2-Aminobenzoic acid (BioDeep_00000001194)
Secondary id: BioDeep_00000400097, BioDeep_00000400192
natural product human metabolite PANOMIX_OTCML-2023 blood metabolite Toxin BioNovoGene_Lab2019 Volatile Flavor Compounds
代谢物信息卡片
化学式: C7H7NO2 (137.0476762)
中文名称: 邻氨基苯甲酸
谱图信息:
最多检出来源 Homo sapiens(blood) 0.01%
分子结构信息
SMILES: C1=CC=C(C(=C1)C(=O)O)N
InChI: InChI=1S/C7H7NO2/c8-6-4-2-1-3-5(6)7(9)10/h1-4H,8H2,(H,9,10)
描述信息
2-Aminobenzoic acid, also known as anthranilic acid or O-aminobenzoate, belongs to the class of organic compounds known as aminobenzoic acids. These are benzoic acids containing an amine group attached to the benzene moiety. Within humans, 2-aminobenzoic acid participates in a number of enzymatic reactions. In particular, 2-aminobenzoic acid and formic acid can be biosynthesized from formylanthranilic acid through its interaction with the enzyme kynurenine formamidase. In addition, 2-aminobenzoic acid and L-alanine can be biosynthesized from L-kynurenine through its interaction with the enzyme kynureninase. It is a substrate of enzyme 2-Aminobenzoic acid hydroxylase in benzoate degradation via hydroxylation pathway (KEGG). In humans, 2-aminobenzoic acid is involved in tryptophan metabolism. Outside of the human body, 2-Aminobenzoic acid has been detected, but not quantified in several different foods, such as mamey sapotes, prairie turnips, rowals, natal plums, and hyacinth beans. This could make 2-aminobenzoic acid a potential biomarker for the consumption of these foods. 2-Aminobenzoic acid is a is a tryptophan-derived uremic toxin with multidirectional properties that can affect the hemostatic system. Uremic syndrome may affect any part of the body and can cause nausea, vomiting, loss of appetite, and weight loss. Chronic exposure of uremic toxins can lead to a number of conditions including renal damage, chronic kidney disease and cardiovascular disease. It can also cause changes in mental status, such as confusion, reduced awareness, agitation, psychosis, seizures, and coma.
2-Aminobenzoic acid is an organic compound. It is a substrate of enzyme anthranilate hydroxylase [EC 1.14.13.35] in benzoate degradation via hydroxylation pathway (KEGG). [HMDB]. Anthranilic acid is found in many foods, some of which are butternut squash, sunflower, ginger, and hyssop.
Acquisition and generation of the data is financially supported in part by CREST/JST.
D002491 - Central Nervous System Agents > D000927 - Anticonvulsants
CONFIDENCE standard compound; INTERNAL_ID 8844
CONFIDENCE standard compound; INTERNAL_ID 8009
CONFIDENCE standard compound; INTERNAL_ID 115
KEIO_ID A010
同义名列表
41 个代谢物同义名
Anthranilic acid, calcium (2:1) salt; Anthranilic acid, monolithium salt; Anthranilic acid, monosodium salt; Anthranilic acid, dihydrochloride; Anthranilic acid, hydrochloride; Anthranilic acid, cadmium salt; 1-Amino-2-carboxybenzene; Kyselina O-aminobenzoova; 2-Aminophenylacetic acid; Ortho-aminobenzoic acid; Ortho-amidobenzoic acid; Kyselina anthranilova; 2-Amino-benzoic acid; 2-Aminophenylacetate; O-Amino-benzoic acid; sodium anthranilate; 2-Aminobenzoesaeure; O-Aminobenzoic acid; Ortho-aminobenzoate; O-Aminobenzoesaeure; 2-aminobenzoic acid; Ortho-amidobenzoate; Anthranilic acid GR; O-Anthranilic acid; 2-Carboxyaniline; O-Amino-benzoate; O-Carboxyaniline; Anthranilic acid; 2-Amino-benzoate; O-Aminobenzoate; 2-Aminobenzoate; O-Anthranilate; Carboxyaniline; Anthranic acid; Anthranilate; Anthranate; H-2-Abz-OH; Vitamin L1; Vitamin L; Anthranilic acid; Anthranilate
数据库引用编号
59 个数据库交叉引用编号
- ChEBI: CHEBI:30754
- KEGG: C00108
- PubChem: 3408
- PubChem: 227
- HMDB: HMDB0001123
- Metlin: METLIN317
- DrugBank: DB04166
- ChEMBL: CHEMBL14173
- Wikipedia: Anthranilic_acid
- MetaCyc: ANTHRANILATE
- KNApSAcK: C00007382
- foodb: FDB000896
- chemspider: 222
- CAS: 98072-80-1
- CAS: 15442-49-6
- CAS: 50816-84-7
- CAS: 80206-34-4
- CAS: 1321-11-5
- CAS: 118-92-3
- MoNA: PS004201
- MoNA: SM800901
- MoNA: KNA00438
- MoNA: RP011503
- MoNA: KO002043
- MoNA: PS004205
- MoNA: KO002046
- MoNA: KO002044
- MoNA: RP011501
- MoNA: RP011502
- MoNA: KO000017
- MoNA: PS004203
- MoNA: KO000014
- MoNA: PS004206
- MoNA: PR100494
- MoNA: KNA00437
- MoNA: KNA00058
- MoNA: KNA00059
- MoNA: KO000016
- MoNA: PS004202
- MoNA: PS004204
- MoNA: KNA00060
- MoNA: KO000018
- MoNA: KNA00435
- MoNA: KNA00436
- MoNA: KO002047
- MoNA: KNA00057
- MoNA: PR100023
- MoNA: KO002045
- MoNA: KO000015
- MoNA: SM884401
- PMhub: MS000000103
- ChEBI: CHEBI:16567
- PDB-CCD: BE2
- 3DMET: B00027
- NIKKAJI: J2.912B
- RefMet: 2-Aminobenzoic acid
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-467
- KNApSAcK: 16567
- LOTUS: LTS0061170
分类词条
相关代谢途径
Reactome(0)
BioCyc(0)
PlantCyc(0)
代谢反应
346 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(6)
- superpathway of phenylalanine, tyrosine and tryptophan biosynthesis:
L-serine + indole ⟶ H2O + L-tryptophan
- tryptophan biosynthesis:
L-serine + indole ⟶ H2O + L-tryptophan
- superpathway of phenylalanine, tyrosine, and tryptophan biosynthesis:
4-hydroxyphenylpyruvate + L-glutamate ⟶ 2-oxoglutarate + L-tyrosine
- 2-nitrobenzoate degradation II:
2-nitrobenzoate + H+ + NADPH ⟶ 2-hydroxylaminobenzoate + H2O + NADP+
- tryptophan biosynthesis:
1-(o-carboxyphenylamino)-1'-deoxyribulose-5'-phosphate + H+ ⟶ CO2 + H2O + indole-3-glycerol-phosphate
- tryptophan degradation I (via anthranilate):
H2O + kynurenine ⟶ H+ + L-alanine + anthranilate
WikiPathways(2)
- Acetaminophen synthesis:
4-Aminophenol ⟶ Acetaminophen
- Kynurenine pathway and links to cell senescence:
N-Formylkynurenine ⟶ Kynurenine
Plant Reactome(328)
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid metabolism:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid biosynthesis:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
L-Ser + indole ⟶ H2O + L-Trp
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid metabolism:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid biosynthesis:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid metabolism:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid biosynthesis:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
L-Ser + indole ⟶ H2O + L-Trp
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid metabolism:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid biosynthesis:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
L-Ser + indole ⟶ H2O + L-Trp
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Amino acid metabolism:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Amino acid biosynthesis:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
INOH(1)
- Tryptophan degradation ( Tryptophan degradation ):
L-Tryptophan + O2 ⟶ N-Formyl-L-kynurenine
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(9)
- Tryptophan Metabolism:
Indole + L-Serine ⟶ L-Tryptophan + Water
- Tryptophan Metabolism II:
Indole + L-Serine ⟶ L-Tryptophan + Water
- Tryptophan Metabolism:
N'-Formylkynurenine + Water ⟶ Formic acid + Hydrogen Ion + L-Kynurenine
- Tryptophan Metabolism:
Phosphoadenosine phosphosulfate + indolylmethyl-desulfoglucosinolate ⟶ Adenosine 3',5'-diphosphate + Glucobrassicin + Hydrogen Ion
- Tryptophan Metabolism:
L-Tryptophan + Oxygen ⟶ N'-Formylkynurenine
- Tryptophan Metabolism:
L-Tryptophan + Oxygen ⟶ N'-Formylkynurenine
- Tryptophan Metabolism:
L-Tryptophan + Oxygen ⟶ N'-Formylkynurenine
- Tryptophan Metabolism:
L-Tryptophan + Oxygen ⟶ N'-Formylkynurenine
- Tryptophan Metabolism:
L-Tryptophan + Oxygen ⟶ N'-Formylkynurenine
PharmGKB(0)
76 个相关的物种来源信息
- 654 - Aeromonas veronii: 10.3389/FCIMB.2020.00044
- 155619 - Agaricomycetes: LTS0061170
- 4150 - Antirrhinum: LTS0061170
- 4151 - Antirrhinum majus: 10.1055/S-0028-1097736
- 4151 - Antirrhinum majus: LTS0061170
- 3701 - Arabidopsis: LTS0061170
- 3702 - Arabidopsis thaliana: 10.1105/TPC.104.023705
- 3702 - Arabidopsis thaliana: LTS0061170
- 1663 - Arthrobacter: LTS0061170
- 4890 - Ascomycota: LTS0061170
- 91061 - Bacilli: LTS0061170
- 2 - Bacteria: LTS0061170
- 5204 - Basidiomycota: LTS0061170
- 24079 - Bignoniaceae: LTS0061170
- 3700 - Brassicaceae: LTS0061170
- 35718 - Chaetomiaceae: LTS0061170
- 5149 - Chaetomium: LTS0061170
- 3051 - Chlamydomonadaceae: LTS0061170
- 3052 - Chlamydomonas: LTS0061170
- 3055 - Chlamydomonas reinhardtii: 10.1074/JBC.M110.122812
- 3055 - Chlamydomonas reinhardtii: LTS0061170
- 3166 - Chlorophyceae: LTS0061170
- 3041 - Chlorophyta: LTS0061170
- 1934365 - Collariella: LTS0061170
- 1934374 - Collariella virescens: 10.1248/CPB.28.2428
- 543 - Enterobacteriaceae: LTS0061170
- 561 - Escherichia: LTS0061170
- 562 - Escherichia coli: LTS0061170
- 3039 - Euglena gracilis: 10.3389/FBIOE.2021.662655
- 33682 - Euglenozoa: LTS0061170
- 2759 - Eukaryota: LTS0061170
- 255207 - Favolus: LTS0061170
- 4751 - Fungi: LTS0061170
- 1236 - Gammaproteobacteria: LTS0061170
- 9606 - Homo sapiens: -
- 9606 - Homo sapiens: 10.1007/S11306-016-1051-4
- 161755 - Isatis: LTS0061170
- 161756 - Isatis tinctoria:
- 161756 - Isatis tinctoria: 10.1055/S-2006-957604
- 161756 - Isatis tinctoria: 10.1055/S-2006-959577
- 161756 - Isatis tinctoria: LTS0061170
- 5653 - Kinetoplastea: LTS0061170
- 4136 - Lamiaceae: LTS0061170
- 5357 - Lentinus: LTS0061170
- 1969916 - Lentinus arcularius: 10.1271/BBB1961.48.1669
- 3398 - Magnoliopsida: LTS0061170
- 1268 - Micrococcaceae: LTS0061170
- 186822 - Paenibacillaceae: LTS0061170
- 44249 - Paenibacillus: LTS0061170
- 1406 - Paenibacillus polymyxa: 10.1111/J.1574-6941.1997.TB00384.X
- 1406 - Paenibacillus polymyxa: LTS0061170
- 156152 - Plantaginaceae: LTS0061170
- 5317 - Polyporaceae: LTS0061170
- 147550 - Sordariomycetes: LTS0061170
- 1883 - Streptomyces: 10.1007/S10600-014-1036-3
- 1883 - Streptomyces: 10.1021/NP100818D
- 1883 - Streptomyces: 10.1186/S12934-016-0452-4
- 1883 - Streptomyces: LTS0061170
- 1888 - Streptomyces albus:
- 1888 - Streptomyces albus: LTS0061170
- 202862 - Streptomyces drozdowiczii: LTS0061170
- 2062 - Streptomycetaceae: LTS0061170
- 35493 - Streptophyta: LTS0061170
- 69903 - Tecoma: LTS0061170
- 69904 - Tecoma stans: 10.1016/S0031-9422(00)83513-X
- 69904 - Tecoma stans: LTS0061170
- 49990 - Thymus: LTS0061170
- 228974 - Thymus quinquecostatus: 10.1155/2014/839548
- 228974 - Thymus quinquecostatus: LTS0061170
- 58023 - Tracheophyta: LTS0061170
- 5690 - Trypanosoma: LTS0061170
- 5691 - Trypanosoma brucei: 10.1371/JOURNAL.PNTD.0001618
- 5691 - Trypanosoma brucei: LTS0061170
- 5654 - Trypanosomatidae: LTS0061170
- 33090 - Viridiplantae: LTS0061170
- 569774 - 金线莲: -
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Yu Chen, Yansong Fu, Yanwei Xia, Youzhi Miao, Jiahui Shao, Wei Xuan, Yunpeng Liu, Weibing Xun, Qiuyan Yan, Qirong Shen, Ruifu Zhang. Trichoderma-secreted anthranilic acid promotes lateral root development via auxin signaling and RBOHF-induced endodermal cell wall remodeling.
Cell reports.
2024 Apr; 43(4):114030. doi:
10.1016/j.celrep.2024.114030
. [PMID: 38551966] - Johann Steiner, Henrik Dobrowolny, Paul C Guest, Hans-Gert Bernstein, Dietmar Fuchs, Julien Roeser, Paul Summergrad, Gregory Oxenkrug. Gender-specific elevation of plasma anthranilic acid in schizophrenia: Protection against glutamatergic hypofunction?.
Schizophrenia research.
2022 05; 243(?):483-485. doi:
10.1016/j.schres.2022.01.048
. [PMID: 35151533] - Shihao Song, Xiuyun Sun, Quan Guo, Binbin Cui, Yu Zhu, Xia Li, Jianuan Zhou, Lian-Hui Zhang, Yinyue Deng. An anthranilic acid-responsive transcriptional regulator controls the physiology and pathogenicity of Ralstonia solanacearum.
PLoS pathogens.
2022 05; 18(5):e1010562. doi:
10.1371/journal.ppat.1010562
. [PMID: 35617422] - Cheng-Wei Lu, Chen-Jung Lin, Pei-Wen Hsieh, Kuan-Ming Chiu, Ming-Yi Lee, Tzu-Yu Lin, Su-Jane Wang. An Anthranilate Derivative Inhibits Glutamate Release and Glutamate Excitotoxicity in Rats.
International journal of molecular sciences.
2022 Feb; 23(5):. doi:
10.3390/ijms23052641
. [PMID: 35269784] - Takayuki Katoh, Hiroaki Suga. In Vitro Selection of Foldamer-Like Macrocyclic Peptides Containing 2-Aminobenzoic Acid and 3-Aminothiophene-2-Carboxylic Acid.
Journal of the American Chemical Society.
2022 02; 144(5):2069-2072. doi:
10.1021/jacs.1c12133
. [PMID: 35099961] - Majid Mohammad Nezhad, Abolfazl Semnani, Nahid Tavakkoli, Mahboube Shirani. Selective and highly efficient removal of uranium from radioactive effluents by activated carbon functionalized with 2-aminobenzoic acid as a new sorbent.
Journal of environmental management.
2021 Dec; 299(?):113587. doi:
10.1016/j.jenvman.2021.113587
. [PMID: 34479154] - Pei-Nan Chen, Meng-Jiao Hao, Hou-Jin Li, Jun Xu, Taifo Mahmud, Wen-Jian Lan. Biotransformations of anthranilic acid and phthalimide to potent antihyperlipidemic alkaloids by the marine-derived fungus Scedosporium apiospermum F41-1.
Bioorganic chemistry.
2021 11; 116(?):105375. doi:
10.1016/j.bioorg.2021.105375
. [PMID: 34563999] - Radhika Chakraberty, Bela Reiz, Christopher W Cairo. Profiling of glycosphingolipids with SCDase digestion and HPLC-FLD-MS.
Analytical biochemistry.
2021 10; 631(?):114361. doi:
10.1016/j.ab.2021.114361
. [PMID: 34478702] - Mélanie Bourgin, Lisa Derosa, Carolina Alves Costa Silva, Anne-Gaëlle Goubet, Agathe Dubuisson, François-Xavier Danlos, Claudia Grajeda-Iglesias, Luigi Cerbone, Arthur Geraud, Ariane Laparra, Fanny Aprahamian, Nitharsshini Nirmalathasan, Frank Madeo, Laurence Zitvogel, Guido Kroemer, Sylvère Durand. Circulating acetylated polyamines correlate with Covid-19 severity in cancer patients.
Aging.
2021 09; 13(17):20860-20885. doi:
10.18632/aging.203525
. [PMID: 34517343] - Mark J Henderson, Kathleen A Trychta, Shyh-Ming Yang, Susanne Bäck, Adam Yasgar, Emily S Wires, Carina Danchik, Xiaokang Yan, Hideaki Yano, Lei Shi, Kuo-Jen Wu, Amy Q Wang, Dingyin Tao, Gergely Zahoránszky-Kőhalmi, Xin Hu, Xin Xu, David Maloney, Alexey V Zakharov, Ganesha Rai, Fumihiko Urano, Mikko Airavaara, Oksana Gavrilova, Ajit Jadhav, Yun Wang, Anton Simeonov, Brandon K Harvey. A target-agnostic screen identifies approved drugs to stabilize the endoplasmic reticulum-resident proteome.
Cell reports.
2021 04; 35(4):109040. doi:
10.1016/j.celrep.2021.109040
. [PMID: 33910017] - J Steiner, H-G Bernstein, P C Guest, P Summergrad, G Oxenkrug. Plasma leptin correlates with anthranilic acid in schizophrenia but not in major depressive disorder.
European neuropsychopharmacology : the journal of the European College of Neuropsychopharmacology.
2020 12; 41(?):167-168. doi:
10.1016/j.euroneuro.2020.08.001
. [PMID: 32855025] - Amy G Aslamkhan, Qiuwei Xu, Amy Loughlin, Heather Vu, Stephen Pacchione, Bhavana Bhatt, Ivy Garfinkel, Tara Grady Styring, Lisa LaFranco-Scheuch, Kara Pearson, Spencer Reynolds, Nianyu Li, Heather Zhou, J Richard Miller, Nicolas Solban, Alan Bass, Warren E Glaab. Characterization of indoleamine-2,3-dioxygenase 1, tryptophan-2,3-dioxygenase, and Ido1/Tdo2 knockout mice.
Toxicology and applied pharmacology.
2020 11; 406(?):115216. doi:
10.1016/j.taap.2020.115216
. [PMID: 32871117] - Magdalena Wysocka, Anita Romanowska, Natalia Gruba, Michalina Michalska, Artur Giełdoń, Adam Lesner. A Peptidomimetic Fluorescent Probe to Detect the Trypsin β2 Subunit of the Human 20S Proteasome.
International journal of molecular sciences.
2020 Mar; 21(7):. doi:
10.3390/ijms21072396
. [PMID: 32244300] - Masashi Sakurai, Yasuko Yamamoto, Noriyo Kanayama, Masaya Hasegawa, Akihiro Mouri, Masao Takemura, Hidetoshi Matsunami, Tomoya Miyauchi, Tatsuya Tokura, Hiroyuki Kimura, Mikiko Ito, Eri Umemura, Aiji Sato Boku, Wataru Nagashima, Takashi Tonoike, Kenichi Kurita, Norio Ozaki, Toshitaka Nabeshima, Kuniaki Saito. Serum Metabolic Profiles of the Tryptophan-Kynurenine Pathway in the high risk subjects of major depressive disorder.
Scientific reports.
2020 02; 10(1):1961. doi:
10.1038/s41598-020-58806-w
. [PMID: 32029791] - Karen M Ryan, Kelly A Allers, Declan M McLoughlin, Andrew Harkin. Tryptophan metabolite concentrations in depressed patients before and after electroconvulsive therapy.
Brain, behavior, and immunity.
2020 01; 83(?):153-162. doi:
10.1016/j.bbi.2019.10.005
. [PMID: 31606477] - Lorenzo Gaetani, Francesca Boscaro, Giuseppe Pieraccini, Paolo Calabresi, Luigina Romani, Massimiliano Di Filippo, Teresa Zelante. Host and Microbial Tryptophan Metabolic Profiling in Multiple Sclerosis.
Frontiers in immunology.
2020; 11(?):157. doi:
10.3389/fimmu.2020.00157
. [PMID: 32132996] - Tobie D Lee, Olivia W Lee, Kyle R Brimacombe, Lu Chen, Rajarshi Guha, Sabrina Lusvarghi, Bethilehem G Tebase, Carleen Klumpp-Thomas, Robert W Robey, Suresh V Ambudkar, Min Shen, Michael M Gottesman, Matthew D Hall. A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
Molecular pharmacology.
2019 11; 96(5):629-640. doi:
10.1124/mol.119.115964
. [PMID: 31515284] - Shang-Zhen Li, Xiang-Ming Guan, Zhao Gao, Hong-Ci Lan, Qiang Yin, Chu Chu, De-Po Yang, E-Hu Liu, Ping Zhou. A simple method to discriminate Guangchenpi and Chenpi by high-performance thin-layer chromatography and high-performance liquid chromatography based on analysis of dimethyl anthranilate.
Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.
2019 Sep; 1126-1127(?):121736. doi:
10.1016/j.jchromb.2019.121736
. [PMID: 31401452] - Siamsa M Doyle, Adeline Rigal, Peter Grones, Michal Karady, Deepak K Barange, Mateusz Majda, Barbora Pařízková, Michael Karampelias, Marta Zwiewka, Aleš Pěnčík, Fredrik Almqvist, Karin Ljung, Ondřej Novák, Stéphanie Robert. A role for the auxin precursor anthranilic acid in root gravitropism via regulation of PIN-FORMED protein polarity and relocalisation in Arabidopsis.
The New phytologist.
2019 08; 223(3):1420-1432. doi:
10.1111/nph.15877
. [PMID: 31038751] - Cristina Román-Hidalgo, Germán López-Pérez, María Jesús Martín-Valero, Miguel Ángel Bello-López. Chitosan tailor-made membranes as biopolymeric support for electromembrane extraction.
Talanta.
2019 Jul; 199(?):290-295. doi:
10.1016/j.talanta.2019.02.079
. [PMID: 30952260] - Martina Curto, Luana Lionetto, Francesco Fazio, Valentina Corigliano, Anna Comparelli, Stefano Ferracuti, Maurizio Simmaco, Ferdinando Nicoletti, Ross J Baldessarini. Serum xanthurenic acid levels: Reduced in subjects at ultra high risk for psychosis.
Schizophrenia research.
2019 06; 208(?):465-466. doi:
10.1016/j.schres.2019.02.020
. [PMID: 30837204] - Thi Quynh Do, Bich Ngan Truong, Huong Doan Thi Mai, Thuy Linh Nguyen, Van Hung Nguyen, Hai Dang Nguyen, Tien Dat Nguyen, The Cuong Nguyen, Trieu Vung Luong, Loc Thang Giang, Van Minh Chau, Van Cuong Pham. New dianthramide and cinnamic ester glucosides from the roots of Aconitum carmichaelii.
Journal of Asian natural products research.
2019 Jun; 21(6):507-515. doi:
10.1080/10286020.2018.1454436
. [PMID: 29597834] - Alexia Kirby, Mojmír Suchý, Andrea Brouwer, Adam Shuhendler. Mapping aldehydic load in vivo by positron emission tomography with [18F]NA3BF3.
Chemical communications (Cambridge, England).
2019 May; 55(37):5371-5374. doi:
10.1039/c9cc01831j
. [PMID: 30994648] - Mengchan Liu, Yanxi Jia, Yunchang Xie, Chunyan Zhang, Junying Ma, Changli Sun, Jianhua Ju. Identification of the Actinomycin D Biosynthetic Pathway from Marine-Derived Streptomyces costaricanus SCSIO ZS0073.
Marine drugs.
2019 Apr; 17(4):. doi:
10.3390/md17040240
. [PMID: 31018504] - Adnan Khan, Soo An Choi, Jinhyuk Na, Aryo Dimas Pamungkas, Keum Ji Jung, Sun Ha Jee, Youngja H Park. Noninvasive Serum Metabolomic Profiling Reveals Elevated Kynurenine Pathway's Metabolites in Humans with Prostate Cancer.
Journal of proteome research.
2019 04; 18(4):1532-1541. doi:
10.1021/acs.jproteome.8b00803
. [PMID: 30628444] - Wouter J C de Bruijn, Sarah van Dinteren, Harry Gruppen, Jean-Paul Vincken. Mass spectrometric characterisation of avenanthramides and enhancing their production by germination of oat (Avena sativa).
Food chemistry.
2019 Mar; 277(?):682-690. doi:
10.1016/j.foodchem.2018.11.013
. [PMID: 30502203] - Maurizio Pompili, Luana Lionetto, Martina Curto, Alberto Forte, Denise Erbuto, Franco Montebovi, Maria Elena Seretti, Isabella Berardelli, Gianluca Serafini, Marco Innamorati, Mario Amore, Ross J Baldessarini, Paolo Girardi, Maurizio Simmaco. Tryptophan and Kynurenine Metabolites: Are They Related to Depression?.
Neuropsychobiology.
2019; 77(1):23-28. doi:
10.1159/000491604
. [PMID: 30110684] - Thales Kronenberger, Björn Windshügel, Carsten Wrenger, Kathia M Honorio, Vinicius G Maltarollo. On the relationship of anthranilic derivatives structure and the FXR (Farnesoid X receptor) agonist activity.
Journal of biomolecular structure & dynamics.
2018 Dec; 36(16):4378-4391. doi:
10.1080/07391102.2017.1417161
. [PMID: 29237358] - Abdulla A-B Badawy. Hypothesis kynurenic and quinolinic acids: The main players of the kynurenine pathway and opponents in inflammatory disease.
Medical hypotheses.
2018 Sep; 118(?):129-138. doi:
10.1016/j.mehy.2018.06.021
. [PMID: 30037600] - Mohanapriya Jayapal, Hema Jagadeesan, Manojkumar Shanmugam, Perinba Danisha J, Shobana Murugesan. Sequential anaerobic-aerobic treatment using plant microbe integrated system for degradation of azo dyes and their aromatic amines by-products.
Journal of hazardous materials.
2018 07; 354(?):231-243. doi:
10.1016/j.jhazmat.2018.04.050
. [PMID: 29754041] - Dorottya Nagy-Szakal, Dinesh K Barupal, Bohyun Lee, Xiaoyu Che, Brent L Williams, Ellie J R Kahn, Joy E Ukaigwe, Lucinda Bateman, Nancy G Klimas, Anthony L Komaroff, Susan Levine, Jose G Montoya, Daniel L Peterson, Bruce Levin, Mady Hornig, Oliver Fiehn, W Ian Lipkin. Insights into myalgic encephalomyelitis/chronic fatigue syndrome phenotypes through comprehensive metabolomics.
Scientific reports.
2018 07; 8(1):10056. doi:
10.1038/s41598-018-28477-9
. [PMID: 29968805] - Jason Walsh, Jordan Haddock, Jeffrey B Blumberg, Diane L McKay, Xiaoyong Wei, Gregory Dolnikowski, C-Y Oliver Chen. Identification of methylated metabolites of oat avenanthramides in human plasma using UHPLC QToF-MS.
International journal of food sciences and nutrition.
2018 May; 69(3):377-383. doi:
10.1080/09637486.2017.1371116
. [PMID: 28889763] - Román-Hidalgo Cristina, Martín-Valero María Jesús, Fernández-Torres Rut, Bello-López Miguel Ángel. Use of Polymer Inclusion Membranes (PIMs) as support for electromembrane extraction of non-steroidal anti-inflammatory drugs and highly polar acidic drugs.
Talanta.
2018 Mar; 179(?):601-607. doi:
10.1016/j.talanta.2017.11.066
. [PMID: 29310282] - Tomasz W Kaminski, Krystyna Pawlak, Malgorzata Karbowska, Michal Mysliwiec, Waldemar Grzegorzewski, Jakub Kuna, Dariusz Pawlak. Association between uremic toxin-anthranilic acid and fibrinolytic system activity in predialysis patients at different stages of chronic kidney disease.
International urology and nephrology.
2018 Jan; 50(1):127-135. doi:
10.1007/s11255-017-1729-1
. [PMID: 29058166] - Rémy B Teponno, Sara R Noumeur, Soleiman E Helaly, Stephan Hüttel, Daoud Harzallah, Marc Stadler. Furanones and Anthranilic Acid Derivatives from the Endophytic Fungus Dendrothyrium variisporum.
Molecules (Basel, Switzerland).
2017 Oct; 22(10):. doi:
10.3390/molecules22101674
. [PMID: 28991218] - War War May Zin, Suradet Buttachon, Tida Dethoup, José A Pereira, Luís Gales, Ângela Inácio, Paulo M Costa, Michael Lee, Nazim Sekeroglu, Artur M S Silva, Madalena M M Pinto, Anake Kijjoa. Antibacterial and antibiofilm activities of the metabolites isolated from the culture of the mangrove-derived endophytic fungus Eurotium chevalieri KUFA 0006.
Phytochemistry.
2017 Sep; 141(?):86-97. doi:
10.1016/j.phytochem.2017.05.015
. [PMID: 28586721] - Humera Jahan, M Iqbal Choudhary, Mehwish Manzoor, Khalid Mohammad Khan, Shahnaz Perveen, Atta-Ur-Rahman. Insulinotropic action of 2, 4-dinitroanilino-benzoic acid through the attenuation of pancreatic beta-cell lesions in diabetic rats.
Chemico-biological interactions.
2017 Aug; 273(?):237-244. doi:
10.1016/j.cbi.2017.06.015
. [PMID: 28625491] - Rasmus Dam Wollenberg, Wagma Saei, Klaus Ringsborg Westphal, Carina Sloth Klitgaard, Kåre Lehmann Nielsen, Erik Lysøe, Donald Max Gardiner, Reinhard Wimmer, Teis Esben Sondergaard, Jens Laurids Sørensen. Chrysogine Biosynthesis Is Mediated by a Two-Module Nonribosomal Peptide Synthetase.
Journal of natural products.
2017 07; 80(7):2131-2135. doi:
10.1021/acs.jnatprod.6b00822
. [PMID: 28708398] - E Dorta, A Aspée, E Pino, L González, E Lissi, C López-Alarcón. Controversial alkoxyl and peroxyl radical scavenging activity of the tryptophan metabolite 3-hydroxy-anthranilic acid.
Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.
2017 Jun; 90(?):332-338. doi:
10.1016/j.biopha.2017.03.082
. [PMID: 28376401] - Wataru Nabeyama, Kenji Ishihara, Hyun Seung Ban, Hiroshi Wada, Hiroyuki Nakamura. Discovery of (2-aminophenyl)methanol as a new molecular chaperone that rescues the localization of P123S mutant pendrin stably expressed in HEK293 cells.
Bioorganic & medicinal chemistry.
2017 05; 25(9):2601-2608. doi:
10.1016/j.bmc.2017.03.024
. [PMID: 28341401] - Yu Kokubo, Miho Nishizaka, Naoki Ube, Yukinori Yabuta, Shin-Ichi Tebayashi, Kotomi Ueno, Shin Taketa, Atsushi Ishihara. Distribution of the tryptophan pathway-derived defensive secondary metabolites gramine and benzoxazinones in Poaceae.
Bioscience, biotechnology, and biochemistry.
2017 Mar; 81(3):431-440. doi:
10.1080/09168451.2016.1256758
. [PMID: 27854190] - Therese Karlsson, Elin Strand, Jutta Dierkes, Christian A Drevon, Jannike Øyen, Øivind Midttun, Per M Ueland, Oddrun A Gudbrandsen, Eva Ringdal Pedersen, Ottar Nygård. Associations between intake of fish and n-3 long-chain polyunsaturated fatty acids and plasma metabolites related to the kynurenine pathway in patients with coronary artery disease.
European journal of nutrition.
2017 Feb; 56(1):261-272. doi:
10.1007/s00394-015-1077-9
. [PMID: 26482150] - Eloy Caballo-Ponce, Pieter van Dillewijn, Regina Michaela Wittich, Cayo Ramos. WHOP, a Genomic Region Associated With Woody Hosts in the Pseudomonas syringae Complex Contributes to the Virulence and Fitness of Pseudomonas savastanoi pv. savastanoi in Olive Plants.
Molecular plant-microbe interactions : MPMI.
2017 02; 30(2):113-126. doi:
10.1094/mpmi-11-16-0233-r
. [PMID: 28027024] - I U Pismenetskaya, T D Butters. Serum glycomarkers of endoplasmic reticulum and lysosomal-endosomal system stress in human healthy aging and diseases.
Ukrainian biochemical journal.
2017 Jan; 89(1):59-70. doi:
10.15407/ubj89.01.059
. [PMID: 29236390] - Sachiko Sugimoto. The Chemical Constituents of Uninvestigated Plants in Hiroshima Prefecture.
Yakugaku zasshi : Journal of the Pharmaceutical Society of Japan.
2017; 137(2):215-220. doi:
10.1248/yakushi.16-00205
. [PMID: 28154334] - Yijun Yan, Jing Yang, Zhiyin Yu, Mingming Yu, Ya-Tuan Ma, Li Wang, Can Su, Jianying Luo, Geoffrey P Horsman, Sheng-Xiong Huang. Non-enzymatic pyridine ring formation in the biosynthesis of the rubrolone tropolone alkaloids.
Nature communications.
2016 10; 7(?):13083. doi:
10.1038/ncomms13083
. [PMID: 27713400] - Yuka Kanehira, Susumu Kawakami, Sachiko Sugimoto, Katsuyoshi Matsunami, Hideaki Otsuka. Dianthosaponins G-I, triterpene saponins, an anthranilic acid amide glucoside and a flavonoid glycoside from the aerial parts of Dianthus japonicus and their cytotoxicity.
Journal of natural medicines.
2016 Oct; 70(4):816-24. doi:
10.1007/s11418-016-1019-8
. [PMID: 27351981] - Oana M Deac, James L Mills, Clair M Gardiner, Barry Shane, Louise Quinn, Øivind Midttun, Adrian McCann, Klaus Meyer, Per M Ueland, Ruzong Fan, Zhaohui Lu, Lawrence C Brody, Anne M Molloy. Serum Immune System Biomarkers Neopterin and Interleukin-10 Are Strongly Related to Tryptophan Metabolism in Healthy Young Adults.
The Journal of nutrition.
2016 09; 146(9):1801-6. doi:
10.3945/jn.116.230698
. [PMID: 27489009] - René Fuertig, Angelo Ceci, Sandrine M Camus, Erwan Bezard, Andreas H Luippold, Bastian Hengerer. LC-MS/MS-based quantification of kynurenine metabolites, tryptophan, monoamines and neopterin in plasma, cerebrospinal fluid and brain.
Bioanalysis.
2016 Sep; 8(18):1903-17. doi:
10.4155/bio-2016-0111
. [PMID: 27524289] - Amanda Eskelund, David P Budac, Connie Sanchez, Betina Elfving, Gregers Wegener. Female Flinders Sensitive Line rats show estrous cycle-independent depression-like behavior and altered tryptophan metabolism.
Neuroscience.
2016 08; 329(?):337-48. doi:
10.1016/j.neuroscience.2016.05.024
. [PMID: 27210075] - Natalia Gruba, Magdalena Wysocka, Magdalena Brzezińska, Dawid Dębowski, Marcin Sieńczyk, Ewa Gorodkiewicz, Tomasz Guszcz, Cezary Czaplewski, Krzysztof Rolka, Adam Lesner. Bladder cancer detection using a peptide substrate of the 20S proteasome.
The FEBS journal.
2016 08; 283(15):2929-48. doi:
10.1111/febs.13786
. [PMID: 27326540] - Saikat Biswas, Pramit Kumar Chowdhury. Correlated and Anticorrelated Domain Movement of Human Serum Albumin: A Peek into the Complexity of the Crowded Milieu.
The journal of physical chemistry. B.
2016 06; 120(22):4897-911. doi:
10.1021/acs.jpcb.6b01671
. [PMID: 27163260] - Meimei Chen, Xuemei Yang, Xinmei Lai, Jie Kang, Huijuan Gan, Yuxing Gao. Structural Investigation for Optimization of Anthranilic Acid Derivatives as Partial FXR Agonists by in Silico Approaches.
International journal of molecular sciences.
2016 Apr; 17(4):536. doi:
10.3390/ijms17040536
. [PMID: 27070594] - Malgorzata Jasiewicz, Marcin Moniuszko, Dariusz Pawlak, Malgorzata Knapp, Malgorzata Rusak, Remigiusz Kazimierczyk, Wlodzimierz Jerzy Musial, Milena Dabrowska, Karol Adam Kaminski. Activity of the kynurenine pathway and its interplay with immunity in patients with pulmonary arterial hypertension.
Heart (British Cardiac Society).
2016 Feb; 102(3):230-7. doi:
10.1136/heartjnl-2015-308581
. [PMID: 26769378] - Jennifer E Cole, Nagore Astola, Adam P Cribbs, Michael E Goddard, Inhye Park, Patricia Green, Alun H Davies, Richard O Williams, Marc Feldmann, Claudia Monaco. Indoleamine 2,3-dioxygenase-1 is protective in atherosclerosis and its metabolites provide new opportunities for drug development.
Proceedings of the National Academy of Sciences of the United States of America.
2015 Oct; 112(42):13033-8. doi:
10.1073/pnas.1517820112
. [PMID: 26438837] - Bożena Muszyńska, Maciej Łojewski, Jacek Rojowski, Włodzimierz Opoka, Katarzyna Sułkowska-Ziaja. Natural products of relevance in the prevention and supportive treatment of depression.
Psychiatria polska.
2015 May; 49(3):435-53. doi:
10.12740/pp/29367
. [PMID: 26276913] - Oana M Deac, James L Mills, Barry Shane, Øivind Midttun, Per M Ueland, John T Brosnan, Margaret E Brosnan, Eamon Laird, Eileen R Gibney, Ruzong Fan, Yifan Wang, Lawrence C Brody, Anne M Molloy. Tryptophan catabolism and vitamin B-6 status are affected by gender and lifestyle factors in healthy young adults.
The Journal of nutrition.
2015 Apr; 145(4):701-7. doi:
10.3945/jn.114.203091
. [PMID: 25833774] - Laura Orsatti, Roberto Speziale, Maria Vittoria Orsale, Fulvia Caretti, Maria Veneziano, Matteo Zini, Edith Monteagudo, Kathryn Lyons, Maria Beconi, Kelvin Chan, Todd Herbst, Leticia Toledo-Sherman, Ignacio Munoz-Sanjuan, Fabio Bonelli, Celia Dominguez. A single-run liquid chromatography mass spectrometry method to quantify neuroactive kynurenine pathway metabolites in rat plasma.
Journal of pharmaceutical and biomedical analysis.
2015 Mar; 107(?):426-31. doi:
10.1016/j.jpba.2015.01.030
. [PMID: 25668794] - Eva Ringdal Pedersen, Nora Tuseth, Simone J P M Eussen, Per Magne Ueland, Elin Strand, Gard Frodahl Tveitevåg Svingen, Øivind Midttun, Klaus Meyer, Gunnar Mellgren, Arve Ulvik, Jan Erik Nordrehaug, Dennis W Nilsen, Ottar Nygård. Associations of plasma kynurenines with risk of acute myocardial infarction in patients with stable angina pectoris.
Arteriosclerosis, thrombosis, and vascular biology.
2015 Feb; 35(2):455-62. doi:
10.1161/atvbaha.114.304674
. [PMID: 25524770] - Daniel Merk, Christina Lamers, Julia Weber, Daniel Flesch, Matthias Gabler, Ewgenij Proschak, Manfred Schubert-Zsilavecz. Anthranilic acid derivatives as nuclear receptor modulators--development of novel PPAR selective and dual PPAR/FXR ligands.
Bioorganic & medicinal chemistry.
2015 Feb; 23(3):499-514. doi:
10.1016/j.bmc.2014.12.013
. [PMID: 25583100] - Martina Curto, Luana Lionetto, Andrea Negro, Matilde Capi, Francesca Perugino, Francesco Fazio, Maria Adele Giamberardino, Maurizio Simmaco, Ferdinando Nicoletti, Paolo Martelletti. Altered serum levels of kynurenine metabolites in patients affected by cluster headache.
The journal of headache and pain.
2015; 17(?):27. doi:
10.1186/s10194-016-0620-2
. [PMID: 27000870] - Martina Curto, Luana Lionetto, Andrea Negro, Matilde Capi, Francesco Fazio, Maria Adele Giamberardino, Maurizio Simmaco, Ferdinando Nicoletti, Paolo Martelletti. Altered kynurenine pathway metabolites in serum of chronic migraine patients.
The journal of headache and pain.
2015; 17(?):47. doi:
10.1186/s10194-016-0638-5
. [PMID: 27130315] - Maciej Łojewski, Bożena Muszyńska, Agata Smalec, Witold Reczyński, Włodzimierz Opoka, Katarzyna Sułkowska-Ziaja. Development of optimal medium content for bioelements accumulation in Bacopa monnieri (L.) in vitro culture.
Applied biochemistry and biotechnology.
2014 Oct; 174(4):1535-1547. doi:
10.1007/s12010-014-1095-8
. [PMID: 25119546] - Lyes Khouni, Christophe Long, Hamada Haba, Nicolas Molinier, Mohammed Benkhaled. Anthranilic acid derivatives and other components from Ononis pusilla.
Natural product communications.
2014 Aug; 9(8):1159-62. doi:
"
. [PMID: 25233597] - S Klinkenberg, C J H van den Borne, M W Aalbers, P Verschuure, A G Kessels, L Leenen, K Rijkers, A P Aldenkamp, J S H Vles, H J M Majoie. The effects of vagus nerve stimulation on tryptophan metabolites in children with intractable epilepsy.
Epilepsy & behavior : E&B.
2014 Aug; 37(?):133-8. doi:
10.1016/j.yebeh.2014.06.001
. [PMID: 25022821] - Kalyan Rao Anumula. Single tag for total carbohydrate analysis.
Analytical biochemistry.
2014 Jul; 457(?):31-7. doi:
10.1016/j.ab.2014.04.019
. [PMID: 24769375] - Qingyao Shou, Linda K Banbury, Alan T Maccarone, Dane E Renshaw, Htwe Mon, Stefani Griesser, Hans J Griesser, Stephen J Blanksby, Joshua E Smith, Hans Wohlmuth. Antibacterial anthranilic acid derivatives from Geijera parviflora.
Fitoterapia.
2014 Mar; 93(?):62-6. doi:
10.1016/j.fitote.2013.12.008
. [PMID: 24370663] - Li Gu, Xiaoying Jiang, Ying Liang, Tianshu Zhou, Guoyue Shi. Double recognition of dopamine based on a boronic acid functionalized poly(aniline-co-anthranilic acid)-molecularly imprinted polymer composite.
The Analyst.
2013 Sep; 138(18):5461-9. doi:
10.1039/c3an00845b
. [PMID: 23884110] - Luisa Rios-Avila, H Frederik Nijhout, Michael C Reed, Harry S Sitren, Jesse F Gregory. A mathematical model of tryptophan metabolism via the kynurenine pathway provides insights into the effects of vitamin B-6 deficiency, tryptophan loading, and induction of tryptophan 2,3-dioxygenase on tryptophan metabolites.
The Journal of nutrition.
2013 Sep; 143(9):1509-19. doi:
10.3945/jn.113.174599
. [PMID: 23902960] - Lixia Gou, Qiulin Wu, Shuangjun Lin, Xiangmei Li, Jingdan Liang, Xiufen Zhou, Derong An, Zixin Deng, Zhijun Wang. Mutasynthesis of pyrrole spiroketal compound using calcimycin 3-hydroxy anthranilic acid biosynthetic mutant.
Applied microbiology and biotechnology.
2013 Sep; 97(18):8183-91. doi:
10.1007/s00253-013-4882-1
. [PMID: 23666477] - Lorenzo Caputi, Martin Rejzek, Thomas Louveau, Ellis C O'Neill, Lionel Hill, Anne Osbourn, Robert A Field. A one-pot enzymatic approach to the O-fluoroglucoside of N-methylanthranilate.
Bioorganic & medicinal chemistry.
2013 Aug; 21(16):4762-7. doi:
10.1016/j.bmc.2013.05.057
. [PMID: 23806835] - D Theofylaktopoulou, Ø Midttun, A Ulvik, P M Ueland, G S Tell, S E Vollset, O Nygård, S J P M Eussen. A community-based study on determinants of circulating markers of cellular immune activation and kynurenines: the Hordaland Health Study.
Clinical and experimental immunology.
2013 Jul; 173(1):121-30. doi:
10.1111/cei.12092
. [PMID: 23607723] - Chiaki Hiratsuka, Tsutomu Fukuwatari, Mitsue Sano, Kuniaki Saito, Satoshi Sasaki, Katsumi Shibata. Supplementing healthy women with up to 5.0 g/d of L-tryptophan has no adverse effects.
The Journal of nutrition.
2013 Jun; 143(6):859-66. doi:
10.3945/jn.112.173823
. [PMID: 23616514] - Kalyan Rao Anumula. Quantitative glycan profiling of normal human plasma derived immunoglobulin and its fragments Fab and Fc.
Journal of immunological methods.
2012 Aug; 382(1-2):167-76. doi:
10.1016/j.jim.2012.05.022
. [PMID: 22683540] - Marisa Möller, Jan L Du Preez, Robin Emsley, Brian H Harvey. Social isolation rearing in rats alters plasma tryptophan metabolism and is reversed by sub-chronic clozapine treatment.
Neuropharmacology.
2012 Jun; 62(8):2499-506. doi:
10.1016/j.neuropharm.2012.02.021
. [PMID: 22426240] - Marisa Möller, Jan L Du Preez, Brian H Harvey. Development and validation of a single analytical method for the determination of tryptophan, and its kynurenine metabolites in rat plasma.
Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.
2012 Jun; 898(?):121-9. doi:
10.1016/j.jchromb.2012.04.030
. [PMID: 22608808] - Roy M Nilsen, Anne-Lise Bjørke-Monsen, Oivind Midttun, Ottar Nygård, Eva R Pedersen, Arve Ulvik, Per Magnus, Håkon K Gjessing, Stein Emil Vollset, Per Magne Ueland. Maternal tryptophan and kynurenine pathway metabolites and risk of preeclampsia.
Obstetrics and gynecology.
2012 Jun; 119(6):1243-50. doi:
10.1097/aog.0b013e318255004e
. [PMID: 22617590] - Li Ma, Ying-jun He, You Li, Mu-xin Gong. Actions of four organic acids in radix isatidis on endotoxin-neutralization investigated by kinetic turbidimetric assay.
Journal of traditional Chinese medicine = Chung i tsa chih ying wen pan.
2012 Jun; 32(2):261-6. doi:
10.1016/s0254-6272(13)60022-9
. [PMID: 22876454] - Murugesan K Gounder, Hongxia Lin, Mark Stein, Susan Goodin, Joseph R Bertino, Ah-Ng Tony Kong, Robert S DiPaola. A validated bioanalytical HPLC method for pharmacokinetic evaluation of 2-deoxyglucose in human plasma.
Biomedical chromatography : BMC.
2012 May; 26(5):650-4. doi:
10.1002/bmc.1710
. [PMID: 21932382] - Samnang Tep, Marina Hincapie, William S Hancock. A general approach for the purification and quantitative glycomic analysis of human plasma.
Analytical and bioanalytical chemistry.
2012 Mar; 402(9):2687-700. doi:
10.1007/s00216-012-5712-5
. [PMID: 22274286] - L Renee Ruhaak, Carolin Huhn, Carolien A M Koeleman, André M Deelder, Manfred Wuhrer. Robust and high-throughput sample preparation for (semi-)quantitative analysis of N-glycosylation profiles from plasma samples.
Methods in molecular biology (Clifton, N.J.).
2012; 893(?):371-85. doi:
10.1007/978-1-61779-885-6_23
. [PMID: 22665312] - Lucy J Hathaway, Silvio D Brugger, Brigitte Morand, Mathieu Bangert, Jeannine U Rotzetter, Christoph Hauser, Werner A Graber, Suzanna Gore, Aras Kadioglu, Kathrin Mühlemann. Capsule type of Streptococcus pneumoniae determines growth phenotype.
PLoS pathogens.
2012; 8(3):e1002574. doi:
10.1371/journal.ppat.1002574
. [PMID: 22412375] - Yaxian Zhu, Chaoran Zhou, Sasa Qin, Zhiyu Ren, Lingyi Zhang, Honggang Fu, Weibing Zhang. A novel open-tubular capillary electrochromatography with magnetic nanoparticle coating as stationary phase.
Electrophoresis.
2012 Jan; 33(2):340-7. doi:
10.1002/elps.201100337
. [PMID: 22170082] - Yoshihiko Shimokawa, Hiroyuki Morita, Ikuro Abe. Benzalacetone synthase.
Frontiers in plant science.
2012; 3(?):57. doi:
10.3389/fpls.2012.00057
. [PMID: 22645592] - Amal Abdel Haleem Mohamed Eissa, Gamal Abd El-Hakeem Soliman, Moayad Hussein Khataibeh. Design, synthesis and anti-inflammatory activity of structurally simple anthranilic acid congeners devoid of ulcerogenic side effects.
Chemical & pharmaceutical bulletin.
2012; 60(10):1290-300. doi:
10.1248/cpb.c12-00516
. [PMID: 22863798] - Gopi S Gadupudi, King-Thom Chung. Comparative genotoxicity of 3-hydroxyanthranilic acid and anthranilic acid in the presence of a metal cofactor Cu (II) in vitro.
Mutation research.
2011 Dec; 726(2):200-8. doi:
10.1016/j.mrgentox.2011.09.012
. [PMID: 22015263] - Qing-Feng Sun, Ji-Guang Ding, Ji-Fang Sheng, Man-Hua Zhu, Jun-Jie Li, Zi-Ke Sheng, Xiao-Feng Tang. Novel action of 3,4-DAA ameliorating acute liver allograft injury.
Cell biochemistry and function.
2011 Dec; 29(8):673-8. doi:
10.1002/cbf.1805
. [PMID: 21932299] - Raymond A Enke, Zhicheng Dong, Judith Bender. Small RNAs prevent transcription-coupled loss of histone H3 lysine 9 methylation in Arabidopsis thaliana.
PLoS genetics.
2011 Oct; 7(10):e1002350. doi:
10.1371/journal.pgen.1002350
. [PMID: 22046144] - Caroline M Forrest, Gillian M Mackay, Lynn Oxford, Keith Millar, L Gail Darlington, Michael J Higgins, Trevor W Stone. Kynurenine metabolism predicts cognitive function in patients following cardiac bypass and thoracic surgery.
Journal of neurochemistry.
2011 Oct; 119(1):136-52. doi:
10.1111/j.1471-4159.2011.07414.x
. [PMID: 21819405] - Christian Landmann, Stefanie Hücherig, Barbara Fink, Thomas Hoffmann, Daniela Dittlein, Heather A Coiner, Wilfried Schwab. Substrate promiscuity of a rosmarinic acid synthase from lavender (Lavandula angustifolia L.).
Planta.
2011 Aug; 234(2):305-20. doi:
10.1007/s00425-011-1400-5
. [PMID: 21424826] - Huimin Man, Stephan Pollmann, Elmar W Weiler, Edward G Kirby. Increased glutamine in leaves of poplar transgenic with pine GS1a caused greater anthranilate synthetase α-subunit (ASA1) transcript and protein abundances: an auxin-related mechanism for enhanced growth in GS transgenics?.
Journal of experimental botany.
2011 Aug; 62(13):4423-31. doi:
10.1093/jxb/err026
. [PMID: 21642235] - Daniela Roell, Thomas W Rösler, Stephanie Degen, Rudolf Matusch, Aria Baniahmad. Antiandrogenic activity of anthranilic acid ester derivatives as novel lead structures to inhibit prostate cancer cell proliferation.
Chemical biology & drug design.
2011 Jun; 77(6):450-9. doi:
10.1111/j.1747-0285.2011.01116.x
. [PMID: 21439024] - Niko S Radulović, Ana B Miltojević, Michael McDermott, Steve Waldren, John Adrian Parnell, Mariana Martins Gomes Pinheiro, Patricia Dias Fernandes, Fabio de Sousa Menezes. Identification of a new antinociceptive alkaloid isopropyl N-methylanthranilate from the essential oil of Choisya ternata Kunth.
Journal of ethnopharmacology.
2011 Jun; 135(3):610-9. doi:
10.1016/j.jep.2011.03.035
. [PMID: 21420481] - Lindsey K Tuominen, Virgil E Johnson, Chung-Jui Tsai. Differential phylogenetic expansions in BAHD acyltransferases across five angiosperm taxa and evidence of divergent expression among Populus paralogues.
BMC genomics.
2011 May; 12(?):236. doi:
10.1186/1471-2164-12-236
. [PMID: 21569431] - Wei Zhou, Mei-Fen Xie, Xiao-Yan Zhang, Ting-Ting Liu, Ying-Jia Yu, Geng-Li Duan. Improved liquid chromatography fingerprint of fat-soluble Radix isatidis extract using multi-wavelength combination technique.
Journal of separation science.
2011 May; 34(10):1123-32. doi:
10.1002/jssc.201000834
. [PMID: 21442749] - Giovanni V Coppa, Fabio Galeotti, Lucia Zampini, Francesca Maccari, Tiziana Galeazzi, Lucia Padelia, Lucia Santoro, Orazio Gabrielli, Nicola Volpi. High-throughput determination of urinary hexosamines for diagnosis of mucopolysaccharidoses by capillary electrophoresis and high-performance liquid chromatography.
Analytical biochemistry.
2011 Apr; 411(1):32-42. doi:
10.1016/j.ab.2010.12.016
. [PMID: 21156153] - Alisa Huffaker, Nicole J Dafoe, Eric A Schmelz. ZmPep1, an ortholog of Arabidopsis elicitor peptide 1, regulates maize innate immunity and enhances disease resistance.
Plant physiology.
2011 Mar; 155(3):1325-38. doi:
10.1104/pp.110.166710
. [PMID: 21205619] - James C Carlson, Richard M Engeman, Doreene R Hyatt, Rickey L Gilliland, Thomas J DeLiberto, Larry Clark, Michael J Bodenchuk, George M Linz. Efficacy of European starling control to reduce Salmonella enterica contamination in a concentrated animal feeding operation in the Texas panhandle.
BMC veterinary research.
2011 Feb; 7(?):9. doi:
10.1186/1746-6148-7-9
. [PMID: 21324202] - Aymerick Eudes, Edward E K Baidoo, Fan Yang, Helcio Burd, Masood Z Hadi, F William Collins, Jay D Keasling, Dominique Loqué. Production of tranilast [N-(3',4'-dimethoxycinnamoyl)-anthranilic acid] and its analogs in yeast Saccharomyces cerevisiae.
Applied microbiology and biotechnology.
2011 Feb; 89(4):989-1000. doi:
10.1007/s00253-010-2939-y
. [PMID: 20972784]