011 - Protective Agents > D016588 - Anticarcinogenic Agents D000970 - Antineoplastic Agents CONFIDENCE standard compound; INTERNAL_ID 960; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9176; ORIGINAL_PRECURSOR_SCAN_NO 9175 CONFIDENCE standard compound; INTERNAL_ID 960; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4338; ORIGINAL_PRECURSOR_SCAN_NO 4335 CONFIDENCE standard compound; INTERNAL_ID 960; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9201; ORIGINAL_PRECURSOR_SCAN_NO 9199 CONFIDENCE standard compound; INTERNAL_ID 960; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9188; ORIGINAL_PRECURSOR_SCAN_NO 9183 CONFIDENCE standard compound; INTERNAL_ID 960; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4313; ORIGINAL_PRECURSOR_SCAN_NO 4310 CONFIDENCE standard compound; INTERNAL_ID 960; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9213; ORIGINAL_PRECURSOR_SCAN_NO 9210 CONFIDENCE standard compound; INTERNAL_ID 960; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4329; ORIGINAL_PRECURSOR_SCAN_NO 4326 CONFIDENCE standard compound; INTERNAL_ID 960; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9187; ORIGINAL_PRECURSOR_SCAN_NO 9186 CONFIDENCE standard compound; INTERNAL_ID 960; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4328; ORIGINAL_PRECURSOR_SCAN_NO 4326 CONFIDENCE standard compound; INTERNAL_ID 960; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4310; ORIGINAL_PRECURSOR_SCAN_NO 4307 CONFIDENCE standard compound; INTERNAL_ID 960; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9197; ORIGINAL_PRECURSOR_SCAN_NO 9194 IPB_RECORD: 181; CONFIDENCE confident structure Biochanin A is a naturally occurring fatty acid amide hydrolase (FAAH) inhibitor, which inhibits FAAH with IC50s of 1.8, 1.4 and 2.4 μM for mouse, rat, and human FAAH, respectively. Biochanin A is a naturally occurring fatty acid amide hydrolase (FAAH) inhibitor, which inhibits FAAH with IC50s of 1.8, 1.4 and 2.4 μM for mouse, rat, and human FAAH, respectively. Biochanin A is a naturally occurring fatty acid amide hydrolase (FAAH) inhibitor, which inhibits FAAH with IC50s of 1.8, 1.4 and 2.4 μM for mouse, rat, and human FAAH, respectively.

   

Calycosin

4H-1-Benzopyran-4-one, 7-hydroxy-3-(3-hydroxy-4-methoxyphenyl)-

C16H12O5 (284.0685)


Calycosin is a member of the class of 7-hydroxyisoflavones that is 7-hydroxyisoflavone which is substituted by an additional hydroxy group at the 3 position and a methoxy group at the 4 position. It has a role as a metabolite and an antioxidant. It is a member of 7-hydroxyisoflavones and a member of 4-methoxyisoflavones. It is functionally related to an isoflavone. It is a conjugate acid of a calycosin(1-). Calycosin is a natural product found in Thermopsis lanceolata, Hedysarum polybotrys, and other organisms with data available. A polyphenol metabolite detected in biological fluids [PhenolExplorer] Calycosin is a natural compound with antioxidant and anti-inflammatory activity. Calycosin is a natural compound with antioxidant and anti-inflammatory activity.

   

Genistein

Genistein, Pharmaceutical Secondary Standard; Certified Reference Material

C15H10O5 (270.0528)


Genistein is a 7-hydroxyisoflavone with additional hydroxy groups at positions 5 and 4. It is a phytoestrogenic isoflavone with antioxidant properties. It has a role as an antineoplastic agent, a tyrosine kinase inhibitor, an EC 5.99.1.3 [DNA topoisomerase (ATP-hydrolysing)] inhibitor, a phytoestrogen, a plant metabolite, a geroprotector and a human urinary metabolite. It is a conjugate acid of a genistein(1-). An isoflavonoid derived from soy products. It inhibits protein-tyrosine kinase and topoisomerase-II (DNA topoisomerases, type II) activity and is used as an antineoplastic and antitumor agent. Experimentally, it has been shown to induce G2 phase arrest in human and murine cell lines. Additionally, genistein has antihelmintic activity. It has been determined to be the active ingredient in Felmingia vestita, which is a plant traditionally used against worms. It has shown to be effective in the treatment of common liver fluke, pork trematode and poultry cestode. Further, genistein is a phytoestrogen which has selective estrogen receptor modulator properties. It has been investigated in clinical trials as an alternative to classical hormone therapy to help prevent cardiovascular disease in postmenopausal women. Natural sources of genistein include tofu, fava beans, soybeans, kudzu, and lupin. Genistein is a natural product found in Pterocarpus indicus, Ficus septica, and other organisms with data available. Genistein is a soy-derived isoflavone and phytoestrogen with antineoplastic activity. Genistein binds to and inhibits protein-tyrosine kinase, thereby disrupting signal transduction and inducing cell differentiation. This agent also inhibits topoisomerase-II, leading to DNA fragmentation and apoptosis, and induces G2/M cell cycle arrest. Genistein exhibits antioxidant, antiangiogenic, and immunosuppressive activities. (NCI04) Genistein is one of several known isoflavones. Isoflavones compounds, such as genistein and daidzein, are found in a number of plants, but soybeans and soy products like tofu and textured vegetable protein are the primary food source. Genistein is a natural bioactive compound derived from legumes and has drawn because of its potentially beneficial effects on some human degenerative diseases. It has a weak estrogenic effect and is a well-known non-specific tyrosine kinase inhibitor at pharmacological doses. Epidemiological studies show that genistein intake is inversely associated with the risk of cardiovascular diseases. Data suggests a protective role of genistein in cardiovascular events. However, the mechanisms of the genistein action on vascular protective effects are unclear. Past extensive studies exploring its hypolipidemic effect resulted in contradictory data. Genistein also is a relatively poor antioxidant. However, genistein protects against pro-inflammatory factor-induced vascular endothelial barrier dysfunction and inhibits leukocyte-endothelium interaction, thereby modulating vascular inflammation, a major event in the pathogenesis of atherosclerosis. Genistein exerts a non-genomic action by targeting on important signaling molecules in vascular endothelial cells (ECs). Genistein rapidly activates endothelial nitric oxide synthase and production of nitric oxide in ECs. This genistein effect is novel since it is independent of its known effects, but mediated by the cyclic adenosine monophosphate/protein kinase A (cAMP/PKA) cascade. Genistein directly stimulates the plasma membrane-associated adenylate cyclases, leading to activation of the cAMP signaling pathway. In addition, genistein activates peroxisome proliferator-activated receptors, ligand-activated nuclear receptors important to normal vascular function. Furthermore, genistein reduces reactive oxygen species (ROS) by attenuating the expression of ROS-producing enzymes. These findings reveal the roles for genistein in the regulation of vascular function and provide a basis for further investigating its therapeutic potential f... Genistein is one of several known isoflavones. Isoflavones compounds, such as genistein and daidzein, are found in a number of plants, but soybeans and soy products like tofu and textured vegetable protein are the primary food source. Genistein is a natural bioactive compound derived from legumes and has drawn because of its potentially beneficial effects on some human degenerative diseases. It has a weak estrogenic effect and is a well-known non-specific tyrosine kinase inhibitor at pharmacological doses. Epidemiological studies show that genistein intake is inversely associated with the risk of cardiovascular diseases. Data suggests a protective role of genistein in cardiovascular events. However, the mechanisms of the genistein action on vascular protective effects are unclear. Past extensive studies exploring its hypolipidemic effect resulted in contradictory data. Genistein also is a relatively poor antioxidant. However, genistein protects against pro-inflammatory factor-induced vascular endothelial barrier dysfunction and inhibits leukocyte-endothelium interaction, thereby modulating vascular inflammation, a major event in the pathogenesis of atherosclerosis. Genistein exerts a non-genomic action by targeting on important signaling molecules in vascular endothelial cells (ECs). Genistein rapidly activates endothelial nitric oxide synthase and production of nitric oxide in ECs. This genistein effect is novel since it is independent of its known effects, but mediated by the cyclic adenosine monophosphate/protein kinase A (cAMP/PKA) cascade. Genistein directly stimulates the plasma membrane-associated adenylate cyclases, leading to activation of the cAMP signaling pathway. In addition, genistein activates peroxisome proliferator-activated receptors, ligand-activated nuclear receptors important to normal vascular function. Furthermore, genistein reduces reactive oxygen species (ROS) by attenuating the expression of ROS-producing enzymes. These findings reveal the roles for genistein in the regulation of vascular function and provide a basis for further investigating its therapeutic potential for inflammatory-related vascular disease. (PMID:17979711). Genistein is a biomarker for the consumption of soy beans and other soy products. Genistein is a phenolic compound belonging to the isoflavonoid group. Isoflavonoids are found mainly in soybean. Genistein and daidzein (an other isoflavonoid) represent the major phytochemicals found in this plant. Health benefits (e.g. reduced risk for certain cancers and diseases of old age) associated to soya products consumption have been observed in East Asian populations and several epidemiological studies. This association has been linked to the action of isoflavonoids. With a chemical structure similar to the hormone 17-b-estradiol, soy isoflavones are able to interact with the estrogen receptor. They also possess numerous biological activities. (PMID: 15540649). Genistein is a biomarker for the consumption of soy beans and other soy products. A 7-hydroxyisoflavone with additional hydroxy groups at positions 5 and 4. It is a phytoestrogenic isoflavone with antioxidant properties. C274 - Antineoplastic Agent > C163758 - Targeted Therapy Agent > C1821 - Selective Estrogen Receptor Modulator D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens C274 - Antineoplastic Agent > C129818 - Antineoplastic Hormonal/Endocrine Agent > C481 - Antiestrogen C471 - Enzyme Inhibitor > C1404 - Protein Kinase Inhibitor > C1967 - Tyrosine Kinase Inhibitor C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C483 - Therapeutic Estrogen D004791 - Enzyme Inhibitors > D047428 - Protein Kinase Inhibitors D020011 - Protective Agents > D016588 - Anticarcinogenic Agents C274 - Antineoplastic Agent > C1742 - Angiogenesis Inhibitor C147908 - Hormone Therapy Agent > C547 - Hormone Antagonist D000970 - Antineoplastic Agents C1892 - Chemopreventive Agent CONFIDENCE standard compound; INTERNAL_ID 765; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5085; ORIGINAL_PRECURSOR_SCAN_NO 5082 CONFIDENCE standard compound; INTERNAL_ID 765; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8554; ORIGINAL_PRECURSOR_SCAN_NO 8550 CONFIDENCE standard compound; INTERNAL_ID 765; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5097; ORIGINAL_PRECURSOR_SCAN_NO 5094 ORIGINAL_ACQUISITION_NO 5097; CONFIDENCE standard compound; INTERNAL_ID 765; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_PRECURSOR_SCAN_NO 5094 CONFIDENCE standard compound; INTERNAL_ID 765; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5104; ORIGINAL_PRECURSOR_SCAN_NO 5099 CONFIDENCE standard compound; INTERNAL_ID 765; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8558; ORIGINAL_PRECURSOR_SCAN_NO 8556 CONFIDENCE standard compound; INTERNAL_ID 765; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5082; ORIGINAL_PRECURSOR_SCAN_NO 5079 CONFIDENCE standard compound; INTERNAL_ID 765; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8540; ORIGINAL_PRECURSOR_SCAN_NO 8539 CONFIDENCE standard compound; INTERNAL_ID 765; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8556; ORIGINAL_PRECURSOR_SCAN_NO 8554 CONFIDENCE standard compound; INTERNAL_ID 765; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8561; ORIGINAL_PRECURSOR_SCAN_NO 8559 CONFIDENCE standard compound; INTERNAL_ID 765; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5096; ORIGINAL_PRECURSOR_SCAN_NO 5093 CONFIDENCE standard compound; INTERNAL_ID 765; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8572; ORIGINAL_PRECURSOR_SCAN_NO 8570 CONFIDENCE standard compound; INTERNAL_ID 765; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5090; ORIGINAL_PRECURSOR_SCAN_NO 5089 CONFIDENCE Reference Standard (Level 1); NaToxAq - Natural Toxins and Drinking Water Quality - From Source to Tap (https://natoxaq.ku.dk) CONFIDENCE standard compound; EAWAG_UCHEM_ID 3265 IPB_RECORD: 441; CONFIDENCE confident structure CONFIDENCE standard compound; INTERNAL_ID 4238 CONFIDENCE standard compound; INTERNAL_ID 8827 CONFIDENCE standard compound; INTERNAL_ID 2419 CONFIDENCE standard compound; INTERNAL_ID 4162 CONFIDENCE standard compound; INTERNAL_ID 176 Genistein, a soy isoflavone, is a multiple tyrosine kinases (e.g., EGFR) inhibitor which acts as a chemotherapeutic agent against different types of cancer, mainly by altering apoptosis, the cell cycle, and angiogenesis and inhibiting metastasis. Genistein, a soy isoflavone, is a multiple tyrosine kinases (e.g., EGFR) inhibitor which acts as a chemotherapeutic agent against different types of cancer, mainly by altering apoptosis, the cell cycle, and angiogenesis and inhibiting metastasis.

   

Anagyrine

7,14-Methano-4H,6H-dipyrido(1,2-a:1,2-e)(1,5)diazocin-4-one, 7,7a,8,9,10,11,13,14-octahydro-, (7R-(7alpha,7aalpha,14alpha))-

C15H20N2O (244.1576)


Anagyrine is an alkaloid. Anagyrine is a natural product found in Daphniphyllum oldhamii, Ormosia fordiana, and other organisms with data available. Thermospine is a natural product found in Platycelyphium voense, Thermopsis mongolica, and other organisms with data available. Thermopsine is a quinolizidine alkaloid isolated from the fruits and pods and stem bark of Sophora velutina subsp. Thermopsine has antibacterial activity[1].

   

Cytisine

Cytisine

C11H14N2O (190.1106)


N - Nervous system > N07 - Other nervous system drugs > N07B - Drugs used in addictive disorders > N07BA - Drugs used in nicotine dependence C78272 - Agent Affecting Nervous System > C47796 - Cholinergic Agonist > C73579 - Nicotinic Agonist relative retention time with respect to 9-anthracene Carboxylic Acid is 0.054 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.052 Cytisinicline (Cytisine) is an alkaloid. Cytisinicline (Cytisine) is a partial agonist of α4β2 nAChRs[1], and partial to full agonist at β4 containing receptors and α7 receptors[2]. Has been used medically to help with smoking cessation[3]. Cytisinicline (Cytisine) is an alkaloid. Cytisinicline (Cytisine) is a partial agonist of α4β2 nAChRs[1], and partial to full agonist at β4 containing receptors and α7 receptors[2]. Has been used medically to help with smoking cessation[3]. Cytisinicline (Cytisine) is an alkaloid. Cytisinicline (Cytisine) is a partial agonist of α4β2 nAChRs[1], and partial to full agonist at β4 containing receptors and α7 receptors[2]. Has been used medically to help with smoking cessation[3].

   

Sparteine

7,14-METHANO-2H,6H-DIPYRIDO(1,2-A:1,2-E)(1,5)DIAZOCINE, DODECAHYDRO-, (7S-(7.ALPHA.,7A.BETA.,14.ALPHA.,14A.BETA.))-

C15H26N2 (234.2096)


Sparteine is a quinolizidine alkaloid and a quinolizidine alkaloid fundamental parent. Sparteine is a plant alkaloid derived from Cytisus scoparius and Lupinus mutabilis which may chelate calcium and magnesium. It is a sodium channel blocker, so it falls in the category of class 1a antiarrhythmic agents. Sparteine is not currently FDA-approved for human use, and its salt, sparteine sulfate, is one of the products that have been withdrawn or removed from the market for reasons of safety or effectiveness. Sparteine is a natural product found in Ormosia coarctata, Thermopsis chinensis, and other organisms with data available. A quinolizidine alkaloid isolated from several FABACEAE including LUPINUS; SPARTIUM; and CYTISUS. It has been used as an oxytocic and an anti-arrhythmia agent. It has also been of interest as an indicator of CYP2D6 genotype. See also: Cytisus scoparius flowering top (part of). C - Cardiovascular system > C01 - Cardiac therapy > C01B - Antiarrhythmics, class i and iii > C01BA - Antiarrhythmics, class ia C78274 - Agent Affecting Cardiovascular System > C47793 - Antiarrhythmic Agent D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D012102 - Reproductive Control Agents > D010120 - Oxytocics Annotation level-1 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 53 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 39 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 32 INTERNAL_ID 24; CONFIDENCE Reference Standard (Level 1) CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 24 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 17 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 9 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.395 beta-Isosparteine is a natural product found in Ulex airensis, Ulex densus, and other organisms with data available. A quinolizidine alkaloid isolated from several FABACEAE including LUPINUS; SPARTIUM; and CYTISUS. It has been used as an oxytocic and an anti-arrhythmia agent. It has also been of interest as an indicator of CYP2D6 genotype. (+)-Sparteine is a natural product found in Baptisia australis, Dermatophyllum secundiflorum, and other organisms with data available. A quinolizidine alkaloid isolated from several FABACEAE including LUPINUS; SPARTIUM; and CYTISUS. It has been used as an oxytocic and an anti-arrhythmia agent. It has also been of interest as an indicator of CYP2D6 genotype. (-)-Sparteine is a natural alkaloid isolated from beans. (-)-Sparteine is a natural alkaloid isolated from beans. (+)-Sparteine is a natural alkaloid acting as a ganglionic blocking agent. (+)-Sparteine competitively blocks nicotinic ACh receptor in the neurons. (+)-Sparteine is a natural alkaloid acting as a ganglionic blocking agent. (+)-Sparteine competitively blocks nicotinic ACh receptor in the neurons. (+)-Sparteine is a natural alkaloid acting as a ganglionic blocking agent. (+)-Sparteine competitively blocks nicotinic ACh receptor in the neurons.

   

Wighteone

4H-1-BENZOPYRAN-4-ONE, 5,7-DIHYDROXY-3-(4-HYDROXYPHENYL)-6-(3-METHYL-2-BUTEN-1-YL)-

C20H18O5 (338.1154)


A natural product found in Ficus mucuso. Wighteone is a member of the class of 7-hydroxyisoflavones that is isoflavone substituted by hydroxy groups at positions 5, 7 and 4 and a prenyl group at position 6. It has been isolated from Ficus mucuso. It has a role as a plant metabolite and an antifungal agent. It is functionally related to an isoflavone. Wighteone is a natural product found in Genista ephedroides, Erythrina suberosa, and other organisms with data available. A member of the class of 7-hydroxyisoflavones that is isoflavone substituted by hydroxy groups at positions 5, 7 and 4 and a prenyl group at position 6. It has been isolated from Ficus mucuso. Wighteone is a compound isolated from the aerial parts of Genista ephedroides[1]. Wighteone is a compound isolated from the aerial parts of Genista ephedroides[1].

   

3'-Hydroxygenistein

4H-1-Benzopyran-4-one, 3-(3,4-dihydroxyphenyl)-5,7-dihydroxy-

C15H10O6 (286.0477)


Orobol is a member of the class of 7-hydroxyisoflavones which consists of isoflavone substituted by hydroxy groups at positions 5, 7, 3 and 4. It has been isolated from the mycelia of Cordyceps sinensis. It has a role as an anti-inflammatory agent, a radical scavenger, a plant metabolite and a fungal metabolite. It is functionally related to an isoflavone. Orobol is a natural product found in Tritirachium, Ammopiptanthus mongolicus, and other organisms with data available. A member of the class of 7-hydroxyisoflavones which consists of isoflavone substituted by hydroxy groups at positions 5, 7, 3 and 4. It has been isolated from the mycelia of Cordyceps sinensis. 3-Hydroxygenistein is a polyphenol metabolite detected in biological fluids (PMID: 20428313). A polyphenol metabolite detected in biological fluids [PhenolExplorer]

   

Pratensein

4H-1-Benzopyran-4-one, 5,7-dihydroxy-3-(3-hydroxy-4-methoxyphenyl)-

C16H12O6 (300.0634)


Pratensein is a member of the class of 7-hydroxyisoflavones in which isoflavone is substituted by hydroxy groups at the 5, 7, and 3 positions, and by a methoxy group at the 4 position. It is a member of 7-hydroxyisoflavones and a member of 4-methoxyisoflavones. It is a conjugate acid of a pratensein(1-). Pratensein is a natural product found in Dalbergia sissoo, Cicer chorassanicum, and other organisms with data available. See also: Trifolium pratense flower (part of). A member of the class of 7-hydroxyisoflavones in which isoflavone is substituted by hydroxy groups at the 5, 7, and 3 positions, and by a methoxy group at the 4 position. Constituent of Cicer arietinum (chickpea). 3-Hydroxybiochanin A is found in peanut, chickpea, and pulses. Pratensein is found in chickpea. Pratensein is a constituent of Cicer arietinum (chickpea)

   

5,6-Dehydrolupanine

5,6-Dehydro-alpha-isolupanine

C15H22N2O (246.1732)


   

alpha-Isosparteine

alpha-Isosparteine

C15H26N2 (234.2096)


D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D012102 - Reproductive Control Agents > D010120 - Oxytocics

   

Lupiwighteone

5,7-Dihydroxy-3-(4-hydroxyphenyl)-8-(3-methyl-2-buten-1-yl)-4H-1-benzopyran-4-one; 8-Prenylgenistein

C20H18O5 (338.1154)


Lupiwighteone is a member of isoflavones. Lupiwighteone is a natural product found in Anthyllis hermanniae, Erythrina sigmoidea, and other organisms with data available. Isolated from Glycyrrhiza uralensis (Chinese licorice) and Vigna angularis (azuki bean). Lupiwighteone is found in herbs and spices, pulses, and adzuki bean. Lupiwighteone is found in adzuki bean. Lupiwighteone is isolated from Glycyrrhiza uralensis (Chinese licorice) and Vigna angularis (azuki bean).

   

3-O-Methylorobol

3-O-Methylorobol

C16H12O6 (300.0634)


   

Gancaonin C

5,7-dihydroxy-8-[(2E)-4-hydroxy-3-methylbut-2-en-1-yl]-3-(4-hydroxyphenyl)-4H-chromen-4-one

C20H18O6 (354.1103)


Gancaonin C is found in herbs and spices. Gancaonin C is a constituent of Glycyrrhiza uralensis (Chinese licorice). Constituent of Glycyrrhiza uralensis (Chinese licorice). Gancaonin C is found in herbs and spices.

   

(±)-2',4',5,7-Tetrahydroxy-3',8-diprenylisoflavanone

3-[2,4-dihydroxy-3-(3-methylbut-2-en-1-yl)phenyl]-5,7-dihydroxy-8-(3-methylbut-2-en-1-yl)-3,4-dihydro-2H-1-benzopyran-4-one

C25H28O6 (424.1886)


(±)-2,4,5,7-Tetrahydroxy-3,8-diprenylisoflavanone is found in herbs and spices. (±)-2,4,5,7-Tetrahydroxy-3,8-diprenylisoflavanone is isolated from Phaseolus lunatus (butter bean) seedlings under stress and from Glycyrrhiza glabra (licorice Isolated from Phaseolus lunatus (butter bean) seedlings under stress and from Glycyrrhiza glabra (licorice). (±)-2,4,5,7-Tetrahydroxy-3,8-diprenylisoflavanone is found in tea, herbs and spices, and pulses.

   

(-)-Cytisine

7,11-diazatricyclo[7.3.1.0²,⁷]trideca-2,4-dien-6-one

C11H14N2O (190.1106)


   

(-)-Sparteine

Pachycarpine Sulfate (1:1), Pentahydrate, (7S-(7alpha,7aalpha,14alpha,14abeta))-Isomer

C15H26N2 (234.2096)


C - Cardiovascular system > C01 - Cardiac therapy > C01B - Antiarrhythmics, class i and iii > C01BA - Antiarrhythmics, class ia D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D012102 - Reproductive Control Agents > D010120 - Oxytocics (-)-Sparteine is a natural alkaloid isolated from beans. (-)-Sparteine is a natural alkaloid isolated from beans.

   

5,6-Didehydrospartein-2-one

7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadec-2-en-6-one

C15H22N2O (246.1732)


   

Cytisinicline

(1R,5S)-1,2,3,4,5,6-HEXAHYDRO-8H-1,5-METHANOPYRIDO(1,2-A)(1,5)DIAZOCIN-8-ONE (CYTISINE)

C11H14N2O (190.1106)


Cytisine is an organic heterotricyclic compound that is the toxic principle in Laburnum seeds and is found in many members of the Fabaceae (legume, pea or bean) family. An acetylcholine agonist, it is widely used throughout Eastern Europe as an aid to giving up smoking. It has a role as a nicotinic acetylcholine receptor agonist, a phytotoxin and a plant metabolite. It is an alkaloid, an organic heterotricyclic compound, a secondary amino compound, a lactam and a bridged compound. Cytisine is an alkaloid naturally derived from the Fabaceae family of plants including the genera Laburnum and Cytisus. Recent studies have shown it to be a more effective and significantly more affordable smoking cessation treatment than nicotine replacement therapy. Also known as baptitoxine or sophorine, cytisine has been used as a smoking cessation treatment since 1964, and is relatively unknown in regions outside of central and Eastern Europe. Cytisine is a partial nicotinic acetylcholine agonist with a half-life of 4.8 hours. Recent Phase III clinical trials using Tabex (a brand of Cytisine marketed by Sopharma AD) have shown similar efficacy to varenicline, but at a fraction of the cost. Cytisine is a natural product found in Viscum cruciatum, Thermopsis chinensis, and other organisms with data available. See also: Cytisus scoparius flowering top (part of); Thermopsis lanceolata whole (part of). An organic heterotricyclic compound that is the toxic principle in Laburnum seeds and is found in many members of the Fabaceae (legume, pea or bean) family. An acetylcholine agonist, it is widely used throughout Eastern Europe as an aid to giving up smoking. N - Nervous system > N07 - Other nervous system drugs > N07B - Drugs used in addictive disorders > N07BA - Drugs used in nicotine dependence C78272 - Agent Affecting Nervous System > C47796 - Cholinergic Agonist > C73579 - Nicotinic Agonist Cytisinicline (Cytisine) is an alkaloid. Cytisinicline (Cytisine) is a partial agonist of α4β2 nAChRs[1], and partial to full agonist at β4 containing receptors and α7 receptors[2]. Has been used medically to help with smoking cessation[3]. Cytisinicline (Cytisine) is an alkaloid. Cytisinicline (Cytisine) is a partial agonist of α4β2 nAChRs[1], and partial to full agonist at β4 containing receptors and α7 receptors[2]. Has been used medically to help with smoking cessation[3]. Cytisinicline (Cytisine) is an alkaloid. Cytisinicline (Cytisine) is a partial agonist of α4β2 nAChRs[1], and partial to full agonist at β4 containing receptors and α7 receptors[2]. Has been used medically to help with smoking cessation[3].

   

Bolusanthin III

Bolusanthin III

C16H14O4 (270.0892)


   

Sophoraisoflavanone B

2,3-Dihydro-5,7-dihydroxy-3-[2-hydroxy-4-methoxy-5-(3-methyl-2-butenyl)phenyl]-6-(3-methyl-2-butenyl)-4H-1-benzopyran-4-one

C26H30O6 (438.2042)


   

Bolusanthin

3,5,7,3-Tetrahydroxy-4-methoxyisoflavone

C16H14O7 (318.0739)


   

Derrone

3- (4-Hydroxyphenyl) -5-hydroxy-8,8-dimethyl-4H,8H-benzo [ 1,2-b:3,4-b ] dipyran-4-one

C20H16O5 (336.0998)


Derrone is a natural product found in Erythrina senegalensis, Ficus nymphaeifolia, and other organisms with data available.

   

olmelin

4H-1-Benzopyran-4-one, 5,7-dihydroxy-3-(4-methoxyphenyl)-

C16H12O5 (284.0685)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens D020011 - Protective Agents > D016588 - Anticarcinogenic Agents D000970 - Antineoplastic Agents Biochanin A is a naturally occurring fatty acid amide hydrolase (FAAH) inhibitor, which inhibits FAAH with IC50s of 1.8, 1.4 and 2.4 μM for mouse, rat, and human FAAH, respectively. Biochanin A is a naturally occurring fatty acid amide hydrolase (FAAH) inhibitor, which inhibits FAAH with IC50s of 1.8, 1.4 and 2.4 μM for mouse, rat, and human FAAH, respectively. Biochanin A is a naturally occurring fatty acid amide hydrolase (FAAH) inhibitor, which inhibits FAAH with IC50s of 1.8, 1.4 and 2.4 μM for mouse, rat, and human FAAH, respectively.

   

Gancaonin C

5,7-Dihydroxy-8-((E)-4-hydroxy-3-methyl-but-2-enyl)-3-(4-hydroxy-phenyl)-1-benzopyran-4-one

C20H18O6 (354.1103)


   

Lupiwighteone

3- (4-Hydroxyphenyl) -5,7-dihydroxy-8- (3-methyl-2-butenyl) -4H-1-benzopyran-4-one

C20H18O5 (338.1154)


   

Orobol

4H-1-Benzopyran-4-one, 5,7-dihydroxy-3-(3,4-dihydroxyphenyl)-

C15H10O6 (286.0477)


   

Pratensein

4H-1-Benzopyran-4-one, 5,7-dihydroxy-3-(3-hydroxy-4-methoxyphenyl)-

C16H12O6 (300.0634)


   

Centrolobofuran

2-(2-Hydroxy-4-methoxyphenyl)benzofuran-6-ol

C15H12O4 (256.0736)


   
   

3-O-METHYLOROBOL

5,7-dihydroxy-3-(4-hydroxy-3-methoxyphenyl)chromen-4-one

C16H12O6 (300.0634)


3-O-methylorobol is a hydroxyisoflavone that is orobol in which the hydroxy group at position 3 has been replaced by a methoxy group. It has been isolated from Crotalaria lachnophora. It has a role as a plant metabolite. It is a methoxyisoflavone and a hydroxyisoflavone. It is functionally related to an orobol. 3-O-Methylorobol is a natural product found in Dalbergia sissoo, Crotalaria lachnophora, and other organisms with data available. A hydroxyisoflavone that is orobol in which the hydroxy group at position 3 has been replaced by a methoxy group. It has been isolated from Crotalaria lachnophora.

   

Biochanin A

4-Methylgenistein (Biochanin A)

C16H12O5 (284.0685)


Annotation level-1 D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens relative retention time with respect to 9-anthracene Carboxylic Acid is 1.140 D020011 - Protective Agents > D016588 - Anticarcinogenic Agents D000970 - Antineoplastic Agents relative retention time with respect to 9-anthracene Carboxylic Acid is 1.141 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.139 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.137 IPB_RECORD: 2161; CONFIDENCE confident structure Biochanin A is a naturally occurring fatty acid amide hydrolase (FAAH) inhibitor, which inhibits FAAH with IC50s of 1.8, 1.4 and 2.4 μM for mouse, rat, and human FAAH, respectively. Biochanin A is a naturally occurring fatty acid amide hydrolase (FAAH) inhibitor, which inhibits FAAH with IC50s of 1.8, 1.4 and 2.4 μM for mouse, rat, and human FAAH, respectively. Biochanin A is a naturally occurring fatty acid amide hydrolase (FAAH) inhibitor, which inhibits FAAH with IC50s of 1.8, 1.4 and 2.4 μM for mouse, rat, and human FAAH, respectively.

   

Genistein

Sophoricol

C15H10O5 (270.0528)


C274 - Antineoplastic Agent > C163758 - Targeted Therapy Agent > C1821 - Selective Estrogen Receptor Modulator D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens C274 - Antineoplastic Agent > C129818 - Antineoplastic Hormonal/Endocrine Agent > C481 - Antiestrogen C471 - Enzyme Inhibitor > C1404 - Protein Kinase Inhibitor > C1967 - Tyrosine Kinase Inhibitor C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C483 - Therapeutic Estrogen D004791 - Enzyme Inhibitors > D047428 - Protein Kinase Inhibitors D020011 - Protective Agents > D016588 - Anticarcinogenic Agents C274 - Antineoplastic Agent > C1742 - Angiogenesis Inhibitor C147908 - Hormone Therapy Agent > C547 - Hormone Antagonist D000970 - Antineoplastic Agents C1892 - Chemopreventive Agent Disclaimer: While authors make an effort to ensure that the content of this record is accurate, the authors make no representations or warranties in relation to the accuracy or completeness of the record. This record do not reflect any viewpoints of the affiliation and organization to which the authors belong. Acquisition and generation of the data is financially supported by the Max-Planck-Society IPB_RECORD: 2181; CONFIDENCE confident structure Genistein, a soy isoflavone, is a multiple tyrosine kinases (e.g., EGFR) inhibitor which acts as a chemotherapeutic agent against different types of cancer, mainly by altering apoptosis, the cell cycle, and angiogenesis and inhibiting metastasis. Genistein, a soy isoflavone, is a multiple tyrosine kinases (e.g., EGFR) inhibitor which acts as a chemotherapeutic agent against different types of cancer, mainly by altering apoptosis, the cell cycle, and angiogenesis and inhibiting metastasis.

   

Calycosin

4H-1-Benzopyran-4-one, 7-hydroxy-3-(3-hydroxy-4-methoxyphenyl)-

C16H12O5 (284.0685)


Calycosin is a member of the class of 7-hydroxyisoflavones that is 7-hydroxyisoflavone which is substituted by an additional hydroxy group at the 3 position and a methoxy group at the 4 position. It has a role as a metabolite and an antioxidant. It is a member of 7-hydroxyisoflavones and a member of 4-methoxyisoflavones. It is functionally related to an isoflavone. It is a conjugate acid of a calycosin(1-). Calycosin is a natural product found in Thermopsis lanceolata, Hedysarum polybotrys, and other organisms with data available. A member of the class of 7-hydroxyisoflavones that is 7-hydroxyisoflavone which is substituted by an additional hydroxy group at the 3 position and a methoxy group at the 4 position. Calycosin is a natural compound with antioxidant and anti-inflammatory activity. Calycosin is a natural compound with antioxidant and anti-inflammatory activity.

   

(+)-Lupanine

(+)-Lupanine

C15H24N2O (248.1889)


CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 29

   

Cytisin

Cytisine

C11H14N2O (190.1106)


N - Nervous system > N07 - Other nervous system drugs > N07B - Drugs used in addictive disorders > N07BA - Drugs used in nicotine dependence C78272 - Agent Affecting Nervous System > C47796 - Cholinergic Agonist > C73579 - Nicotinic Agonist CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2241 Cytisinicline (Cytisine) is an alkaloid. Cytisinicline (Cytisine) is a partial agonist of α4β2 nAChRs[1], and partial to full agonist at β4 containing receptors and α7 receptors[2]. Has been used medically to help with smoking cessation[3]. Cytisinicline (Cytisine) is an alkaloid. Cytisinicline (Cytisine) is a partial agonist of α4β2 nAChRs[1], and partial to full agonist at β4 containing receptors and α7 receptors[2]. Has been used medically to help with smoking cessation[3]. Cytisinicline (Cytisine) is an alkaloid. Cytisinicline (Cytisine) is a partial agonist of α4β2 nAChRs[1], and partial to full agonist at β4 containing receptors and α7 receptors[2]. Has been used medically to help with smoking cessation[3].

   

Hydroxywighteone

5,7,4-Trihydroxy-6-(3-hydroxymethyl-2-butenyl)isoflavone

C20H18O6 (354.1103)


   

3-O-Methylorobol

5,7-dihydroxy-3-(4-hydroxy-3-methoxy-phenyl)chromen-4-one

C16H12O6 (300.0634)


   

NPI 031L

4H-1-Benzopyran-4-one, 5,7-dihydroxy-3-(4-hydroxyphenyl)-

C15H10O5 (270.0528)


C274 - Antineoplastic Agent > C163758 - Targeted Therapy Agent > C1821 - Selective Estrogen Receptor Modulator D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens C274 - Antineoplastic Agent > C129818 - Antineoplastic Hormonal/Endocrine Agent > C481 - Antiestrogen C471 - Enzyme Inhibitor > C1404 - Protein Kinase Inhibitor > C1967 - Tyrosine Kinase Inhibitor C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C483 - Therapeutic Estrogen D004791 - Enzyme Inhibitors > D047428 - Protein Kinase Inhibitors D020011 - Protective Agents > D016588 - Anticarcinogenic Agents C274 - Antineoplastic Agent > C1742 - Angiogenesis Inhibitor C147908 - Hormone Therapy Agent > C547 - Hormone Antagonist D000970 - Antineoplastic Agents C1892 - Chemopreventive Agent Genistein, a soy isoflavone, is a multiple tyrosine kinases (e.g., EGFR) inhibitor which acts as a chemotherapeutic agent against different types of cancer, mainly by altering apoptosis, the cell cycle, and angiogenesis and inhibiting metastasis. Genistein, a soy isoflavone, is a multiple tyrosine kinases (e.g., EGFR) inhibitor which acts as a chemotherapeutic agent against different types of cancer, mainly by altering apoptosis, the cell cycle, and angiogenesis and inhibiting metastasis.

   

genisteine

alpha-Isosparteine

C15H26N2 (234.2096)


A quinolizidine alkaloid that is sparteine in which the hydrogen atom at position 6 is in the beta-configuration. D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D012102 - Reproductive Control Agents > D010120 - Oxytocics

   

(3s)-3,5,7-trihydroxy-3-(3-hydroxy-4-methoxyphenyl)-2h-1-benzopyran-4-one

(3s)-3,5,7-trihydroxy-3-(3-hydroxy-4-methoxyphenyl)-2h-1-benzopyran-4-one

C16H14O7 (318.0739)


   

(9r)-7,11-diazatricyclo[7.3.1.0²,⁷]trideca-2,4-dien-6-one

(9r)-7,11-diazatricyclo[7.3.1.0²,⁷]trideca-2,4-dien-6-one

C11H14N2O (190.1106)


   

(1r,9r)-11-methyl-7,11-diazatricyclo[7.3.1.0²,⁷]trideca-2,4-dien-6-one

(1r,9r)-11-methyl-7,11-diazatricyclo[7.3.1.0²,⁷]trideca-2,4-dien-6-one

C12H16N2O (204.1263)


   

3-(2-hydroxy-4-methoxyphenyl)-2h-chromen-7-ol

3-(2-hydroxy-4-methoxyphenyl)-2h-chromen-7-ol

C16H14O4 (270.0892)


   

4-{6,8-dihydroxy-2h,8h-[1,3]dioxolo[4,5-g]chromen-7-yl}benzene-1,2,3-triol

4-{6,8-dihydroxy-2h,8h-[1,3]dioxolo[4,5-g]chromen-7-yl}benzene-1,2,3-triol

C16H12O8 (332.0532)


   

anagyrine

FYU1U980Q9; 5-24-03-00410 (Beilstein Handbook Reference); (1R,9R,10R)-7,15-DIAZATETRACYCLO[7.7.1.0(2),?.0(1)?,(1)?]HEPTADECA-2,4-DIEN-6-ONE; BRN 0086776; ANAGYRINE; (-)-Anagyrine; UNII-FYU1U980Q9; 7,7a,8,9,10,11,13,14-Octahydro-7,14-memethano-4H,6H-dipyrido(1,2-a:1',2'-e)(1,5)diazocin-4-one; 3,4,5,6-Tetradehydrospartein-2-one; (7alpha)-11,12,13,14-tetradehydrospartein-15-one; (-)-anagyrine; CHEMBL509692; Rhombinine; Anagyrine; AC1LE9O5; NSC76019; ZINC900282; Monolupine; 486-89-5

C15H20N2O (244.1576)


{"Ingredient_id": "HBIN015975","Ingredient_name": "anagyrine","Alias": "FYU1U980Q9; 5-24-03-00410 (Beilstein Handbook Reference); (1R,9R,10R)-7,15-DIAZATETRACYCLO[7.7.1.0(2),?.0(1)?,(1)?]HEPTADECA-2,4-DIEN-6-ONE; BRN 0086776; ANAGYRINE; (-)-Anagyrine; UNII-FYU1U980Q9; 7,7a,8,9,10,11,13,14-Octahydro-7,14-memethano-4H,6H-dipyrido(1,2-a:1',2'-e)(1,5)diazocin-4-one; 3,4,5,6-Tetradehydrospartein-2-one; (7alpha)-11,12,13,14-tetradehydrospartein-15-one; (-)-anagyrine; CHEMBL509692; Rhombinine; Anagyrine; AC1LE9O5; NSC76019; ZINC900282; Monolupine; 486-89-5","Ingredient_formula": "C15H20N2O","Ingredient_Smile": "C1CCN2CC3CC(C2C1)CN4C3=CC=CC4=O","Ingredient_weight": "244.33 g/mol","OB_score": "NA","CAS_id": "NA","SymMap_id": "SMIT01268;SMIT05719","TCMID_id": "1134","TCMSP_id": "MOL003687;MOL006571","TCM_ID_id": "6815;17611","PubChem_id": "71056954","DrugBank_id": "NA"}

   

4-[(8r)-6,8-dihydroxy-2h,8h-[1,3]dioxolo[4,5-g]chromen-7-yl]benzene-1,2,3-triol

4-[(8r)-6,8-dihydroxy-2h,8h-[1,3]dioxolo[4,5-g]chromen-7-yl]benzene-1,2,3-triol

C16H12O8 (332.0532)


   

(9r,10s)-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadeca-2,4-dien-6-one

(9r,10s)-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadeca-2,4-dien-6-one

C15H20N2O (244.1576)


   

5,7-dihydroxy-3-[4-hydroxy-3-(3-methylbut-2-en-1-yl)phenyl]-6-(3-methylbut-2-en-1-yl)-2,3-dihydro-1-benzopyran-4-one

5,7-dihydroxy-3-[4-hydroxy-3-(3-methylbut-2-en-1-yl)phenyl]-6-(3-methylbut-2-en-1-yl)-2,3-dihydro-1-benzopyran-4-one

C25H28O5 (408.1937)


   

α-isosparteine

α-isosparteine

C15H26N2 (234.2096)


   

(1r,9r,10s)-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadec-2-en-6-one

(1r,9r,10s)-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadec-2-en-6-one

C15H22N2O (246.1732)


   

(4r)-3-(2-hydroxy-4-methoxyphenyl)-4h-chromene-2,4,7-triol

(4r)-3-(2-hydroxy-4-methoxyphenyl)-4h-chromene-2,4,7-triol

C16H14O6 (302.079)


   

(1r,9r)-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadec-2-en-6-one

(1r,9r)-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadec-2-en-6-one

C15H22N2O (246.1732)


   

3-[3,4-dihydroxy-5-(3-methylbut-2-en-1-yl)phenyl]-5,7-dihydroxy-2,3-dihydro-1-benzopyran-4-one

3-[3,4-dihydroxy-5-(3-methylbut-2-en-1-yl)phenyl]-5,7-dihydroxy-2,3-dihydro-1-benzopyran-4-one

C20H20O6 (356.126)


   

3-[2,4-dihydroxy-3-(3-methylbut-2-en-1-yl)phenyl]-3,5,7-trihydroxy-8-(3-methylbut-2-en-1-yl)-2h-1-benzopyran-4-one

3-[2,4-dihydroxy-3-(3-methylbut-2-en-1-yl)phenyl]-3,5,7-trihydroxy-8-(3-methylbut-2-en-1-yl)-2h-1-benzopyran-4-one

C25H28O7 (440.1835)


   

(3s)-3-[2,4-dihydroxy-3-(3-methylbut-2-en-1-yl)phenyl]-3,5,7-trihydroxy-8-(3-methylbut-2-en-1-yl)-2h-1-benzopyran-4-one

(3s)-3-[2,4-dihydroxy-3-(3-methylbut-2-en-1-yl)phenyl]-3,5,7-trihydroxy-8-(3-methylbut-2-en-1-yl)-2h-1-benzopyran-4-one

C25H28O7 (440.1835)


   

6-methoxy-19,19-dimethyl-3,12,20-trioxapentacyclo[11.8.0.0²,¹⁰.0⁴,⁹.0¹⁶,²¹]henicosa-1(13),4,6,8,14,16(21),17-heptaen-15-ol

6-methoxy-19,19-dimethyl-3,12,20-trioxapentacyclo[11.8.0.0²,¹⁰.0⁴,⁹.0¹⁶,²¹]henicosa-1(13),4,6,8,14,16(21),17-heptaen-15-ol

C21H20O5 (352.1311)


   

(1s,2r,9s)-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecane

(1s,2r,9s)-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecane

C15H26N2 (234.2096)


   

pratensein 3'-o-methyl ether

pratensein 3'-o-methyl ether

C17H14O6 (314.079)


   

5,7-dihydroxy-3-[3-hydroxy-4-methoxy-5-(3-methylbut-2-en-1-yl)phenyl]-2,3-dihydro-1-benzopyran-4-one

5,7-dihydroxy-3-[3-hydroxy-4-methoxy-5-(3-methylbut-2-en-1-yl)phenyl]-2,3-dihydro-1-benzopyran-4-one

C21H22O6 (370.1416)


   

(2s,10s)-6-methoxy-19,19-dimethyl-3,12,20-trioxapentacyclo[11.8.0.0²,¹⁰.0⁴,⁹.0¹⁶,²¹]henicosa-1(13),4,6,8,14,16(21)-hexaen-15-ol

(2s,10s)-6-methoxy-19,19-dimethyl-3,12,20-trioxapentacyclo[11.8.0.0²,¹⁰.0⁴,⁹.0¹⁶,²¹]henicosa-1(13),4,6,8,14,16(21)-hexaen-15-ol

C21H22O5 (354.1467)


   

(1r,2s,9r,10s)-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecane

(1r,2s,9r,10s)-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecane

C15H26N2 (234.2096)


   

(3s)-5,7-dihydroxy-3-[3-hydroxy-4-methoxy-5-(3-methylbut-2-en-1-yl)phenyl]-2,3-dihydro-1-benzopyran-4-one

(3s)-5,7-dihydroxy-3-[3-hydroxy-4-methoxy-5-(3-methylbut-2-en-1-yl)phenyl]-2,3-dihydro-1-benzopyran-4-one

C21H22O6 (370.1416)


   

(1s,9r)-7,11-diazatricyclo[7.3.1.0²,⁷]trideca-2,4-dien-6-one

(1s,9r)-7,11-diazatricyclo[7.3.1.0²,⁷]trideca-2,4-dien-6-one

C11H14N2O (190.1106)


   

(3s)-3-[2,4-dihydroxy-3-(3-methylbut-2-en-1-yl)phenyl]-5,7-dihydroxy-8-(3-methylbut-2-en-1-yl)-2,3-dihydro-1-benzopyran-4-one

(3s)-3-[2,4-dihydroxy-3-(3-methylbut-2-en-1-yl)phenyl]-5,7-dihydroxy-8-(3-methylbut-2-en-1-yl)-2,3-dihydro-1-benzopyran-4-one

C25H28O6 (424.1886)


   

(3s)-5,7-dihydroxy-3-[4-hydroxy-3-(3-methylbut-2-en-1-yl)phenyl]-6-(3-methylbut-2-en-1-yl)-2,3-dihydro-1-benzopyran-4-one

(3s)-5,7-dihydroxy-3-[4-hydroxy-3-(3-methylbut-2-en-1-yl)phenyl]-6-(3-methylbut-2-en-1-yl)-2,3-dihydro-1-benzopyran-4-one

C25H28O5 (408.1937)


   

3-(2-hydroxy-4-methoxyphenyl)-4h-chromene-2,4,7-triol

3-(2-hydroxy-4-methoxyphenyl)-4h-chromene-2,4,7-triol

C16H14O6 (302.079)


   

4-[(12r,13s)-13-hydroxy-4,6,10-trioxatricyclo[7.4.0.0³,⁷]trideca-1,3(7),8-trien-12-yl]benzene-1,2,3-triol

4-[(12r,13s)-13-hydroxy-4,6,10-trioxatricyclo[7.4.0.0³,⁷]trideca-1,3(7),8-trien-12-yl]benzene-1,2,3-triol

C16H14O7 (318.0739)


   

5,7-dihydroxy-3-[3-hydroxy-4-methoxy-5-(3-methylbut-2-en-1-yl)phenyl]chromen-4-one

5,7-dihydroxy-3-[3-hydroxy-4-methoxy-5-(3-methylbut-2-en-1-yl)phenyl]chromen-4-one

C21H20O6 (368.126)


   

(3s)-3-(3-{[(2r)-3,3-dimethyloxiran-2-yl]methyl}-4,5-dihydroxyphenyl)-5,7-dihydroxy-2,3-dihydro-1-benzopyran-4-one

(3s)-3-(3-{[(2r)-3,3-dimethyloxiran-2-yl]methyl}-4,5-dihydroxyphenyl)-5,7-dihydroxy-2,3-dihydro-1-benzopyran-4-one

C20H20O7 (372.1209)


   

(3s)-3-[3,4-dihydroxy-5-(3-methylbut-2-en-1-yl)phenyl]-5,7-dihydroxy-2,3-dihydro-1-benzopyran-4-one

(3s)-3-[3,4-dihydroxy-5-(3-methylbut-2-en-1-yl)phenyl]-5,7-dihydroxy-2,3-dihydro-1-benzopyran-4-one

C20H20O6 (356.126)


   

5,7-dihydroxy-6-[(2z)-4-hydroxy-3-methylbut-2-en-1-yl]-3-(4-hydroxyphenyl)chromen-4-one

5,7-dihydroxy-6-[(2z)-4-hydroxy-3-methylbut-2-en-1-yl]-3-(4-hydroxyphenyl)chromen-4-one

C20H18O6 (354.1103)


   

14-methoxy-8,17-dioxatetracyclo[8.7.0.0²,⁷.0¹¹,¹⁶]heptadeca-2,4,6,11,13,15-hexaene

14-methoxy-8,17-dioxatetracyclo[8.7.0.0²,⁷.0¹¹,¹⁶]heptadeca-2,4,6,11,13,15-hexaene

C16H14O3 (254.0943)


   

(3s)-5,7-dihydroxy-3-[2-hydroxy-4-methoxy-5-(3-methylbut-2-en-1-yl)phenyl]-6-(3-methylbut-2-en-1-yl)-2,3-dihydro-1-benzopyran-4-one

(3s)-5,7-dihydroxy-3-[2-hydroxy-4-methoxy-5-(3-methylbut-2-en-1-yl)phenyl]-6-(3-methylbut-2-en-1-yl)-2,3-dihydro-1-benzopyran-4-one

C26H30O6 (438.2042)


   

4-{13-hydroxy-4,6,10-trioxatricyclo[7.4.0.0³,⁷]trideca-1,3(7),8-trien-12-yl}benzene-1,2,3-triol

4-{13-hydroxy-4,6,10-trioxatricyclo[7.4.0.0³,⁷]trideca-1,3(7),8-trien-12-yl}benzene-1,2,3-triol

C16H14O7 (318.0739)


   

(1s,14s)-5,5-dimethyl-4,12,18,20,24-pentaoxahexacyclo[12.10.0.0²,¹¹.0³,⁸.0¹⁵,²³.0¹⁷,²¹]tetracosa-2,6,8,10,15,17(21),22-heptaen-9-ol

(1s,14s)-5,5-dimethyl-4,12,18,20,24-pentaoxahexacyclo[12.10.0.0²,¹¹.0³,⁸.0¹⁵,²³.0¹⁷,²¹]tetracosa-2,6,8,10,15,17(21),22-heptaen-9-ol

C21H18O6 (366.1103)


   

2-hydroxy-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecan-6-one

2-hydroxy-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecan-6-one

C15H24N2O2 (264.1838)


   

(1s,2s,9r,10s)-2-hydroxy-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecan-6-one

(1s,2s,9r,10s)-2-hydroxy-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecan-6-one

C15H24N2O2 (264.1838)


   

5,5-dimethyl-4,12,18,20,24-pentaoxahexacyclo[12.10.0.0²,¹¹.0³,⁸.0¹⁵,²³.0¹⁷,²¹]tetracosa-2,8,10,15,17(21),22-hexaen-9-ol

5,5-dimethyl-4,12,18,20,24-pentaoxahexacyclo[12.10.0.0²,¹¹.0³,⁸.0¹⁵,²³.0¹⁷,²¹]tetracosa-2,8,10,15,17(21),22-hexaen-9-ol

C21H20O6 (368.126)


   

(1s,14s)-5,5-dimethyl-4,12,18,20,24-pentaoxahexacyclo[12.10.0.0²,¹¹.0³,⁸.0¹⁵,²³.0¹⁷,²¹]tetracosa-2,8,10,15,17(21),22-hexaen-9-ol

(1s,14s)-5,5-dimethyl-4,12,18,20,24-pentaoxahexacyclo[12.10.0.0²,¹¹.0³,⁸.0¹⁵,²³.0¹⁷,²¹]tetracosa-2,8,10,15,17(21),22-hexaen-9-ol

C21H20O6 (368.126)


   

5,7-dihydroxy-8-(4-hydroxy-3-methylbut-2-en-1-yl)-3-(4-hydroxyphenyl)chromen-4-one

5,7-dihydroxy-8-(4-hydroxy-3-methylbut-2-en-1-yl)-3-(4-hydroxyphenyl)chromen-4-one

C20H18O6 (354.1103)


   

(1s,10s)-14-methoxy-8,17-dioxatetracyclo[8.7.0.0²,⁷.0¹¹,¹⁶]heptadeca-2,4,6,11,13,15-hexaene

(1s,10s)-14-methoxy-8,17-dioxatetracyclo[8.7.0.0²,⁷.0¹¹,¹⁶]heptadeca-2,4,6,11,13,15-hexaene

C16H14O3 (254.0943)


   

5,5-dimethyl-4,12,18,20,24-pentaoxahexacyclo[12.10.0.0²,¹¹.0³,⁸.0¹⁵,²³.0¹⁷,²¹]tetracosa-2,6,8,10,15,17(21),22-heptaen-9-ol

5,5-dimethyl-4,12,18,20,24-pentaoxahexacyclo[12.10.0.0²,¹¹.0³,⁸.0¹⁵,²³.0¹⁷,²¹]tetracosa-2,6,8,10,15,17(21),22-heptaen-9-ol

C21H18O6 (366.1103)


   

6-methoxy-19,19-dimethyl-3,12,20-trioxapentacyclo[11.8.0.0²,¹⁰.0⁴,⁹.0¹⁶,²¹]henicosa-1(13),4,6,8,14,16(21)-hexaen-15-ol

6-methoxy-19,19-dimethyl-3,12,20-trioxapentacyclo[11.8.0.0²,¹⁰.0⁴,⁹.0¹⁶,²¹]henicosa-1(13),4,6,8,14,16(21)-hexaen-15-ol

C21H22O5 (354.1467)


   

(3r)-3-[3,4-dihydroxy-5-(3-methylbut-2-en-1-yl)phenyl]-5,7-dihydroxy-2,3-dihydro-1-benzopyran-4-one

(3r)-3-[3,4-dihydroxy-5-(3-methylbut-2-en-1-yl)phenyl]-5,7-dihydroxy-2,3-dihydro-1-benzopyran-4-one

C20H20O6 (356.126)


   

(1s,9s,10r)-10-(prop-2-en-1-yl)-7,11-diazatricyclo[7.3.1.0²,⁷]trideca-2,4-dien-6-one

(1s,9s,10r)-10-(prop-2-en-1-yl)-7,11-diazatricyclo[7.3.1.0²,⁷]trideca-2,4-dien-6-one

C14H18N2O (230.1419)


   

3-{3-[(3,3-dimethyloxiran-2-yl)methyl]-4,5-dihydroxyphenyl}-5,7-dihydroxy-2,3-dihydro-1-benzopyran-4-one

3-{3-[(3,3-dimethyloxiran-2-yl)methyl]-4,5-dihydroxyphenyl}-5,7-dihydroxy-2,3-dihydro-1-benzopyran-4-one

C20H20O7 (372.1209)


   

(2s,10s)-6-methoxy-19,19-dimethyl-3,12,20-trioxapentacyclo[11.8.0.0²,¹⁰.0⁴,⁹.0¹⁶,²¹]henicosa-1(13),4,6,8,14,16(21),17-heptaen-15-ol

(2s,10s)-6-methoxy-19,19-dimethyl-3,12,20-trioxapentacyclo[11.8.0.0²,¹⁰.0⁴,⁹.0¹⁶,²¹]henicosa-1(13),4,6,8,14,16(21),17-heptaen-15-ol

C21H20O5 (352.1311)


   

(1r,2r,9s,10r)-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecan-6-one

(1r,2r,9s,10r)-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecan-6-one

C15H24N2O (248.1889)


   

5,7-dihydroxy-6-(4-hydroxy-3-methylbut-2-en-1-yl)-3-(4-hydroxyphenyl)chromen-4-one

5,7-dihydroxy-6-(4-hydroxy-3-methylbut-2-en-1-yl)-3-(4-hydroxyphenyl)chromen-4-one

C20H18O6 (354.1103)


   

6,19,19-trimethyl-3,12,20-trioxapentacyclo[11.8.0.0²,¹⁰.0⁴,⁹.0¹⁶,²¹]henicosa-1(13),4,6,8,14,16(21)-hexaen-15-ol

6,19,19-trimethyl-3,12,20-trioxapentacyclo[11.8.0.0²,¹⁰.0⁴,⁹.0¹⁶,²¹]henicosa-1(13),4,6,8,14,16(21)-hexaen-15-ol

C21H22O4 (338.1518)


   

(2r,10s)-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecane

(2r,10s)-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecane

C15H26N2 (234.2096)


   

(3r)-3-[2,4-dihydroxy-3-(3-methylbut-2-en-1-yl)phenyl]-3,5,7-trihydroxy-8-(3-methylbut-2-en-1-yl)-2h-1-benzopyran-4-one

(3r)-3-[2,4-dihydroxy-3-(3-methylbut-2-en-1-yl)phenyl]-3,5,7-trihydroxy-8-(3-methylbut-2-en-1-yl)-2h-1-benzopyran-4-one

C25H28O7 (440.1835)


   

10-(prop-2-en-1-yl)-7,11-diazatricyclo[7.3.1.0²,⁷]trideca-2,4-dien-6-one

10-(prop-2-en-1-yl)-7,11-diazatricyclo[7.3.1.0²,⁷]trideca-2,4-dien-6-one

C14H18N2O (230.1419)


   

(3r)-5,7-dihydroxy-3-[4-hydroxy-3-(3-methylbut-2-en-1-yl)phenyl]-6-(3-methylbut-2-en-1-yl)-2,3-dihydro-1-benzopyran-4-one

(3r)-5,7-dihydroxy-3-[4-hydroxy-3-(3-methylbut-2-en-1-yl)phenyl]-6-(3-methylbut-2-en-1-yl)-2,3-dihydro-1-benzopyran-4-one

C25H28O5 (408.1937)


   

(1s,9r)-11-methyl-7,11-diazatricyclo[7.3.1.0²,⁷]trideca-2,4-dien-6-one

(1s,9r)-11-methyl-7,11-diazatricyclo[7.3.1.0²,⁷]trideca-2,4-dien-6-one

C12H16N2O (204.1263)


   

(1s,2s,9s,10s)-2-hydroxy-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecan-6-one

(1s,2s,9s,10s)-2-hydroxy-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecan-6-one

C15H24N2O2 (264.1838)


   

(1s,9s,10s,12s)-12-hydroxy-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadeca-2,4-dien-6-one

(1s,9s,10s,12s)-12-hydroxy-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadeca-2,4-dien-6-one

C15H20N2O2 (260.1525)