Galantamine (BioDeep_00000000236)

 

Secondary id: BioDeep_00000398667

human metabolite PANOMIX_OTCML-2023 blood metabolite Chemicals and Drugs natural product


代谢物信息卡片


(1S,12S,14R)-9-methoxy-4-methyl-11-oxa-4-azatetracyclo[8.6.1.01,12.06,17]heptadeca-6(17),7,9,15-tetraen-14-ol

化学式: C17H21NO3 (287.1521)
中文名称: 加兰他明, 雪花胺, 雪花莲胺, 加兰他敏
谱图信息: 最多检出来源 Viridiplantae(plant) 11.42%

Reviewed

Last reviewed on 2024-09-04.

Cite this Page

Galantamine. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China. https://query.biodeep.cn/s/galantamine (retrieved 2024-12-22) (BioDeep RN: BioDeep_00000000236). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

分子结构信息

SMILES: CN1CCC23C=CC(CC2OC4=C(C=CC(=C34)C1)OC)O
InChI: InChI=1S/C17H21NO3/c1-18-8-7-17-6-5-12(19)9-14(17)21-16-13(20-2)4-3-11(10-18)15(16)17/h3-6,12,14,19H,7-10H2,1-2H3/t12-,14-,17-/m0/s1

描述信息

Galanthamine is a benzazepine alkaloid isolated from certain species of daffodils. It has a role as an antidote to curare poisoning, an EC 3.1.1.7 (acetylcholinesterase) inhibitor, a cholinergic drug, an EC 3.1.1.8 (cholinesterase) inhibitor and a plant metabolite. It is an organic heterotetracyclic compound, a tertiary amino compound, a benzazepine alkaloid and a benzazepine alkaloid fundamental parent. It is a conjugate base of a galanthamine(1+).
Galantamine is a tertiary alkaloid and reversible, competitive inhibitor of the acetylcholinesterase (AChE) enzyme, which is a widely studied therapeutic target used in the treatment of Alzheimers disease. First characterized in the early 1950s, galantamine is a tertiary alkaloid that was extracted from botanical sources, such as Galanthus nivalis. Galantamine was first studied in paralytic and neuropathic conditions, such as myopathies and postpolio paralytic conditions, and for reversal of neuromuscular blockade. Following the discovery of its AChE-inhibiting properties, the cognitive effects of galantamine were studied in a wide variety of psychiatric disorders such as mild cognitive impairment, cognitive impairment in schizophrenia and bipolar disorder, and autism; however, re-development of the drug for Alzheimer’s disease did not commence until the early 1990s due to difficulties in extraction and synthesis. Galantamine blocks the breakdown of acetylcholine in the synaptic cleft, thereby increasing acetylcholine neurotransmission. It also acts as an allosteric modulator of the nicotinic receptor, giving its dual mechanism of action clinical significance. The drug was approved by the FDA in 2001 for the treatment of mild to moderate dementia of the Alzheimers type. As Alzheimers disease is a progressive neurodegenerative disorder, galantamine is not known to alter the course of the underlying dementing process. Galantamine works to block the enzyme responsible for the breakdown of acetylcholine in the synaptic cleft, thereby enhancing cholinergic neuron function and signalling. Under this hypothesized mechanism of action, the therapeutic effects of galantamine may decrease as the disease progression advances and fewer cholinergic neurons remain functionally intact. It is therefore not considered to be a disease-modifying drug. Galantamine is marketed under the brand name Razadyne, and is available as oral immediate- and extended-release tablets and solution.
Galantamine is a Cholinesterase Inhibitor. The mechanism of action of galantamine is as a Cholinesterase Inhibitor.
Galantamine is an oral acetylcholinesterase inhibitor used for therapy of Alzheimer disease. Galantamine is associated with a minimal rate of serum enzyme elevations during therapy and has not been implicated as a cause of clinically apparent liver injury.
Galantamine is a natural product found in Pancratium trianthum, Lycoris sanguinea, and other organisms with data available.
A benzazepine derived from norbelladine. It is found in GALANTHUS and other AMARYLLIDACEAE. It is a cholinesterase inhibitor that has been used to reverse the muscular effects of GALLAMINE TRIETHIODIDE and TUBOCURARINE and has been studied as a treatment for ALZHEIMER DISEASE and other central nervous system disorders.
See also: Galantamine Hydrobromide (active moiety of).
A benzazepine derived from norbelladine. It is found in galanthus and other amaryllidaceae. Galantamine is a cholinesterase inhibitor that has been used to reverse the muscular effects of gallamine triethiodide and tubocurarine, and has been studied as a treatment for Alzheimers disease and other central nervous system disorders. [PubChem]
D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D010277 - Parasympathomimetics
D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors
N - Nervous system > N06 - Psychoanaleptics > N06D - Anti-dementia drugs > N06DA - Anticholinesterases
D002491 - Central Nervous System Agents > D018697 - Nootropic Agents
A benzazepine alkaloid isolated from certain species of daffodils.
C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor
D004791 - Enzyme Inhibitors
Galanthamine is a potent acetylcholinesterase (AChE) inhibitor with an IC50 of 500 nM.
Galanthamine is a potent acetylcholinesterase (AChE) inhibitor with an IC50 of 500 nM.

同义名列表

88 个代谢物同义名

InChI=1/C17H21NO3/c1-18-8-7-17-6-5-12(19)9-14(17)21-16-13(20-2)4-3-11(10-18)15(16)17/h3-6,12,14,19H,7-10H2,1-2H3/t12-,14-,17-/m0/s1; 6H-BENZOFURO(3A,3,2-EF)(2)BENZAZEPIN-6-OL, 4A,5,9,10,11,12-HEXAHYDRO-3-METHOXY-11-METHYL-, (4A.ALPHA.,6.BETA.,8AR*)-; (1S,12S,14R)-9-methoxy-4-methyl-11-oxa-4-azatetracyclo[8.6.1.0^{1,12}.0^{6,17}]heptadeca-6,8,10(17),15-tetraen-14-ol; (1S,12S,14R)-9-methoxy-4-methyl-11-oxa-4-azatetracyclo[8.6.1.0^{1,12}.0^{6,17}]heptadeca-6(17),7,9,15-tetraen-14-ol; 6H-Benzofuro(3a,3,2-ef)(2)benzazepin-6-ol, 4a,5,9,10,11,12-hexahydro-3-methoxy-11-methyl-, (4aalpha,6beta,8ar*)-; (1S,12S,14R)-9-methoxy-4-methyl-11-oxa-4-azatetracyclo[8.6.1.0¹,¹².0⁶,¹⁷]heptadeca-6(17),7,9,15-tetraen-14-ol; (1S,12S,14R)-9-methoxy-4-methyl-11-oxa-4-azatetracyclo[8.6.1.01,12.06,17]heptadeca-6(17),7,9,15-tetraen-14-ol; 6H-Benzofuro(3a,3,2-ef)(2)benzazepin-6-ol, 4a,5,9,10,11,12-hexahydro-3-methoxy-11-methyl-, (4aR,6S,8aR)-rel-; 6H-Benzofuro(3a,3,2-ef)(2)benzazepin-6-ol, 4a,5,9,10,11,12-hexahydro-3-methoxy-11-methyl-, (4aS,6R,8aS)-; 6H-Benzofuro[3a,3,2-ef][2]benzazepin-6-ol, 4a,5,9,10,11,12-hexahydro-3-methoxy-11-methyl-, (4aS,6R,8aS)-; (4aS,6R,8aS)-3-methoxy-11-methyl-5,6,9,10,11,12-hexahydro-4aH-(1)benzofuro(3a,3,2-ef)(2)benzazepin-6-ol; 6H-BENZOFURO(3A,3,2-EF)(2)BENZAZEPIN-6-OL, 4A,5,9,10,11,12-HEXAHYDRO-3-METHOXY-11-METHYL-, (4AS,6R,8AS); (4aS,6R,8aS)-4a,5,9,10,11,12-Hexahydro-3-methoxy-11-methyl-6H-benzofurol[3a,3,2,-ef][2]benzazepin-6-ol; (4aS,6R,8aS)-4a,5,9,10,11,12-Hexahydro-3-methoxy-11-methyl-6H-benzofuro[3a,3,2-ef][2]benzazepin-6-ol; (4aS,6R,8aS)-4a,5,9,10,11,12-Hexahydro-3-methoxy-11-methyl-6H-benzofuro(3a,3,2-ef)(2)benzazepin-6-ol; (4aS,6R,8aS)-3-methoxy-11-methyl-4a,5,9,10,11,12-hexahydro-6H-benzo[2,3]benzofuro[4,3-cd]azepin-6-ol; (4aS,6R,8aS)-3-Methoxy-11-methyl-5,6,9,10,11,12-hexahydro-4aH-benzo[2,3]benzofuro[4,3-cd]azepin-6-ol; 6H-Benzofuro(3a,3,2-ef)(2)benzazepin-6-ol, 4a,5,9,10,11,12-hexahydro-3-methoxy-11-methyl-; Ortho mcneil neurologics brand OF galantamine; Ortho-mcneil neurologics brand OF galantamine; 4-27-00-02184 (Beilstein Handbook Reference); Galanthamine-O-(methyl-d3)-N-(methyl-d3); ASUTZQLVASHGKV-JDFRZJQESA-N; ASUTZQLVASHGKV-JDFRZJQESA-; Galantamine [USAN:INN:BAN]; Galanthamine hydrobromide; Galantamina (INN-Spanish); Galantamina [INN-Spanish]; Galantaminum (INN-Latin); Galantaminum [INN-Latin]; Galantamine (USAN/INN); Galanthamine, (+/-)-; GALANTAMINE [WHO-DD]; GALANTAMINE [VANDF]; Galantamine, (+/-)-; GALANTAMINE [HSDB]; (+/-)-Galanthamine; GALANTAMINE [USAN]; Prestwick1_000588; (+/-)-Galantamine; GALANTAMINE [INN]; Prestwick3_000588; Prestwick0_000588; Prestwick2_000588; Galanthamine, 12; Spectrum3_001738; Spectrum5_001673; (-)-Galanthamine; GALANTAMINE [MI]; Spectrum4_000839; (-)-Galantamine; UNII-1T835Z585R; UNII-0D3Q044KCA; Probes1_000055; Probes2_000395; DivK1c_000590; BPBio1_000480; Galanthaminum; KBio3_002636; Reminyl (TN); KBio2_004319; KBio2_006887; Galanthamine; Galantaminum; KBio2_001751; KBio1_000590; Galantamine; IDI1_000590; Razadyne ER; Galantamina; SMP1_000131; Galantamin; 0D3Q044KCA; Lycoremine; 1T835Z585R; Lycoremin; Razadyne; Bodamine; Nivaline; Reminyl; Nivalin; N06DA04; Jilkon; 1qti; 1dx6; GNT; Galanthamine; Galantamine



数据库引用编号

27 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(1)

PlantCyc(1)

代谢反应

2 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(1)

  • Amaryllidacea alkaloids biosynthesis: 4'-O-methylnorbelladine + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ (4aS,10bR)-noroxomaritidine + H2O + an oxidized [NADPH-hemoprotein reductase]

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(1)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

299 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 11 APOE, BCL2, BDNF, CA1, CASP3, CAT, CHAT, CYP2D6, GFAP, HMGB1, SGCA
Peripheral membrane protein 3 ACHE, CYP1B1, HMGB1
Endosome membrane 1 BACE1
Endoplasmic reticulum membrane 3 BCL2, CYP1B1, CYP2D6
Nucleus 6 ACHE, APOE, BCL2, CASP3, CHAT, HMGB1
cytosol 7 AGPS, BCL2, CA1, CASP3, CAT, CHAT, GFAP
dendrite 3 APOE, BACE1, BDNF
trans-Golgi network 1 BACE1
nucleoplasm 2 CASP3, HMGB1
Cell membrane 4 ACHE, BACE1, HMGB1, TNF
Cell projection, axon 1 BACE1
Synapse 2 ACHE, CHAT
cell surface 4 ACHE, BACE1, HMGB1, TNF
glutamatergic synapse 2 APOE, CASP3
Golgi apparatus 3 ACHE, APOE, BACE1
Golgi membrane 1 INS
neuromuscular junction 1 ACHE
neuronal cell body 4 APOE, BACE1, CASP3, TNF
sarcolemma 1 SGCA
synaptic vesicle 2 BACE1, BDNF
Lysosome 1 BACE1
endosome 2 BACE1, HMGB1
plasma membrane 6 ACHE, APOE, BACE1, BCHE, HMGB1, TNF
Membrane 10 ACHE, AGPS, APOE, BACE1, BCL2, BDNF, CAT, CYP1B1, CYP2D6, SGCA
axon 2 BACE1, BDNF
extracellular exosome 3 APOE, CA1, CAT
endoplasmic reticulum 5 APOE, BACE1, BCL2, CYP2D6, HMGB1
extracellular space 9 ACHE, APOE, BCHE, BDNF, HMGB1, IL10, IL6, INS, TNF
perinuclear region of cytoplasm 2 ACHE, BDNF
mitochondrion 5 AGPS, BCL2, CAT, CYP1B1, CYP2D6
protein-containing complex 2 BCL2, CAT
intracellular membrane-bounded organelle 3 CAT, CYP1B1, CYP2D6
Microsome membrane 2 CYP1B1, CYP2D6
postsynaptic density 1 CASP3
Single-pass type I membrane protein 2 BACE1, SGCA
Secreted 8 ACHE, APOE, BCHE, BDNF, HMGB1, IL10, IL6, INS
extracellular region 10 ACHE, APOE, BCHE, BDNF, CAT, HMGB1, IL10, IL6, INS, TNF
Mitochondrion outer membrane 1 BCL2
Single-pass membrane protein 3 BCL2, CYP2D6, SGCA
mitochondrial outer membrane 1 BCL2
astrocyte end-foot 1 GFAP
hippocampal mossy fiber to CA3 synapse 1 BACE1
mitochondrial matrix 1 CAT
Extracellular side 2 ACHE, HMGB1
Nucleus membrane 1 BCL2
Bcl-2 family protein complex 1 BCL2
nuclear membrane 1 BCL2
external side of plasma membrane 1 TNF
Endosome, multivesicular body 1 APOE
Extracellular vesicle 1 APOE
Secreted, extracellular space, extracellular matrix 1 APOE
chylomicron 1 APOE
high-density lipoprotein particle 1 APOE
low-density lipoprotein particle 1 APOE
multivesicular body 2 APOE, BACE1
very-low-density lipoprotein particle 1 APOE
Early endosome 2 APOE, BACE1
cell-cell junction 1 SGCA
recycling endosome 2 BACE1, TNF
Single-pass type II membrane protein 1 TNF
Cell membrane, sarcolemma 1 SGCA
Membrane raft 3 BACE1, SGCA, TNF
pore complex 1 BCL2
Cytoplasm, cytoskeleton 1 SGCA
focal adhesion 1 CAT
extracellular matrix 1 APOE
Peroxisome 2 AGPS, CAT
basement membrane 1 ACHE
Peroxisome matrix 1 CAT
peroxisomal matrix 2 AGPS, CAT
peroxisomal membrane 2 AGPS, CAT
collagen-containing extracellular matrix 1 APOE
intermediate filament 1 GFAP
Late endosome 1 BACE1
neuron projection 1 CHAT
cell projection 1 GFAP
phagocytic cup 1 TNF
Chromosome 1 HMGB1
cytoskeleton 1 SGCA
Secreted, extracellular space 1 APOE
Golgi apparatus, trans-Golgi network 1 BACE1
blood microparticle 2 APOE, BCHE
Lipid-anchor, GPI-anchor 1 ACHE
Endomembrane system 1 BACE1
endosome lumen 1 INS
Cytoplasmic vesicle membrane 1 BACE1
Cell projection, dendrite 1 BACE1
Melanosome 1 APOE
cell body 1 GFAP
side of membrane 1 ACHE
myelin sheath 1 BCL2
intermediate filament cytoskeleton 1 GFAP
Peroxisome membrane 1 AGPS
ficolin-1-rich granule lumen 2 CAT, HMGB1
secretory granule lumen 3 CAT, HMGB1, INS
Golgi lumen 1 INS
endoplasmic reticulum lumen 6 APOE, BACE1, BCHE, BDNF, IL6, INS
transcription repressor complex 1 HMGB1
transport vesicle 1 INS
Endoplasmic reticulum-Golgi intermediate compartment membrane 1 INS
nuclear envelope lumen 1 BCHE
clathrin-coated endocytic vesicle membrane 1 APOE
endoplasmic reticulum-Golgi intermediate compartment 1 HMGB1
synaptic cleft 2 ACHE, APOE
death-inducing signaling complex 1 CASP3
dystrophin-associated glycoprotein complex 1 SGCA
sarcoglycan complex 1 SGCA
condensed chromosome 1 HMGB1
cytoplasmic side of lysosomal membrane 1 GFAP
discoidal high-density lipoprotein particle 1 APOE
endocytic vesicle lumen 1 APOE
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
chylomicron remnant 1 APOE
intermediate-density lipoprotein particle 1 APOE
lipoprotein particle 1 APOE
multivesicular body, internal vesicle 1 APOE
catalase complex 1 CAT
alphav-beta3 integrin-HMGB1 complex 1 HMGB1
interleukin-6 receptor complex 1 IL6
BAD-BCL-2 complex 1 BCL2
[Isoform H]: Cell membrane 1 ACHE
[Neurotrophic factor BDNF precursor form]: Secreted 1 BDNF
Golgi-associated vesicle lumen 1 BACE1
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF


文献列表

  • Gabriela Haist, Boriana Sidjimova, Elina Yankova-Tsvetkova, Milena Nikolova, Rumen Denev, Ivanka Semerdjieva, Jaume Bastida, Strahil Berkov. Metabolite profiling and histochemical localization of alkaloids in Hippeastrum papilio (Ravena) van Scheepen. Journal of plant physiology. 2024 May; 296(?):154223. doi: 10.1016/j.jplph.2024.154223. [PMID: 38507926]
  • M A Aldubayan, A S Alsharidah, S K Alenezi, A H Alhowail. Galantamine mitigates neurotoxicity caused by doxorubicin via reduced neuroinflammation, oxidative stress, and apoptosis in rat model. European review for medical and pharmacological sciences. 2024 Jan; 28(2):805-813. doi: 10.26355/eurrev_202401_35081. [PMID: 38305623]
  • Ayca Cimen, Yavuz Baba, Arzu Birinci Yildirim, Arzu Ucar Turker. Do Vermicompost Applications Improve Growth Performance, Pharmaceutically Important Alkaloids, Phenolic Content, Free Radical Scavenging Potency and Defense Enzyme Activities in Summer Snowflake (Leucojum aestivum L.)?. Chemistry & biodiversity. 2023 Oct; ?(?):e202301074. doi: 10.1002/cbdv.202301074. [PMID: 37779102]
  • Wenli Shi, Wenxin Han, Yijing Liao, Jiaqi Wen, Guowen Zhang. Inhibition mechanism of fisetin on acetylcholinesterase and its synergistic effect with galantamine. Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy. 2023 Sep; 305(?):123452. doi: 10.1016/j.saa.2023.123452. [PMID: 37769468]
  • Kouadio Kra Norbert Bini, Koffi Christophe Kobenan, Malanno Kouakou, Ibrahime Sinan Kouadio, Gokhan Zengin, József Jekő, Zoltán Cziáky, Mathias Danho, Ochou Germain Ochou. Phytochemical profiling, antioxidant activities, enzymatic activities and insecticidal potential of aqueous extracts of four plants on the larvae of Helicoverpa armigera (Lepidoptera: Noctuidae), the main pest of cotton plant in Ivory Coast. Archives of insect biochemistry and physiology. 2023 Apr; ?(?):e22017. doi: 10.1002/arch.22017. [PMID: 37185885]
  • Rupa Sanyal, Manokari M, Sharmila Pandey, Saheli Nandi, Protha Biswas, Saikat Dewanjee, Abilash Valsala Gopalakrishnan, Niraj Kumar Jha, Saurabh Kumar Jha, Nirmal Joshee, Devendra Kumar Pandey, Abhijit Dey, Mahipal S Shekhawat. Biotechnological interventions and production of galanthamine in Crinum spp. Applied microbiology and biotechnology. 2023 Apr; 107(7-8):2155-2167. doi: 10.1007/s00253-023-12444-0. [PMID: 36922438]
  • Meng Tang, Chaohan Li, Cheng Zhang, Youming Cai, Yongchun Zhang, Liuyan Yang, Moxian Chen, Fuyuan Zhu, Qingzhu Li, Kehu Li. SWATH-MS-Based Proteomics Reveals the Regulatory Metabolism of Amaryllidaceae Alkaloids in Three Lycoris Species. International journal of molecular sciences. 2023 Feb; 24(5):. doi: 10.3390/ijms24054495. [PMID: 36901927]
  • Gabriela Haist, Boriana Sidjimova, Vladimir Vladimirov, Liliya Georgieva, Milena Nikolova, Jaume Bastida, Strahil Berkov. Morphological, cariological, and phytochemical studies of diploid and autotetraploid Hippeastrum papilio plants. Planta. 2023 Feb; 257(3):51. doi: 10.1007/s00425-023-04084-5. [PMID: 36757512]
  • Meenakshee Shrivas, Dignesh Khunt, Meera Shrivas, Manju Misra. Studies on pomegranate seed oil enriched galantamine hydrobromide microemulsion: formulation, in vitro antioxidant and neuroprotective potential. Pharmaceutical development and technology. 2023 Feb; 28(2):153-163. doi: 10.1080/10837450.2023.2171433. [PMID: 36662596]
  • Luciane B Silva, Elenilze F B Ferreira, Maryam, José M Espejo-Román, Glauber V Costa, Josiane V Cruz, Njogu M Kimani, Josivan S Costa, José A H M Bittencourt, Jorddy N Cruz, Joaquín M Campos, Cleydson B R Santos. Galantamine Based Novel Acetylcholinesterase Enzyme Inhibitors: A Molecular Modeling Design Approach. Molecules (Basel, Switzerland). 2023 Jan; 28(3):. doi: 10.3390/molecules28031035. [PMID: 36770702]
  • Rumyana Simeonova, Mariyana Atanasova, Georgi Stavrakov, Irena Philipova, Irini Doytchinova. Ex Vivo Antioxidant and Cholinesterase Inhibiting Effects of a Novel Galantamine-Curcumin Hybrid on Scopolamine-Induced Neurotoxicity in Mice. International journal of molecular sciences. 2022 Nov; 23(23):. doi: 10.3390/ijms232314843. [PMID: 36499171]
  • María Pilar de Torre, Rita Yolanda Cavero, María Isabel Calvo. Anticholinesterase Activity of Selected Medicinal Plants from Navarra Region of Spain and a Detailed Phytochemical Investigation of Origanum vulgare L. ssp. vulgare. Molecules (Basel, Switzerland). 2022 Oct; 27(20):. doi: 10.3390/molecules27207100. [PMID: 36296692]
  • Cheng Liu, Li-Ning Wang, Yu-Ming Liu. Novel Morpholine-Bearing Quinoline Derivatives as Potential Cholinesterase Inhibitors: The Influence of Amine, Carbon Linkers and Phenylamino Groups. International journal of molecular sciences. 2022 Sep; 23(19):. doi: 10.3390/ijms231911231. [PMID: 36232533]
  • Ion Brinza, Mohamed A El Raey, Walaa El-Kashak, Omayma A Eldahshan, Lucian Hritcu. Sweroside Ameliorated Memory Deficits in Scopolamine-Induced Zebrafish (Danio rerio) Model: Involvement of Cholinergic System and Brain Oxidative Stress. Molecules (Basel, Switzerland). 2022 Sep; 27(18):. doi: 10.3390/molecules27185901. [PMID: 36144637]
  • Agata Ptak, Emilia Morańska, Marzena Warchoł, Artur Gurgul, Edyta Skrzypek, Michał Dziurka, Dominique Laurain-Mattar, Rosella Spina, Anita Jaglarz, Magdalena Simlat. Endophytic bacteria from in vitro culture of Leucojum aestivum L. a new source of galanthamine and elicitor of alkaloid biosynthesis. Scientific reports. 2022 08; 12(1):13700. doi: 10.1038/s41598-022-17992-5. [PMID: 35953692]
  • Thitipon Yaowaluk, Vorapun Senanarong, Chanin Limwongse, Rasda Boonprasert, Duangkamon Bunditvorapoom, Supannee Kaewsutthi, Pornpimol Kijsanayotin. Association study identifies genetic determinants and non-genetic factors on steady-state plasma and therapeutic outcome of galantamine in mixed dementia. European journal of clinical pharmacology. 2022 Aug; 78(8):1249-1259. doi: 10.1007/s00228-022-03322-1. [PMID: 35633386]
  • Manoj Koirala, Vahid Karimzadegan, Nuwan Sameera Liyanage, Natacha Mérindol, Isabel Desgagné-Penix. Biotechnological Approaches to Optimize the Production of Amaryllidaceae Alkaloids. Biomolecules. 2022 06; 12(7):. doi: 10.3390/biom12070893. [PMID: 35883449]
  • Dena Parsa, Luul A Aden, Ashley Pitzer, Tan Ding, Chang Yu, Andre Diedrich, Ginger L Milne, Annet Kirabo, Cyndya A Shibao. Enhanced parasympathetic cholinergic activity with galantamine inhibited lipid-induced oxidative stress in obese African Americans. Molecular medicine (Cambridge, Mass.). 2022 06; 28(1):60. doi: 10.1186/s10020-022-00486-5. [PMID: 35659521]
  • Lyubomir T Vezenkov, Dancho L Danalev, Iwan Iwanov, Valentin Lozanov, Atanas Atanasov, Rumyana Todorova, Nikolay Vassilev, Veronika Karadjova. Synthesis and biological study of new galanthamine-peptide derivatives designed for prevention and treatment of Alzheimer's disease. Amino acids. 2022 Jun; 54(6):897-910. doi: 10.1007/s00726-022-03167-z. [PMID: 35562605]
  • Mariyana Atanasova, Ivan Dimitrov, Stefan Ivanov, Borislav Georgiev, Strahil Berkov, Dimitrina Zheleva-Dimitrova, Irini Doytchinova. Virtual Screening and Hit Selection of Natural Compounds as Acetylcholinesterase Inhibitors. Molecules (Basel, Switzerland). 2022 May; 27(10):. doi: 10.3390/molecules27103139. [PMID: 35630613]
  • Chien-Ting Liu, Chuan-Chi Yang, Wu-Chien Chien, Chi-Hsiang Chung, Chien-Sung Tsai, Yi-Ting Tsai, Chih-Yuan Lin, Yi-Chang Lin, Yi-Shi Chen, Nian-Sheng Tzeng. Association between long-term usage of acetylcholinesterase inhibitors and lung cancer in the elderly: a nationwide cohort study. Scientific reports. 2022 03; 12(1):3531. doi: 10.1038/s41598-022-06377-3. [PMID: 35241672]
  • Fangcheng Fan, Hua Liu, Xiaojie Shi, Yangwen Ai, Qingshan Liu, Yong Cheng. The Efficacy and Safety of Alzheimer's Disease Therapies: An Updated Umbrella Review. Journal of Alzheimer's disease : JAD. 2022; 85(3):1195-1204. doi: 10.3233/jad-215423. [PMID: 34924395]
  • Rong Wang, Yantong Liu, Sheng Xu, Jie Li, Jiayu Zhou, Ren Wang. An ATP-Binding Cassette Transporter, LaABCB11, Contributes to Alkaloid Transport in Lycoris aurea. International journal of molecular sciences. 2021 Oct; 22(21):. doi: 10.3390/ijms222111458. [PMID: 34768889]
  • Mahmoud Agami, Rasha A Shaalan, Saied F Belal, Marwa A A Ragab. LC-MS bioanalysis of targeted nasal galantamine bound chitosan nanoparticles in rats' brain homogenate and plasma. Analytical and bioanalytical chemistry. 2021 Aug; 413(20):5181-5191. doi: 10.1007/s00216-021-03487-1. [PMID: 34173038]
  • Ari Dienel, Remya A Veettil, Kanako Matsumura, Jude P J Savarraj, H Alex Choi, Peeyush Kumar T, Jaroslaw Aronowski, Pramod Dash, Spiros L Blackburn, Devin W McBride. α7-Acetylcholine Receptor Signaling Reduces Neuroinflammation After Subarachnoid Hemorrhage in Mice. Neurotherapeutics : the journal of the American Society for Experimental NeuroTherapeutics. 2021 07; 18(3):1891-1904. doi: 10.1007/s13311-021-01052-3. [PMID: 33970466]
  • Lamia Said Kandil, Ragwa M Farid, Safaa S ElGamal, Amira Sayed Hanafy. Intranasal galantamine/chitosan complex nanoparticles elicit neuroprotection potentials in rat brains via antioxidant effect. Drug development and industrial pharmacy. 2021 May; 47(5):735-740. doi: 10.1080/03639045.2021.1934861. [PMID: 34032549]
  • Shikha Lohan, Teenu Sharma, Sumant Saini, Rajan Swami, Dinesh Dhull, Sarwar Beg, Kaisar Raza, Anil Kumar, Bhupinder Singh. QbD-steered development of mixed nanomicelles of galantamine: Demonstration of enhanced brain uptake, prolonged systemic retention and improved biopharmaceutical attributes. International journal of pharmaceutics. 2021 May; 600(?):120482. doi: 10.1016/j.ijpharm.2021.120482. [PMID: 33737096]
  • Ferdausi Aleya, Chang Xianmin, Hall Anthony, Jones Meriel. Relative expression of putative genes involved in galanthamine and other Amaryllidaceae alkaloids biosynthesis in Narcissus field and in vitro tissues. Gene. 2021 Mar; 774(?):145424. doi: 10.1016/j.gene.2021.145424. [PMID: 33434626]
  • Rumyana Simeonova, Dimitrina Zheleva, Iva Valkova, Georgi Stavrakov, Irena Philipova, Mariyana Atanasova, Irini Doytchinova. A Novel Galantamine-Curcumin Hybrid as a Potential Multi-Target Agent against Neurodegenerative Disorders. Molecules (Basel, Switzerland). 2021 Mar; 26(7):. doi: 10.3390/molecules26071865. [PMID: 33806197]
  • Eman Shawky, Samah M El Sohafy, Jean Paulo de Andrade, Warley de Souza Borges. Profiling of acetylcholinesterase inhibitory alkaloids from some Crinum, Habranthus and Zephyranthes species by GC-MS combined with multivariate analyses and in silico studies. Natural product research. 2021 Mar; 35(5):807-814. doi: 10.1080/14786419.2019.1598989. [PMID: 30990078]
  • M D Fraser, H E Vallin, J R T Davies, G E Rowlands, X Chang. Integrating Narcissus-derived galanthamine production into traditional upland farming systems. Scientific reports. 2021 01; 11(1):1389. doi: 10.1038/s41598-021-81042-9. [PMID: 33446764]
  • Maria Lazarova, Lyubka Tancheva, Albena Alexandrova, Elina Tsvetanova, Almira Georgieva, Miroslava Stefanova, Daniela Tsekova, Lyubomir Vezenkov, Reni Kalfin, Diamara Uzunova, Polina Petkova-Kirova. Effects of New Galantamine Derivatives in a Scopolamine Model of Dementia in Mice. Journal of Alzheimer's disease : JAD. 2021; 84(2):671-690. doi: 10.3233/jad-215165. [PMID: 34569967]
  • Maria I Lazarova, Daniela S Tsekova, Lyubka P Tancheva, Kiril T Kirilov, Diamara N Uzunova, Lyubomir T Vezenkov, Elina R Tsvetanova, Albena V Alexandrova, Almira P Georgieva, Petja T Gavrilova, Stela T Dragomanova, Maria G Papazova, Yordan S Handzhiyski, Reni E Kalfin. New Galantamine Derivatives with Inhibitory Effect on Acetylcholinesterase Activity. Journal of Alzheimer's disease : JAD. 2021; 83(3):1211-1220. doi: 10.3233/jad-210577. [PMID: 34420968]
  • Carine Teles Sangaleti, Keyla Yukari Katayama, Kátia De Angelis, Tércio Lemos de Moraes, Amanda Aparecida Araújo, Heno F Lopes, Cleber Camacho, Luiz Aparecido Bortolotto, Lisete Compagno Michelini, Maria Cláudia Irigoyen, Peder S Olofsson, Douglas P Barnaby, Kevin J Tracey, Valentin A Pavlov, Fernanda Marciano Consolim Colombo. The Cholinergic Drug Galantamine Alleviates Oxidative Stress Alongside Anti-inflammatory and Cardio-Metabolic Effects in Subjects With the Metabolic Syndrome in a Randomized Trial. Frontiers in immunology. 2021; 12(?):613979. doi: 10.3389/fimmu.2021.613979. [PMID: 33776997]
  • Farrukh Ahmad. COVID-19 induced ARDS, and the use of galantamine to activate the cholinergic anti-inflammatory pathway. Medical hypotheses. 2020 12; 145(?):110331. doi: 10.1016/j.mehy.2020.110331. [PMID: 33038588]
  • Aakash Katdare, Dignesh Khunt, Shreya Thakkar, Surya Narayana Polaka, Manju Misra. Comparative evaluation of fish oil and butter oil in modulating delivery of galantamine hydrobromide to brain via intranasal route: pharmacokinetic and oxidative stress studies. Drug delivery and translational research. 2020 08; 10(4):1136-1146. doi: 10.1007/s13346-020-00739-y. [PMID: 32219727]
  • Darja Koutová, Negar Maafi, Radim Havelek, Lubomír Opletal, Gerald Blunden, Martina Řezáčová, Lucie Cahlíková. Chemical and Biological Aspects of Montanine-Type Alkaloids Isolated from Plants of the Amaryllidaceae Family. Molecules (Basel, Switzerland). 2020 May; 25(10):. doi: 10.3390/molecules25102337. [PMID: 32429491]
  • Md Tanvir Kabir, Md Sahab Uddin, Abdullah Al Mamun, Philippe Jeandet, Lotfi Aleya, Rasha A Mansouri, Ghulam Md Ashraf, Bijo Mathew, May N Bin-Jumah, Mohamed M Abdel-Daim. Combination Drug Therapy for the Management of Alzheimer's Disease. International journal of molecular sciences. 2020 May; 21(9):. doi: 10.3390/ijms21093272. [PMID: 32380758]
  • Nan Wu, Xuan Xu, Biao Wang, Xian-Mei Li, Ying-Yin Cheng, Ming Li, Xiao-Qin Xia, Yong-An Zhang. Anti-foodborne enteritis effect of galantamine potentially via acetylcholine anti-inflammatory pathway in fish. Fish & shellfish immunology. 2020 Feb; 97(?):204-215. doi: 10.1016/j.fsi.2019.12.028. [PMID: 31843701]
  • Ye Yuan, Minjie Zhao, Ludivine Riffault-Valois, Saïd Ennahar, Martine Bergaentzlé, Eric Marchioni. Online acetylcholinesterase inhibition evaluation by high-performance liquid chromatography-mass spectrometry hyphenated with an immobilized enzyme reactor. Journal of chromatography. A. 2020 Jan; 1609(?):460506. doi: 10.1016/j.chroma.2019.460506. [PMID: 31526637]
  • Roma Ghai, Kandasamy Nagarajan, Meenakshi Arora, Parul Grover, Nazakat Ali, Garima Kapoor. Current Strategies and Novel Drug Approaches for Alzheimer Disease. CNS & neurological disorders drug targets. 2020; 19(9):676-690. doi: 10.2174/1871527319666200717091513. [PMID: 32679025]
  • Soyeon Yoo, Min Su Han. A fluorescent probe for butyrylcholinesterase activity in human serum based on a fluorophore with specific binding affinity for human serum albumin. Chemical communications (Cambridge, England). 2019 Dec; 55(97):14574-14577. doi: 10.1039/c9cc07737e. [PMID: 31663530]
  • Tobie D Lee, Olivia W Lee, Kyle R Brimacombe, Lu Chen, Rajarshi Guha, Sabrina Lusvarghi, Bethilehem G Tebase, Carleen Klumpp-Thomas, Robert W Robey, Suresh V Ambudkar, Min Shen, Michael M Gottesman, Matthew D Hall. A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein. Molecular pharmacology. 2019 11; 96(5):629-640. doi: 10.1124/mol.119.115964. [PMID: 31515284]
  • Deepali Katoch, Upendra Sharma. Simultaneous quantification and identification of Amaryllidaceae alkaloids in Narcissus tazetta by ultra performance liquid chromatography-diode array detector-electrospray ionisation tandem mass spectrometry. Journal of pharmaceutical and biomedical analysis. 2019 Oct; 175(?):112750. doi: 10.1016/j.jpba.2019.06.047. [PMID: 31330284]
  • Jerald J Nair, Johannes van Staden. Antiprotozoal alkaloid principles of the plant family Amaryllidaceae. Bioorganic & medicinal chemistry letters. 2019 10; 29(20):126642. doi: 10.1016/j.bmcl.2019.126642. [PMID: 31515186]
  • Ameneh Tarakemeh, Majid Azizi, Vahid Rowshan, Hassan Salehi, Rosella Spina, François Dupire, Hossein Arouie, Dominique Laurain-Mattar. Screening of Amaryllidaceae alkaloids in bulbs and tissue cultures of Narcissus papyraceus and four varieties of N. tazetta. Journal of pharmaceutical and biomedical analysis. 2019 Aug; 172(?):230-237. doi: 10.1016/j.jpba.2019.04.043. [PMID: 31060036]
  • Kathleen M Carroll, Elise E DeVito, Sarah W Yip, Charla Nich, Mehmet Sofuoglu. Double-Blind Placebo-Controlled Trial of Galantamine for Methadone-Maintained Individuals With Cocaine Use Disorder: Secondary Analysis of Effects on Illicit Opioid Use. The American journal on addictions. 2019 07; 28(4):238-245. doi: 10.1111/ajad.12904. [PMID: 31165574]
  • Víctor Sieteiglesias, Elena González-Burgos, Paloma Bermejo-Bescós, Pradeep K Divakar, María Pilar Gómez-Serranillos. Lichens of Parmelioid Clade as Promising Multitarget Neuroprotective Agents. Chemical research in toxicology. 2019 06; 32(6):1165-1177. doi: 10.1021/acs.chemrestox.9b00010. [PMID: 31125207]
  • Jun Zhu, Li-Ning Wang, Rong Cai, Shang-Qi Geng, Ya-Fei Dong, Yu-Ming Liu. Design, synthesis, evaluation and molecular modeling study of 4-N-phenylaminoquinolines for Alzheimer disease treatment. Bioorganic & medicinal chemistry letters. 2019 06; 29(11):1325-1329. doi: 10.1016/j.bmcl.2019.03.050. [PMID: 30956012]
  • Yanbei Tu, Chuanhai Wu, Yunyao Kang, Qin Li, Chao Zhu, Yanfang Li. Bioactivity-guided identification of flavonoids with cholinesterase and β-amyloid peptide aggregation inhibitory effects from the seeds of Millettia pachycarpa. Bioorganic & medicinal chemistry letters. 2019 05; 29(10):1194-1198. doi: 10.1016/j.bmcl.2019.03.024. [PMID: 30910460]
  • Minky Son, Chanin Park, Shailima Rampogu, Amir Zeb, Keun Woo Lee. Discovery of Novel Acetylcholinesterase Inhibitors as Potential Candidates for the Treatment of Alzheimer's Disease. International journal of molecular sciences. 2019 Feb; 20(4):. doi: 10.3390/ijms20041000. [PMID: 30823604]
  • Anna Hostalkova, Jana Marikova, Lubomir Opletal, Jan Korabecny, Daniela Hulcova, Jiri Kunes, Lucie Novakova, Daniel I Perez, Daniel Jun, Tomas Kucera, Vincenza Andrisano, Tomas Siatka, Lucie Cahlikova. Isoquinoline Alkaloids from Berberis vulgaris as Potential Lead Compounds for the Treatment of Alzheimer's Disease. Journal of natural products. 2019 02; 82(2):239-248. doi: 10.1021/acs.jnatprod.8b00592. [PMID: 30701972]
  • Sarah W Yip, Dustin Scheinost, Marc N Potenza, Kathleen M Carroll. Connectome-Based Prediction of Cocaine Abstinence. The American journal of psychiatry. 2019 02; 176(2):156-164. doi: 10.1176/appi.ajp.2018.17101147. [PMID: 30606049]
  • Kurt R Lehner, Harold A Silverman, Meghan E Addorisio, Ashbeel Roy, Mohammed A Al-Onaizi, Yaakov Levine, Peder S Olofsson, Sangeeta S Chavan, Robert Gros, Neil M Nathanson, Yousef Al-Abed, Christine N Metz, Vania F Prado, Marco A M Prado, Kevin J Tracey, Valentin A Pavlov. Forebrain Cholinergic Signaling Regulates Innate Immune Responses and Inflammation. Frontiers in immunology. 2019; 10(?):585. doi: 10.3389/fimmu.2019.00585. [PMID: 31024522]
  • Grace S Pham, Lei A Wang, Keisa W Mathis. Pharmacological potentiation of the efferent vagus nerve attenuates blood pressure and renal injury in a murine model of systemic lupus erythematosus. American journal of physiology. Regulatory, integrative and comparative physiology. 2018 12; 315(6):R1261-R1271. doi: 10.1152/ajpregu.00362.2017. [PMID: 30332305]
  • Sherehan M Ibrahim, Muhammad Y Al-Shorbagy, Dalaal M Abdallah, Hanan S El-Abhar. Activation of α7 Nicotinic Acetylcholine Receptor Ameliorates Zymosan-Induced Acute Kidney Injury in BALB/c Mice. Scientific reports. 2018 11; 8(1):16814. doi: 10.1038/s41598-018-35254-1. [PMID: 30429582]
  • Wei Li, Yun Yang, Chong Qiao, Guolin Zhang, Yinggang Luo. Functional characterization of phenylalanine ammonia-lyase- and cinnamate 4-hydroxylase-encoding genes from Lycoris radiata, a galanthamine-producing plant. International journal of biological macromolecules. 2018 Oct; 117(?):1264-1279. doi: 10.1016/j.ijbiomac.2018.06.046. [PMID: 29894786]
  • Saroopa P Samaradivakara, Radhika Samarasekera, Shiroma M Handunnetti, O V D S Jagathpriya Weerasena, Ayad A Al-Hamashi, James T Slama, William R Taylor, Qasim Alhadidi, Zahoor A Shah, Lalith Perera, L M Viranga Tillekeratne. A Bioactive Resveratrol Trimer from the Stem Bark of the Sri Lankan Endemic Plant Vateria copallifera. Journal of natural products. 2018 08; 81(8):1693-1700. doi: 10.1021/acs.jnatprod.7b00892. [PMID: 30040425]
  • Milen G Bogdanov, Ivan Svinyarov. Analysis of acetylcholinesterase inhibitors by extraction in choline saccharinate aqueous biphasic systems. Journal of chromatography. A. 2018 Jul; 1559(?):62-68. doi: 10.1016/j.chroma.2018.01.007. [PMID: 29307532]
  • Robert Ross MacLean, Andrew J Waters, Emily Brede, Mehmet Sofuoglu. Effects of galantamine on smoking behavior and cognitive performance in treatment-seeking smokers prior to a quit attempt. Human psychopharmacology. 2018 07; 33(4):e2665. doi: 10.1002/hup.2665. [PMID: 29926988]
  • Edoardo Fabini, Anna Tramarin, Manuela Bartolini. Combination of human acetylcholinesterase and serum albumin sensing surfaces as highly informative analytical tool for inhibitor screening. Journal of pharmaceutical and biomedical analysis. 2018 Jun; 155(?):177-184. doi: 10.1016/j.jpba.2018.03.060. [PMID: 29635172]
  • Worranan Rangsimawong, Yasuko Obata, Praneet Opanasopit, Tanasait Ngawhirunpat, Kozo Takayama. Enhancement of Galantamine HBr Skin Permeation Using Sonophoresis and Limonene-Containing PEGylated Liposomes. AAPS PharmSciTech. 2018 Apr; 19(3):1093-1104. doi: 10.1208/s12249-017-0921-z. [PMID: 29168128]
  • Brian H May, Mei Feng, Anna J Hyde, Helmut Hügel, Su-Yueh Chang, Lin Dong, Xinfeng Guo, Anthony L Zhang, Chuanjian Lu, Charlie C Xue. Comparisons between traditional medicines and pharmacotherapies for Alzheimer disease: A systematic review and meta-analysis of cognitive outcomes. International journal of geriatric psychiatry. 2018 03; 33(3):449-458. doi: 10.1002/gps.4830. [PMID: 29239495]
  • Kathleen M Carroll, Charla Nich, Elise E DeVito, Julia M Shi, Mehmet Sofuoglu. Galantamine and Computerized Cognitive Behavioral Therapy for Cocaine Dependence: A Randomized Clinical Trial. The Journal of clinical psychiatry. 2018 Jan; 79(1):. doi: 10.4088/jcp.17m11669. [PMID: 29286595]
  • Jerald J Nair, Anke Wilhelm, Susanna L Bonnet, Johannes van Staden. Antibacterial constituents of the plant family Amaryllidaceae. Bioorganic & medicinal chemistry letters. 2017 11; 27(22):4943-4951. doi: 10.1016/j.bmcl.2017.09.052. [PMID: 29033234]
  • Elif Özdemir, Sevgi Tatar Ulu. Highly sensitive HPLC method for the determination of galantamine in human plasma and urine through derivatization with dansyl chloride using fluorescence detector. Luminescence : the journal of biological and chemical luminescence. 2017 Nov; 32(7):1145-1149. doi: 10.1002/bio.3301. [PMID: 28430400]
  • Yu-Ming Liu, Ya-Dong Feng, Xi Lu, Jian-Bing Nie, Wei Li, Li-Ning Wang, Li-Jun Tian, Qing-Hua Liu. Isosteroidal alkaloids as potent dual-binding site inhibitors of both acetylcholinesterase and butyrylcholinesterase from the bulbs of Fritillaria walujewii. European journal of medicinal chemistry. 2017 Sep; 137(?):280-291. doi: 10.1016/j.ejmech.2017.06.007. [PMID: 28605675]
  • M Rejwan Ali, Mostafa Sadoqi, Simon G Møller, Allal Boutajangout, Mihaly Mezei. Assessing the binding of cholinesterase inhibitors by docking and molecular dynamics studies. Journal of molecular graphics & modelling. 2017 09; 76(?):36-42. doi: 10.1016/j.jmgm.2017.06.027. [PMID: 28711758]
  • Yan Zhang, Lingling Zhao, Zhaoxuan Wu, Xinxin Chen, Tong Ma. Galantamine alleviates senescence of U87 cells induced by beta-amyloid through decreasing ROS production. Neuroscience letters. 2017 Jul; 653(?):183-188. doi: 10.1016/j.neulet.2017.05.055. [PMID: 28554861]
  • Shuangjiao Sun, Yanfen Wei, Yupin Cao, Biyang Deng. Simultaneous electrochemiluminescence determination of galanthamine, homolycorine, lycorenine, and tazettine in Lycoris radiata by capillary electrophoresis with ultrasonic-assisted extraction. Journal of chromatography. B, Analytical technologies in the biomedical and life sciences. 2017 Jun; 1055-1056(?):15-19. doi: 10.1016/j.jchromb.2017.04.020. [PMID: 28441543]
  • Emma L Wightman. Potential benefits of phytochemicals against Alzheimer's disease. The Proceedings of the Nutrition Society. 2017 05; 76(2):106-112. doi: 10.1017/s0029665116002962. [PMID: 28143625]
  • Guanqun Zhan, Junjun Liu, Junfei Zhou, Bin Sun, Haji Akber Aisa, Guangmin Yao. Amaryllidaceae alkaloids with new framework types from Zephyranthes candida as potent acetylcholinesterase inhibitors. European journal of medicinal chemistry. 2017 Feb; 127(?):771-780. doi: 10.1016/j.ejmech.2016.10.057. [PMID: 27823880]
  • Mariecia D Fraser, John R T Davies, Xianmin Chang. New Gold in Them Thar Hills: Testing a Novel Supply Route for Plant-Derived Galanthamine. Journal of Alzheimer's disease : JAD. 2017; 55(4):1321-1325. doi: 10.3233/jad-160791. [PMID: 27834779]
  • M Pohanka, J Zakova, J Fusek. Galantamine has impact on immunity in mice exposed to keyhole limpet hemocyanin. Bratislavske lekarske listy. 2017; 118(1):9-12. doi: 10.4149/bll_2017_002. [PMID: 28127976]
  • Donatella Ferri, Carla Ubaldi, Giordana Marcozzi, Paolo Fasciani, Loretta Bacchetta, Loretta Pace. Chemical Characterization of Narcissus poeticus from Sirente -Velino (Apennines - Italy): Galantamine Accumulation and Distribution of Allergenic Compounds in the Flower. Natural product communications. 2017 Jan; 12(1):15-18. doi: ". [PMID: 30549814]
  • Nurullah Sanli, Ibrahim Bulduk, Hatice Ozkurt, Senem Şanli, Sibel A Ozkan. Development and validation of a capillary zone electrophoretic method for rapid and sensitive determination of galanthamine: Application in plant and pharmaceuticals. Journal of pharmaceutical and biomedical analysis. 2016 Nov; 131(?):188-194. doi: 10.1016/j.jpba.2016.08.026. [PMID: 27596831]
  • Nurcan Karaman, Yusuf Sıcak, Tuğba Taşkın-Tok, Mehmet Öztürk, Ayşegül Karaküçük-İyidoğan, Miris Dikmen, Bedia Koçyiğit-Kaymakçıoğlu, Emine Elçin Oruç-Emre. New piperidine-hydrazone derivatives: Synthesis, biological evaluations and molecular docking studies as AChE and BChE inhibitors. European journal of medicinal chemistry. 2016 Nov; 124(?):270-283. doi: 10.1016/j.ejmech.2016.08.037. [PMID: 27592396]
  • Flavio A R Barbosa, Rômulo F S Canto, Sumbal Saba, Jamal Rafique, Antonio L Braga. Synthesis and evaluation of dihydropyrimidinone-derived selenoesters as multi-targeted directed compounds against Alzheimer's disease. Bioorganic & medicinal chemistry. 2016 11; 24(22):5762-5770. doi: 10.1016/j.bmc.2016.09.031. [PMID: 27681239]
  • Giuseppina Tommonaro, Nuria García-Font, Rosa Maria Vitale, Boris Pejin, Carmine Iodice, Sixta Cañadas, José Marco-Contelles, María Jesús Oset-Gasque. Avarol derivatives as competitive AChE inhibitors, non hepatotoxic and neuroprotective agents for Alzheimer's disease. European journal of medicinal chemistry. 2016 Oct; 122(?):326-338. doi: 10.1016/j.ejmech.2016.06.036. [PMID: 27376495]
  • Shubham Misra, Kanwaljit Chopra, Uma Nahar Saikia, Vivek Ranjan Sinha, Rakesh Sehgal, Manish Modi, Bikash Medhi. Effect of mesenchymal stem cells and galantamine nanoparticles in rat model of Alzheimer's disease. Regenerative medicine. 2016 10; 11(7):629-46. doi: 10.2217/rme-2016-0032. [PMID: 27582416]
  • Wan Nurul Nazneem Wan Othman, Sook Yee Liew, Kooi Yeong Khaw, Vikneswaran Murugaiyah, Marc Litaudon, Khalijah Awang. Cholinesterase inhibitory activity of isoquinoline alkaloids from three Cryptocarya species (Lauraceae). Bioorganic & medicinal chemistry. 2016 09; 24(18):4464-4469. doi: 10.1016/j.bmc.2016.07.043. [PMID: 27492195]
  • Javier E Ortiz, Natalia B Pigni, Sebastián A Andujar, German Roitman, Fernando D Suvire, Ricardo D Enriz, Alejandro Tapia, Jaume Bastida, Gabriela E Feresin. Alkaloids from Hippeastrum argentinum and Their Cholinesterase-Inhibitory Activities: An in Vitro and in Silico Study. Journal of natural products. 2016 05; 79(5):1241-8. doi: 10.1021/acs.jnatprod.5b00785. [PMID: 27096334]
  • Shubham Misra, Kanwaljit Chopra, V R Sinha, Bikash Medhi. Galantamine-loaded solid-lipid nanoparticles for enhanced brain delivery: preparation, characterization, in vitro and in vivo evaluations. Drug delivery. 2016 May; 23(4):1434-43. doi: 10.3109/10717544.2015.1089956. [PMID: 26405825]
  • Guanqun Zhan, Junfei Zhou, Rong Liu, Tingting Liu, Guoli Guo, Jianping Wang, Ming Xiang, Yongbo Xue, Zengwei Luo, Yonghui Zhang, Guangmin Yao. Galanthamine, Plicamine, and Secoplicamine Alkaloids from Zephyranthes candida and Their Anti-acetylcholinesterase and Anti-inflammatory Activities. Journal of natural products. 2016 Apr; 79(4):760-6. doi: 10.1021/acs.jnatprod.5b00681. [PMID: 26913788]
  • Shuai Ji, Ziwei Li, Wei Song, Yongrui Wang, Wenfei Liang, Kai Li, Shunan Tang, Qi Wang, Xue Qiao, Demin Zhou, Siwang Yu, Min Ye. Bioactive Constituents of Glycyrrhiza uralensis (Licorice): Discovery of the Effective Components of a Traditional Herbal Medicine. Journal of natural products. 2016 Feb; 79(2):281-92. doi: 10.1021/acs.jnatprod.5b00877. [PMID: 26841168]
  • G Li, C L Zhou, Q S Zhou, H D Zou. Galantamine protects against lipopolysaccharide-induced acute lung injury in rats. Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas. 2016 Feb; 49(2):e5008. doi: 10.1590/1414-431x20155008. [PMID: 26648090]
  • Laís Flávia Nunes Lemes, Giselle de Andrade Ramos, Andressa Souza de Oliveira, Fernanda Motta R da Silva, Gina de Castro Couto, Marina da Silva Boni, Marcos Jorge R Guimarães, Isis Nem O Souza, Manuela Bartolini, Vincenza Andrisano, Patrícia Coelho do Nascimento Nogueira, Edilberto Rocha Silveira, Guilherme D Brand, Ondřej Soukup, Jan Korábečný, Nelilma C Romeiro, Newton G Castro, Maria Laura Bolognesi, Luiz Antonio Soares Romeiro. Cardanol-derived AChE inhibitors: Towards the development of dual binding derivatives for Alzheimer's disease. European journal of medicinal chemistry. 2016 Jan; 108(?):687-700. doi: 10.1016/j.ejmech.2015.12.024. [PMID: 26735910]
  • Mennatallah A Gowayed, Rowaida Refaat, Walid M Ahmed, Hanan S El-Abhar. Effect of galantamine on adjuvant-induced arthritis in rats. European journal of pharmacology. 2015 Oct; 764(?):547-553. doi: 10.1016/j.ejphar.2015.07.038. [PMID: 26189022]
  • Belma Zengin Kurt, Isil Gazioglu, Livia Basile, Fatih Sonmez, Tiziana Ginex, Mustafa Kucukislamoglu, Salvatore Guccione. Potential of aryl-urea-benzofuranylthiazoles hybrids as multitasking agents in Alzheimer's disease. European journal of medicinal chemistry. 2015 Sep; 102(?):80-92. doi: 10.1016/j.ejmech.2015.07.005. [PMID: 26244990]
  • Aymen Ben Nejma, Asma Nguir, Hichem Ben Jannet, M'hamed Ali Hamza, Adam Daïch, Mohamed Othman, Ata Martin Lawson. New septanoside and 20-hydroxyecdysone septanoside derivative from Atriplex portulacoides roots with preliminary biological activities. Bioorganic & medicinal chemistry letters. 2015 Apr; 25(8):1665-1670. doi: 10.1016/j.bmcl.2015.03.028. [PMID: 25813159]
  • Soumee Bhattacharya, Alfred Maelicke, Dirk Montag. Nasal Application of the Galantamine Pro-drug Memogain Slows Down Plaque Deposition and Ameliorates Behavior in 5X Familial Alzheimer's Disease Mice. Journal of Alzheimer's disease : JAD. 2015; 46(1):123-36. doi: 10.3233/jad-142421. [PMID: 25720404]
  • Mennatallah A Ali, Hanan S El-Abhar, Maher A Kamel, Ahmed S Attia. Antidiabetic Effect of Galantamine: Novel Effect for a Known Centrally Acting Drug. PloS one. 2015; 10(8):e0134648. doi: 10.1371/journal.pone.0134648. [PMID: 26262991]
  • Arif Nisha Syad, Kasi Pandima Devi. Assessment of anti-amyloidogenic activity of marine red alga G. acerosa against Alzheimer's beta-amyloid peptide 25-35. Neurological research. 2015 Jan; 37(1):14-22. doi: 10.1179/1743132814y.0000000422. [PMID: 25016970]
  • P S Suresh, Ramesh Mullangi, Sathesh Kumar Sukumaran. Highly sensitive LC-MS/MS method for determination of galantamine in rat plasma: application to pharmacokinetic studies in rats. Biomedical chromatography : BMC. 2014 Dec; 28(12):1633-40. doi: 10.1002/bmc.3191. [PMID: 24801995]
  • Xin Zhou, Yue-Bin Liu, Shan Huang, Ying Liu. An LC-MS/MS method for the simultaneous determination of lycorine and galanthamine in rat plasma and its application to pharmacokinetic study of Lycoris radiata extract in rats. Journal of Huazhong University of Science and Technology. Medical sciences = Hua zhong ke ji da xue xue bao. Yi xue Ying De wen ban = Huazhong keji daxue xuebao. Yixue Yingdewen ban. 2014 Dec; 34(6):861-868. doi: 10.1007/s11596-014-1365-2. [PMID: 25480582]
  • Dhas Jebasingh, Dhas Devavaram Jackson, S Venkataraman, Ernest Adeghate, Bright Starling Emerald. The protective effects of Cyperus rotundus on behavior and cognitive function in a rat model of hypoxia injury. Pharmaceutical biology. 2014 Dec; 52(12):1558-69. doi: 10.3109/13880209.2014.908395. [PMID: 25026346]
  • Gulen Irem Kaya, Derya Cicek Polat, Buket Sarikaya, Mustafa Ali Onur, Nehir Unver Somer. Quantititative determination of lycorine and galanthamine in Galanthus trojanus and G. cilicicus by HPLC-DAD. Natural product communications. 2014 Aug; 9(8):1157-8. doi: ". [PMID: 25233596]
  • ". Holy Moly: Hermes' anticholinesterase antidote. Anesthesiology. 2014 Aug; 121(2):371. doi: 10.1097/01.anes.0000451816.76346.cd. [PMID: 25050493]
  • Rosdayati A Ramli, Wilford Lie, Stephen G Pyne. Alkaloids from the roots of Stichoneuron caudatum and their acetylcholinesterase inhibitory activities. Journal of natural products. 2014 Apr; 77(4):894-901. doi: 10.1021/np400978x. [PMID: 24606395]