NCBI Taxonomy: 228395

Lycoris radiata (ncbi_taxid: 228395)

found 91 associated metabolites at species taxonomy rank level.

Ancestor: Lycoris

Child Taxonomies: Lycoris radiata var. pumila, Lycoris radiata var. radiata

Methyl hexadecanoic acid

Methyl palmitate, United States Pharmacopeia (USP) Reference Standard

C17H34O2 (270.2559)


Methyl hexadecanoate, also known as methyl palmitate or palmitic acid methyl ester, is a member of the class of compounds known as fatty acid methyl esters. Fatty acid methyl esters are compounds containing a fatty acid that is esterified with a methyl group. They have the general structure RC(=O)OR, where R=fatty aliphatic tail or organyl group and R=methyl group. Thus, methyl hexadecanoate is considered to be a fatty ester lipid molecule. Methyl hexadecanoate is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Methyl hexadecanoate is a fatty, oily, and waxy tasting compound found in cloves, which makes methyl hexadecanoate a potential biomarker for the consumption of this food product. Methyl hexadecanoate can be found primarily in saliva. Methyl hexadecanoic acid belongs to the class of organic compounds known as fatty acid methyl esters. These are compounds containing a fatty acid that is esterified with a methyl group. They have the general structure RC(=O)OR, where R=fatty aliphatic tail or organyl group and R=methyl group. Methyl palmitate is a fatty acid methyl ester. It has a role as a metabolite. Methyl palmitate is a natural product found in Zanthoxylum beecheyanum, Lonicera japonica, and other organisms with data available. A natural product found in Neolitsea daibuensis. Methyl palmitate. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=112-39-0 (retrieved 2024-07-03) (CAS RN: 112-39-0). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Methyl palmitate, an acaricidal compound occurring in Lantana camara, inhibits phagocytic activity and immune response. Methyl palmitate also posseses anti-inflammatory and antifibrotic effects[1][2][3]. Methyl palmitate, an acaricidal compound occurring in Lantana camara, inhibits phagocytic activity and immune response. Methyl palmitate also posseses anti-inflammatory and antifibrotic effects[1][2][3].

   

Lycorine

1H-[1,3]Dioxolo[4,5-j]pyrrolo[3,2,1-de]phenanthridine-1,2-diol, 2,4,5,7,12b,12c-hexahydro-, (1S,2S,12bS,12cS)-

C16H17NO4 (287.1158)


Lycorine is an indolizidine alkaloid that is 3,12-didehydrogalanthan substituted by hydroxy groups at positions and 2 and a methylenedioxy group across positions 9 and 10. Isolated from Crinum asiaticum, it has been shown to exhibit antimalarial activity. It has a role as a protein synthesis inhibitor, an antimalarial, a plant metabolite and an anticoronaviral agent. It derives from a hydride of a galanthan. Lycorine is a natural product found in Sternbergia clusiana, Pancratium trianthum, and other organisms with data available. Lycorine is a toxic crystalline alkaloid found in various Amaryllidaceae species, such as the cultivated bush lily (Clivia miniata), surprise lilies (Lycoris), and daffodils (Narcissus). It may be highly poisonous, or even lethal, when ingested in certain quantities. Symptoms of lycorine toxicity are vomiting, diarrhea, and convulsions. Lycorine, definition at mercksource.com Regardless, it is sometimes used medicinally, a reason why some groups may harvest the very popular Clivia miniata. An indolizidine alkaloid that is 3,12-didehydrogalanthan substituted by hydroxy groups at positions and 2 and a methylenedioxy group across positions 9 and 10. Isolated from Crinum asiaticum, it has been shown to exhibit antimalarial activity. relative retention time with respect to 9-anthracene Carboxylic Acid is 0.144 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.136 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.138 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2316 INTERNAL_ID 2316; CONFIDENCE Reference Standard (Level 1) [Raw Data] CBA60_Lycorine_pos_30eV.txt [Raw Data] CBA60_Lycorine_pos_10eV.txt [Raw Data] CBA60_Lycorine_pos_50eV.txt [Raw Data] CBA60_Lycorine_pos_40eV.txt [Raw Data] CBA60_Lycorine_pos_20eV.txt Lycorine is a natural alkaloid extracted from the Amaryllidaceae plant. Lycorine is a potent and orally active SCAP inhibitor with a Kd value 15.24 nM. Lycorine downregulates the SCAP protein level without changing its transcription[2]. Lycorine is also a melanoma vasculogenic inhibitor[3]. Lycorine can be used for the study of prostate cancer and metabolic diseases[2].
Lycorine is a natural alkaloid extracted from the Amaryllidaceae plant. Lycorine is a potent and orally active SCAP inhibitor with a Kd value 15.24 nM. Lycorine downregulates the SCAP protein level without changing its transcription[2]. Lycorine is also a melanoma vasculogenic inhibitor[3]. Lycorine can be used for the study of prostate cancer and metabolic diseases[2].
Lycorine is a natural alkaloid extracted from the Amaryllidaceae plant. Lycorine is a potent and orally active SCAP inhibitor with a Kd value 15.24 nM. Lycorine downregulates the SCAP protein level without changing its transcription[2]. Lycorine is also a melanoma vasculogenic inhibitor[3]. Lycorine can be used for the study of prostate cancer and metabolic diseases[2].

   

Galantamine

(1S,12S,14R)-9-methoxy-4-methyl-11-oxa-4-azatetracyclo[8.6.1.01,12.06,17]heptadeca-6(17),7,9,15-tetraen-14-ol

C17H21NO3 (287.1521)


Galanthamine is a benzazepine alkaloid isolated from certain species of daffodils. It has a role as an antidote to curare poisoning, an EC 3.1.1.7 (acetylcholinesterase) inhibitor, a cholinergic drug, an EC 3.1.1.8 (cholinesterase) inhibitor and a plant metabolite. It is an organic heterotetracyclic compound, a tertiary amino compound, a benzazepine alkaloid and a benzazepine alkaloid fundamental parent. It is a conjugate base of a galanthamine(1+). Galantamine is a tertiary alkaloid and reversible, competitive inhibitor of the acetylcholinesterase (AChE) enzyme, which is a widely studied therapeutic target used in the treatment of Alzheimers disease. First characterized in the early 1950s, galantamine is a tertiary alkaloid that was extracted from botanical sources, such as Galanthus nivalis. Galantamine was first studied in paralytic and neuropathic conditions, such as myopathies and postpolio paralytic conditions, and for reversal of neuromuscular blockade. Following the discovery of its AChE-inhibiting properties, the cognitive effects of galantamine were studied in a wide variety of psychiatric disorders such as mild cognitive impairment, cognitive impairment in schizophrenia and bipolar disorder, and autism; however, re-development of the drug for Alzheimer’s disease did not commence until the early 1990s due to difficulties in extraction and synthesis. Galantamine blocks the breakdown of acetylcholine in the synaptic cleft, thereby increasing acetylcholine neurotransmission. It also acts as an allosteric modulator of the nicotinic receptor, giving its dual mechanism of action clinical significance. The drug was approved by the FDA in 2001 for the treatment of mild to moderate dementia of the Alzheimers type. As Alzheimers disease is a progressive neurodegenerative disorder, galantamine is not known to alter the course of the underlying dementing process. Galantamine works to block the enzyme responsible for the breakdown of acetylcholine in the synaptic cleft, thereby enhancing cholinergic neuron function and signalling. Under this hypothesized mechanism of action, the therapeutic effects of galantamine may decrease as the disease progression advances and fewer cholinergic neurons remain functionally intact. It is therefore not considered to be a disease-modifying drug. Galantamine is marketed under the brand name Razadyne, and is available as oral immediate- and extended-release tablets and solution. Galantamine is a Cholinesterase Inhibitor. The mechanism of action of galantamine is as a Cholinesterase Inhibitor. Galantamine is an oral acetylcholinesterase inhibitor used for therapy of Alzheimer disease. Galantamine is associated with a minimal rate of serum enzyme elevations during therapy and has not been implicated as a cause of clinically apparent liver injury. Galantamine is a natural product found in Pancratium trianthum, Lycoris sanguinea, and other organisms with data available. A benzazepine derived from norbelladine. It is found in GALANTHUS and other AMARYLLIDACEAE. It is a cholinesterase inhibitor that has been used to reverse the muscular effects of GALLAMINE TRIETHIODIDE and TUBOCURARINE and has been studied as a treatment for ALZHEIMER DISEASE and other central nervous system disorders. See also: Galantamine Hydrobromide (active moiety of). A benzazepine derived from norbelladine. It is found in galanthus and other amaryllidaceae. Galantamine is a cholinesterase inhibitor that has been used to reverse the muscular effects of gallamine triethiodide and tubocurarine, and has been studied as a treatment for Alzheimers disease and other central nervous system disorders. [PubChem] D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D010277 - Parasympathomimetics D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors N - Nervous system > N06 - Psychoanaleptics > N06D - Anti-dementia drugs > N06DA - Anticholinesterases D002491 - Central Nervous System Agents > D018697 - Nootropic Agents A benzazepine alkaloid isolated from certain species of daffodils. C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor D004791 - Enzyme Inhibitors Galanthamine is a potent acetylcholinesterase (AChE) inhibitor with an IC50 of 500 nM. Galanthamine is a potent acetylcholinesterase (AChE) inhibitor with an IC50 of 500 nM.

   

Narciclasine

(1,3)Dioxolo(4,5-j)phenanthridin-6(2H)-one, 3,4,4a,5-tetrahydro-2,3,4,7-tetrahydroxy-, (2S-(2-alpha,3-beta,4-beta,4a-beta))-

C14H13NO7 (307.0692)


Narciclasine is a member of phenanthridines. It has a role as a metabolite. Narciclasine is a natural product found in Lycoris sanguinea, Lycoris squamigera, and other organisms with data available. A natural product found in Narcissus pseudonarcissus. Narciclasine is a plant growth modulator. Narciclasine modulates the Rho/Rho kinase/LIM kinase/cofilin signaling pathway, greatly increasing GTPase RhoA activity as well as inducing actin stress fiber formation in a RhoA-dependent manner.

   

Lycorenin

(5aR,7S,11bS,11cS)-9,10-dimethoxy-1-methyl-3,5,5a,7,11b,11c-hexahydro-2H-isochromeno[3,4-g]indol-7-ol

C18H23NO4 (317.1627)


Lycorenine is an alkaloid. Lycorenine is a natural product found in Lycoris radiata, Narcissus munozii-garmendiae, and Hymenocallis littoralis with data available.

   

Trispherine

(2S,3S,9S,10S)-9-hydroxy-4-methyl-11,16,18-trioxa-4-azapentacyclo[11.7.0.02,10.03,7.015,19]icosa-1(20),7,13,15(19)-tetraen-12-one

C17H17NO5 (315.1107)


Hippeastrine is an indole alkaloid isolated from the Amaryllidaceae family and has been shown to exhibit cytotoxic activity. It has a role as an antineoplastic agent and a metabolite. It is an indole alkaloid, a delta-lactone, a secondary alcohol and an organic heteropentacyclic compound. Hippeastrine is a natural product found in Pancratium trianthum, Pancratium canariense, and other organisms with data available.

   

Hippurate

2-BENZAMIDOACETIC ACID

C9H9NO3 (179.0582)


C254 - Anti-Infective Agent > C255 - Urinary Anti-Infective Agent CONFIDENCE standard compound; INTERNAL_ID 130 KEIO_ID H065 Hippuric Acid (2-Benzamidoacetic acid), an acyl glycine produced by the conjugation of benzoic acid and glycine, is a normal component in urine as a metabolite of aromatic compounds from food. Hippuric Acid (2-Benzamidoacetic acid), an acyl glycine produced by the conjugation of benzoic acid and glycine, is a normal component in urine as a metabolite of aromatic compounds from food.

   

Sekisanin

8H-[1,3]Dioxolo[6,7][2]benzopyrano[3,4-c]indol-6a(3H)-ol,4,4a,5,6-tetrahydro-3-methoxy-5-methyl-, (3S,4aS,6aS,13bS)-

C18H21NO5 (331.142)


   

Difructose anhydride III

bis-beta-D-fructofuranose 1,2:2,3-dianhydride

C12H20O10 (324.1056)


   
   

7,3-Dihydroxy-4-methoxy-8-methylflavan

7,3-Dihydroxy-4-methoxy-8-methylflavan

C17H18O4 (286.1205)


   

9-O-Demethylhomolycorine

9-O-Demethylhomolycorine

C17H19NO4 (301.1314)


   

Lycoramine

1,2-Dihydrogalanthamine #

C17H23NO3 (289.1678)


Lycoramine, a dihydro-derivative of galanthamine, is isolated from Lycoris radiate. Lycoramine is a potent acetylcholinesterase (AChE) inhibitor[1][2]. Lycoramine, a dihydro-derivative of galanthamine, is isolated from Lycoris radiate. Lycoramine is a potent acetylcholinesterase (AChE) inhibitor[1][2].

   

O-Methyllycorenine

O-Methyllycorenine

C19H25NO4 (331.1783)


   

Methyl linoleate

Methyl linoleate, United States Pharmacopeia (USP) Reference Standard

C19H34O2 (294.2559)


Methyl linoleate is a fatty acid methyl ester of linoleic acid. It has been isolated from Neolitsea daibuensis. It has a role as a plant metabolite. It is functionally related to a linoleic acid. Methyl linoleate is a natural product found in Tussilago farfara, Azadirachta indica, and other organisms with data available. Methyl linoleate belongs to the class of organic compounds known as lineolic acids and derivatives. These are derivatives of lineolic acid. Lineolic acid is a polyunsaturated omega-6 18 carbon long fatty acid, with two CC double bonds at the 9- and 12-positions. A fatty acid methyl ester of linoleic acid. It has been isolated from Neolitsea daibuensis. Methyl linoleate, a major active constituent of Sageretia thea?fruit (HFSF), is a major anti-melanogenic compound. Methyl linoleate downregulates microphthalmia-associated transcription factor (MITF)?and tyrosinase-related proteins[1]. Methyl linoleate, a major active constituent of Sageretia thea?fruit (HFSF), is a major anti-melanogenic compound. Methyl linoleate downregulates microphthalmia-associated transcription factor (MITF)?and tyrosinase-related proteins[1].

   

PC(16:0/18:2(9Z,12Z))

3,5,8-Trioxa-4-phosphahexacosa-17,20-dien-1-aminium, 4-hydroxy-N,N,N-trimethyl-9-oxo-7-(((1-oxohexadecyl)oxy)methyl)-, inner salt, 4-oxide, (7R,17Z,20Z)-

C42H80NO8P (757.5621)


PC(16:0/18:2(9Z,12Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(16:0/18:2(9Z,12Z)), in particular, consists of one chain of palmitic acid at the C-1 position and one chain of linoleic acid at the C-2 position. The palmitic acid moiety is derived from fish oils, milk fats, vegetable oils and animal fats, while the linoleic acid moiety is derived from seed oils. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC. Palmitoyl-linoleoyl phosphatidylcholine, also known as phosphatidylcholine(16:0/18:2) or pc(16:0/18:2), is a member of the class of compounds known as phosphatidylcholines. Phosphatidylcholines are glycerophosphocholines in which the two free -OH are attached to one fatty acid each through an ester linkage. Thus, palmitoyl-linoleoyl phosphatidylcholine is considered to be a glycerophosphocholine lipid molecule. Palmitoyl-linoleoyl phosphatidylcholine is practically insoluble (in water) and a moderately acidic compound (based on its pKa). Palmitoyl-linoleoyl phosphatidylcholine can be found in a number of food items such as wax gourd, rowanberry, arrowroot, and chicory leaves, which makes palmitoyl-linoleoyl phosphatidylcholine a potential biomarker for the consumption of these food products. Palmitoyl-linoleoyl phosphatidylcholine can be found primarily in blood, saliva, and urine, as well as throughout all human tissues. In humans, palmitoyl-linoleoyl phosphatidylcholine is involved in a couple of metabolic pathways, which include phosphatidylcholine biosynthesis PC(16:0/18:2(9Z,12Z)) and phosphatidylethanolamine biosynthesis PE(16:0/18:2(9Z,12Z)). Moreover, palmitoyl-linoleoyl phosphatidylcholine is found to be associated with schizophrenia. 1-hexadecanoyl-2-(9Z,12Z-octadecadienoyl)-sn-glycero-3-phosphocholine is a phosphatidylcholine 34:2 in which the 1- and 2-acyl groups are specified as hexadecanoyl (palmitoyl) and 9Z,12Z-octadecadienoyl (linoleoyl) respectively. It is a phosphatidylcholine 34:2 and a 1-acyl-2-linoleoyl-sn-glycero-3-phosphocholine betaine. A complex mixture of phospholipids, glycolipids, triglycerides, phosphatidylcholines, phosphatidylethanolamines, and phosphatidylinositols. 1-hexadecanoyl-2-(9Z,12Z-octadecadienoyl)-sn-glycero-3-phosphocholine is a natural product found in Lycoris radiata, Vitis vinifera, and Drosophila melanogaster with data available. Lecithin is a phospholipid with a polar choline found in phosphoester linkage to diacylglycerol. A phosphatidylcholine 34:2 in which the 1- and 2-acyl groups are specified as hexadecanoyl (palmitoyl) and 9Z,12Z-octadecadienoyl (linoleoyl) respectively. Lecithin is regarded as a safe, conventional phospholipid source. Phospholipids are reported to alter the fatty acid composition and microstructure of the membranes in animal cells. Lecithin is regarded as a safe, conventional phospholipid source. Phospholipids are reported to alter the fatty acid composition and microstructure of the membranes in animal cells.

   

Hippuric acid

Phenylcarbonylaminoacetic acid

C9H9NO3 (179.0582)


Hippuric acid (Gr. hippos, horse, ouron, urine) is a carboxylic acid found in the urine of horses and other herbivores. Hippuric acid crystallizes in rhombic prisms which are readily soluble in hot water, melt at 187 °C and decompose at about 240 °C. High concentrations of hippuric acid can also indicate a toluene intoxication. When many aromatic compounds such as benzoic acid and toluene are taken internally, they are converted to hippuric acid by reaction with the amino acid, glycine.; Hippuric acid is an acyl glycine formed by the conjugation of benzoic aicd with glycine. Acyl glycines are produced through the action of glycine N-acyltransferase (EC 2.3.1.13) which is an enzyme that catalyzes the chemical reaction: acyl-CoA + glycine < -- > CoA + N-acylglycine. Hippuric acid is a normal component of urine and is typically increased with increased consumption of phenolic compounds (tea, wine, fruit juices). These phenols are converted to benzoic acid which is then converted to hippuric acid and excreted in the urine. Hippuric acid is the most frequently used biomarker in the biological monitoring of occupational exposure to toluene. This product of solvent biotransformation may be also found in the urine of individuals who have not been exposed to the solvent. A smaller fraction of the absorbed toluene is oxidized to aromatic compounds including ortho-cresol, which is not found significantly in the urine of nonexposed individuals. The concentration of hippuric acid in the urine of individuals exposed to a low toluene concentration does not differ from that of individuals not exposed to the solvent. This has led to the conclusion that hippuric acid should not be utilized in the biological monitoring of occupational exposure to low levels of toluene in the air.; Protein-bound organic acids such as hippuric acid are markedly accumulated in uremic plasma and produce defective protein binding of drugs. (PMID: 9120876, 8734460). Hippuric acid is an acyl glycine formed from the conjugation of benzoic acid with glycine. Acyl glycines are produced through the action of glycine N-acyltransferase (EC 2.3.1.13) which is an enzyme that catalyzes the chemical reaction: acyl-CoA + glycine < -- > CoA + N-acylglycine. Hippuric acid is a normal component of urine and is typically increased with increased consumption of phenolic compounds (tea, wine, fruit juices). These phenols are converted into benzoic acid which is then converted into hippuric acid and excreted in the urine. Hippuric acid is the most frequently used biomarker in the biological monitoring of occupational exposure to toluene. This product of solvent biotransformation may be also found in the urine of individuals who have not been exposed to the solvent. A smaller fraction of the absorbed toluene is oxidized into aromatic compounds including ortho-cresol, which is not found in the urine of nonexposed individuals in a significant amount. The concentration of hippuric acid in the urine of individuals exposed to a low toluene concentration does not differ from that of individuals not exposed to the solvent. This has led to the conclusion that hippuric acid should not be utilized in the biological monitoring of occupational exposure to low levels of toluene in the air. Protein-bound organic acids such as hippuric acid are markedly accumulated in uremic plasma and produce defective protein binding of drugs (PMID: 9120876 , 8734460). Hippuric acid has been identified as a uremic toxin according to the European Uremic Toxin Working Group (PMID: 22626821). Hippuric acid is also found to be associated with phenylketonuria, propionic acidemia, and tyrosinemia I, which are inborn errors of metabolism. Hippuric acid is an endogenous phenolic acid metabolite detected after the consumption of whole grain. C254 - Anti-Infective Agent > C255 - Urinary Anti-Infective Agent Hippuric Acid (2-Benzamidoacetic acid), an acyl glycine produced by the conjugation of benzoic acid and glycine, is a normal component in urine as a metabolite of aromatic compounds from food. Hippuric Acid (2-Benzamidoacetic acid), an acyl glycine produced by the conjugation of benzoic acid and glycine, is a normal component in urine as a metabolite of aromatic compounds from food.

   

PC(16:0/16:0)

(R)-4-Hydroxy-N,N,N-trimethyl-10-oxo-7-[(1-oxohexadecyl)oxy]-3,5,9-trioxa-4-phosphapentacosan-1-aminium 4-oxide hydroxide inner salt

C40H80NO8P (733.5621)


PC(16:0/16:0) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(16:0/16:0), in particular, consists of two chains of palmitic acid at the C-1 and C-2 positions. The palmitic acid moieties are derived from fish oils, milk fats, vegetable oils and animal fats. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Dipalmitoylphosphatidylcholine (DPPC) is the major constituent of pulmonary surfactant. It is also used for research purposes in studying liposomes, lipid bilayers, and model biological membranes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC. PC(16:0/16:0) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(16:0/16:0), in particular, consists of two chains of palmitic acid at the C-1 and C-2 positions. The palmitic acid moieties are derived from fish oils, milk fats, vegetable oils and animal fats. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Dipalmitoylphosphatidylcholine (DPPC) is the major constituent of pulmonary surfactant. It is also used for research purposes in studying liposomes, lipid bilayers, and model biological membranes. R - Respiratory system > R07 - Other respiratory system products > R07A - Other respiratory system products > R07AA - Lung surfactants C78273 - Agent Affecting Respiratory System DPPC (129Y83) is a zwitterionic phosphoglyceride that can be used for the preparation of liposomal monolayers[1]. DPPC-liposome serves effectively as a delivery vehicle for inducing immune responses against GSL antigen in mice[2].

   

lycorine

5,7-dioxa-12-azapentacyclo[10.6.1.0²,¹⁰.0⁴,⁸.0¹⁵,¹⁹]nonadeca-2,4(8),9,15-tetraene-17,18-diol

C16H17NO4 (287.1158)


   

Epigalanthamin

9-methoxy-4-methyl-11-oxa-4-azatetracyclo[8.6.1.0¹,¹².0⁶,¹⁷]heptadeca-6,8,10(17),15-tetraen-14-ol

C17H21NO3 (287.1521)


D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D010277 - Parasympathomimetics D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors D002491 - Central Nervous System Agents > D018697 - Nootropic Agents D004791 - Enzyme Inhibitors

   

Z7N4S72301

1H-(1,3)DIOXOLO(4,5-J)PYRROLO(3,2,1-DE)PHENANTHRIDINE-1,2-DIOL, 2,3,3A,4,5,7,12B,12C-OCTAHYDRO-, (1S,2S,3AR,12BS,12CR)-

C16H19NO4 (289.1314)


Dihydrolycorine is a natural product found in Lycoris radiata, Pancratium maritimum, and Galanthus trojanus with data available. Dihydrolycorine, isolated from Lycoris radiate Herb, is an inhibitor of protein synthesis in eukarytic cells by inhibiting the peptide bone formation step[1][2]. Dihydrolycorine, isolated from Lycoris radiate Herb, is an inhibitor of protein synthesis in eukarytic cells by inhibiting the peptide bone formation step[1][2].

   

Reminyl

6H-BENZOFURO(3A,3,2-EF)(2)BENZAZEPIN-6-OL, 4A,5,9,10,11,12-HEXAHYDRO-3-METHOXY-11-METHYL-, HYDROBROMIDE, (4A.ALPHA.,6.BETA.,8AR*)-

C17H21NO3.HBr (367.0783)


Galantamine Hydrobromide is the hydrobromide salt form of galantamine, a tertiary alkaloid obtained synthetically or naturally from the bulbs and flowers of Narcissus and several other genera of the Amaryllidaceae family with anticholinesterase and neurocognitive-enhancing activities. Galantamine competitively and reversibly inhibits acetylcholinesterase, thereby increasing the concentration and enhancing the action of acetylcholine (Ach). In addition, galantamine is a ligand for nicotinic acetylcholine receptors, which may increase the presynaptic release of Ach and activate postsynaptic receptors. This agent may improve neurocognitive function in mild and moderate Alzheimer s disease and may reduce abstinence-induced cognitive symptoms that promote smoking relapse. A benzazepine derived from norbelladine. It is found in GALANTHUS and other AMARYLLIDACEAE. It is a cholinesterase inhibitor that has been used to reverse the muscular effects of GALLAMINE TRIETHIODIDE and TUBOCURARINE and has been studied as a treatment for ALZHEIMER DISEASE and other central nervous system disorders. See also: Galantamine (has active moiety). Galanthamine hydrobromide (Galantamine hydrobromide) is a selective, reversible, competitive, alkaloid AChE inhibitor, with an IC50 of 0.35 μM. Galanthamine hydrobromide is a potent allosteric potentiating ligand (APL) of human α3β4, α4β2, α6β4 nicotinic receptors ( nAChRs). Galanthamine hydrobromide is developed for the research of Alzheimer's disease (AD)[1][2][3]. Galanthamine hydrobromide (Galantamine hydrobromide) is a selective, reversible, competitive, alkaloid AChE inhibitor, with an IC50 of 0.35 μM. Galanthamine hydrobromide is a potent allosteric potentiating ligand (APL) of human α3β4, α4β2, α6β4 nicotinic receptors ( nAChRs). Galanthamine hydrobromide is developed for the research of Alzheimer's disease (AD)[1][2][3]. Galanthamine hydrobromide (Galantamine hydrobromide) is a selective, reversible, competitive, alkaloid AChE inhibitor, with an IC50 of 0.35 μM. Galanthamine hydrobromide is a potent allosteric potentiating ligand (APL) of human α3β4, α4β2, α6β4 nicotinic receptors ( nAChRs). Galanthamine hydrobromide is developed for the research of Alzheimer's disease (AD)[1][2][3].

   

7,3-Dihydroxy-4-methoxy-8-methylflavan

7,3-Dihydroxy-4-methoxy-8-methylflavan

C17H18O4 (286.1205)


A hydroxyflavan that is (2S)-flavan substituted by hydroxy groups at positions 7 and 3, a methoxy group at position 4 and a methyl group at position 8.

   

2,4,6-trimethoxyacetophenone

2,4,6-trimethoxyacetophenone

C11H14O4 (210.0892)


   

Reminyl

6H-BENZOFURO(3A,3,2-EF)(2)BENZAZEPIN-6-OL, 4A,5,9,10,11,12-HEXAHYDRO-3-METHOXY-11-METHYL-, HYDROBROMIDE, (4A.ALPHA.,6.BETA.,8AR*)-

C17H22BrNO3 (367.0783)


Galantamine Hydrobromide is the hydrobromide salt form of galantamine, a tertiary alkaloid obtained synthetically or naturally from the bulbs and flowers of Narcissus and several other genera of the Amaryllidaceae family with anticholinesterase and neurocognitive-enhancing activities. Galantamine competitively and reversibly inhibits acetylcholinesterase, thereby increasing the concentration and enhancing the action of acetylcholine (Ach). In addition, galantamine is a ligand for nicotinic acetylcholine receptors, which may increase the presynaptic release of Ach and activate postsynaptic receptors. This agent may improve neurocognitive function in mild and moderate Alzheimer s disease and may reduce abstinence-induced cognitive symptoms that promote smoking relapse. A benzazepine derived from norbelladine. It is found in GALANTHUS and other AMARYLLIDACEAE. It is a cholinesterase inhibitor that has been used to reverse the muscular effects of GALLAMINE TRIETHIODIDE and TUBOCURARINE and has been studied as a treatment for ALZHEIMER DISEASE and other central nervous system disorders. See also: Galantamine (has active moiety). Galanthamine hydrobromide (Galantamine hydrobromide) is a selective, reversible, competitive, alkaloid AChE inhibitor, with an IC50 of 0.35 μM. Galanthamine hydrobromide is a potent allosteric potentiating ligand (APL) of human α3β4, α4β2, α6β4 nicotinic receptors ( nAChRs). Galanthamine hydrobromide is developed for the research of Alzheimer's disease (AD)[1][2][3]. Galanthamine hydrobromide (Galantamine hydrobromide) is a selective, reversible, competitive, alkaloid AChE inhibitor, with an IC50 of 0.35 μM. Galanthamine hydrobromide is a potent allosteric potentiating ligand (APL) of human α3β4, α4β2, α6β4 nicotinic receptors ( nAChRs). Galanthamine hydrobromide is developed for the research of Alzheimer's disease (AD)[1][2][3]. Galanthamine hydrobromide (Galantamine hydrobromide) is a selective, reversible, competitive, alkaloid AChE inhibitor, with an IC50 of 0.35 μM. Galanthamine hydrobromide is a potent allosteric potentiating ligand (APL) of human α3β4, α4β2, α6β4 nicotinic receptors ( nAChRs). Galanthamine hydrobromide is developed for the research of Alzheimer's disease (AD)[1][2][3].

   

4-HMF cpd

4-(7-Methoxy-3,4-dihydro-2H-1-benzopyran-2-yl)phenol

C16H16O3 (256.1099)


4-Hydroxy-7-methoxyflavan is a natural product found in Bauhinia divaricata, Soymida febrifuga, and other organisms with data available.

   

Galantamine N-Oxide

6H-BENZOFURO(3A,3,2-EF)(2)BENZAZEPIN-6-OL, 4A,5,9,10,11,12-HEXAHYDRO-3-METHOXY-11-METHYL-, 11-OXIDE, (4AS-(4A.ALPHA.,6.BETA.,8AR*))-

C17H21NO4 (303.1471)


Galanthamine N-Oxide is a natural product found in Lycoris sanguinea, Lycoris radiata, and Lycoris incarnata with data available. Galanthamine N-Oxide is an alkaloid obtained from the bulbs of Zephyranthes concolor. Galanthamine N-Oxide inhibits electric eel acetylcholinesterase (AChE) with an EC50 of 26.2 μM. Galanthamine N-Oxide is a prominent inhibitor of substrate accommodation in the active site of the Torpedo californica AChE (TcAChE), hAChE and hBChE enzymes[1][2].

   

Epigalantamine

(1S,12S,14S)-9-methoxy-4-methyl-11-oxa-4-azatetracyclo[8.6.1.0?,??.0?,??]heptadeca-6(17),7,9,15-tetraen-14-ol

C17H21NO3 (287.1521)


Epigalantamine is a natural product found in Lycoris sanguinea, Lycoris radiata, and other organisms with data available.

   

Hippuric acid

2-BENZAMIDOACETIC ACID

C9H9NO3 (179.0582)


C254 - Anti-Infective Agent > C255 - Urinary Anti-Infective Agent An N-acylglycine in which the acyl group is specified as benzoyl. MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; QIAFMBKCNZACKA-UHFFFAOYSA-N_STSL_0191_Hippuric acid_2000fmol_180831_S2_L02M02_62; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. relative retention time with respect to 9-anthracene Carboxylic Acid is 0.317 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.318 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.315 Hippuric Acid (2-Benzamidoacetic acid), an acyl glycine produced by the conjugation of benzoic acid and glycine, is a normal component in urine as a metabolite of aromatic compounds from food. Hippuric Acid (2-Benzamidoacetic acid), an acyl glycine produced by the conjugation of benzoic acid and glycine, is a normal component in urine as a metabolite of aromatic compounds from food.

   

Galantamine

(-)Galanthamine

C17H21NO3 (287.1521)


D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D010277 - Parasympathomimetics D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors N - Nervous system > N06 - Psychoanaleptics > N06D - Anti-dementia drugs > N06DA - Anticholinesterases Origin: Plant; SubCategory_DNP: Isoquinoline alkaloids, Amaryllidaceae alkaloids D002491 - Central Nervous System Agents > D018697 - Nootropic Agents C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor D004791 - Enzyme Inhibitors Origin: Plant, Benzazepines CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 27 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.263 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.257 Galanthamine is a potent acetylcholinesterase (AChE) inhibitor with an IC50 of 500 nM. Galanthamine is a potent acetylcholinesterase (AChE) inhibitor with an IC50 of 500 nM.

   

Hippurate

Hippuric acid

C9H9NO3 (179.0582)


Hippuric Acid (2-Benzamidoacetic acid), an acyl glycine produced by the conjugation of benzoic acid and glycine, is a normal component in urine as a metabolite of aromatic compounds from food. Hippuric Acid (2-Benzamidoacetic acid), an acyl glycine produced by the conjugation of benzoic acid and glycine, is a normal component in urine as a metabolite of aromatic compounds from food.

   

Tazettine

(1S,13S,16R,18S)-18-methoxy-15-methyl-5,7,12-trioxa-15-azapentacyclo[11.7.0.01,16.02,10.04,8]icosa-2,4(8),9,19-tetraen-13-ol

C18H21NO5 (331.142)


Origin: Plant; SubCategory_DNP: Isoquinoline alkaloids, Amaryllidaceae alkaloids

   

Hippeastrine

(2S,3S,9S,10S)-9-hydroxy-4-methyl-11,16,18-trioxa-4-azapentacyclo[11.7.0.02,10.03,7.015,19]icosa-1(20),7,13,15(19)-tetraen-12-one

C17H17NO5 (315.1107)


Hippeastrine is an indole alkaloid isolated from the Amaryllidaceae family and has been shown to exhibit cytotoxic activity. It has a role as an antineoplastic agent and a metabolite. It is an indole alkaloid, a delta-lactone, a secondary alcohol and an organic heteropentacyclic compound. Hippeastrine is a natural product found in Pancratium trianthum, Pancratium canariense, and other organisms with data available. An indole alkaloid isolated from the Amaryllidaceae family and has been shown to exhibit cytotoxic activity. Origin: Plant; SubCategory_DNP: Isoquinoline alkaloids, Amaryllidaceae alkaloids

   

Dihydrolycorine

Dihydrolycorine

C16H19NO4 (289.1314)


Origin: Plant; SubCategory_DNP: Isoquinoline alkaloids, Amaryllidaceae alkaloids, Lycorine alkaloids Dihydrolycorine, isolated from Lycoris radiate Herb, is an inhibitor of protein synthesis in eukarytic cells by inhibiting the peptide bone formation step[1][2]. Dihydrolycorine, isolated from Lycoris radiate Herb, is an inhibitor of protein synthesis in eukarytic cells by inhibiting the peptide bone formation step[1][2].

   

Colfosceril palmitate

(2-{[2.3-bis(hexadecanoyloxy)propyl phosphono]oxy}ethyl)trimethylazanium

C40H80NO8P (733.5621)


R - Respiratory system > R07 - Other respiratory system products > R07A - Other respiratory system products > R07AA - Lung surfactants C78273 - Agent Affecting Respiratory System DPPC (129Y83) is a zwitterionic phosphoglyceride that can be used for the preparation of liposomal monolayers[1]. DPPC-liposome serves effectively as a delivery vehicle for inducing immune responses against GSL antigen in mice[2].

   

Methyl linoleate

Methyl octadeca-9,12-dienoate

C19H34O2 (294.2559)


D009676 - Noxae > D016877 - Oxidants > D010545 - Peroxides Mixture with CNB89-S (*FEMA 3411*) is used as a flavouring ingredient. Methyl linoleate is found in many foods, some of which are white mustard, cloves, soft-necked garlic, and flaxseed. Methyl linoleate, a major active constituent of Sageretia thea?fruit (HFSF), is a major anti-melanogenic compound. Methyl linoleate downregulates microphthalmia-associated transcription factor (MITF)?and tyrosinase-related proteins[1]. Methyl linoleate, a major active constituent of Sageretia thea?fruit (HFSF), is a major anti-melanogenic compound. Methyl linoleate downregulates microphthalmia-associated transcription factor (MITF)?and tyrosinase-related proteins[1].

   

Galantamine Hydrobromide

Galanthamine hydrobromide

C17H22BrNO3 (367.0783)


D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D010277 - Parasympathomimetics D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors D002491 - Central Nervous System Agents > D018697 - Nootropic Agents C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor D004791 - Enzyme Inhibitors Galanthamine hydrobromide (Galantamine hydrobromide) is a selective, reversible, competitive, alkaloid AChE inhibitor, with an IC50 of 0.35 μM. Galanthamine hydrobromide is a potent allosteric potentiating ligand (APL) of human α3β4, α4β2, α6β4 nicotinic receptors ( nAChRs). Galanthamine hydrobromide is developed for the research of Alzheimer's disease (AD)[1][2][3]. Galanthamine hydrobromide (Galantamine hydrobromide) is a selective, reversible, competitive, alkaloid AChE inhibitor, with an IC50 of 0.35 μM. Galanthamine hydrobromide is a potent allosteric potentiating ligand (APL) of human α3β4, α4β2, α6β4 nicotinic receptors ( nAChRs). Galanthamine hydrobromide is developed for the research of Alzheimer's disease (AD)[1][2][3]. Galanthamine hydrobromide (Galantamine hydrobromide) is a selective, reversible, competitive, alkaloid AChE inhibitor, with an IC50 of 0.35 μM. Galanthamine hydrobromide is a potent allosteric potentiating ligand (APL) of human α3β4, α4β2, α6β4 nicotinic receptors ( nAChRs). Galanthamine hydrobromide is developed for the research of Alzheimer's disease (AD)[1][2][3].

   

Uniphat A60

Palmitic acid, methyl ester (8CI)

C17H34O2 (270.2559)


Methyl palmitate, an acaricidal compound occurring in Lantana camara, inhibits phagocytic activity and immune response. Methyl palmitate also posseses anti-inflammatory and antifibrotic effects[1][2][3]. Methyl palmitate, an acaricidal compound occurring in Lantana camara, inhibits phagocytic activity and immune response. Methyl palmitate also posseses anti-inflammatory and antifibrotic effects[1][2][3].

   

AI3-03520

9,12-Octadecadienoic acid (9Z,12Z)-, methyl ester

C19H34O2 (294.2559)


Methyl linoleate, a major active constituent of Sageretia thea?fruit (HFSF), is a major anti-melanogenic compound. Methyl linoleate downregulates microphthalmia-associated transcription factor (MITF)?and tyrosinase-related proteins[1]. Methyl linoleate, a major active constituent of Sageretia thea?fruit (HFSF), is a major anti-melanogenic compound. Methyl linoleate downregulates microphthalmia-associated transcription factor (MITF)?and tyrosinase-related proteins[1].

   
   

1-(2,4,6-trimethoxyphenyl)ethanone

1-(2,4,6-trimethoxyphenyl)ethanone

C11H14O4 (210.0892)


   

(2r,3r,4s,4ar)-2h,3h,4h,4ah,9h-[1,3]dioxolo[4,5-j]phenanthridine-2,3,4,6,7-pentol

(2r,3r,4s,4ar)-2h,3h,4h,4ah,9h-[1,3]dioxolo[4,5-j]phenanthridine-2,3,4,6,7-pentol

C14H13NO7 (307.0692)


   

(1s,8s,10r,17s)-4,5,8-trimethoxy-16-methyl-9-oxa-16-azatetracyclo[8.7.0.0²,⁷.0¹³,¹⁷]heptadeca-2(7),3,5,12-tetraene

(1s,8s,10r,17s)-4,5,8-trimethoxy-16-methyl-9-oxa-16-azatetracyclo[8.7.0.0²,⁷.0¹³,¹⁷]heptadeca-2(7),3,5,12-tetraene

C19H25NO4 (331.1783)


   

(1r,13s,15s,18r)-5,7-dioxa-12-azapentacyclo[10.6.1.0²,¹⁰.0⁴,⁸.0¹³,¹⁸]nonadeca-2,4(8),9,16-tetraene-15,18-diol

(1r,13s,15s,18r)-5,7-dioxa-12-azapentacyclo[10.6.1.0²,¹⁰.0⁴,⁸.0¹³,¹⁸]nonadeca-2,4(8),9,16-tetraene-15,18-diol

C16H17NO4 (287.1158)


   

5-hydroxy-4-methoxy-16-methyl-9-oxa-16-azatetracyclo[8.7.0.0²,⁷.0¹³,¹⁷]heptadeca-2(7),3,5,12-tetraen-8-one

5-hydroxy-4-methoxy-16-methyl-9-oxa-16-azatetracyclo[8.7.0.0²,⁷.0¹³,¹⁷]heptadeca-2(7),3,5,12-tetraen-8-one

C17H19NO4 (301.1314)


   

17-methoxy-13-methyl-5,7-dioxa-12-azapentacyclo[10.6.1.0²,¹⁰.0⁴,⁸.0¹⁵,¹⁹]nonadeca-1(18),2(10),3,8,13,15(19),16-heptaen-11-one

17-methoxy-13-methyl-5,7-dioxa-12-azapentacyclo[10.6.1.0²,¹⁰.0⁴,⁸.0¹⁵,¹⁹]nonadeca-1(18),2(10),3,8,13,15(19),16-heptaen-11-one

C18H13NO4 (307.0845)


   

15-methoxy-5,7-dioxa-12-azapentacyclo[10.5.2.0¹,¹³.0²,¹⁰.0⁴,⁸]nonadeca-2,4(8),9,16-tetraene-11,18-diol

15-methoxy-5,7-dioxa-12-azapentacyclo[10.5.2.0¹,¹³.0²,¹⁰.0⁴,⁸]nonadeca-2,4(8),9,16-tetraene-11,18-diol

C17H19NO5 (317.1263)


   

(1r,13s,15s)-5,7-dioxa-12-azapentacyclo[10.5.2.0¹,¹³.0²,¹⁰.0⁴,⁸]nonadeca-2,4(8),9,16-tetraen-15-ol

(1r,13s,15s)-5,7-dioxa-12-azapentacyclo[10.5.2.0¹,¹³.0²,¹⁰.0⁴,⁸]nonadeca-2,4(8),9,16-tetraen-15-ol

C16H17NO3 (271.1208)


   

5,7-dioxa-12-azapentacyclo[10.6.1.0²,¹⁰.0⁴,⁸.0¹⁵,¹⁹]nonadeca-2,4(8),9-triene-17,18-diol

5,7-dioxa-12-azapentacyclo[10.6.1.0²,¹⁰.0⁴,⁸.0¹⁵,¹⁹]nonadeca-2,4(8),9-triene-17,18-diol

C16H19NO4 (289.1314)


   

4,5-dimethoxy-16-methyl-9-oxa-16-azatetracyclo[8.7.0.0²,⁷.0¹³,¹⁷]heptadeca-2(7),3,5,12-tetraen-8-one

4,5-dimethoxy-16-methyl-9-oxa-16-azatetracyclo[8.7.0.0²,⁷.0¹³,¹⁷]heptadeca-2(7),3,5,12-tetraen-8-one

C18H21NO4 (315.1471)


   

2-(3-hydroxy-4-methoxyphenyl)-8-methyl-3,4-dihydro-2h-1-benzopyran-7-ol

2-(3-hydroxy-4-methoxyphenyl)-8-methyl-3,4-dihydro-2h-1-benzopyran-7-ol

C17H18O4 (286.1205)


   

(1s,15r,16s)-4-methoxy-9-azatetracyclo[7.6.1.0²,⁷.0¹²,¹⁶]hexadeca-2(7),3,5,12-tetraene-5,15-diol

(1s,15r,16s)-4-methoxy-9-azatetracyclo[7.6.1.0²,⁷.0¹²,¹⁶]hexadeca-2(7),3,5,12-tetraene-5,15-diol

C16H19NO3 (273.1365)


   

(1s,12s,14s)-14-hydroxy-9-methoxy-4-methyl-11-oxa-4-azatetracyclo[8.6.1.0¹,¹².0⁶,¹⁷]heptadeca-6,8,10(17)-trien-4-ium-4-olate

(1s,12s,14s)-14-hydroxy-9-methoxy-4-methyl-11-oxa-4-azatetracyclo[8.6.1.0¹,¹².0⁶,¹⁷]heptadeca-6,8,10(17)-trien-4-ium-4-olate

C17H23NO4 (305.1627)


   

18-methoxy-15-methyl-5,7,12-trioxa-15-azapentacyclo[11.7.0.0¹,¹⁶.0²,¹⁰.0⁴,⁸]icosa-2,4(8),9,19-tetraen-11-ol

18-methoxy-15-methyl-5,7,12-trioxa-15-azapentacyclo[11.7.0.0¹,¹⁶.0²,¹⁰.0⁴,⁸]icosa-2,4(8),9,19-tetraen-11-ol

C18H21NO5 (331.142)


   

(1r,11s,13s,15r,18s)-18-hydroxy-15-methoxy-5,7-dioxa-12-azapentacyclo[10.5.2.0¹,¹³.0²,¹⁰.0⁴,⁸]nonadeca-2,4(8),9,16-tetraen-11-yl acetate

(1r,11s,13s,15r,18s)-18-hydroxy-15-methoxy-5,7-dioxa-12-azapentacyclo[10.5.2.0¹,¹³.0²,¹⁰.0⁴,⁸]nonadeca-2,4(8),9,16-tetraen-11-yl acetate

C19H21NO6 (359.1369)


   

4a,5',6-tris(hydroxymethyl)-tetrahydrospiro[furo[2,3-b][1,4]dioxine-2,2'-oxolane]-3',4',7-triol

4a,5',6-tris(hydroxymethyl)-tetrahydrospiro[furo[2,3-b][1,4]dioxine-2,2'-oxolane]-3',4',7-triol

C12H20O10 (324.1056)


   
   

4,5,8-trimethoxy-16-methyl-9-oxa-16-azatetracyclo[8.7.0.0²,⁷.0¹³,¹⁷]heptadeca-2(7),3,5,12-tetraene

4,5,8-trimethoxy-16-methyl-9-oxa-16-azatetracyclo[8.7.0.0²,⁷.0¹³,¹⁷]heptadeca-2(7),3,5,12-tetraene

C19H25NO4 (331.1783)


   

17-methoxy-5,7-dioxa-12-azapentacyclo[10.6.1.0²,¹⁰.0⁴,⁸.0¹⁵,¹⁹]nonadeca-1(18),2(10),3,8,13,15(19),16-heptaen-11-one

17-methoxy-5,7-dioxa-12-azapentacyclo[10.6.1.0²,¹⁰.0⁴,⁸.0¹⁵,¹⁹]nonadeca-1(18),2(10),3,8,13,15(19),16-heptaen-11-one

C17H11NO4 (293.0688)


   

4-methyl-11,16,18-trioxa-4-azapentacyclo[11.7.0.0²,¹⁰.0³,⁷.0¹⁵,¹⁹]icosa-1(20),13,15(19)-triene-9,12-diol

4-methyl-11,16,18-trioxa-4-azapentacyclo[11.7.0.0²,¹⁰.0³,⁷.0¹⁵,¹⁹]icosa-1(20),13,15(19)-triene-9,12-diol

C17H21NO5 (319.142)


   

9-methoxy-4-methyl-11-oxa-4-azatetracyclo[8.6.1.0¹,¹².0⁶,¹⁷]heptadeca-6,8,10(17)-trien-14-ol

9-methoxy-4-methyl-11-oxa-4-azatetracyclo[8.6.1.0¹,¹².0⁶,¹⁷]heptadeca-6,8,10(17)-trien-14-ol

C17H23NO3 (289.1678)


   

(1s,15r,17s,18s,19r)-17,18-dihydroxy-5,7-dioxa-12-azapentacyclo[10.6.1.0²,¹⁰.0⁴,⁸.0¹⁵,¹⁹]nonadeca-2,4(8),9-trien-11-one

(1s,15r,17s,18s,19r)-17,18-dihydroxy-5,7-dioxa-12-azapentacyclo[10.6.1.0²,¹⁰.0⁴,⁸.0¹⁵,¹⁹]nonadeca-2,4(8),9-trien-11-one

C16H17NO5 (303.1107)


   

4-methyl-11-oxa-4-azatetracyclo[8.6.1.0¹,¹².0⁶,¹⁷]heptadeca-6(17),7,9-triene-9,14-diol

4-methyl-11-oxa-4-azatetracyclo[8.6.1.0¹,¹².0⁶,¹⁷]heptadeca-6(17),7,9-triene-9,14-diol

C16H21NO3 (275.1521)


   

(1s,13s,15s,18s)-15-methoxy-5,7-dioxa-12-azapentacyclo[10.5.2.0¹,¹³.0²,¹⁰.0⁴,⁸]nonadeca-2,4(8),9,16-tetraene-11,18-diol

(1s,13s,15s,18s)-15-methoxy-5,7-dioxa-12-azapentacyclo[10.5.2.0¹,¹³.0²,¹⁰.0⁴,⁸]nonadeca-2,4(8),9,16-tetraene-11,18-diol

C17H19NO5 (317.1263)


   

(1r,12s,14s)-4-methyl-11-oxa-4-azatetracyclo[8.6.1.0¹,¹².0⁶,¹⁷]heptadeca-6(17),7,9-triene-9,14-diol

(1r,12s,14s)-4-methyl-11-oxa-4-azatetracyclo[8.6.1.0¹,¹².0⁶,¹⁷]heptadeca-6(17),7,9-triene-9,14-diol

C16H21NO3 (275.1521)


   

(1s,11r,13s,15r,18s)-15-methoxy-5,7-dioxa-12-azapentacyclo[10.5.2.0¹,¹³.0²,¹⁰.0⁴,⁸]nonadeca-2,4(8),9,16-tetraene-11,18-diol

(1s,11r,13s,15r,18s)-15-methoxy-5,7-dioxa-12-azapentacyclo[10.5.2.0¹,¹³.0²,¹⁰.0⁴,⁸]nonadeca-2,4(8),9,16-tetraene-11,18-diol

C17H19NO5 (317.1263)


   

4-methoxy-9-azatetracyclo[7.6.1.0²,⁷.0¹²,¹⁶]hexadeca-2(7),3,5,12-tetraene-5,15-diol

4-methoxy-9-azatetracyclo[7.6.1.0²,⁷.0¹²,¹⁶]hexadeca-2(7),3,5,12-tetraene-5,15-diol

C16H19NO3 (273.1365)


   

(1s,15r,16s)-4,5-dimethoxy-9-azatetracyclo[7.6.1.0²,⁷.0¹²,¹⁶]hexadeca-2(7),3,5,12-tetraen-15-ol

(1s,15r,16s)-4,5-dimethoxy-9-azatetracyclo[7.6.1.0²,⁷.0¹²,¹⁶]hexadeca-2(7),3,5,12-tetraen-15-ol

C17H21NO3 (287.1521)


   

(1s,11s,13r,16s,18s)-18-methoxy-15-methyl-5,7,12-trioxa-15-azapentacyclo[11.7.0.0¹,¹⁶.0²,¹⁰.0⁴,⁸]icosa-2,4(8),9,19-tetraen-11-ol

(1s,11s,13r,16s,18s)-18-methoxy-15-methyl-5,7,12-trioxa-15-azapentacyclo[11.7.0.0¹,¹⁶.0²,¹⁰.0⁴,⁸]icosa-2,4(8),9,19-tetraen-11-ol

C18H21NO5 (331.142)


   

(2s,3s,9s,10s,12s)-12-methoxy-4-methyl-11,16,18-trioxa-4-azapentacyclo[11.7.0.0²,¹⁰.0³,⁷.0¹⁵,¹⁹]icosa-1(20),7,13,15(19)-tetraen-9-ol

(2s,3s,9s,10s,12s)-12-methoxy-4-methyl-11,16,18-trioxa-4-azapentacyclo[11.7.0.0²,¹⁰.0³,⁷.0¹⁵,¹⁹]icosa-1(20),7,13,15(19)-tetraen-9-ol

C18H21NO5 (331.142)


   

(2r,3r,4s,4ar)-2h,3h,4h,4ah,9h-[1,3]dioxolo[4,5-j]phenanthridine-2,3,4,6-tetrol

(2r,3r,4s,4ar)-2h,3h,4h,4ah,9h-[1,3]dioxolo[4,5-j]phenanthridine-2,3,4,6-tetrol

C14H13NO6 (291.0743)


   

(1s,15r)-4,5-dimethoxy-9-azatetracyclo[7.6.1.0²,⁷.0¹²,¹⁶]hexadeca-2(7),3,5,12-tetraen-15-ol

(1s,15r)-4,5-dimethoxy-9-azatetracyclo[7.6.1.0²,⁷.0¹²,¹⁶]hexadeca-2(7),3,5,12-tetraen-15-ol

C17H21NO3 (287.1521)


   

(2s,3r,7r,9s,10s,12r)-4-methyl-11,16,18-trioxa-4-azapentacyclo[11.7.0.0²,¹⁰.0³,⁷.0¹⁵,¹⁹]icosa-1(20),13,15(19)-triene-9,12-diol

(2s,3r,7r,9s,10s,12r)-4-methyl-11,16,18-trioxa-4-azapentacyclo[11.7.0.0²,¹⁰.0³,⁷.0¹⁵,¹⁹]icosa-1(20),13,15(19)-triene-9,12-diol

C17H21NO5 (319.142)


   

(1s,11r,13s,15s,18s)-15-methoxy-5,7-dioxa-12-azapentacyclo[10.5.2.0¹,¹³.0²,¹⁰.0⁴,⁸]nonadeca-2,4(8),9,16-tetraene-11,18-diol

(1s,11r,13s,15s,18s)-15-methoxy-5,7-dioxa-12-azapentacyclo[10.5.2.0¹,¹³.0²,¹⁰.0⁴,⁸]nonadeca-2,4(8),9,16-tetraene-11,18-diol

C17H19NO5 (317.1263)


   

(1r,8r,10s,17r)-4,5,8-trimethoxy-16-methyl-9-oxa-16-azatetracyclo[8.7.0.0²,⁷.0¹³,¹⁷]heptadeca-2(7),3,5,12-tetraene

(1r,8r,10s,17r)-4,5,8-trimethoxy-16-methyl-9-oxa-16-azatetracyclo[8.7.0.0²,⁷.0¹³,¹⁷]heptadeca-2(7),3,5,12-tetraene

C19H25NO4 (331.1783)


   

5,7-dioxa-12-azapentacyclo[10.6.1.0²,¹⁰.0⁴,⁸.0¹³,¹⁸]nonadeca-2,4(8),9,16-tetraene-15,18-diol

5,7-dioxa-12-azapentacyclo[10.6.1.0²,¹⁰.0⁴,⁸.0¹³,¹⁸]nonadeca-2,4(8),9,16-tetraene-15,18-diol

C16H17NO4 (287.1158)


   

8-ethoxy-4,5-dimethoxy-16-methyl-9-oxa-16-azatetracyclo[8.7.0.0²,⁷.0¹³,¹⁷]heptadeca-2,4,6,12-tetraene

8-ethoxy-4,5-dimethoxy-16-methyl-9-oxa-16-azatetracyclo[8.7.0.0²,⁷.0¹³,¹⁷]heptadeca-2,4,6,12-tetraene

C20H27NO4 (345.194)


   

(2s,3s,9s,10s)-9-hydroxy-4-methyl-12-oxo-11,16,18-trioxa-4-azapentacyclo[11.7.0.0²,¹⁰.0³,⁷.0¹⁵,¹⁹]icosa-1(20),7,13,15(19)-tetraen-4-ium-4-olate

(2s,3s,9s,10s)-9-hydroxy-4-methyl-12-oxo-11,16,18-trioxa-4-azapentacyclo[11.7.0.0²,¹⁰.0³,⁷.0¹⁵,¹⁹]icosa-1(20),7,13,15(19)-tetraen-4-ium-4-olate

C17H17NO6 (331.1056)


   

4,5-dimethoxy-16-methyl-9-oxa-16-azatetracyclo[8.7.0.0²,⁷.0¹³,¹⁷]heptadeca-2(7),3,5,12-tetraen-8-ol

4,5-dimethoxy-16-methyl-9-oxa-16-azatetracyclo[8.7.0.0²,⁷.0¹³,¹⁷]heptadeca-2(7),3,5,12-tetraen-8-ol

C18H23NO4 (317.1627)


   

2h,3h,4h,4ah,9h-[1,3]dioxolo[4,5-j]phenanthridine-2,3,4,6-tetrol

2h,3h,4h,4ah,9h-[1,3]dioxolo[4,5-j]phenanthridine-2,3,4,6-tetrol

C14H13NO6 (291.0743)


   

2h,3h,4h,4ah,9h-[1,3]dioxolo[4,5-j]phenanthridine-2,3,4,6,7-pentol

2h,3h,4h,4ah,9h-[1,3]dioxolo[4,5-j]phenanthridine-2,3,4,6,7-pentol

C14H13NO7 (307.0692)


   

(1s,12s,14r)-4-methyl-11-oxa-4-azatetracyclo[8.6.1.0¹,¹².0⁶,¹⁷]heptadeca-6(17),7,9,15-tetraen-14-ol

(1s,12s,14r)-4-methyl-11-oxa-4-azatetracyclo[8.6.1.0¹,¹².0⁶,¹⁷]heptadeca-6(17),7,9,15-tetraen-14-ol

C16H19NO2 (257.1416)


   

12-methoxy-4-methyl-11,16,18-trioxa-4-azapentacyclo[11.7.0.0²,¹⁰.0³,⁷.0¹⁵,¹⁹]icosa-1(20),7,13,15(19)-tetraen-9-ol

12-methoxy-4-methyl-11,16,18-trioxa-4-azapentacyclo[11.7.0.0²,¹⁰.0³,⁷.0¹⁵,¹⁹]icosa-1(20),7,13,15(19)-tetraen-9-ol

C18H21NO5 (331.142)


   

(1s,8s,10r,17s)-8-ethoxy-4,5-dimethoxy-16-methyl-9-oxa-16-azatetracyclo[8.7.0.0²,⁷.0¹³,¹⁷]heptadeca-2,4,6,12-tetraene

(1s,8s,10r,17s)-8-ethoxy-4,5-dimethoxy-16-methyl-9-oxa-16-azatetracyclo[8.7.0.0²,⁷.0¹³,¹⁷]heptadeca-2,4,6,12-tetraene

C20H27NO4 (345.194)


   

5,7-dioxa-12-azapentacyclo[10.5.2.0¹,¹³.0²,¹⁰.0⁴,⁸]nonadeca-2,4(8),9,16-tetraen-15-ol

5,7-dioxa-12-azapentacyclo[10.5.2.0¹,¹³.0²,¹⁰.0⁴,⁸]nonadeca-2,4(8),9,16-tetraen-15-ol

C16H17NO3 (271.1208)


   

4-[(2s)-7-methoxy-3,4-dihydro-2h-1-benzopyran-2-yl]phenol

4-[(2s)-7-methoxy-3,4-dihydro-2h-1-benzopyran-2-yl]phenol

C16H16O3 (256.1099)


   

5-methyl-6h,9h-[1,3]dioxolo[4,5-j]phenanthridine

5-methyl-6h,9h-[1,3]dioxolo[4,5-j]phenanthridine

C15H13NO2 (239.0946)


   

(2r,3's,4's,4ar,5'r,6r,7r,7as)-4a,5',6-tris(hydroxymethyl)-tetrahydrospiro[furo[2,3-b][1,4]dioxine-2,2'-oxolane]-3',4',7-triol

(2r,3's,4's,4ar,5'r,6r,7r,7as)-4a,5',6-tris(hydroxymethyl)-tetrahydrospiro[furo[2,3-b][1,4]dioxine-2,2'-oxolane]-3',4',7-triol

C12H20O10 (324.1056)


   

(2s)-2-(3-hydroxy-4-methoxyphenyl)-8-methyl-3,4-dihydro-2h-1-benzopyran-7-ol

(2s)-2-(3-hydroxy-4-methoxyphenyl)-8-methyl-3,4-dihydro-2h-1-benzopyran-7-ol

C17H18O4 (286.1205)


   

9-hydroxy-4-methyl-11,16,18-trioxa-4-azapentacyclo[11.7.0.0²,¹⁰.0³,⁷.0¹⁵,¹⁹]icosa-1(20),7,13,15(19)-tetraen-12-one

9-hydroxy-4-methyl-11,16,18-trioxa-4-azapentacyclo[11.7.0.0²,¹⁰.0³,⁷.0¹⁵,¹⁹]icosa-1(20),7,13,15(19)-tetraen-12-one

C17H17NO5 (315.1107)


   

18-hydroxy-15-methoxy-5,7-dioxa-12-azapentacyclo[10.5.2.0¹,¹³.0²,¹⁰.0⁴,⁸]nonadeca-2,4(8),9,16-tetraen-11-yl acetate

18-hydroxy-15-methoxy-5,7-dioxa-12-azapentacyclo[10.5.2.0¹,¹³.0²,¹⁰.0⁴,⁸]nonadeca-2,4(8),9,16-tetraen-11-yl acetate

C19H21NO6 (359.1369)