NCBI Taxonomy: 5357
Lentinus (ncbi_taxid: 5357)
found 41 associated metabolites at genus taxonomy rank level.
Ancestor: Polyporaceae
Child Taxonomies: Lentinus crinitus, Lentinus tigrinus, Lentinus concinnus, Lentinus velutinus, Lentinus levis, Lentinus sajor-caju, Lentinus roseus, Lentinus badius, Lentinus squarrosulus, Lentinus brumalis, Lentinus cladopus, Lentinus connatus, Lentinus swartzii, Lentinus berteroi, Lentinus villosus, Lentinus glabratus, Lentinus scleropus, Lentinus tricholoma, Lentinus striatulus, Lentinus polychrous, Lentinus lindquistii, Lentinus substrictus, Lentinus cf. crinitus, unclassified Lentinus, Lentinus aff. squarrosulus, Lentinus cf. fasciatus, Lentinus cf. velutinus, Lentinus aff. 'citrinus', Lentinus martianoffianus
2-Aminobenzoic acid
2-Aminobenzoic acid, also known as anthranilic acid or O-aminobenzoate, belongs to the class of organic compounds known as aminobenzoic acids. These are benzoic acids containing an amine group attached to the benzene moiety. Within humans, 2-aminobenzoic acid participates in a number of enzymatic reactions. In particular, 2-aminobenzoic acid and formic acid can be biosynthesized from formylanthranilic acid through its interaction with the enzyme kynurenine formamidase. In addition, 2-aminobenzoic acid and L-alanine can be biosynthesized from L-kynurenine through its interaction with the enzyme kynureninase. It is a substrate of enzyme 2-Aminobenzoic acid hydroxylase in benzoate degradation via hydroxylation pathway (KEGG). In humans, 2-aminobenzoic acid is involved in tryptophan metabolism. Outside of the human body, 2-Aminobenzoic acid has been detected, but not quantified in several different foods, such as mamey sapotes, prairie turnips, rowals, natal plums, and hyacinth beans. This could make 2-aminobenzoic acid a potential biomarker for the consumption of these foods. 2-Aminobenzoic acid is a is a tryptophan-derived uremic toxin with multidirectional properties that can affect the hemostatic system. Uremic syndrome may affect any part of the body and can cause nausea, vomiting, loss of appetite, and weight loss. Chronic exposure of uremic toxins can lead to a number of conditions including renal damage, chronic kidney disease and cardiovascular disease. It can also cause changes in mental status, such as confusion, reduced awareness, agitation, psychosis, seizures, and coma. 2-Aminobenzoic acid is an organic compound. It is a substrate of enzyme anthranilate hydroxylase [EC 1.14.13.35] in benzoate degradation via hydroxylation pathway (KEGG). [HMDB]. Anthranilic acid is found in many foods, some of which are butternut squash, sunflower, ginger, and hyssop. Acquisition and generation of the data is financially supported in part by CREST/JST. D002491 - Central Nervous System Agents > D000927 - Anticonvulsants CONFIDENCE standard compound; INTERNAL_ID 8844 CONFIDENCE standard compound; INTERNAL_ID 8009 CONFIDENCE standard compound; INTERNAL_ID 115 KEIO_ID A010
Deoxyeritadenine
Deoxyeritadenine is found in mushrooms. Deoxyeritadenine is a constituent of the edible shitake mushroom
2,3-Dihydro-6-methoxy-2,2-dimethyl-4H-1-benzopyran-4-one
2,3-Dihydro-6-methoxy-2,2-dimethyl-4H-1-benzopyran-4-one is found in mushrooms. 2,3-Dihydro-6-methoxy-2,2-dimethyl-4H-1-benzopyran-4-one is isolated from the mushroom Lentinus crinitus (palatability not certain). Isolated from the mushroom Lentinus crinitus (palatability not certain). 2,3-Dihydro-6-methoxy-2,2-dimethyl-4H-1-benzopyran-4-one is found in mushrooms.
Hypnophilin
[Raw Data] CBA38_Hypnophilin_pos_40eV_1-3_01_1725.txt [Raw Data] CBA38_Hypnophilin_pos_30eV_1-3_01_1724.txt [Raw Data] CBA38_Hypnophilin_pos_20eV_1-3_01_1723.txt [Raw Data] CBA38_Hypnophilin_pos_10eV_1-3_01_1714.txt
2-aminobenzoic acid
MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; RWZYAGGXGHYGMB-UHFFFAOYSA-N_STSL_0017_Anthranilic Acid_8000fmol_180410_S2_LC02_MS02_91; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I.
Dormin
D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids D006133 - Growth Substances > D010937 - Plant Growth Regulators (±)-Abscisic acid is an orally active plant hormone that is present also in animals. (±)-Abscisic acid (ABA) contributes to the regulation of glycemia in mammals[1]. (±)-Abscisic acid is an orally active plant hormone that is present also in animals. (±)-Abscisic acid (ABA) contributes to the regulation of glycemia in mammals[1]. Abscisic acid ((S)-(+)-Abscisic acid), an orally active phytohormone in fruits and vegetables, is an endogenously produced mammalian hormone. Abscisic acid is a growth inhibitor and can regulate many aspects of plant growth and development. Abscisic acid inhibits proton pump (H+-ATPase) and leads to the plasma membrane depolarization in a Ca2+-dependent manner. Abscisic acid, a LANCL2 natural ligand, is a potent insulin-sensitizing compound and has the potential for pre-diabetes, type 2 diabetes and metabolic syndrome[1][2]. Abscisic acid ((S)-(+)-Abscisic acid), an orally active phytohormone in fruits and vegetables, is an endogenously produced mammalian hormone. Abscisic acid is a growth inhibitor and can regulate many aspects of plant growth and development. Abscisic acid inhibits proton pump (H+-ATPase) and leads to the plasma membrane depolarization in a Ca2+-dependent manner. Abscisic acid, a LANCL2 natural ligand, is a potent insulin-sensitizing compound and has the potential for pre-diabetes, type 2 diabetes and metabolic syndrome[1][2].