Acarbose (BioDeep_00000000339)

 

Secondary id: BioDeep_00000405740

human metabolite PANOMIX_OTCML-2023 blood metabolite natural product


代谢物信息卡片


(2R,3R,4R,5S,6R)-5-{[(2R,3R,4R,5S,6R)-5-{[(2R,3R,4S,5S,6R)-3,4-dihydroxy-6-methyl-5-{[(1S,4S,5S,6S)-4,5,6-trihydroxy-3-(hydroxymethyl)cyclohex-2-en-1-yl]amino}oxan-2-yl]oxy}-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-6-(hydroxymethyl)oxane-2,3,4-triol

化学式: C25H43NO18 (645.248)
中文名称: 阿卡波糖水合物, 阿卡波糖
谱图信息: 最多检出来源 Chinese Herbal Medicine(otcml) 26.58%

分子结构信息

SMILES: CC1C(C(C(C(O1)OC2C(OC(C(C2O)O)OC3C(OC(C(C3O)O)O)CO)CO)O)O)NC4C=C(C(C(C4O)O)O)CO
InChI: InChI=1S/C25H43NO18/c1-6-11(26-8-2-7(3-27)12(30)15(33)13(8)31)14(32)19(37)24(40-6)43-22-10(5-29)42-25(20(38)17(22)35)44-21-9(4-28)41-23(39)18(36)16(21)34/h2,6,8-39H,3-5H2,1H3/t6-,8+,9-,10-,11-,12+,13+,14+,15+,16-,17-,18-,19-,20-,21-,22-,23-,24-,25-/m1/s1

描述信息

Acarbose is a tetrasaccharide derivative consisting of a dideoxy-4-{[4,5,6-trihydroxy-3-(hydroxymethyl)cyclohex-2-en-1-yl C7 cyclitol moiety [called valienol (or valienamine)] linked via nitrogen to isomaltotriose. It has a role as an EC 3.2.1.20 (alpha-glucosidase) inhibitor, an EC 3.2.1.1 (alpha-amylase) inhibitor, a hypoglycemic agent and a geroprotector. It is a conjugate base of an acarbose(1+).
Acarbose is an alpha glucosidase inhibitor which decreases intestinal absorption of carbohydrates and is used as an adjunctive therapy in the management of type 2 diabetes. Acarbose has been linked to rare instances of clinically apparent acute liver injury.
Acarbose is a natural product found in Streptomyces glaucescens, Streptomyces coelicoflavus, and other organisms with data available.
Acarbose is a pseudotetrasaccharide and inhibitor of alpha-glucosidase and pancreatic alpha-amylase with antihyperglycemic activity. Acarbose binds to and inhibits alpha-glucosidase, an enteric enzyme found in the brush border of the small intestines that hydrolyzes oligosaccharides and disaccharides into glucose and other monosaccharides. This prevents the breakdown of larger carbohydrates into glucose and decreases the rise in postprandial blood glucose levels. In addition, acarbose inhibits pancreatic alpha-amylase which hydrolyzes complex starches to oligosaccharides in the small intestines.
An inhibitor of ALPHA-GLUCOSIDASES that retards the digestion and absorption of DIETARY CARBOHYDRATES in the SMALL INTESTINE.
An inhibitor of alpha glucosidase that retards the digestion and absorption of carbohydrates in the small intestine and hence reduces the increase in blood-glucose concentrations after a carbohydrate load. It is given orally to non-insulin dependent diabetes mellitus patients where diet modification or oral hypoglycemic agents do not control their condition. (From Martindale The Extra Pharmacopoeia, 31st ed)
A - Alimentary tract and metabolism > A10 - Drugs used in diabetes > A10B - Blood glucose lowering drugs, excl. insulins > A10BF - Alpha glucosidase inhibitors
D007004 - Hypoglycemic Agents > D065089 - Glycoside Hydrolase Inhibitors
D004791 - Enzyme Inhibitors
Acarbose (BAY g 5421), antihyperglycemic agent, is an orally active alpha-glucosidase inhibitor (IC50=11 nM). Acarbose can potentiate the hypoglycemic effects of sulfonylureas or insulin[1][2][3].

同义名列表

26 个代谢物同义名

(2R,3R,4R,5S,6R)-5-{[(2R,3R,4R,5S,6R)-5-{[(2R,3R,4S,5S,6R)-3,4-dihydroxy-6-methyl-5-{[(1S,4S,5S,6S)-4,5,6-trihydroxy-3-(hydroxymethyl)cyclohex-2-en-1-yl]amino}oxan-2-yl]oxy}-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-6-(hydroxymethyl)oxane-2,3,4-triol; (3R,4R,5S,6R)-5-{[(2R,3R,4R,5S,6R)-5-{[(2R,3R,4S,5S,6R)-3,4-dihydroxy-6-methyl-5-{[(1S,4R,5S,6S)-4,5,6-trihydroxy-3-(hydroxymethyl)cyclohex-2-en-1-yl]amino}oxan-2-yl]oxy}-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-6-(hydroxymethyl)oxane-2,3,4-triol; (3R,4R,5S,6R)-5-[(2R,3R,4R,5S,6R)-5-[(2R,3R,4S,5S,6R)-3,4-dihydroxy-6-methyl-5-[[(1S,4R,5S,6S)-4,5,6-trihydroxy-3-(hydroxymethyl)cyclohex-2-en-1-yl]amino]oxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-6-(hydroxymethyl)oxane-2,3,4-triol; 4,6-dideoxy-4-{[(1S,4R,5S,6S)-4,5,6-trihydroxy-3-(hydroxymethyl)cyclohex-2-en-1-yl]amino}-alpha-D-glucopyranosyl-(1->4)-alpha-D-glucopyranosyl-(1->4)-D-glucopyranose; Precose (TN);; Acarbose; O-4,6-Dideoxy-4-[[(1S,4R,5S,6S)-4,5,6-trihydroxy-3-(hydroxymethyl)cyclohex-2-enyl]amino]-?-d-glucopyranosyl-(1?4)-O-?-d-glucopyranosyl-(1?4)-d-glucopyranose; Abamectin, Antibiotic for Culture Media Use Only; Acarbose for peak identification; Acarbose for identification; Bayer brand OF acarbose; Acarbose (JAN/USAN/INN); Lasa brand OF acarbose; Acarbose (Glucobay); Acarbose,(S); Precose (TN); C25H43NO18;; Bay g 5421; Prandase;; Glucobay;; Precose;; Glucobay; Prandase; Acarbose; Glumida; Precose; Glucor; Acarbose



数据库引用编号

29 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

42 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 7 AKT1, ALB, CEP55, GLA, PPARG, PRKAA2, SLC2A2
Peripheral membrane protein 2 ACHE, GBA1
Endoplasmic reticulum membrane 1 GLA
Nucleus 5 ACHE, AKT1, ALB, PPARG, PRKAA2
cytosol 6 AKT1, ALB, GPT, PPARG, PRKAA2, SST
dendrite 1 PRKAA2
trans-Golgi network 1 GBA1
centrosome 2 ALB, CEP55
nucleoplasm 3 AKT1, PPARG, PRKAA2
RNA polymerase II transcription regulator complex 1 PPARG
Cell membrane 5 ACHE, AKT1, DPP4, SLC2A2, TNF
Cleavage furrow 1 CEP55
lamellipodium 2 AKT1, DPP4
Multi-pass membrane protein 1 SLC2A2
Synapse 1 ACHE
cell cortex 1 AKT1
cell junction 1 DPP4
cell surface 3 ACHE, DPP4, TNF
glutamatergic synapse 1 AKT1
Golgi apparatus 5 ACHE, ALB, GBA1, GLA, PRKAA2
Golgi membrane 1 INS
lysosomal membrane 2 DPP4, GBA1
neuromuscular junction 1 ACHE
neuronal cell body 4 GIP, PRKAA2, SST, TNF
postsynapse 1 AKT1
Lysosome 2 GBA1, GLA
plasma membrane 7 ACHE, AKT1, BCHE, DPP4, GCG, SLC2A2, TNF
Membrane 7 ACHE, AKT1, CEP55, DPP4, GLA, PRKAA2, SLC2A2
apical plasma membrane 2 DPP4, SLC2A2
axon 1 PRKAA2
brush border 1 SLC2A2
extracellular exosome 6 ALB, AMY2A, DPP4, GBA1, GLA, GPT
Lysosome membrane 1 GBA1
Lumenal side 1 GBA1
endoplasmic reticulum 2 ALB, GBA1
extracellular space 11 ACHE, ALB, AMY2A, BCHE, CRP, GCG, GIP, IL6, INS, SST, TNF
lysosomal lumen 2 GBA1, GLA
perinuclear region of cytoplasm 2 ACHE, PPARG
intercellular canaliculus 1 DPP4
protein-containing complex 2 AKT1, ALB
intracellular membrane-bounded organelle 1 PPARG
Secreted 9 ACHE, ALB, BCHE, CRP, DPP4, GCG, IL6, INS, SST
extracellular region 13 ACHE, ALB, AMY2A, BCHE, CRP, DPP4, GCG, GIP, GLA, IL6, INS, SST, TNF
Single-pass membrane protein 1 DPP4
Extracellular side 1 ACHE
anchoring junction 2 ALB, DPP4
Cytoplasm, cytoskeleton, microtubule organizing center, centrosome 1 CEP55
external side of plasma membrane 1 TNF
microtubule cytoskeleton 1 AKT1
midbody 1 CEP55
cell-cell junction 2 AKT1, SLC2A2
recycling endosome 1 TNF
Single-pass type II membrane protein 2 DPP4, TNF
vesicle 1 AKT1
Apical cell membrane 1 DPP4
Membrane raft 2 DPP4, TNF
focal adhesion 1 DPP4
spindle 1 AKT1
GABA-ergic synapse 1 SST
basement membrane 1 ACHE
Mitochondrion intermembrane space 1 AKT1
mitochondrial intermembrane space 1 AKT1
nuclear speck 1 PRKAA2
receptor complex 1 PPARG
ciliary basal body 2 AKT1, ALB
chromatin 1 PPARG
phagocytic cup 1 TNF
Cytoplasm, cytoskeleton, microtubule organizing center, centrosome, centriole 1 CEP55
centriole 2 ALB, CEP55
Flemming body 1 CEP55
spindle pole 1 ALB
blood microparticle 2 ALB, BCHE
Lipid-anchor, GPI-anchor 1 ACHE
intercellular bridge 1 CEP55
Endomembrane system 1 DPP4
endosome lumen 1 INS
cytoplasmic stress granule 1 PRKAA2
side of membrane 1 ACHE
Midbody, Midbody ring 1 CEP55
secretory granule lumen 3 GCG, GIP, INS
Golgi lumen 1 INS
endoplasmic reticulum lumen 6 ALB, BCHE, GCG, GIP, IL6, INS
platelet alpha granule lumen 1 ALB
endocytic vesicle 1 DPP4
transport vesicle 1 INS
azurophil granule lumen 1 GLA
Endoplasmic reticulum-Golgi intermediate compartment membrane 2 GLA, INS
neuronal dense core vesicle 1 SST
nuclear envelope lumen 1 BCHE
endoplasmic reticulum-Golgi intermediate compartment 1 GLA
synaptic cleft 1 ACHE
nucleotide-activated protein kinase complex 1 PRKAA2
lamellipodium membrane 1 DPP4
[Glucagon-like peptide 1]: Secreted 1 GCG
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
Cell projection, lamellipodium membrane 1 DPP4
interleukin-6 receptor complex 1 IL6
Cell projection, invadopodium membrane 1 DPP4
[Isoform H]: Cell membrane 1 ACHE
[Dipeptidyl peptidase 4 soluble form]: Secreted 1 DPP4
ciliary transition fiber 1 ALB
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF


文献列表

  • Hafize Yuca, Mehmet Karadayı, Songül Karakaya, Ayşe Civaş, Enes Tekman, Zuhal Guvenalp. Phytochemical Analysis and Evaluation of Genotoxic, Antigenotoxic Effects in Bacterial Models, and Hypoglycemic Activity of Epilobium angustifolium L. with Bioguided Isolation of Active Compounds. Chemistry & biodiversity. 2023 Dec; 20(12):e202300922. doi: 10.1002/cbdv.202300922. [PMID: 37997279]
  • Tatapudi Kiran Kumar, Bandi Siva, Basani Kiranmai, Vidya Jyothi Alli, Surender Singh Jadav, Araveeti Madhusudana Reddy, Joël Boustie, Françoise Le Devehat, Ashok Kumar Tiwari, Katragadda Suresh Babu. Salazinic Acid and Norlobaridone from the Lichen Hypotrachyna cirrhata: Antioxidant Activity, α-Glucosidase Inhibitory and Molecular Docking Studies. Molecules (Basel, Switzerland). 2023 Nov; 28(23):. doi: 10.3390/molecules28237840. [PMID: 38067568]
  • Mohsen Yousefi, Sahand Tehrani Fateh, Mahlagha Nikbaf-Shandiz, Fatemeh Gholami, Samira Rastgoo, Reza Bagher, Alireza Khadem, Farideh Shiraseb, Omid Asbaghi. The effect of acarbose on lipid profiles in adults: a systematic review and meta-analysis of randomized clinical trials. BMC pharmacology & toxicology. 2023 11; 24(1):65. doi: 10.1186/s40360-023-00706-6. [PMID: 37990256]
  • Aisha M H Al-Rajhi, Marwah M Bakri, Husam Qanash, Hassan Y Alzahrani, Haneen Halawani, Meaad A Algaydi, Tarek M Abdelghany. Antimicrobial, Antidiabetic, Antioxidant, and Anticoagulant Activities of Cupressus sempervirens In Vitro and In Silico. Molecules (Basel, Switzerland). 2023 Nov; 28(21):. doi: 10.3390/molecules28217402. [PMID: 37959821]
  • Gabriel O Anyanwu, Uju D Ejike, Gideon A Gyebi, Khalid Rauf, Nisar-Ur-Rehman, Jamshed Iqbal, Sumera Zaib, Usunomena Usunobun, Eusebius C Onyeneke, Badriyah S Alotaibi, Gaber El-Saber Batiha. Phytochemical analysis, in vitro and in silico effects from Alstonia boonei De Wild stem bark on selected digestive enzymes and adipogenesis in 3T3-L1 preadipocytes. BMC complementary medicine and therapies. 2023 Oct; 23(1):370. doi: 10.1186/s12906-023-04202-6. [PMID: 37864233]
  • Elena Neagu, Gabriela Paun, Camelia Albu, Oana Teodora Apreutesei, Gabriel Lucian Radu. In Vitro Assessment of the Antidiabetic and Anti-Inflammatory Potential of Artemisia absinthium, Artemisia vulgaris and Trigonella foenum-graecum Extracts Processed Using Membrane Technologies. Molecules (Basel, Switzerland). 2023 Oct; 28(20):. doi: 10.3390/molecules28207156. [PMID: 37894635]
  • Lin-Zhen Li, Liang Chen, Yang-Li Tu, Xiang-Jie Dai, Sheng-Jia Xiao, Jing-Shan Shi, Yong-Jun Li, Xiao-Sheng Yang. Six New Phenolic Glycosides from the Seeds of Moringa oleifera Lam. and Their α-Glucosidase Inhibitory Activity. Molecules (Basel, Switzerland). 2023 Sep; 28(17):. doi: 10.3390/molecules28176426. [PMID: 37687255]
  • Sadia Zulfiqar, Federica Blando, Caroline Orfila, Lisa J Marshall, Christine Boesch. Chromogenic Assay Is More Efficient in Identifying α-Amylase Inhibitory Properties of Anthocyanin-Rich Samples When Compared to the 3,5-Dinitrosalicylic Acid (DNS) Assay. Molecules (Basel, Switzerland). 2023 Sep; 28(17):. doi: 10.3390/molecules28176399. [PMID: 37687228]
  • Brilliant Nyathi, Jonathan Tatenda Bvunzawabaya, Chido Venissa P Mudawarima, Emily Manzombe, Kudakwashe Tsotsoro, Major Allen Selemani, Gadzikano Munyuki, Freeborn Rwere. Inhibitory and in silico molecular docking of Xeroderris stuhlmannii (Taub.) Mendonca & E.P. Sousa phytochemical compounds on human α-glucosidases. Journal of ethnopharmacology. 2023 Aug; 312(?):116501. doi: 10.1016/j.jep.2023.116501. [PMID: 37100261]
  • Moez Rhimi, Jean-Luc Da Lage, Richard Haser, Georges Feller, Nushin Aghajari. Structural and Functional Characterization of Drosophila melanogaster α-Amylase. Molecules (Basel, Switzerland). 2023 Jul; 28(14):. doi: 10.3390/molecules28145327. [PMID: 37513201]
  • Shumaila Kiran, Dilfaraz Khan, Hamid Ullah, Neelam Sahab, Shafiullah Khan. Three new α-glucosidase inhibitor benzo-isochromenes from Datura stramonium. Natural product research. 2023 Jul; 37(14):2390-2397. doi: 10.1080/14786419.2022.2116020. [PMID: 36000210]
  • Gamal A Mohamed, Abdelsattar M Omar, Moustafa E El-Araby, Shaza Mass, Sabrin R M Ibrahim. Assessments of Alpha-Amylase Inhibitory Potential of Tagetes Flavonoids through In Vitro, Molecular Docking, and Molecular Dynamics Simulation Studies. International journal of molecular sciences. 2023 Jun; 24(12):. doi: 10.3390/ijms241210195. [PMID: 37373340]
  • Jitendra Kumar Arya, Raushan Kumar, Akanksha Singh, Parisha Srivastava, Arun Kumar Yadava, Syed Ibrahim Rizvi. Acarbose mitigates age-dependent alterations in erythrocyte membrane transporters during aging in rats. Rejuvenation research. 2023 May; ?(?):. doi: 10.1089/rej.2023.0010. [PMID: 37166369]
  • Jinzhong Tian, Chong Li, Zhixiang Dong, Yunpeng Yang, Jing Xing, Peijun Yu, Ying Xin, Fengmei Xu, Lianwei Wang, Yahui Mu, Xiangyang Guo, Qiang Sun, Guoping Zhao, Yang Gu, Guijun Qin, Weihong Jiang. Inactivation of the antidiabetic drug acarbose by human intestinal microbial-mediated degradation. Nature metabolism. 2023 May; ?(?):. doi: 10.1038/s42255-023-00796-w. [PMID: 37157031]
  • Sai Anand Kannakazhi Kantari, Ranendra Pratap Biswal, Piyush Kumar, Malleswara Dharanikota, Ashok Agraharam. Antioxidant and Antidiabetic Activities, and UHPLC-ESI-QTOF-MS-Based Metabolite Profiling of an Endophytic Fungus Nigrospora sphaerica BRN 01 Isolated from Bauhinia purpurea L. Applied biochemistry and biotechnology. 2023 Apr; ?(?):. doi: 10.1007/s12010-023-04452-7. [PMID: 37004649]
  • G O Nascimento, S P D Marques, C E G Maia, A F de Sousa, R L Cunha, M R Malta, R W Owen, M K A Ferreira, A W da Silva, E L Rebouças, J E S A de Menezes, M M Marinho, E S Marinho, H S Dos Santos, A S M C Saliba, A P Massarioli, S M Alencar, A G O Sartori, M T S Trevisan. Hypoglycemic effect of Coffea arabica leaf extracts and major bioactive constituents. Journal of biomolecular structure & dynamics. 2023 Mar; ?(?):1-16. doi: 10.1080/07391102.2023.2188421. [PMID: 36927332]
  • Chao Liang, Chi Ndi, Louise Kjaerulff, Susan Semple, Bevan Buirchell, Sonia Coriani, Birger Lindberg Møller, Dan Staerk. Characterization of Serrulatane Diterpenoids in Eremophila phyllopoda subsp. phyllopoda by Triple High-Resolution α-Glucosidase/PTP1B/Radical Scavenging Profiling, NMR Spectroscopy, DFT-GIAO NMR, and Electronic Circular Dichroism Calculations. Journal of natural products. 2023 Mar; ?(?):. doi: 10.1021/acs.jnatprod.2c00692. [PMID: 36880726]
  • Cheng Zhao, Jiaojiao Qu, Ruili Lu, Renjie Chen, Quheng Dong, Bo Huang, Guanhu Bao, Fenglin Hu. Cyclic pentapeptides with anti-inflammatory, cytotoxic or α-glucosidase inhibitory activities from Basidiobolus meristosporus. Phytochemistry. 2023 Mar; ?(?):113636. doi: 10.1016/j.phytochem.2023.113636. [PMID: 36871901]
  • Min He, Yuan-Jing Li, Jiang Shao, Ya-Sheng Li, Zi-Ning Cui. Synthesis and biological evaluation of 2,5-disubstituted furan derivatives containing 1,3-thiazole moiety as potential α-glucosidase inhibitors. Bioorganic & medicinal chemistry letters. 2023 03; 83(?):129173. doi: 10.1016/j.bmcl.2023.129173. [PMID: 36764471]
  • Hanaa M Sayed, Amany S Ahmed, Iman Sa Khallaf, Wesam S Qayed, Anber F Mohammed, Hanan S M Farghaly, Ayman Asem. Phytochemical investigation, molecular docking studies and DFT calculations on the antidiabetic and cytotoxic activities of Gmelina philippensis CHAM. Journal of ethnopharmacology. 2023 Mar; 303(?):115938. doi: 10.1016/j.jep.2022.115938. [PMID: 36410572]
  • Siwar Soltani, Imed Koubaa, Ines Dhouib, Bassem Khemakhem, Pascal Marchand, Noureddine Allouche. New Specific α-Glucosidase Inhibitor Flavonoid from Thymelaea tartonraira Leaves: Structure Elucidation, Biological and Molecular Docking Studies. Chemistry & biodiversity. 2023 Feb; ?(?):e202200944. doi: 10.1002/cbdv.202200944. [PMID: 36757004]
  • Edinilze S C Oliveira, Leonard D R Acho, Ruben Dario Morales-Gamba, Alessandro S do Rosário, José Fernando M Barcellos, Emerson S Lima, Marcos B Machado. Hypoglycemic effect of the dry leaf extract of Myrcia multiflora in streptozotocin-induced diabetic mice. Journal of ethnopharmacology. 2023 Feb; 307(?):116241. doi: 10.1016/j.jep.2023.116241. [PMID: 36754187]
  • Jitendra Kumar Arya, Raushan Kumar, Akanksha Singh, Parisha Srivastava, Arun Kumar Yadawa, Syed Ibrahim Rizvi. Acarbose, an α-Glucosidase Inhibitor, Maintains Altered Redox Homeostasis During Aging by Targeting Glucose Metabolism in Rat Erythrocytes. Rejuvenation research. 2023 Feb; 26(1):21-31. doi: 10.1089/rej.2022.0032. [PMID: 36524249]
  • Komgrit Eawsakul, Tassanee Ongtanasup, Ngamrayu Ngamdokmai, Kingkan Bunluepuech. Alpha-glucosidase inhibitory activities of astilbin contained in Bauhinia strychnifolia Craib. stems: an investigation by in silico and in vitro studies. BMC complementary medicine and therapies. 2023 Jan; 23(1):25. doi: 10.1186/s12906-023-03857-5. [PMID: 36717857]
  • Romeo Toko Feunaing, Alfred Ngenge Tamfu, Abel Joel Yaya Gbaweng, Larissa Mekontso Magnibou, Fidele Ntchapda, Celine Henoumont, Sophie Laurent, Emmanuel Talla, Rodica Mihaela Dinica. In Vitro Evaluation of α-amylase and α-glucosidase Inhibition of 2,3-Epoxyprocyanidin C1 and Other Constituents from Pterocarpus erinaceus Poir. Molecules (Basel, Switzerland). 2022 Dec; 28(1):. doi: 10.3390/molecules28010126. [PMID: 36615320]
  • Adekunle O Ajiboye, Sidiqat A Shodehinde. Diet supplemented with boiled unripe plantain (Musa paradisiaca) exhibited antidiabetic potentials in streptozotocin-induced Wistar rats. Journal of food biochemistry. 2022 12; 46(12):e14431. doi: 10.1111/jfbc.14431. [PMID: 36200727]
  • Maria Fernanda Taviano, Sonia Núñez, Adrián Millán-Laleona, Concetta Condurso, Antonella Verzera, Maria Merlino, Monica Ragusa, Natalizia Miceli, Víctor López. Volatile composition, antidiabetic, and anti-obesity potential of Brassica incana leaf and flowering top extracts. Pharmaceutical biology. 2022 Dec; 60(1):1994-2001. doi: 10.1080/13880209.2022.2128825. [PMID: 36219451]
  • Pritika Mala, Gausal A Khan, Romila Gopalan, Desta Gedefaw, Katy Soapi. Fijian medicinal plants and their role in the prevention of Type 2 diabetes mellitus. Bioscience reports. 2022 11; 42(11):. doi: 10.1042/bsr20220461. [PMID: 36149310]
  • Ning Wen, Ping-Shun Song, Lin Ni, Juan Chen. Tannic acid-aminopropyltriethoxysilane co-deposition modified polymer membrane for α-glucosidase immobilization. Journal of chromatography. A. 2022 Nov; 1683(?):463550. doi: 10.1016/j.chroma.2022.463550. [PMID: 36219969]
  • Marya Aziz, Saeed Ahmad, Umair Khurshid, Irfan Pervaiz, Arslan Hussain Lodhi, Nasrullah Jan, Sameera Khurshid, Muhammad Adeel Arshad, Mohamed M Ibrahim, Gaber A M Mersal, Fahaad S Alenazi, Ahmed Awadh Saleh Alamri, Juwairiya Butt, Hammad Saleem, Zeinhom M El-Bahy. Comprehensive Biological Potential, Phytochemical Profiling Using GC-MS and LC-ESI-MS, and In-Silico Assessment of Strobilanthes glutinosus Nees: An Important Medicinal Plant. Molecules (Basel, Switzerland). 2022 Oct; 27(20):. doi: 10.3390/molecules27206885. [PMID: 36296481]
  • Neil Miller, Elizabeth Joubert. Critical Assessment of In Vitro Screening of α-Glucosidase Inhibitors from Plants with Acarbose as a Reference Standard. Planta medica. 2022 Oct; 88(12):1078-1091. doi: 10.1055/a-1557-7379. [PMID: 34662924]
  • Marnielle Rodrigues Coutinho, Antonio Wlisses da Silva, Maria Kueirislene Amâncio Ferreira, Emanuela de Lima Rebouças, Francisco Rogênio S Mendes, Edson Holanda Teixeira, Emanuelle Machado Marinho, Márcia Machado Marinho, Emmanuel Silva Marinho, Alexandre Magno Rodrigues Teixeira, Jane Eire Silva Alencar de Menezes, Hélcio Silva Dos Santos. Hypoglycemic effect on adult zebrafish (Danio rerio) of the 3β-6β-16β-trihydroxylup-20(29)-ene triterpene isolated from Combretum leprosum leaves in vivo and in silico approach. Fundamental & clinical pharmacology. 2022 Oct; 36(5):818-826. doi: 10.1111/fcp.12776. [PMID: 35261066]
  • Thi Thu Ha Nguyen, Van Tuyen Nguyen, Pham Van Cuong, Tra Nguyen Thanh, Tu Anh Le Thi, Doan Thi Mai Huong, Bich Ngan Truong, Marc Litaudon, Son Ninh The. A new flavonoid from the leaves of Garcinia mckeaniana Craib and α-glucosidase and acetylcholinesterase inhibitory activities. Natural product research. 2022 Oct; 36(19):5074-5080. doi: 10.1080/14786419.2021.1916019. [PMID: 33939580]
  • Minh Hao Hoang, Thi Anh Tuyet Nguyen, Nguyen Kim Tuyen Pham, Van Son Dang, Thi Nga Vo. A new oleanane-skeleton triterpene isolated from Coffea canephora. Natural product research. 2022 Oct; 36(20):5161-5167. doi: 10.1080/14786419.2021.1921767. [PMID: 33960226]
  • Shaymaa Najm Abed, Sania Bibi, Marwa Jan, Muhammad Talha, Noor Ul Islam, Muhammad Zahoor, Fakhria A Al-Joufi. Phytochemical Composition, Antibacterial, Antioxidant and Antidiabetic Potentials of Cydonia oblonga Bark. Molecules (Basel, Switzerland). 2022 Sep; 27(19):. doi: 10.3390/molecules27196360. [PMID: 36234897]
  • Shan-Shan Zhang, Yu-Fei Hou, Shao-Jing Liu, Sen Guo, Chi-Tang Ho, Nai-Sheng Bai. Exploring Active Ingredients, Beneficial Effects, and Potential Mechanism of Allium tenuissimum L. Flower for Treating T2DM Mice Based on Network Pharmacology and Gut Microbiota. Nutrients. 2022 Sep; 14(19):. doi: 10.3390/nu14193980. [PMID: 36235633]
  • Tao Yang, Kailing Yang, Yu Zhang, Ruixi Zhou, Fuxin Zhang, Guanqun Zhan, Zengjun Guo. Metabolites with antioxidant and α-glucosidase inhibitory activities produced by the endophytic fungi Aspergillus niger from Pachysandra terminalis. Bioscience, biotechnology, and biochemistry. 2022 Sep; 86(10):1343-1348. doi: 10.1093/bbb/zbac137. [PMID: 35973685]
  • Thanchanok Limcharoen, Phisit Pouyfung, Ngamrayu Ngamdokmai, Aruna Prasopthum, Aktsar Roskiana Ahmad, Wisdawati Wisdawati, Woraanong Prugsakij, Sakan Warinhomhoun. Inhibition of α-Glucosidase and Pancreatic Lipase Properties of Mitragyna speciosa (Korth.) Havil. (Kratom) Leaves. Nutrients. 2022 Sep; 14(19):. doi: 10.3390/nu14193909. [PMID: 36235558]
  • Yang Liu, Xue Zhou, Dan Zhou, Yongxing Jian, Jingfu Jia, Fahuan Ge. Isolation of Chalcomoracin as a Potential α-Glycosidase Inhibitor from Mulberry Leaves and Its Binding Mechanism. Molecules (Basel, Switzerland). 2022 Sep; 27(18):. doi: 10.3390/molecules27185742. [PMID: 36144478]
  • Fatima Rashid, Anam Javaid, Mahmood-Ur-Rahman, Usman Ali Ashfaq, Muhammad Sufyan, Abdulrahman Alshammari, Metab Alharbi, Muhammad Atif Nisar, Mohsin Khurshid. Integrating Pharmacological and Computational Approaches for the Phytochemical Analysis of Syzygium cumini and Its Anti-Diabetic Potential. Molecules (Basel, Switzerland). 2022 Sep; 27(17):. doi: 10.3390/molecules27175734. [PMID: 36080496]
  • Kunwadee Noonong, Kanta Pranweerapaiboon, Kulathida Chaithirayanon, Kantamat Surayarn, Phicharinee Ditracha, Narin Changklungmoa, Pornanan Kueakhai, Poonsit Hiransai, Kingkan Bunluepuech. Antidiabetic potential of Lysiphyllum strychnifolium (Craib) A. Schmitz compounds in human intestinal epithelial Caco-2 cells and molecular docking-based approaches. BMC complementary medicine and therapies. 2022 Sep; 22(1):235. doi: 10.1186/s12906-022-03706-x. [PMID: 36064352]
  • Nikeherpianti Lolok, Sri Adi Sumiwi, Ahmad Muhtadi, Yasmiwar Susilawati, Rini Hendriani, Dwi Syah Fitra Ramadhan, Jutti Levita, Idin Sahidin. Molecular docking and molecular dynamics studies of bioactive compounds contained in noni fruit (Morinda citrifolia L.) against human pancreatic α-amylase. Journal of biomolecular structure & dynamics. 2022 09; 40(15):7091-7098. doi: 10.1080/07391102.2021.1894981. [PMID: 33682637]
  • Nioofar Moheimanian, Hossein Mirkhani, Jelveh Sohrabipour, Amir Reza Jassbi. Inhibitory Potential of Six Brown Algae from the Persian Gulf on α-Glucosidase and In Vivo Antidiabetic Effect of Sirophysalis Trinodis. Iranian journal of medical sciences. 2022 09; 47(5):484-493. doi: 10.30476/ijms.2021.91258.2245. [PMID: 36117578]
  • Ting Xu, Jie-Ru Meng, Wanqing Cheng, Jia-Zheng Liu, Junyan Chu, Qian Zhang, Nannan Ma, Li-Ping Bai, Yong Guo. Discovery of honokiol thioethers containing 1,3,4-oxadiazole moieties as potential α-glucosidase and SARS-CoV-2 entry inhibitors. Bioorganic & medicinal chemistry. 2022 08; 67(?):116838. doi: 10.1016/j.bmc.2022.116838. [PMID: 35617790]
  • Xiaonan Zhang, Long Xu, Huan Chen, Xin Zhang, Yanqi Lei, Wenchao Liu, Hulin Xu, Bing Ma, Changjin Zhu. Novel Hydroxychalcone-Based Dual Inhibitors of Aldose Reductase and α-Glucosidase as Potential Therapeutic Agents against Diabetes Mellitus and Its Complications. Journal of medicinal chemistry. 2022 07; 65(13):9174-9192. doi: 10.1021/acs.jmedchem.2c00380. [PMID: 35749671]
  • Jiling Yi, Ting Zhao, Yuanlin Zhang, Yanxing Tan, Xiao Han, Yulin Tang, Guangying Chen. Isolated compounds from Dracaena angustifolia Roxb and acarbose synergistically/additively inhibit α-glucosidase and α-amylase: an in vitro study. BMC complementary medicine and therapies. 2022 Jul; 22(1):177. doi: 10.1186/s12906-022-03649-3. [PMID: 35780093]
  • Lintang Dian Saraswati, Bagoes Widjanarko, Vivi Endar Herawati, Apriliani Ismi Fauziah. The Effects of Chitosan-PEG Nanoparticles Based on Channa striata Protein Hydrolyzate on Decreasing Diabetes Mellitus in Diabetic Rats. Ethiopian journal of health sciences. 2022 Jul; 32(4):833-840. doi: 10.4314/ejhs.v32i4.21. [PMID: 35950072]
  • Dominika Kajszczak, Agnieszka Kowalska-Baron, Dorota Sosnowska, Anna Podsędek. In Vitro Inhibitory Effects of Viburnum opulus Bark and Flower Extracts on Digestion of Potato Starch and Carbohydrate Hydrolases Activity. Molecules (Basel, Switzerland). 2022 May; 27(10):. doi: 10.3390/molecules27103118. [PMID: 35630596]
  • Zhou Jiang, Juan Wang, Denise Imai, Tim Snider, Jenna Klug, Ruby Mangalindan, John Morton, Lida Zhu, Adam B Salmon, Jackson Wezeman, Jiayi Hu, Vinal Menon, Nicholas Marka, Laura Neidernhofer, Warren Ladiges. Short term treatment with a cocktail of rapamycin, acarbose and phenylbutyrate delays aging phenotypes in mice. Scientific reports. 2022 05; 12(1):7300. doi: 10.1038/s41598-022-11229-1. [PMID: 35508491]
  • Aditi Bhatnagar, Ravi Saini, Priya Dagar, Abha Mishra. Molecular modelling and in vitro studies of Daruharidra as a potent alpha-amylase inhibitor. Journal of biomolecular structure & dynamics. 2022 Apr; ?(?):1-12. doi: 10.1080/07391102.2022.2058093. [PMID: 35412420]
  • Gokhan Zengin, Dimitrina Zheleva-Dimitrova, Ebru Yüce Babacan, Rıdvan Polat, Uğur Çakılcıoğlu, Nabeelah Bibi Sadeer, Emmanoel V Costa, Mohamad Fawzi Mahomoodally, Daniele Naviglio, Monica Gallo, Domenico Montesano, José M Lorenzo, Reneta Gevrenova. Detailed Chemical Characterization and Biological Propensities of Malabaila lasiocarpa Extracts: An Endemic Plant to Turkey. Chemistry & biodiversity. 2022 Apr; 19(4):e202200068. doi: 10.1002/cbdv.202200068. [PMID: 35263005]
  • Patthamawadee Tongkaew, Anna Tohraman, Ramlatee Bungaramphai, Chalermchai Mitrpant, Ebru Aydin. Kluai Hin (Musa sapientum Linn.) peel as a source of functional polyphenols identified by HPLC-ESI-QTOF-MS and its potential antidiabetic function. Scientific reports. 2022 03; 12(1):4145. doi: 10.1038/s41598-022-08008-3. [PMID: 35264695]
  • Mohd Adnan Kausar, Sma Shahid, Sadaf Anwar, M Kuddus, Mohammad Kalim Ahmad Khan, Amany Mohammed Khalifa, Fahmida Khatoon, Abdullah D Alotaibi, Salman F Alkhodairy, Mejdi Snoussi, Jamal M Arif. Identifying the alpha-glucosidase inhibitory potential of dietary phytochemicals against diabetes mellitus type 2 via molecular interactions and dynamics simulation. Cellular and molecular biology (Noisy-le-Grand, France). 2022 Feb; 67(5):16-26. doi: 10.14715/cmb/2021.67.5.3. [PMID: 35818276]
  • Chao Liu, Adriaan Cleton, Yubin Sui, Yuwang Liu, Jinyi Li, Fei Yuan, Lei Sheng, Hongrong Xu, Xuening Li. Bioequivalence Evaluation Between Acarbose and Metformin Fixed-Dose Combination and Corresponding Individual Components in Healthy Chinese Male and Female Subjects. Clinical pharmacology in drug development. 2022 02; 11(2):173-184. doi: 10.1002/cpdd.994. [PMID: 34255938]
  • Jesús Miguel Magaña-Cerino, Tereso Jovany Guzmán, Irma Catalina Soto-Luna, Gabriel Betanzos-Cabrera, Carmen Magdalena Gurrola-Díaz. Cladodes from Nopalea cochenillifera (L.) Salm-Dyck (Cactaceae) attenuate postprandial glycaemia without markedly influencing α-glucosidase activity. Natural product research. 2022 Feb; 36(4):1105-1108. doi: 10.1080/14786419.2020.1851223. [PMID: 33238765]
  • Su-Juan Wang, Min Yu, Hua Li, Gui-Jie Zhang. Structures and Biological Activities of Polyacylated ent-Kaurane Diterpenoid Glycosides from the Aerial Parts of Inula hupehensis. Journal of natural products. 2022 01; 85(1):185-195. doi: 10.1021/acs.jnatprod.1c00947. [PMID: 34964626]
  • Sheng-Zhuo Huang, Qi Wang, Jing-Zhe Yuan, Cai-Hong Cai, Hao Wang, Attila Mándi, Tibor Kurtán, Hao-Fu Dai, You-Xing Zhao. Hexahydroazulene-2(1H)-one Sesquiterpenoids with Bridged Cyclobutane, Oxetane, and Tetrahydrofuran Rings from the Stems of Daphne papyracea with α-Glycosidase Inhibitory Activity. Journal of natural products. 2022 01; 85(1):3-14. doi: 10.1021/acs.jnatprod.0c01394. [PMID: 34935371]
  • Shashank M Patil, Reshma Mary Martiz, Ramith Ramu, Prithvi S Shirahatti, Ashwini Prakash, B R Prashantha Kumar, Naveen Kumar. Evaluation of flavonoids from banana pseudostem and flower (quercetin and catechin) as potent inhibitors of α-glucosidase: An in silico perspective. Journal of biomolecular structure & dynamics. 2022; 40(23):12491-12505. doi: 10.1080/07391102.2021.1971561. [PMID: 34488558]
  • Jinghong Li, Qi Wei, Karen C McCowen, Wei Xiong, Jiao Liu, Wenlijun Jiang, Robert L Thomas, Mark Hepokoski, Ming He, John Y J Shyy, Atul Malhotra, Nian Xiong, Willis X Li. Inpatient use of metformin and acarbose is associated with reduced mortality of COVID-19 patients with type 2 diabetes mellitus. Endocrinology, diabetes & metabolism. 2022 01; 5(1):e00301. doi: 10.1002/edm2.301. [PMID: 34585841]
  • Byron J Smith, Richard A Miller, Thomas M Schmidt. Muribaculaceae Genomes Assembled from Metagenomes Suggest Genetic Drivers of Differential Response to Acarbose Treatment in Mice. mSphere. 2021 12; 6(6):e0085121. doi: 10.1128/msphere.00851-21. [PMID: 34851167]
  • Lijiao Kan, Edoardo Capuano, Vincenzo Fogliano, Ruud Verkerk, Jurriaan J Mes, Monic M M Tomassen, Teresa Oliviero. Inhibition of α-glucosidases by tea polyphenols in rat intestinal extract and Caco-2 cells grown on Transwell. Food chemistry. 2021 Nov; 361(?):130047. doi: 10.1016/j.foodchem.2021.130047. [PMID: 34029903]
  • Yan Chen, Fahao Guo, Xin Wang, LuYao Liu, Can Yang, YuQing Xiong, Hong Zhang. Evaluation of the Bioequivalence of Acarbose in Healthy Chinese People. Clinical pharmacology in drug development. 2021 10; 10(10):1225-1230. doi: 10.1002/cpdd.921. [PMID: 33606918]
  • Shishi Xu, Charles A B Scott, Ruth L Coleman, Jaakko Tuomilehto, Rury R Holman. Predicting the risk of developing type 2 diabetes in Chinese people who have coronary heart disease and impaired glucose tolerance. Journal of diabetes. 2021 Oct; 13(10):817-826. doi: 10.1111/1753-0407.13175. [PMID: 33665904]
  • Stefan Grudén, Anders Forslund, Göran Alderborn, Arvid Söderhäll, Per M Hellström, Ulf Holmbäck. Safety of a Novel Weight Loss Combination Product Containing Orlistat and Acarbose. Clinical pharmacology in drug development. 2021 10; 10(10):1242-1247. doi: 10.1002/cpdd.920. [PMID: 33580745]
  • Chao Liang, Louise Kjaerulff, Paul Robert Hansen, Kenneth T Kongstad, Dan Staerk. Dual High-Resolution α-Glucosidase and PTP1B Inhibition Profiling Combined with HPLC-PDA-HRMS-SPE-NMR Analysis for the Identification of Potentially Antidiabetic Chromene Meroterpenoids from Rhododendron capitatum. Journal of natural products. 2021 09; 84(9):2454-2467. doi: 10.1021/acs.jnatprod.1c00454. [PMID: 34460246]
  • Yan Xing, Xinxiu Ren, Xia Li, Liping Sui, Xuan Shi, Yu Sun, Chunshan Quan, Zhilong Xiu, Yuesheng Dong. Baicalein Enhances the Effect of Acarbose on the Improvement of Nonalcoholic Fatty Liver Disease Associated with Prediabetes via the Inhibition of De Novo Lipogenesis. Journal of agricultural and food chemistry. 2021 Sep; 69(34):9822-9836. doi: 10.1021/acs.jafc.1c04194. [PMID: 34406004]
  • Tao Tian, Guo-Ying Chen, Hao Zhang, Feng-Qing Yang. Personal Glucose Meter for α-Glucosidase Inhibitor Screening Based on the Hydrolysis of Maltose. Molecules (Basel, Switzerland). 2021 Jul; 26(15):. doi: 10.3390/molecules26154638. [PMID: 34361791]
  • Shraddha Shaligram, Nitin P Narwade, Shreyas V Kumbhare, Manobjyoti Bordoloi, Kashyap J Tamuli, Shyamalendu Nath, T Parimelazhagan, Vikas S Patil, Atya Kapley, Shrikant P Pawar, Dhiraj P Dhotre, M G Muddeshwar, Hemant J Purohit, Yogesh S Shouche. Integrated Genomic and Functional Characterization of the Anti-diabetic Potential of Arthrobacter sp. SW1. Current microbiology. 2021 Jul; 78(7):2577-2588. doi: 10.1007/s00284-021-02523-8. [PMID: 33983483]
  • Fumie Takewaki, Hanako Nakajima, Daiki Takewaki, Yoshitaka Hashimoto, Saori Majima, Hiroshi Okada, Takafumi Senmaru, Emi Ushigome, Masahide Hamaguchi, Masahiro Yamazaki, Yoshiki Tanaka, Shunji Nakajima, Hiroshi Ohno, Michiaki Fukui. Habitual Dietary Intake Affects the Altered Pattern of Gut Microbiome by Acarbose in Patients with Type 2 Diabetes. Nutrients. 2021 Jun; 13(6):. doi: 10.3390/nu13062107. [PMID: 34205413]
  • Yolanda Alacid, María José Martínez-Tomé, C Reyes Mateo. Reusable Fluorescent Nanobiosensor Integrated in a Multiwell Plate for Screening and Quantification of Antidiabetic Drugs. ACS applied materials & interfaces. 2021 Jun; 13(22):25624-25634. doi: 10.1021/acsami.1c02505. [PMID: 34043318]
  • Wei Ji, Shaomei Yang, Wenyu Zhang, Zhongliang Sun, Qing Wen, Kun He. Pharmacodynamic comparison of acarbose tablets in Chinese healthy volunteers under chewing and swallowing conditions. Journal of clinical pharmacy and therapeutics. 2021 Jun; 46(3):814-819. doi: 10.1111/jcpt.13361. [PMID: 33462825]
  • José A Gutiérrez-González, Araceli Pérez-Vásquez, Rafael Torres-Colín, Manuel Rangel-Grimaldo, Daniela Rebollar-Ramos, Rachel Mata. α-Glucosidase Inhibitors from Ageratina grandifolia. Journal of natural products. 2021 05; 84(5):1573-1578. doi: 10.1021/acs.jnatprod.1c00105. [PMID: 33857371]
  • Ziqian Shen, Abby Hinson, Richard A Miller, Gonzalo G Garcia. Cap-independent translation: A shared mechanism for lifespan extension by rapamycin, acarbose, and 17α-estradiol. Aging cell. 2021 05; 20(5):e13345. doi: 10.1111/acel.13345. [PMID: 33742521]
  • Niels B Dalsgaard, Lærke S Gasbjerg, Laura S Hansen, Nina L Hansen, Signe Stensen, Bolette Hartmann, Jens F Rehfeld, Jens J Holst, Tina Vilsbøll, Filip K Knop. The role of GLP-1 in the postprandial effects of acarbose in type 2 diabetes. European journal of endocrinology. 2021 Mar; 184(3):383-394. doi: 10.1530/eje-20-1121. [PMID: 33449919]
  • Aminu Mohammed, Gbonjubola Victoria Awolola, Mohammed Auwal Ibrahim, Neil Anthony Koorbanally, Md Shahidul Islam. Oleanolic acid as a potential antidiabetic component of Xylopia aethiopica (Dunal) A. Rich. (Annonaceae) fruit: bioassay guided isolation and molecular docking studies. Natural product research. 2021 Mar; 35(5):788-791. doi: 10.1080/14786419.2019.1596094. [PMID: 30990061]
  • Sunday Idowu Oyeleye, Olajide Raymond Ojo, Ganiyu Oboh. Moringa oleifera leaf and seed inclusive diets influenced the restoration of biochemicals associated with erectile dysfunction in the penile tissue of STZ-induced diabetic male rats treated with/without Acarbose drug. Journal of food biochemistry. 2021 03; 45(3):e13323. doi: 10.1111/jfbc.13323. [PMID: 32538504]
  • Xue-Lian Zhang, Shen-Yuan Yuan, Gang Wan, Ming-Xia Yuan, Guang-Ran Yang, Han-Jing Fu, Liang-Xiang Zhu, Jian-Dong Zhang, Yu-Ling Li, Da-Yong Gao, Xue-Li Cui, Zi-Ming Wang, Rong-Rong Xie, Ying-Jun Chen. The effects of acarbose therapy on reductions of myocardial infarction and all-cause death in T2DM during 10-year multifactorial interventions (The Beijing Community Diabetes Study 24). Scientific reports. 2021 03; 11(1):4839. doi: 10.1038/s41598-021-84015-0. [PMID: 33649485]
  • Zhao-Rong Li, Rui-Bo Jia, Juan Wu, Lianzhu Lin, Zhi-Rong Ou, Bingwu Liao, Lixia Zhang, Xun Zhang, Guohui Song, Mouming Zhao. Sargassum fusiforme polysaccharide partly replaces acarbose against type 2 diabetes in rats. International journal of biological macromolecules. 2021 Feb; 170(?):447-458. doi: 10.1016/j.ijbiomac.2020.12.126. [PMID: 33352159]
  • Wei-Hung Lin, Chen-Yi Yang, Shihchen Kuo, Te-Hui Kuo, Jun-Neng Roan, Chung-Yi Li, Ming-Cheng Wang, Huang-Tz Ou. Hepatic and cardiovascular safety of acarbose among type 2 diabetes patients with end-stage renal disease: A nationwide population-based longitudinal study. Diabetes research and clinical practice. 2021 Feb; 172(?):108489. doi: 10.1016/j.diabres.2020.108489. [PMID: 33035600]
  • Ai-Qing Yu, Jiong Le, Wen-Tao Huang, Bin Li, Hui-Xin Liang, Qun Wang, Yu-Ting Liu, Charlotte-Aimee Young, Mei-Ying Zhang, Shu-Lan Qin. The Effects of Acarbose on Non-Diabetic Overweight and Obese Patients: A Meta-Analysis. Advances in therapy. 2021 02; 38(2):1275-1289. doi: 10.1007/s12325-020-01602-9. [PMID: 33421022]
  • Jianxin Li, Jing Li, Zhongyan Shan, Wenying Yang, Jie Liu, Haoming Tian, Zhiguang Zhou, Qiuhe Ji, Jianping Weng, Weiping Jia, Juming Lu, Jing Liu, Yuan Xu, Zhaojun Yang. Gender-differential effects on blood glucose levels between acarbose and metformin in Chinese patients with newly diagnosed type 2 diabetes: a sub-analysis of the MARCH trial. Endocrine journal. 2021 Jan; 68(1):69-79. doi: 10.1507/endocrj.ej20-0006. [PMID: 32908086]
  • Diyi Zhou, Lijun Chen, Xin Mou. Acarbose ameliorates spontaneous type‑2 diabetes in db/db mice by inhibiting PDX‑1 methylation. Molecular medicine reports. 2021 01; 23(1):. doi: 10.3892/mmr.2020.11710. [PMID: 33236139]
  • Xuejiao Wang, Ting Xu, Rui Liu, Guojun Wu, Liping Gu, Yahui Zhang, Feng Zhang, Huaqing Fu, Yunxia Ling, Xiaohui Wei, Yunchen Luo, Jian Shen, Liping Zhao, Yongde Peng, Chenhong Zhang, Xiaoying Ding. High-Fiber Diet or Combined With Acarbose Alleviates Heterogeneous Phenotypes of Polycystic Ovary Syndrome by Regulating Gut Microbiota. Frontiers in endocrinology. 2021; 12(?):806331. doi: 10.3389/fendo.2021.806331. [PMID: 35185786]
  • Malgorzata Wamil, John J V McMurray, Charles A B Scott, Ruth L Coleman, Yihong Sun, Eberhard Standl, Lars Rydén, Rury R Holman. Predicting heart failure events in patients with coronary heart disease and impaired glucose tolerance: Insights from the Acarbose Cardiovascular Evaluation (ACE) trial. Diabetes research and clinical practice. 2020 Dec; 170(?):108488. doi: 10.1016/j.diabres.2020.108488. [PMID: 33035598]
  • Ping Lin, Jia-Cheng Zeng, Ji-Guang Chen, Xu-Liang Nie, En Yuan, Xiao-Qiang Wang, Da-Yong Peng, Zhong-Ping Yin. Synthesis, in vitro inhibitory activity, kinetic study and molecular docking of novel N-alkyl-deoxynojirimycin derivatives as potential α-glucosidase inhibitors. Journal of enzyme inhibition and medicinal chemistry. 2020 Dec; 35(1):1879-1890. doi: 10.1080/14756366.2020.1826941. [PMID: 33003963]
  • Jonathan J Herrera, Sean Louzon, Kaitlyn Pifer, Danielle Leander, Gennifer E Merrihew, Jea H Park, Kate Szczesniak, Jeremy Whitson, John E Wilkinson, Oliver Fiehn, Michael J MacCoss, Sharlene M Day, Richard A Miller, Michael Garratt. Acarbose has sex-dependent and -independent effects on age-related physical function, cardiac health, and lipid biology. JCI insight. 2020 11; 5(21):. doi: 10.1172/jci.insight.137474. [PMID: 32990683]
  • Jie Huang, Wen-Yu Liu, Jing-Jing Yu, Jin-Bo Yang, Min Li, Chan Zou, Cheng-Xian Guo, Xiao-Yan Yang, Shuang Yang, Jin-Lian Xie, Zhi-Jun Huang, Hui Chen, Qi Pei, Guo-Ping Yang. Exploration of suitable pharmacodynamic parameters for acarbose bioequivalence evaluation: A series of clinical trials with branded acarbose. British journal of clinical pharmacology. 2020 11; 86(11):2225-2233. doi: 10.1111/bcp.14324. [PMID: 32333407]
  • Parisa Pishdad, Reza Pishdad, Gholam Reza Pishdad, Yunes Panahi. A time to revisit the two oldest prandial anti-diabetes agents: acarbose and repaglinide. Endocrine. 2020 11; 70(2):307-313. doi: 10.1007/s12020-020-02396-0. [PMID: 32621047]
  • Li He, Qian Su, Lan Bai, Meifeng Li, Juanru Liu, Xiaomei Liu, Cunyan Zhang, Zhongliang Jiang, Jun He, Jianyou Shi, Shan Huang, Li Guo. Recent research progress on natural small molecule bibenzyls and its derivatives in Dendrobium species. European journal of medicinal chemistry. 2020 Oct; 204(?):112530. doi: 10.1016/j.ejmech.2020.112530. [PMID: 32711292]
  • Su-Mei Xu, Yu-Ying Xu, Juan Yan, Yi-Fei Zhang, Dai Li, Dan Li, Xiao-Min Li, Jie Guo, Ping-Sheng Xu. Method for evaluating the human bioequivalence of acarbose based on pharmacodynamic parameters. The Journal of international medical research. 2020 Oct; 48(10):300060520960317. doi: 10.1177/0300060520960317. [PMID: 33044102]
  • Yuan-Chiang Chung, Ying-I Chen, Chih-Ming Lin, Su-Wei Chang, Tai-Hao Hsu, Wai-Jane Ho, Jaug-Geng Lin, Shih-Liang Chang, Chung-Yuh Tzeng. Electroacupuncture combined with acarbose improves insulin sensitivity via peroxisome proliferator-activated receptor γ activation and produces a stronger glucose-lowering effect than acarbose alone in a rat model of steroid-induced insulin resistance. Acupuncture in medicine : journal of the British Medical Acupuncture Society. 2020 10; 38(5):335-342. doi: 10.1177/0964528419901135. [PMID: 32297559]
  • Doie Park, Geleta Dugassa Barka, Eun-Young Yang, Myeong-Cheoul Cho, Jae Bok Yoon, Jundae Lee. Identification of QTLs Controlling α-Glucosidase Inhibitory Activity in Pepper (Capsicum annuum L.) Leaf and Fruit Using Genotyping-by-Sequencing Analysis. Genes. 2020 09; 11(10):. doi: 10.3390/genes11101116. [PMID: 32977701]
  • Hertzel C Gerstein, Ruth L Coleman, Charles A B Scott, Shishi Xu, Jaakko Tuomilehto, Lars Rydén, Rury R Holman. Impact of Acarbose on Incident Diabetes and Regression to Normoglycemia in People With Coronary Heart Disease and Impaired Glucose Tolerance: Insights From the ACE Trial. Diabetes care. 2020 09; 43(9):2242-2247. doi: 10.2337/dc19-2046. [PMID: 32641379]
  • Yun-Dong Xie, Ji-Ping Liu, Wei Wang, Yong-Heng Shi, Xiao-Ping Wang, Meng Sun, Xin-Ya Xu, Na Li. 3,4-Dihydroxyphenethyl nitrate with nitric oxide releasing, antioxidant, hypoglycemic and hypolipidemic effects. Bioorganic & medicinal chemistry letters. 2020 08; 30(15):127277. doi: 10.1016/j.bmcl.2020.127277. [PMID: 32527456]
  • Hui Fang, Fengmei Xu, Jin Du, Li Liang, Wei Li, Liya Shen, Xueying Wang, Chun Xu, Fang Bian, Yiming Mu. Impact of baseline characteristics on glycemic effects of add-on saxagliptin or acarbose to metformin therapy: Subgroup analysis of the SMART study in Chinese patients with type 2 diabetes mellitus. Journal of diabetes investigation. 2020 Jul; 11(4):896-905. doi: 10.1111/jdi.13224. [PMID: 32020731]
  • Neil Miller, Christiaan J Malherbe, Elizabeth Joubert. In vitroα-glucosidase inhibition by honeybush (Cyclopia genistoides) food ingredient extract-potential for dose reduction of acarbose through synergism. Food & function. 2020 Jul; 11(7):6476-6486. doi: 10.1039/d0fo01306d. [PMID: 32627774]
  • Jong Hoon Ahn, Youngki Park, Sang Won Yeon, Yang Hee Jo, Yoo Kyong Han, Ayman Turk, Se Hwan Ryu, Bang Yeon Hwang, Ki Yong Lee, Mi Kyeong Lee. Phenylpropanoid-Conjugated Triterpenoids from the Leaves of Actinidia arguta and Their Inhibitory Activity on α-Glucosidase. Journal of natural products. 2020 05; 83(5):1416-1423. doi: 10.1021/acs.jnatprod.9b00643. [PMID: 32315181]
  • Virayu Suthiphasilp, Wisanu Maneerat, Narawadee Rujanapun, Thidarat Duangyod, Rawiwan Charoensup, Suwanna Deachathai, Raymond J Andersen, Brian O Patrick, Stephen G Pyne, Surat Laphookhieo. α-Glucosidase inhibitory and nitric oxide production inhibitory activities of alkaloids isolated from a twig extract of Polyalthia cinnamomea. Bioorganic & medicinal chemistry. 2020 05; 28(10):115462. doi: 10.1016/j.bmc.2020.115462. [PMID: 32247751]
  • Lianghua Xie, Jianling Mo, Jingdan Ni, Yang Xu, Hongming Su, Jiahong Xie, Wei Chen. Structure-based design of human pancreatic amylase inhibitors from the natural anthocyanin database for type 2 diabetes. Food & function. 2020 Apr; 11(4):2910-2923. doi: 10.1039/c9fo02885d. [PMID: 32219283]