NCBI Taxonomy: 82206

Agave amica (ncbi_taxid: 82206)

found 12 associated metabolites at species taxonomy rank level.

Ancestor: Agave

Child Taxonomies: none taxonomy data.

Sarsasapogenin

(2aR,4S,5S,6aS,6bS,8aS,8bR,9S,10R,11aS,12aS,12bR)-5,6a,8a,9-tetramethyldocosahydrospiro[naphtho[2,1:4,5]indeno[2,1-b]furan-10,2-pyran]-4-ol

C27H44O3 (416.329)


(25S)-5beta-spirostan-3beta-ol is a sapogenin. Sarsasapogenin is a natural product found in Yucca gloriosa, Narthecium ossifragum, and other organisms with data available. Constituent of Radix sarsaparilla (sarsaparilla root). Sarsasapogenin is found in asparagus, herbs and spices, and fenugreek. Sarsasapogenin is found in asparagus. Sarsasapogenin is a constituent of Radix sarsaparilla (sarsaparilla root) C274 - Antineoplastic Agent > C1931 - Antineoplastic Plant Product > C823 - Saponin C1907 - Drug, Natural Product Sarsasapogenin is a sapogenin from the Chinese medical herb Anemarrhena asphodeloides Bunge, with antidiabetic, anti-oxidative, anticancer and anti-inflamatory activities. Sarsasapogenin is a sapogenin from the Chinese medical herb Anemarrhena asphodeloides Bunge, with antidiabetic, anti-oxidative, anticancer and anti-inflamatory activities.

   

Galantamine

(1S,12S,14R)-9-methoxy-4-methyl-11-oxa-4-azatetracyclo[8.6.1.01,12.06,17]heptadeca-6(17),7,9,15-tetraen-14-ol

C17H21NO3 (287.1521)


Galanthamine is a benzazepine alkaloid isolated from certain species of daffodils. It has a role as an antidote to curare poisoning, an EC 3.1.1.7 (acetylcholinesterase) inhibitor, a cholinergic drug, an EC 3.1.1.8 (cholinesterase) inhibitor and a plant metabolite. It is an organic heterotetracyclic compound, a tertiary amino compound, a benzazepine alkaloid and a benzazepine alkaloid fundamental parent. It is a conjugate base of a galanthamine(1+). Galantamine is a tertiary alkaloid and reversible, competitive inhibitor of the acetylcholinesterase (AChE) enzyme, which is a widely studied therapeutic target used in the treatment of Alzheimers disease. First characterized in the early 1950s, galantamine is a tertiary alkaloid that was extracted from botanical sources, such as Galanthus nivalis. Galantamine was first studied in paralytic and neuropathic conditions, such as myopathies and postpolio paralytic conditions, and for reversal of neuromuscular blockade. Following the discovery of its AChE-inhibiting properties, the cognitive effects of galantamine were studied in a wide variety of psychiatric disorders such as mild cognitive impairment, cognitive impairment in schizophrenia and bipolar disorder, and autism; however, re-development of the drug for Alzheimer’s disease did not commence until the early 1990s due to difficulties in extraction and synthesis. Galantamine blocks the breakdown of acetylcholine in the synaptic cleft, thereby increasing acetylcholine neurotransmission. It also acts as an allosteric modulator of the nicotinic receptor, giving its dual mechanism of action clinical significance. The drug was approved by the FDA in 2001 for the treatment of mild to moderate dementia of the Alzheimers type. As Alzheimers disease is a progressive neurodegenerative disorder, galantamine is not known to alter the course of the underlying dementing process. Galantamine works to block the enzyme responsible for the breakdown of acetylcholine in the synaptic cleft, thereby enhancing cholinergic neuron function and signalling. Under this hypothesized mechanism of action, the therapeutic effects of galantamine may decrease as the disease progression advances and fewer cholinergic neurons remain functionally intact. It is therefore not considered to be a disease-modifying drug. Galantamine is marketed under the brand name Razadyne, and is available as oral immediate- and extended-release tablets and solution. Galantamine is a Cholinesterase Inhibitor. The mechanism of action of galantamine is as a Cholinesterase Inhibitor. Galantamine is an oral acetylcholinesterase inhibitor used for therapy of Alzheimer disease. Galantamine is associated with a minimal rate of serum enzyme elevations during therapy and has not been implicated as a cause of clinically apparent liver injury. Galantamine is a natural product found in Pancratium trianthum, Lycoris sanguinea, and other organisms with data available. A benzazepine derived from norbelladine. It is found in GALANTHUS and other AMARYLLIDACEAE. It is a cholinesterase inhibitor that has been used to reverse the muscular effects of GALLAMINE TRIETHIODIDE and TUBOCURARINE and has been studied as a treatment for ALZHEIMER DISEASE and other central nervous system disorders. See also: Galantamine Hydrobromide (active moiety of). A benzazepine derived from norbelladine. It is found in galanthus and other amaryllidaceae. Galantamine is a cholinesterase inhibitor that has been used to reverse the muscular effects of gallamine triethiodide and tubocurarine, and has been studied as a treatment for Alzheimers disease and other central nervous system disorders. [PubChem] D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D010277 - Parasympathomimetics D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors N - Nervous system > N06 - Psychoanaleptics > N06D - Anti-dementia drugs > N06DA - Anticholinesterases D002491 - Central Nervous System Agents > D018697 - Nootropic Agents A benzazepine alkaloid isolated from certain species of daffodils. C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor D004791 - Enzyme Inhibitors Galanthamine is a potent acetylcholinesterase (AChE) inhibitor with an IC50 of 500 nM. Galanthamine is a potent acetylcholinesterase (AChE) inhibitor with an IC50 of 500 nM.

   

Indole

2,3-Benzopyrrole

C8H7N (117.0578)


Indole is an aromatic heterocyclic organic compound. It has a bicyclic structure, consisting of a six-membered benzene ring fused to a five-membered nitrogen-containing pyrrole ring. The participation of the nitrogen lone electron pair in the aromatic ring means that indole is not a base, and it does not behave like a simple amine. Indole is a microbial metabolite and it can be produced by bacteria as a degradation product of the amino acid tryptophan. It occurs naturally in human feces and has an intense fecal smell. At very low concentrations, however, indole has a flowery smell and is a constituent of many flower scents (such as orange blossoms) and perfumes. As a volatile organic compound, indole has been identified as a fecal biomarker of Clostridium difficile infection (PMID: 30986230). Natural jasmine oil, used in the perfume industry, contains around 2.5\\\\\% of indole. Indole also occurs in coal tar. Indole has been found to be produced in a number of bacterial genera including Alcaligenes, Aspergillus, Escherichia, and Pseudomonas (PMID: 23194589, 2310183, 9680309). Indole plays a role in bacterial biofilm formation, bacterial motility, bacterial virulence, plasmid stability, and antibiotic resistance. It also functions as an intercellular signalling molecule (PMID: 26115989). Recently, it was determined that the bacterial membrane-bound histidine sensor kinase (HK) known as CpxA acts as a bacterial indole sensor to facilitate signalling (PMID: 31164470). It has been found that decreased indole concentrations in the gut promote bacterial pathogenesis, while increased levels of indole in the gut decrease bacterial virulence gene expression (PMID: 31164470). As a result, enteric pathogens sense a gradient of indole concentrations in the gut to migrate to different niches and successfully establish an infection. Constituent of several flower oils, especies of Jasminum and Citrus subspecies (Oleaceae) production of bacterial dec. of proteins. Flavouring ingredientand is also present in crispbread, Swiss cheese, Camembert cheese, wine, cocoa, black and green tea, rum, roasted filbert, rice bran, clary sage, raw shrimp and other foodstuffs Indole. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=120-72-9 (retrieved 2024-07-16) (CAS RN: 120-72-9). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Indole is an endogenous metabolite. Indole is an endogenous metabolite.

   

Gibberellin A19

(1S,2S,3S,4R,8R,9R,12S)-8-formyl-12-hydroxy-4-methyl-13-methylidenetetracyclo[10.2.1.0^{1,9}.0^{3,8}]pentadecane-2,4-dicarboxylic acid

C20H26O6 (362.1729)


Gibberellin A19 (GA19) belongs to the class of organic compounds known as C20-gibberellin 6-carboxylic acids. These are C20-gibberellins with a carboxyl group at the 6-position. Thus, gibberellin A19 is considered to be an isoprenoid lipid molecule. Gibberellin A19 is found in apple. Gibberellin A19 is a constituent of moso bamboo shoots (Phyllostachys edulis). Constituent of moso bamboo shoots (Phyllostachys edulis). Gibberellin A19 is found in many foods, some of which are swede, devilfish, vanilla, and canola. D006133 - Growth Substances > D010937 - Plant Growth Regulators > D005875 - Gibberellins

   

gibberellin A20

gibberellin A20

C19H24O5 (332.1624)


A C19-gibberellin that is a pentacyclic diterpenoid responsible for promoting growth and development. Initially identified in Gibberella fujikuroi, it differs from gibberellin A1 in lacking an OH group at C-2 (gibbane numbering).

   

Gibberellin A53

(1S,2S,3S,4R,8S,9S,12S)-12-hydroxy-4,8-dimethyl-13-methylidenetetracyclo[10.2.1.0^{1,9}.0^{3,8}]pentadecane-2,4-dicarboxylic acid

C20H28O5 (348.1937)


Gibberellin A53 (GA53) belongs to the class of organic compounds known as C20-gibberellin 6-carboxylic acids. These are C20-gibberellins with a carboxyl group at the 6-position. Thus, gibberellin A53 is considered to be an isoprenoid lipid molecule. Gibberellin A53 is found in apple. Gibberellin A53 is isolated from Vicia faba and spinach (Spinacia oleracea). Isolated from Vicia faba and spinach (Spinacia oleracea). Gibberellin A53 is found in many foods, some of which are sapodilla, cowpea, sorghum, and garden tomato.

   

Gibberellin A19

Gibberellin A19

C20H26O6 (362.1729)


D006133 - Growth Substances > D010937 - Plant Growth Regulators > D005875 - Gibberellins A C20-gibberellin.

   

Galantamine

(-)Galanthamine

C17H21NO3 (287.1521)


D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D010277 - Parasympathomimetics D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors N - Nervous system > N06 - Psychoanaleptics > N06D - Anti-dementia drugs > N06DA - Anticholinesterases Origin: Plant; SubCategory_DNP: Isoquinoline alkaloids, Amaryllidaceae alkaloids D002491 - Central Nervous System Agents > D018697 - Nootropic Agents C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor D004791 - Enzyme Inhibitors Origin: Plant, Benzazepines CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 27 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.263 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.257 Galanthamine is a potent acetylcholinesterase (AChE) inhibitor with an IC50 of 500 nM. Galanthamine is a potent acetylcholinesterase (AChE) inhibitor with an IC50 of 500 nM.

   

Indole

1H-indole

C8H7N (117.0578)


Indole is an endogenous metabolite. Indole is an endogenous metabolite.

   

Gibberellin A53

Gibberellin A53

C20H28O5 (348.1937)


A C20-gibberellin, initially identified in Vicia faba, that is gibberellin A12 in which a hydroxy substituent is present at the 7alpha- position.

   

Episarsasapogenin

(25R)-5alpha-Spirostan-3beta-ol

C27H44O3 (416.329)


Episarsasapogenin, also known as smilagenin or sarsasapogenin, (3beta,5beta,25s)-isomer, is a member of the class of compounds known as triterpenoids. Triterpenoids are terpene molecules containing six isoprene units. Episarsasapogenin is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Episarsasapogenin can be found in fenugreek, which makes episarsasapogenin a potential biomarker for the consumption of this food product.

   

indol

InChI=1\C8H7N\c1-2-4-8-7(3-1)5-6-9-8\h1-6,9

C8H7N (117.0578)


Indole is an endogenous metabolite. Indole is an endogenous metabolite.