NCBI Taxonomy: 212252

Galphimia glauca (ncbi_taxid: 212252)

found 229 associated metabolites at species taxonomy rank level.

Ancestor: Galphimia

Child Taxonomies: none taxonomy data.

Gallic acid

3,4,5-trihydroxybenzoic acid

C7H6O5 (170.0215226)


Gallic acid is an odorless white solid. Sinks in water. (USCG, 1999) Gallic acid is a trihydroxybenzoic acid in which the hydroxy groups are at positions 3, 4, and 5. It has a role as an astringent, a cyclooxygenase 2 inhibitor, a plant metabolite, an antioxidant, an antineoplastic agent, a human xenobiotic metabolite, an EC 1.13.11.33 (arachidonate 15-lipoxygenase) inhibitor, an apoptosis inducer and a geroprotector. It is a conjugate acid of a gallate. Gallic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Gallic Acid is a natural product found in Visnea mocanera, Ardisia paniculata, and other organisms with data available. Gallic acid is a metabolite found in or produced by Saccharomyces cerevisiae. A colorless or slightly yellow crystalline compound obtained from nutgalls. It is used in photography, pharmaceuticals, and as an analytical reagent. See also: Gallic acid monohydrate (active moiety of); Paeonia lactiflora root (part of); Galium aparine whole (part of) ... View More ... Gallic acid is an organic acid, also known as 3,4,5-trihydroxybenzoic acid, found in gallnuts, sumac, witch hazel, tea leaves, oak bark, and other plants. The chemical formula is C6H2(OH)3CO2H. Gallic acid is widely distributed in plants and is found both free and as part of tannins. It is commonly used in the pharmaceutical industry. Gallic acid can also be used to synthesize the hallucinogenic alkaloid mescaline, also known as 3,4,5-trimethoxyphenethylamine. Salts and esters of gallic acid are termed gallates. Gallic acid has been found to be s metabolite of Aspergillus (PMID:24031294). A trihydroxybenzoic acid in which the hydroxy groups are at positions 3, 4, and 5. Present in red wine. Japan approved food antioxidant additive Gallic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=149-91-7 (retrieved 2024-07-01) (CAS RN: 149-91-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Gallic acid (3,4,5-Trihydroxybenzoic acid) is a natural polyhydroxyphenolic compound and an free radical scavenger to inhibit cyclooxygenase-2 (COX-2)[1]. Gallic acid has various activities, such as antimicrobial, antioxidant, antimicrobial, anti-inflammatory, and anticance activities[2]. Gallic acid (3,4,5-Trihydroxybenzoic acid) is a natural polyhydroxyphenolic compound and an free radical scavenger to inhibit cyclooxygenase-2 (COX-2)[1]. Gallic acid has various activities, such as antimicrobial, antioxidant, antimicrobial, anti-inflammatory, and anticance activities[2].

   

Maslinic acid

(4aS,6aS,6bR,8aR,10R,11R,12aR,12bR,14bS)-10,11-Dihydroxy-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-octadecahydro-2H-picene-4a-carboxylic acid

C30H48O4 (472.3552408)


Maslinic acid is a compound derived from dry olive-pomace oil (an olive skin wax) which is a byproduct of olive oil extraction. It is a member of the group of triterpenes known as oleananes.; Maslinic acid is a pentacyclic triterpene, found in the non-glyceride fraction of olive pomace oil (Olive pomace oil, also known as "orujo" olive oil, is a blend of refined-pomace oil and virgin olive oil, fit for human consumption). Pentacyclic triterpenes are natural compounds which are widely distributed in plants. These natural products have been demonstrated to possess anti-inflammatory properties. Triterpenoids have been reported to possess antioxidant properties, since they prevent lipid peroxidation and suppress superoxide anion generation. The triterpenes have a history of medicinal use in many Asian countries. Maslinic acid exhibits both pro- and anti-inflammatory properties depending on chemical structure and dose and may be useful in modulating the immune response; further studies are required to confirm the immunomodulatory behaviour of this triterpenoid, and characterise the mechanisms underlying the biphasic nature of some aspects of the inflammatory response. (PMID: 17292619) Maslinic acid is a pentacyclic triterpene, found in the non-glyceride fraction of olive pomace oil (Olive pomace oil, also known as "orujo" olive oil, is a blend of refined-pomace oil and virgin olive oil, fit for human consumption). Pentacyclic triterpenes are natural compounds which are widely distributed in plants. These natural products have been demonstrated to possess anti-inflammatory properties. Triterpenoids have been reported to possess antioxidant properties, since they prevent lipid peroxidation and suppress superoxide anion generation. The triterpenes have a history of medicinal use in many Asian countries. Maslinic acid exhibits both pro- and anti-inflammatory properties depending on chemical structure and dose and may be useful in modulating the immune response; further studies are required to confirm the immunomodulatory behaviour of this triterpenoid, and characterise the mechanisms underlying the biphasic nature of some aspects of the inflammatory response. (PMID: 17292619). Maslinic acid is a pentacyclic triterpenoid that is olean-12-ene substituted by hydroxy groups at positions 2 and 3 and a carboxy group at position 28 (the 2alpha,3beta stereoisomer). It is isolated from Olea europaea and Salvia canariensis and exhibits anti-inflammatory, antioxidant and antineoplastic activity. It has a role as an antioxidant, an antineoplastic agent, an anti-inflammatory agent and a plant metabolite. It is a pentacyclic triterpenoid and a dihydroxy monocarboxylic acid. It derives from a hydride of an oleanane. Maslinic acid is a natural product found in Chaenomeles speciosa, Salvia tomentosa, and other organisms with data available. See also: Centaurium erythraea whole (part of). A pentacyclic triterpenoid that is olean-12-ene substituted by hydroxy groups at positions 2 and 3 and a carboxy group at position 28 (the 2alpha,3beta stereoisomer). It is isolated from Olea europaea and Salvia canariensis and exhibits anti-inflammatory, antioxidant and antineoplastic activity. Maslinic acid can inhibit the DNA-binding activity of NF-κB p65 and abolish the phosphorylation of IκB-α, which is required for p65 activation. Maslinic acid can inhibit the DNA-binding activity of NF-κB p65 and abolish the phosphorylation of IκB-α, which is required for p65 activation.

   

Quercetin

2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-4H-chromen-4-one

C15H10O7 (302.042651)


Quercetin appears as yellow needles or yellow powder. Converts to anhydrous form at 203-207 °F. Alcoholic solutions taste very bitter. (NTP, 1992) Quercetin is a pentahydroxyflavone having the five hydroxy groups placed at the 3-, 3-, 4-, 5- and 7-positions. It is one of the most abundant flavonoids in edible vegetables, fruit and wine. It has a role as an antibacterial agent, an antioxidant, a protein kinase inhibitor, an antineoplastic agent, an EC 1.10.99.2 [ribosyldihydronicotinamide dehydrogenase (quinone)] inhibitor, a plant metabolite, a phytoestrogen, a radical scavenger, a chelator, an Aurora kinase inhibitor and a geroprotector. It is a pentahydroxyflavone and a 7-hydroxyflavonol. It is a conjugate acid of a quercetin-7-olate. Quercetin is a flavonol widely distributed in plants. It is an antioxidant, like many other phenolic heterocyclic compounds. Glycosylated forms include RUTIN and quercetrin. Quercetin is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Quercetin is a flavonoid found in many foods and herbs and is a regular component of a normal diet. Extracts of quercetin have been used to treat or prevent diverse conditions including cardiovascular disease, hypercholesterolemia, rheumatic diseases, infections and cancer but have not been shown to be effective in clinical trials for any medical condition. Quercetin as a nutritional supplement is well tolerated and has not been linked to serum enzyme elevations or to episodes of clinically apparent liver injury. Quercetin is a natural product found in Lotus ucrainicus, Visnea mocanera, and other organisms with data available. Quercetin is a polyphenolic flavonoid with potential chemopreventive activity. Quercetin, ubiquitous in plant food sources and a major bioflavonoid in the human diet, may produce antiproliferative effects resulting from the modulation of either EGFR or estrogen-receptor mediated signal transduction pathways. Although the mechanism of action of action is not fully known, the following effects have been described with this agent in vitro: decreased expression of mutant p53 protein and p21-ras oncogene, induction of cell cycle arrest at the G1 phase and inhibition of heat shock protein synthesis. This compound also demonstrates synergy and reversal of the multidrug resistance phenotype, when combined with chemotherapeutic drugs, in vitro. Quercetin also produces anti-inflammatory and anti-allergy effects mediated through the inhibition of the lipoxygenase and cyclooxygenase pathways, thereby preventing the production of pro-inflammatory mediators. Quercetin is a flavonoid widely distributed in many plants and fruits including red grapes, citrus fruit, tomato, broccoli and other leafy green vegetables, and a number of berries, including raspberries and cranberries. Quercetin itself (aglycone quercetin), as opposed to quercetin glycosides, is not a normal dietary component. Quercitin glycosides are converted to phenolic acids as they pass through the gastrointestinal tract. Quercetin has neither been confirmed scientifically as a specific therapeutic for any condition nor been approved by any regulatory agency. The U.S. Food and Drug Administration has not approved any health claims for quercetin. Nevertheless, the interest in dietary flavonoids has grown after the publication of several epidemiological studies showing an inverse correlation between dietary consumption of flavonols and flavones and reduced incidence and mortality from cardiovascular disease and cancer. In recent years, a large amount of experimental and some clinical data have accumulated regarding the effects of flavonoids on the endothelium under physiological and pathological conditions. The meta-analysis of seven prospective cohort studies concluded that the individuals in the top third of dietary flavonol intake are associated with a reduced risk of mortality from coronary heart disease as compared with those in the bottom third, after adju... Quercetin is a flavonoid widely distributed in many plants and fruits including red grapes, citrus fruit, tomato, broccoli and other leafy green vegetables, and a number of berries, including raspberries and cranberries. Quercetin itself (aglycone quercetin), as opposed to quercetin glycosides, is not a normal dietary component. Quercetin glycosides are converted to phenolic acids as they pass through the gastrointestinal tract. Quercetin has neither been confirmed scientifically as a specific therapeutic for any condition nor been approved by any regulatory agency. The U.S. Food and Drug Administration has not approved any health claims for quercetin. Nevertheless, the interest in dietary flavonoids has grown after the publication of several epidemiological studies showing an inverse correlation between dietary consumption of flavonols and flavones and reduced incidence and mortality from cardiovascular disease and cancer. In recent years, a large amount of experimental and some clinical data have accumulated regarding the effects of flavonoids on the endothelium under physiological and pathological conditions. The meta-analysis of seven prospective cohort studies concluded that the individuals in the top third of dietary flavonol intake are associated with a reduced risk of mortality from coronary heart disease as compared with those in the bottom third, after adjustment for known risk factors and other dietary components. A limited number of intervention studies with flavonoids and flavonoid containing foods and extracts has been performed in several pathological conditions (PMID:17015250). Quercetin is isolated from many plants, especially fruits, such as Helichrysum, Euphorbia and Karwinskia spp. Present in the Solanaceae, Rhamnaceae, Passifloraceae and many other families. For example detected in almost all studied Umbelliferae. Nutriceutical with antiinflammatory props. and a positive influence on the blood lipid profile. Found in a wide variety of foods especially apples, bee pollen, blackcurrants, capers, cocoa, cranberries, dock leaves, elderberries, fennel, lovage, red onions, ancho peppers, dill weed and tarragon. A pentahydroxyflavone having the five hydroxy groups placed at the 3-, 3-, 4-, 5- and 7-positions. It is one of the most abundant flavonoids in edible vegetables, fruit and wine. COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D020011 - Protective Agents > D000975 - Antioxidants Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4014; ORIGINAL_PRECURSOR_SCAN_NO 4012 INTERNAL_ID 298; CONFIDENCE standard compound; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4011; ORIGINAL_PRECURSOR_SCAN_NO 4010 CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4019; ORIGINAL_PRECURSOR_SCAN_NO 4018 CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4017; ORIGINAL_PRECURSOR_SCAN_NO 4016 CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4011; ORIGINAL_PRECURSOR_SCAN_NO 4010 CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4096; ORIGINAL_PRECURSOR_SCAN_NO 4094 CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4024; ORIGINAL_PRECURSOR_SCAN_NO 4023 Acquisition and generation of the data is financially supported in part by CREST/JST. [Raw Data] CB109_Quercetin_pos_30eV_CB000041.txt IPB_RECORD: 1761; CONFIDENCE confident structure [Raw Data] CB109_Quercetin_pos_10eV_CB000041.txt [Raw Data] CB109_Quercetin_pos_20eV_CB000041.txt [Raw Data] CB109_Quercetin_pos_40eV_CB000041.txt [Raw Data] CB109_Quercetin_pos_50eV_CB000041.txt IPB_RECORD: 161; CONFIDENCE confident structure [Raw Data] CB109_Quercetin_neg_40eV_000027.txt [Raw Data] CB109_Quercetin_neg_50eV_000027.txt [Raw Data] CB109_Quercetin_neg_20eV_000027.txt [Raw Data] CB109_Quercetin_neg_30eV_000027.txt [Raw Data] CB109_Quercetin_neg_10eV_000027.txt CONFIDENCE standard compound; INTERNAL_ID 124 CONFIDENCE standard compound; ML_ID 54 Quercetin, a natural flavonoid, is a stimulator of recombinant SIRT1 and also a PI3K inhibitor with IC50 of 2.4 μM, 3.0 μM and 5.4 μM for PI3K γ, PI3K δ and PI3K β, respectively[1]. Quercetin, a natural flavonoid, is a stimulator of recombinant SIRT1 and also a PI3K inhibitor with IC50 of 2.4 μM, 3.0 μM and 5.4 μM for PI3K γ, PI3K δ and PI3K β, respectively[1].

   

Stigmasterol

(3S,8S,9S,10R,13R,14S,17R)-17-((2R,5S,E)-5-ethyl-6-methylhept-3-en-2-yl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H48O (412.37049579999996)


Stigmasterol is a phytosterol, meaning it is steroid derived from plants. As a food additive, phytosterols have cholesterol-lowering properties (reducing cholesterol absorption in intestines), and may act in cancer prevention. Phytosterols naturally occur in small amount in vegetable oils, especially soybean oil. One such phytosterol complex, isolated from vegetable oil, is cholestatin, composed of campesterol, stigmasterol, and brassicasterol, and is marketed as a dietary supplement. Sterols can reduce cholesterol in human subjects by up to 15\\%. The mechanism behind phytosterols and the lowering of cholesterol occurs as follows : the incorporation of cholesterol into micelles in the gastrointestinal tract is inhibited, decreasing the overall amount of cholesterol absorbed. This may in turn help to control body total cholesterol levels, as well as modify HDL, LDL and TAG levels. Many margarines, butters, breakfast cereals and spreads are now enriched with phytosterols and marketed towards people with high cholesterol and a wish to lower it. Stigmasterol is found to be associated with phytosterolemia, which is an inborn error of metabolism. Stigmasterol is a 3beta-sterol that consists of 3beta-hydroxystigmastane having double bonds at the 5,6- and 22,23-positions. It has a role as a plant metabolite. It is a 3beta-sterol, a stigmastane sterol, a 3beta-hydroxy-Delta(5)-steroid and a member of phytosterols. It derives from a hydride of a stigmastane. Stigmasterol is a natural product found in Ficus auriculata, Xylopia aromatica, and other organisms with data available. Stigmasterol is a steroid derivative characterized by the hydroxyl group in position C-3 of the steroid skeleton, and unsaturated bonds in position 5-6 of the B ring, and position 22-23 in the alkyl substituent. Stigmasterol is found in the fats and oils of soybean, calabar bean and rape seed, as well as several other vegetables, legumes, nuts, seeds, and unpasteurized milk. See also: Comfrey Root (part of); Saw Palmetto (part of); Plantago ovata seed (part of). Stigmasterol is an unsaturated plant sterol occurring in the plant fats or oils of soybean, calabar bean, and rape seed, and in a number of medicinal herbs, including the Chinese herbs Ophiopogon japonicus (Mai men dong) and American Ginseng. Stigmasterol is also found in various vegetables, legumes, nuts, seeds, and unpasteurized milk. A 3beta-sterol that consists of 3beta-hydroxystigmastane having double bonds at the 5,6- and 22,23-positions. C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol

   

beta-Sitosterol 3-O-beta-D-galactopyranoside

(2R,3R,4S,5S,6R)-2-(((3S,8S,9S,10R,13R,14S,17R)-17-((2R,5R)-5-Ethyl-6-methylheptan-2-yl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol

C35H60O6 (576.4389659999999)


Daucosterol is a steroid saponin that is sitosterol attached to a beta-D-glucopyranosyl residue at position 3 via a glycosidic linkage. It has bee isolated from Panax japonicus var. major and Breynia fruticosa. It has a role as a plant metabolite. It is a steroid saponin, a beta-D-glucoside and a monosaccharide derivative. It is functionally related to a sitosterol. It derives from a hydride of a stigmastane. Sitogluside is a natural product found in Ophiopogon intermedius, Ophiopogon jaburan, and other organisms with data available. beta-Sitosterol 3-O-beta-D-galactopyranoside is found in herbs and spices. beta-Sitosterol 3-O-beta-D-galactopyranoside is a constituent of Hibiscus sabdariffa (roselle) leaves. C308 - Immunotherapeutic Agent Daucosterol is a natural sterol compound. Daucosterol is a natural sterol compound.

   

6'-O-p-Coumaroyltrifolin

((2R,3S,4S,5R,6S)-6-((5,7-Dihydroxy-2-(4-hydroxyphenyl)-4-oxo-4H-chromen-3-yl)oxy)-3,4,5-trihydroxytetrahydro-2H-pyran-2-yl)methyl (E)-3-(4-hydroxyphenyl)acrylate

C30H26O13 (594.1373346)


Kaempferol 3-(6-p-coumaroylgalactoside) is a member of the class of compounds known as flavonoid 3-o-p-coumaroyl glycosides. Flavonoid 3-o-p-coumaroyl glycosides are flavonoid 3-O-glycosides where the carbohydrate moiety is esterified with a p-coumaric acid. P-coumaric acid is an organic derivative of cinnamic acid, that carries a hydroxyl group at the 4-position of the benzene ring. Kaempferol 3-(6-p-coumaroylgalactoside) is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Within the cell, kaempferol 3-(6-p-coumaroylgalactoside) is primarily located in the membrane (predicted from logP). Tribuloside is a glycosyloxyflavone that is kaempferol attached to a 6-O-[(2E)-3-(4-hydroxyphenyl)prop-2-enoyl]-beta-D-glucopyranosyl residue at position 3 via a glycosidic linkage. It has a role as a plant metabolite. It is a glycosyloxyflavone, a cinnamate ester, a trihydroxyflavone and a monosaccharide derivative. It is functionally related to a kaempferol and a trans-4-coumaric acid. Tiliroside is a natural product found in Phlomoides spectabilis, Anaphalis contorta, and other organisms with data available. 6-O-p-Coumaroyltrifolin is a constituent of Pinus sylvestris (Scotch pine). Tiliroside, a glycosidic flavonoid, possesses anti-diabetic activities. Tiliroside is a noncompetitive inhibitor of α-amylase with a Ki value of 84.2? μM. Tiliroside inhibits carbohydrate digestion and glucose absorption in the gastrointestinal tract[1]. Tiliroside, a glycosidic flavonoid, possesses anti-diabetic activities. Tiliroside is a noncompetitive inhibitor of α-amylase with a Ki value of 84.2? μM. Tiliroside inhibits carbohydrate digestion and glucose absorption in the gastrointestinal tract[1]. Tribuloside is a flavonoid that can be isolated from Tribulus terrestris L[1]. Tribuloside exhibits anti-mycobacterial activity against the non-pathogenic Mycobacterium species with a minimum inhibitory concentration (MIC) of 5.0 mg/mL. Tribuloside has 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity[2]. Tribuloside is a flavonoid that can be isolated from Tribulus terrestris L[1]. Tribuloside exhibits anti-mycobacterial activity against the non-pathogenic Mycobacterium species with a minimum inhibitory concentration (MIC) of 5.0 mg/mL. Tribuloside has 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity[2].

   

Ellagic acid

6,7,13,14-tetrahydroxy-2,9-dioxatetracyclo[6.6.2.0^{4,16}.0^{11,15}]hexadeca-1(14),4(16),5,7,11(15),12-hexaene-3,10-dione

C14H6O8 (302.0062676)


Ellagic acid appears as cream-colored needles (from pyridine) or yellow powder. Odorless. (NTP, 1992) Ellagic acid is an organic heterotetracyclic compound resulting from the formal dimerisation of gallic acid by oxidative aromatic coupling with intramolecular lactonisation of both carboxylic acid groups of the resulting biaryl. It is found in many fruits and vegetables, including raspberries, strawberries, cranberries, and pomegranates. It has a role as an antioxidant, a food additive, a plant metabolite, an EC 5.99.1.2 (DNA topoisomerase) inhibitor, an EC 5.99.1.3 [DNA topoisomerase (ATP-hydrolysing)] inhibitor, an EC 1.14.18.1 (tyrosinase) inhibitor, an EC 2.3.1.5 (arylamine N-acetyltransferase) inhibitor, an EC 2.4.1.1 (glycogen phosphorylase) inhibitor, an EC 2.5.1.18 (glutathione transferase) inhibitor, an EC 2.7.1.127 (inositol-trisphosphate 3-kinase) inhibitor, an EC 2.7.1.151 (inositol-polyphosphate multikinase) inhibitor, an EC 2.7.4.6 (nucleoside-diphosphate kinase) inhibitor, a skin lightening agent, a fungal metabolite, an EC 2.7.7.7 (DNA-directed DNA polymerase) inhibitor and a geroprotector. It is an organic heterotetracyclic compound, a cyclic ketone, a lactone, a member of catechols and a polyphenol. It is functionally related to a gallic acid. Ellagic acid is present in several fruits such as cranberries, strawberries, raspberries, and pomegranates. In pomegranates, there are several therapeutic compounds but ellagic acid is the most active and abundant. Ellagic acid is also present in vegetables. Ellagic acid is an investigational drug studied for treatment of Follicular Lymphoma (phase 2 trial), protection from brain injury of intrauterine growth restricted babies (phase 1 and 2 trial), improvement of cardiovascular function in adolescents who are obese (phase 2 trial), and topical treatment of solar lentigines. Ellagic acids therapeutic action mostly involves antioxidant and anti-proliferative effects. Ellagic acid is a natural product found in Fragaria chiloensis, Metrosideros perforata, and other organisms with data available. Ellagic acid is a metabolite found in or produced by Saccharomyces cerevisiae. A fused four ring compound occurring free or combined in galls. Isolated from the kino of Eucalyptus maculata Hook and E. Hemipholia F. Muell. Activates Factor XII of the blood clotting system which also causes kinin release; used in research and as a dye. Ellagic acid is an organic heterotetracyclic compound resulting from the formal dimerisation of gallic acid by oxidative aromatic coupling with intramolecular lactonisation of both carboxylic acid groups of the resulting biaryl. It is found in many fruits and vegetables, including raspberries, strawberries, cranberries, and pomegranates. It has a role as an antioxidant, a food additive, a plant metabolite, an EC 5.99.1.2 (DNA topoisomerase) inhibitor, an EC 5.99.1.3 [DNA topoisomerase (ATP-hydrolysing)] inhibitor, an EC 1.14.18.1 (tyrosinase) inhibitor, an EC 2.3.1.5 (arylamine N-acetyltransferase) inhibitor, an EC 2.4.1.1 (glycogen phosphorylase) inhibitor, an EC 2.5.1.18 (glutathione transferase) inhibitor, an EC 2.7.1.127 (inositol-trisphosphate 3-kinase) inhibitor, an EC 2.7.1.151 (inositol-polyphosphate multikinase) inhibitor, an EC 2.7.4.6 (nucleoside-diphosphate kinase) inhibitor, a skin lightening agent, a fungal metabolite and an EC 2.7.7.7 (DNA-directed DNA polymerase) inhibitor. It is an organic heterotetracyclic compound, a cyclic ketone, a lactone, a member of catechols and a polyphenol. It derives from a gallic acid. Ellagic acid, also known as ellagate, belongs to the class of organic compounds known as hydrolyzable tannins. These are tannins with a structure characterized by either of the following models. In model 1, the structure contains galloyl units (in some cases, shikimic acid units) that are linked to diverse polyol carbohydrate-, catechin-, or triterpenoid units. In model 2, contains at least two galloyl units C-C coupled to each other, and do not contain a glycosidically linked catechin unit. The antiproliferative and antioxidant properties of ellagic acid have spurred preliminary research into the potential health benefits of ellagic acid consumption. Ellagic acids therapeutic action mostly involves antioxidant and anti-proliferative/anti-cancer effects. Ellagic acid is found, on average, in the highest concentration within a few different foods, such as chestnuts, common walnuts, and japanese walnuts and in a lower concentration in whiskies, arctic blackberries, and cloudberries. Ellagic acid has also been detected, but not quantified in several different foods, such as lowbush blueberries, bilberries, guava, strawberry guava, and bog bilberries. An organic heterotetracyclic compound resulting from the formal dimerisation of gallic acid by oxidative aromatic coupling with intramolecular lactonisation of both carboxylic acid groups of the resulting biaryl. It is found in many fruits and vegetables, including raspberries, strawberries, cranberries, and pomegranates. Widely distributed in higher plants especies dicotyledons. Intestinal astringent, dietary role disputed. Nutriceutical with anticancer and antioxidation props. Ellagic acid is a natural antioxidant, and acts as a potent and ATP-competitive CK2 inhibitor, with an IC50 of 40 nM and a Ki of 20 nM. Ellagic acid is a natural antioxidant, and acts as a potent and ATP-competitive CK2 inhibitor, with an IC50 of 40 nM and a Ki of 20 nM.

   

Quercetin 3-galactoside

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-(((2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-4H-chromen-4-one

C21H20O12 (464.09547200000003)


Quercetin 3-O-beta-D-galactopyranoside is a quercetin O-glycoside that is quercetin with a beta-D-galactosyl residue attached at position 3. Isolated from Artemisia capillaris, it exhibits hepatoprotective activity. It has a role as a hepatoprotective agent and a plant metabolite. It is a tetrahydroxyflavone, a monosaccharide derivative, a beta-D-galactoside and a quercetin O-glycoside. Hyperoside is a natural product found in Lotus ucrainicus, Visnea mocanera, and other organisms with data available. See also: Bilberry (part of); Menyanthes trifoliata leaf (part of); Crataegus monogyna flowering top (part of). Quercetin 3-galactoside is found in alcoholic beverages. Quercetin 3-galactoside occurs widely in plants, e.g. in apple peel and Hypericum perforatum (St Johns wort).Hyperoside is the 3-O-galactoside of quercetin. It is a medicinally active compound that can be isolated from Drosera rotundifolia, from the Stachys plant, from Prunella vulgaris, from Rumex acetosella and from St Johns wort. (Wikipedia A quercetin O-glycoside that is quercetin with a beta-D-galactosyl residue attached at position 3. Isolated from Artemisia capillaris, it exhibits hepatoprotective activity. Occurs widely in plants, e.g. in apple peel and Hypericum perforatum (St Johns wort) Acquisition and generation of the data is financially supported in part by CREST/JST. Hyperoside is a NF-κB inhibitor, found from Hypericum monogynum. Hyperoside shows anti-tumor, antifungal, anti-inflammatory, anti-viral, and anti-oxidative activities, and can induce apoptosis[1][2]. Hyperoside is a NF-κB inhibitor, found from Hypericum monogynum. Hyperoside shows anti-tumor, antifungal, anti-inflammatory, anti-viral, and anti-oxidative activities, and can induce apoptosis[1][2].

   

Methyl_gallate

InChI=1/C8H8O5/c1-13-8(12)4-2-5(9)7(11)6(10)3-4/h2-3,9-11H,1H

C8H8O5 (184.0371718)


Methyl 3,4,5-trihydroxybenzoate is a gallate ester obtained by the formal condensation of gallic acid with methanol. It exhibits anti-oxidant, anti-tumor, anti-microbial and anti-inflammatory properties. It has a role as a plant metabolite, an anti-inflammatory agent and an antioxidant. Methyl gallate is a natural product found in Euphorbia teheranica, Euphorbia hyssopifolia, and other organisms with data available. See also: Paeonia lactiflora root (part of). A gallate ester obtained by the formal condensation of gallic acid with methanol. It exhibits anti-oxidant, anti-tumor, anti-microbial and anti-inflammatory properties. Methyl gallate is a plant phenolic with antioxidant, anticancer, and anti-inflammatory activities. Methyl gallate also shows bacterial inhibition activity. Methyl gallate also has anti-HIV-1 and HIV-1 enzyme inhibitory activities. Methyl gallate is a plant phenolic with antioxidant, anticancer, and anti-inflammatory activities. Methyl gallate also shows bacterial inhibition activity. Methyl gallate also has anti-HIV-1 and HIV-1 enzyme inhibitory activities.

   

Bredemolic acid

10,11-dihydroxy-2,2,6a,6b,9,9,12a-heptamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-icosahydropicene-4a-carboxylic acid

C30H48O4 (472.3552408)


   

Methyl gallate

345-Trihydroxy-benzoic acid methyl ester

C8H8O5 (184.0371718)


Methyl gallate, also known as methyl 3 or methyl galloic acid, is a member of the class of compounds known as galloyl esters. Galloyl esters are organic compounds that contain an ester derivative of 3,4,5-trihydroxybenzoic acid. Methyl gallate is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Methyl gallate can be found in peach and pomegranate, which makes methyl gallate a potential biomarker for the consumption of these food products. Methyl gallate is a phenolic compound. It is the methyl ester of gallic acid . Methyl gallate is a plant phenolic with antioxidant, anticancer, and anti-inflammatory activities. Methyl gallate also shows bacterial inhibition activity. Methyl gallate also has anti-HIV-1 and HIV-1 enzyme inhibitory activities. Methyl gallate is a plant phenolic with antioxidant, anticancer, and anti-inflammatory activities. Methyl gallate also shows bacterial inhibition activity. Methyl gallate also has anti-HIV-1 and HIV-1 enzyme inhibitory activities.

   

Methyl gallate

methyl 3,4,5-trihydroxybenzoate

C8H8O5 (184.0371718)


Methyl gallate is a plant phenolic with antioxidant, anticancer, and anti-inflammatory activities. Methyl gallate also shows bacterial inhibition activity. Methyl gallate also has anti-HIV-1 and HIV-1 enzyme inhibitory activities. Methyl gallate is a plant phenolic with antioxidant, anticancer, and anti-inflammatory activities. Methyl gallate also shows bacterial inhibition activity. Methyl gallate also has anti-HIV-1 and HIV-1 enzyme inhibitory activities.

   

Maslinic Acid

(4aS,6aS,6bR,8aR,10R,11R,12aR,12bR,14bS)-10,11-Dihydroxy-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-octadecahydro-2H-picene-4a-carboxylic acid

C30H48O4 (472.3552408)


A pentacyclic triterpenoid that is 3alpha-hydroxy epimer of maslinic acid. Isolated from Prunella vulgaris and Isodon japonicus, it exhibits anti-inflammatory activity. Annotation level-1 Maslinic acid can inhibit the DNA-binding activity of NF-κB p65 and abolish the phosphorylation of IκB-α, which is required for p65 activation. Maslinic acid can inhibit the DNA-binding activity of NF-κB p65 and abolish the phosphorylation of IκB-α, which is required for p65 activation.

   

Tiliroside

(E)-3-(4-hydroxyphenyl)prop-2-enoic acid [(2R,3S,4S,5R,6S)-6-[[5,7-dihydroxy-2-(4-hydroxyphenyl)-4-oxo-3-chromenyl]oxy]-3,4,5-trihydroxy-2-tetrahydropyranyl]methyl ester

C30H26O13 (594.1373346)


Acquisition and generation of the data is financially supported in part by CREST/JST. Tiliroside, a glycosidic flavonoid, possesses anti-diabetic activities. Tiliroside is a noncompetitive inhibitor of α-amylase with a Ki value of 84.2? μM. Tiliroside inhibits carbohydrate digestion and glucose absorption in the gastrointestinal tract[1]. Tiliroside, a glycosidic flavonoid, possesses anti-diabetic activities. Tiliroside is a noncompetitive inhibitor of α-amylase with a Ki value of 84.2? μM. Tiliroside inhibits carbohydrate digestion and glucose absorption in the gastrointestinal tract[1]. Tribuloside is a flavonoid that can be isolated from Tribulus terrestris L[1]. Tribuloside exhibits anti-mycobacterial activity against the non-pathogenic Mycobacterium species with a minimum inhibitory concentration (MIC) of 5.0 mg/mL. Tribuloside has 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity[2]. Tribuloside is a flavonoid that can be isolated from Tribulus terrestris L[1]. Tribuloside exhibits anti-mycobacterial activity against the non-pathogenic Mycobacterium species with a minimum inhibitory concentration (MIC) of 5.0 mg/mL. Tribuloside has 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity[2].

   

Stigmasterol

Stigmasterol

C29H48O (412.37049579999996)


Disclaimer: While authors make an effort to ensure that the content of this record is accurate, the authors make no representations or warranties in relation to the accuracy or completeness of the record. This record do not reflect any viewpoints of the affiliation and organization to which the authors belong.

   

hyperin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-[[(2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-2-tetrahydropyranyl]oxy]-4-chromenone

C21H20O12 (464.09547200000003)


Hyperoside is a NF-κB inhibitor, found from Hypericum monogynum. Hyperoside shows anti-tumor, antifungal, anti-inflammatory, anti-viral, and anti-oxidative activities, and can induce apoptosis[1][2]. Hyperoside is a NF-κB inhibitor, found from Hypericum monogynum. Hyperoside shows anti-tumor, antifungal, anti-inflammatory, anti-viral, and anti-oxidative activities, and can induce apoptosis[1][2].

   

Quercetin

2- (3,4-Dihydroxyphenyl) -3,5,7-trihydroxy-4H-1-benzopyran-4-one

C15H10O7 (302.042651)


Annotation level-1 COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials relative retention time with respect to 9-anthracene Carboxylic Acid is 0.898 D020011 - Protective Agents > D000975 - Antioxidants Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS relative retention time with respect to 9-anthracene Carboxylic Acid is 0.902 Acquisition and generation of the data is financially supported by the Max-Planck-Society IPB_RECORD: 1981; CONFIDENCE confident structure IPB_RECORD: 3301; CONFIDENCE confident structure IPB_RECORD: 3283; CONFIDENCE confident structure Quercetin, a natural flavonoid, is a stimulator of recombinant SIRT1 and also a PI3K inhibitor with IC50 of 2.4 μM, 3.0 μM and 5.4 μM for PI3K γ, PI3K δ and PI3K β, respectively[1]. Quercetin, a natural flavonoid, is a stimulator of recombinant SIRT1 and also a PI3K inhibitor with IC50 of 2.4 μM, 3.0 μM and 5.4 μM for PI3K γ, PI3K δ and PI3K β, respectively[1].

   

Daucosterol

(2R,3R,4S,5S,6R)-2-(((3S,8S,9S,10R,13R,14S,17R)-17-((2R,5R)-5-Ethyl-6-methylheptan-2-yl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol

C35H60O6 (576.4389659999999)


Daucosterol is a steroid saponin that is sitosterol attached to a beta-D-glucopyranosyl residue at position 3 via a glycosidic linkage. It has bee isolated from Panax japonicus var. major and Breynia fruticosa. It has a role as a plant metabolite. It is a steroid saponin, a beta-D-glucoside and a monosaccharide derivative. It is functionally related to a sitosterol. It derives from a hydride of a stigmastane. Sitogluside is a natural product found in Ophiopogon intermedius, Ophiopogon jaburan, and other organisms with data available. A steroid saponin that is sitosterol attached to a beta-D-glucopyranosyl residue at position 3 via a glycosidic linkage. It has bee isolated from Panax japonicus var. major and Breynia fruticosa. C308 - Immunotherapeutic Agent Daucosterol is a natural sterol compound. Daucosterol is a natural sterol compound.

   

Hyperoside

Quercetin 3-beta-D-galactopyranoside

C21H20O12 (464.09547200000003)


[Raw Data] CB050_Hyperoside_neg_50eV_000016.txt [Raw Data] CB050_Hyperoside_neg_40eV_000016.txt [Raw Data] CB050_Hyperoside_neg_30eV_000016.txt [Raw Data] CB050_Hyperoside_neg_20eV_000016.txt [Raw Data] CB050_Hyperoside_neg_10eV_000016.txt [Raw Data] CB050_Hyperoside_pos_50eV_CB000024.txt [Raw Data] CB050_Hyperoside_pos_40eV_CB000024.txt [Raw Data] CB050_Hyperoside_pos_30eV_CB000024.txt [Raw Data] CB050_Hyperoside_pos_20eV_CB000024.txt [Raw Data] CB050_Hyperoside_pos_10eV_CB000024.txt Hyperoside is a NF-κB inhibitor, found from Hypericum monogynum. Hyperoside shows anti-tumor, antifungal, anti-inflammatory, anti-viral, and anti-oxidative activities, and can induce apoptosis[1][2]. Hyperoside is a NF-κB inhibitor, found from Hypericum monogynum. Hyperoside shows anti-tumor, antifungal, anti-inflammatory, anti-viral, and anti-oxidative activities, and can induce apoptosis[1][2].

   

Ellagic Acid

Ellagic Acid

C14H6O8 (302.0062676)


Origin: Plant, Ellagic acids, Benzopyranoids, Pyrans Ellagic acid is a natural antioxidant, and acts as a potent and ATP-competitive CK2 inhibitor, with an IC50 of 40 nM and a Ki of 20 nM. Ellagic acid is a natural antioxidant, and acts as a potent and ATP-competitive CK2 inhibitor, with an IC50 of 40 nM and a Ki of 20 nM.

   

Jyperin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-{[(2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4H-chromen-4-one

C21H20O12 (464.09547200000003)


Hyperoside is a NF-κB inhibitor, found from Hypericum monogynum. Hyperoside shows anti-tumor, antifungal, anti-inflammatory, anti-viral, and anti-oxidative activities, and can induce apoptosis[1][2]. Hyperoside is a NF-κB inhibitor, found from Hypericum monogynum. Hyperoside shows anti-tumor, antifungal, anti-inflammatory, anti-viral, and anti-oxidative activities, and can induce apoptosis[1][2].

   

Quertin

4H-1-Benzopyran-4-one, 2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-

C15H10O7 (302.042651)


COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D020011 - Protective Agents > D000975 - Antioxidants Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Quercetin, a natural flavonoid, is a stimulator of recombinant SIRT1 and also a PI3K inhibitor with IC50 of 2.4 μM, 3.0 μM and 5.4 μM for PI3K γ, PI3K δ and PI3K β, respectively[1]. Quercetin, a natural flavonoid, is a stimulator of recombinant SIRT1 and also a PI3K inhibitor with IC50 of 2.4 μM, 3.0 μM and 5.4 μM for PI3K γ, PI3K δ and PI3K β, respectively[1].

   

Stigmasterin

(3S,8S,9S,10R,13R,14S,17R)-17-[(E,2R,5S)-5-ethyl-6-methyl-hept-3-en-2-yl]-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H48O (412.37049579999996)


C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol

   

GALOP

InChI=1\C7H6O5\c8-4-1-3(7(11)12)2-5(9)6(4)10\h1-2,8-10H,(H,11,12

C7H6O5 (170.0215226)


C26170 - Protective Agent > C275 - Antioxidant Gallic acid (3,4,5-Trihydroxybenzoic acid) is a natural polyhydroxyphenolic compound and an free radical scavenger to inhibit cyclooxygenase-2 (COX-2)[1]. Gallic acid has various activities, such as antimicrobial, antioxidant, antimicrobial, anti-inflammatory, and anticance activities[2]. Gallic acid (3,4,5-Trihydroxybenzoic acid) is a natural polyhydroxyphenolic compound and an free radical scavenger to inhibit cyclooxygenase-2 (COX-2)[1]. Gallic acid has various activities, such as antimicrobial, antioxidant, antimicrobial, anti-inflammatory, and anticance activities[2].

   

99-24-1

InChI=1\C8H8O5\c1-13-8(12)4-2-5(9)7(11)6(10)3-4\h2-3,9-11H,1H

C8H8O5 (184.0371718)


Methyl gallate is a plant phenolic with antioxidant, anticancer, and anti-inflammatory activities. Methyl gallate also shows bacterial inhibition activity. Methyl gallate also has anti-HIV-1 and HIV-1 enzyme inhibitory activities. Methyl gallate is a plant phenolic with antioxidant, anticancer, and anti-inflammatory activities. Methyl gallate also shows bacterial inhibition activity. Methyl gallate also has anti-HIV-1 and HIV-1 enzyme inhibitory activities.

   

Tiliroside

((2R,3S,4S,5R,6S)-6-((5,7-Dihydroxy-2-(4-hydroxyphenyl)-4-oxo-4H-chromen-3-yl)oxy)-3,4,5-trihydroxytetrahydro-2H-pyran-2-yl)methyl (E)-3-(4-hydroxyphenyl)acrylate

C30H26O13 (594.1373346)


Tribuloside is a glycosyloxyflavone that is kaempferol attached to a 6-O-[(2E)-3-(4-hydroxyphenyl)prop-2-enoyl]-beta-D-glucopyranosyl residue at position 3 via a glycosidic linkage. It has a role as a plant metabolite. It is a glycosyloxyflavone, a cinnamate ester, a trihydroxyflavone and a monosaccharide derivative. It is functionally related to a kaempferol and a trans-4-coumaric acid. Tiliroside is a natural product found in Phlomoides spectabilis, Anaphalis contorta, and other organisms with data available. A glycosyloxyflavone that is kaempferol attached to a 6-O-[(2E)-3-(4-hydroxyphenyl)prop-2-enoyl]-beta-D-glucopyranosyl residue at position 3 via a glycosidic linkage. Tiliroside, a glycosidic flavonoid, possesses anti-diabetic activities. Tiliroside is a noncompetitive inhibitor of α-amylase with a Ki value of 84.2? μM. Tiliroside inhibits carbohydrate digestion and glucose absorption in the gastrointestinal tract[1]. Tiliroside, a glycosidic flavonoid, possesses anti-diabetic activities. Tiliroside is a noncompetitive inhibitor of α-amylase with a Ki value of 84.2? μM. Tiliroside inhibits carbohydrate digestion and glucose absorption in the gastrointestinal tract[1]. Tribuloside is a flavonoid that can be isolated from Tribulus terrestris L[1]. Tribuloside exhibits anti-mycobacterial activity against the non-pathogenic Mycobacterium species with a minimum inhibitory concentration (MIC) of 5.0 mg/mL. Tribuloside has 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity[2]. Tribuloside is a flavonoid that can be isolated from Tribulus terrestris L[1]. Tribuloside exhibits anti-mycobacterial activity against the non-pathogenic Mycobacterium species with a minimum inhibitory concentration (MIC) of 5.0 mg/mL. Tribuloside has 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity[2].

   

methyl (5ar,6r,7s,7as,7br,9as,13as,13bs,15as,15bs)-6-(acetyloxy)-7,13a-dihydroxy-5a-[(1r)-1-hydroxyethyl]-7b,9a,12,15a-tetramethyl-3-oxo-5h,6h,7h,7ah,8h,9h,10h,13h,14h,15h,15bh-chryseno[2,1-c]oxepine-13b-carboxylate

methyl (5ar,6r,7s,7as,7br,9as,13as,13bs,15as,15bs)-6-(acetyloxy)-7,13a-dihydroxy-5a-[(1r)-1-hydroxyethyl]-7b,9a,12,15a-tetramethyl-3-oxo-5h,6h,7h,7ah,8h,9h,10h,13h,14h,15h,15bh-chryseno[2,1-c]oxepine-13b-carboxylate

C32H46O9 (574.3141666)


   

methyl (5ar,6r,7s,7as,7br,9as,13as,13bs,15as,15br)-6-(acetyloxy)-7,13a-dihydroxy-5a-[(1s)-1-hydroxyethyl]-7b,9a,12,15a-tetramethyl-3-oxo-5h,6h,7h,7ah,8h,9h,10h,13h,14h,15h,15bh-chryseno[2,1-c]oxepine-13b-carboxylate

methyl (5ar,6r,7s,7as,7br,9as,13as,13bs,15as,15br)-6-(acetyloxy)-7,13a-dihydroxy-5a-[(1s)-1-hydroxyethyl]-7b,9a,12,15a-tetramethyl-3-oxo-5h,6h,7h,7ah,8h,9h,10h,13h,14h,15h,15bh-chryseno[2,1-c]oxepine-13b-carboxylate

C32H46O9 (574.3141666)


   

methyl 24-(acetyloxy)-22-[(acetyloxy)methyl]-10-hydroxy-2,5,14,21-tetramethyl-8-methylidene-19-oxo-17,20-dioxahexacyclo[12.10.0.0²,¹¹.0⁵,¹⁰.0¹⁵,²².0¹⁶,¹⁸]tetracosane-11-carboxylate

methyl 24-(acetyloxy)-22-[(acetyloxy)methyl]-10-hydroxy-2,5,14,21-tetramethyl-8-methylidene-19-oxo-17,20-dioxahexacyclo[12.10.0.0²,¹¹.0⁵,¹⁰.0¹⁵,²².0¹⁶,¹⁸]tetracosane-11-carboxylate

C34H48O10 (616.3247308)


   

methyl 10-(acetyloxy)-8a-[(acetyloxy)methyl]-7,8,14a,14b-tetrahydroxy-4a,6a,9,12b-tetramethyl-2-methylidene-tetradecahydro-1h-picene-4-carboxylate

methyl 10-(acetyloxy)-8a-[(acetyloxy)methyl]-7,8,14a,14b-tetrahydroxy-4a,6a,9,12b-tetramethyl-2-methylidene-tetradecahydro-1h-picene-4-carboxylate

C34H52O10 (620.3560292)


   

methyl (5ar,6r,7s,7as,7br,9as,13as,13bs,15as,15bs)-7-(acetyloxy)-6,13a-dihydroxy-5a-(1-hydroxyethyl)-7b,9a,12,15a-tetramethyl-3-oxo-5h,6h,7h,7ah,8h,9h,10h,13h,14h,15h,15bh-chryseno[2,1-c]oxepine-13b-carboxylate

methyl (5ar,6r,7s,7as,7br,9as,13as,13bs,15as,15bs)-7-(acetyloxy)-6,13a-dihydroxy-5a-(1-hydroxyethyl)-7b,9a,12,15a-tetramethyl-3-oxo-5h,6h,7h,7ah,8h,9h,10h,13h,14h,15h,15bh-chryseno[2,1-c]oxepine-13b-carboxylate

C32H46O9 (574.3141666)


   

methyl (1s,2r,5r,10s,11s,14r,15s,16s,18s,21r,22s,24r)-24-(acetyloxy)-22-[(acetyloxy)methyl]-10-hydroxy-2,5,14,21-tetramethyl-8-methylidene-19-oxo-17,20-dioxahexacyclo[12.10.0.0²,¹¹.0⁵,¹⁰.0¹⁵,²².0¹⁶,¹⁸]tetracosane-11-carboxylate

methyl (1s,2r,5r,10s,11s,14r,15s,16s,18s,21r,22s,24r)-24-(acetyloxy)-22-[(acetyloxy)methyl]-10-hydroxy-2,5,14,21-tetramethyl-8-methylidene-19-oxo-17,20-dioxahexacyclo[12.10.0.0²,¹¹.0⁵,¹⁰.0¹⁵,²².0¹⁶,¹⁸]tetracosane-11-carboxylate

C34H48O10 (616.3247308)


   

methyl (5ar,6r,7s,7as,7br,9as,13as,13bs,15as,15bs)-7-(acetyloxy)-6,13a-dihydroxy-5a-[(1r)-1-hydroxyethyl]-7b,9a,12,15a-tetramethyl-3-oxo-5h,6h,7h,7ah,8h,9h,10h,13h,14h,15h,15bh-chryseno[2,1-c]oxepine-13b-carboxylate

methyl (5ar,6r,7s,7as,7br,9as,13as,13bs,15as,15bs)-7-(acetyloxy)-6,13a-dihydroxy-5a-[(1r)-1-hydroxyethyl]-7b,9a,12,15a-tetramethyl-3-oxo-5h,6h,7h,7ah,8h,9h,10h,13h,14h,15h,15bh-chryseno[2,1-c]oxepine-13b-carboxylate

C32H46O9 (574.3141666)


   

methyl (5ar,6r,7s,7as,7br,9ar,13as,13bs,15as,15bs)-7-(acetyloxy)-6,13a-dihydroxy-5a-[(1r)-1-hydroxyethyl]-7b,9a,15a-trimethyl-12-methylidene-3-oxo-5h,6h,7h,7ah,8h,9h,10h,11h,13h,14h,15h,15bh-chryseno[2,1-c]oxepine-13b-carboxylate

methyl (5ar,6r,7s,7as,7br,9ar,13as,13bs,15as,15bs)-7-(acetyloxy)-6,13a-dihydroxy-5a-[(1r)-1-hydroxyethyl]-7b,9a,15a-trimethyl-12-methylidene-3-oxo-5h,6h,7h,7ah,8h,9h,10h,11h,13h,14h,15h,15bh-chryseno[2,1-c]oxepine-13b-carboxylate

C32H46O9 (574.3141666)


   

methyl 3-(acetyloxy)-2,13,20,21-tetrahydroxy-25-methoxy-5,8,22-trimethyl-11-methylidene-24-oxahexacyclo[15.5.3.0¹,¹⁸.0⁴,¹⁷.0⁵,¹⁴.0⁸,¹³]pentacosane-14-carboxylate

methyl 3-(acetyloxy)-2,13,20,21-tetrahydroxy-25-methoxy-5,8,22-trimethyl-11-methylidene-24-oxahexacyclo[15.5.3.0¹,¹⁸.0⁴,¹⁷.0⁵,¹⁴.0⁸,¹³]pentacosane-14-carboxylate

C33H50O10 (606.34038)


   

methyl (5as,7r,7as,7br,9ar,13as,13bs,15as,15bs)-7,13a-dihydroxy-5a-[(1r)-1-hydroxyethyl]-7b,9a,15a-trimethyl-12-methylidene-3-oxo-5h,6h,7h,7ah,8h,9h,10h,11h,13h,14h,15h,15bh-chryseno[2,1-c]oxepine-13b-carboxylate

methyl (5as,7r,7as,7br,9ar,13as,13bs,15as,15bs)-7,13a-dihydroxy-5a-[(1r)-1-hydroxyethyl]-7b,9a,15a-trimethyl-12-methylidene-3-oxo-5h,6h,7h,7ah,8h,9h,10h,11h,13h,14h,15h,15bh-chryseno[2,1-c]oxepine-13b-carboxylate

C30H44O7 (516.3086874)


   

methyl (5ar,6r,7s,7as,7br,9as,12r,13as,13bs,15as,15bs)-6-(acetyloxy)-7,12,13a-trihydroxy-5a-[(1r)-1-hydroxyethyl]-7b,9a,12,15a-tetramethyl-3-oxo-5h,6h,7h,7ah,8h,9h,10h,11h,13h,14h,15h,15bh-chryseno[2,1-c]oxepine-13b-carboxylate

methyl (5ar,6r,7s,7as,7br,9as,12r,13as,13bs,15as,15bs)-6-(acetyloxy)-7,12,13a-trihydroxy-5a-[(1r)-1-hydroxyethyl]-7b,9a,12,15a-tetramethyl-3-oxo-5h,6h,7h,7ah,8h,9h,10h,11h,13h,14h,15h,15bh-chryseno[2,1-c]oxepine-13b-carboxylate

C32H48O10 (592.3247308)


   

methyl (5ar,6r,7s,7as,7br,9ar,13as,13br,15as,15bs)-7-(acetyloxy)-6,13a-dihydroxy-5a-[(1r)-1-hydroxyethyl]-7b,9a,15a-trimethyl-12-methylidene-3-oxo-5h,6h,7h,7ah,8h,9h,10h,11h,13h,14h,15h,15bh-chryseno[2,1-c]oxepine-13b-carboxylate

methyl (5ar,6r,7s,7as,7br,9ar,13as,13br,15as,15bs)-7-(acetyloxy)-6,13a-dihydroxy-5a-[(1r)-1-hydroxyethyl]-7b,9a,15a-trimethyl-12-methylidene-3-oxo-5h,6h,7h,7ah,8h,9h,10h,11h,13h,14h,15h,15bh-chryseno[2,1-c]oxepine-13b-carboxylate

C32H46O9 (574.3141666)


   

methyl 7,13a-dihydroxy-5a-(1-hydroxyethyl)-7b,9a,15a-trimethyl-12-methylidene-3-oxo-5h,6h,7h,7ah,8h,9h,10h,11h,13h,14h,15h,15bh-chryseno[2,1-c]oxepine-13b-carboxylate

methyl 7,13a-dihydroxy-5a-(1-hydroxyethyl)-7b,9a,15a-trimethyl-12-methylidene-3-oxo-5h,6h,7h,7ah,8h,9h,10h,11h,13h,14h,15h,15bh-chryseno[2,1-c]oxepine-13b-carboxylate

C30H44O7 (516.3086874)


   

methyl 6,24-bis(acetyloxy)-22-[(acetyloxy)methyl]-10-hydroxy-2,5,14,21-tetramethyl-8-methylidene-19-oxo-17,20-dioxahexacyclo[12.10.0.0²,¹¹.0⁵,¹⁰.0¹⁵,²².0¹⁶,¹⁸]tetracosane-11-carboxylate

methyl 6,24-bis(acetyloxy)-22-[(acetyloxy)methyl]-10-hydroxy-2,5,14,21-tetramethyl-8-methylidene-19-oxo-17,20-dioxahexacyclo[12.10.0.0²,¹¹.0⁵,¹⁰.0¹⁵,²².0¹⁶,¹⁸]tetracosane-11-carboxylate

C36H50O12 (674.3302100000001)


   

methyl 7-(acetyloxy)-6,13a-dihydroxy-5a-(1-hydroxyethyl)-7b,9a,15a-trimethyl-12-methylidene-3-oxo-5h,6h,7h,7ah,8h,9h,10h,11h,13h,14h,15h,15bh-chryseno[2,1-c]oxepine-13b-carboxylate

methyl 7-(acetyloxy)-6,13a-dihydroxy-5a-(1-hydroxyethyl)-7b,9a,15a-trimethyl-12-methylidene-3-oxo-5h,6h,7h,7ah,8h,9h,10h,11h,13h,14h,15h,15bh-chryseno[2,1-c]oxepine-13b-carboxylate

C32H46O9 (574.3141666)


   

methyl (5ar,6r,7s,7as,7br,9as,13as,13br,15as,15bs)-7-(acetyloxy)-6,13a-dihydroxy-5a-[(1r)-1-hydroxyethyl]-7b,9a,12,15a-tetramethyl-3-oxo-5h,6h,7h,7ah,8h,9h,10h,13h,14h,15h,15bh-chryseno[2,1-c]oxepine-13b-carboxylate

methyl (5ar,6r,7s,7as,7br,9as,13as,13br,15as,15bs)-7-(acetyloxy)-6,13a-dihydroxy-5a-[(1r)-1-hydroxyethyl]-7b,9a,12,15a-tetramethyl-3-oxo-5h,6h,7h,7ah,8h,9h,10h,13h,14h,15h,15bh-chryseno[2,1-c]oxepine-13b-carboxylate

C32H46O9 (574.3141666)


   

methyl (5ar,6r,7s,7as,7br,9as,13as,13bs,15as,15bs)-6,7,13a-trihydroxy-5a-[(1r)-1-hydroxyethyl]-7b,9a,12,15a-tetramethyl-3-oxo-5h,6h,7h,7ah,8h,9h,10h,13h,14h,15h,15bh-chryseno[2,1-c]oxepine-13b-carboxylate

methyl (5ar,6r,7s,7as,7br,9as,13as,13bs,15as,15bs)-6,7,13a-trihydroxy-5a-[(1r)-1-hydroxyethyl]-7b,9a,12,15a-tetramethyl-3-oxo-5h,6h,7h,7ah,8h,9h,10h,13h,14h,15h,15bh-chryseno[2,1-c]oxepine-13b-carboxylate

C30H44O8 (532.3036024)


   

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}chromen-4-one

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}chromen-4-one

C21H20O12 (464.09547200000003)


   

methyl (5ar,6r,7s,7as,7br,9as,13as,13br,15as,15bs)-6-(acetyloxy)-7,13a-dihydroxy-5a-[(1r)-1-hydroxyethyl]-7b,9a,12,15a-tetramethyl-3-oxo-5h,6h,7h,7ah,8h,9h,10h,13h,14h,15h,15bh-chryseno[2,1-c]oxepine-13b-carboxylate

methyl (5ar,6r,7s,7as,7br,9as,13as,13br,15as,15bs)-6-(acetyloxy)-7,13a-dihydroxy-5a-[(1r)-1-hydroxyethyl]-7b,9a,12,15a-tetramethyl-3-oxo-5h,6h,7h,7ah,8h,9h,10h,13h,14h,15h,15bh-chryseno[2,1-c]oxepine-13b-carboxylate

C32H46O9 (574.3141666)


   

methyl 6-(acetyloxy)-7,12,13a-trihydroxy-5a-(1-hydroxyethyl)-7b,9a,12,15a-tetramethyl-3-oxo-5h,6h,7h,7ah,8h,9h,10h,11h,13h,14h,15h,15bh-chryseno[2,1-c]oxepine-13b-carboxylate

methyl 6-(acetyloxy)-7,12,13a-trihydroxy-5a-(1-hydroxyethyl)-7b,9a,12,15a-tetramethyl-3-oxo-5h,6h,7h,7ah,8h,9h,10h,11h,13h,14h,15h,15bh-chryseno[2,1-c]oxepine-13b-carboxylate

C32H48O10 (592.3247308)


   

methyl (5ar,6r,7s,7as,7br,9ar,13as,13bs,15as,15bs)-6,7,13a-trihydroxy-5a-[(1r)-1-hydroxyethyl]-7b,9a,15a-trimethyl-12-methylidene-3-oxo-5h,6h,7h,7ah,8h,9h,10h,11h,13h,14h,15h,15bh-chryseno[2,1-c]oxepine-13b-carboxylate

methyl (5ar,6r,7s,7as,7br,9ar,13as,13bs,15as,15bs)-6,7,13a-trihydroxy-5a-[(1r)-1-hydroxyethyl]-7b,9a,15a-trimethyl-12-methylidene-3-oxo-5h,6h,7h,7ah,8h,9h,10h,11h,13h,14h,15h,15bh-chryseno[2,1-c]oxepine-13b-carboxylate

C30H44O8 (532.3036024)


   

methyl 7-(acetyloxy)-6,13a-dihydroxy-5a-(1-hydroxyethyl)-7b,9a,12,15a-tetramethyl-3-oxo-5h,6h,7h,7ah,8h,9h,10h,13h,14h,15h,15bh-chryseno[2,1-c]oxepine-13b-carboxylate

methyl 7-(acetyloxy)-6,13a-dihydroxy-5a-(1-hydroxyethyl)-7b,9a,12,15a-tetramethyl-3-oxo-5h,6h,7h,7ah,8h,9h,10h,13h,14h,15h,15bh-chryseno[2,1-c]oxepine-13b-carboxylate

C32H46O9 (574.3141666)


   

methyl (5ar,6r,7s,7as,7br,9ar,13as,13br,15as,15bs)-6,7,13a-trihydroxy-5a-[(1r)-1-hydroxyethyl]-7b,9a,15a-trimethyl-12-methylidene-3-oxo-5h,6h,7h,7ah,8h,9h,10h,11h,13h,14h,15h,15bh-chryseno[2,1-c]oxepine-13b-carboxylate

methyl (5ar,6r,7s,7as,7br,9ar,13as,13br,15as,15bs)-6,7,13a-trihydroxy-5a-[(1r)-1-hydroxyethyl]-7b,9a,15a-trimethyl-12-methylidene-3-oxo-5h,6h,7h,7ah,8h,9h,10h,11h,13h,14h,15h,15bh-chryseno[2,1-c]oxepine-13b-carboxylate

C30H44O8 (532.3036024)


   

methyl (5as,7r,7as,7br,9ar,13as,13br,15as,15bs)-7,13a-dihydroxy-5a-[(1r)-1-hydroxyethyl]-7b,9a,15a-trimethyl-12-methylidene-3-oxo-5h,6h,7h,7ah,8h,9h,10h,11h,13h,14h,15h,15bh-chryseno[2,1-c]oxepine-13b-carboxylate

methyl (5as,7r,7as,7br,9ar,13as,13br,15as,15bs)-7,13a-dihydroxy-5a-[(1r)-1-hydroxyethyl]-7b,9a,15a-trimethyl-12-methylidene-3-oxo-5h,6h,7h,7ah,8h,9h,10h,11h,13h,14h,15h,15bh-chryseno[2,1-c]oxepine-13b-carboxylate

C30H44O7 (516.3086874)


   

methyl (1s,2s,3s,4r,5r,8r,13s,14s,17s,18r,20r,21r,22r,25s)-3,21-bis(acetyloxy)-2,13,20,25-tetrahydroxy-5,8,22-trimethyl-11-methylidene-24-oxahexacyclo[15.5.3.0¹,¹⁸.0⁴,¹⁷.0⁵,¹⁴.0⁸,¹³]pentacosane-14-carboxylate

methyl (1s,2s,3s,4r,5r,8r,13s,14s,17s,18r,20r,21r,22r,25s)-3,21-bis(acetyloxy)-2,13,20,25-tetrahydroxy-5,8,22-trimethyl-11-methylidene-24-oxahexacyclo[15.5.3.0¹,¹⁸.0⁴,¹⁷.0⁵,¹⁴.0⁸,¹³]pentacosane-14-carboxylate

C34H50O11 (634.335295)


   

methyl (1s,2r,5s,6r,10s,11s,14r,15s,16s,18s,21r,22s,24r)-6,24-bis(acetyloxy)-22-[(acetyloxy)methyl]-10-hydroxy-2,5,14,21-tetramethyl-8-methylidene-19-oxo-17,20-dioxahexacyclo[12.10.0.0²,¹¹.0⁵,¹⁰.0¹⁵,²².0¹⁶,¹⁸]tetracosane-11-carboxylate

methyl (1s,2r,5s,6r,10s,11s,14r,15s,16s,18s,21r,22s,24r)-6,24-bis(acetyloxy)-22-[(acetyloxy)methyl]-10-hydroxy-2,5,14,21-tetramethyl-8-methylidene-19-oxo-17,20-dioxahexacyclo[12.10.0.0²,¹¹.0⁵,¹⁰.0¹⁵,²².0¹⁶,¹⁸]tetracosane-11-carboxylate

C36H50O12 (674.3302100000001)


   

methyl 6,7,13a-trihydroxy-5a-(1-hydroxyethyl)-7b,9a,15a-trimethyl-12-methylidene-3-oxo-5h,6h,7h,7ah,8h,9h,10h,11h,13h,14h,15h,15bh-chryseno[2,1-c]oxepine-13b-carboxylate

methyl 6,7,13a-trihydroxy-5a-(1-hydroxyethyl)-7b,9a,15a-trimethyl-12-methylidene-3-oxo-5h,6h,7h,7ah,8h,9h,10h,11h,13h,14h,15h,15bh-chryseno[2,1-c]oxepine-13b-carboxylate

C30H44O8 (532.3036024)


   

2-{[1-(5-ethyl-6-methylheptan-2-yl)-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

2-{[1-(5-ethyl-6-methylheptan-2-yl)-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C35H60O6 (576.4389659999999)


   

methyl (5as,7r,7as,7br,9ar,13as,13bs,15as,15bs)-7,13a-dihydroxy-5a-[(1r)-1-hydroxyethyl]-7b,9a,12,15a-tetramethyl-3-oxo-5h,6h,7h,7ah,8h,9h,10h,11h,14h,15h,15bh-chryseno[2,1-c]oxepine-13b-carboxylate

methyl (5as,7r,7as,7br,9ar,13as,13bs,15as,15bs)-7,13a-dihydroxy-5a-[(1r)-1-hydroxyethyl]-7b,9a,12,15a-tetramethyl-3-oxo-5h,6h,7h,7ah,8h,9h,10h,11h,14h,15h,15bh-chryseno[2,1-c]oxepine-13b-carboxylate

C30H44O7 (516.3086874)


   

methyl (1s,2s,3s,4r,5r,8r,13s,14s,17s,18r,20r,21r,22r,25s)-3-(acetyloxy)-2,13,20,21-tetrahydroxy-25-methoxy-5,8,22-trimethyl-11-methylidene-24-oxahexacyclo[15.5.3.0¹,¹⁸.0⁴,¹⁷.0⁵,¹⁴.0⁸,¹³]pentacosane-14-carboxylate

methyl (1s,2s,3s,4r,5r,8r,13s,14s,17s,18r,20r,21r,22r,25s)-3-(acetyloxy)-2,13,20,21-tetrahydroxy-25-methoxy-5,8,22-trimethyl-11-methylidene-24-oxahexacyclo[15.5.3.0¹,¹⁸.0⁴,¹⁷.0⁵,¹⁴.0⁸,¹³]pentacosane-14-carboxylate

C33H50O10 (606.34038)


   

methyl (5as,7r,7as,7br,9as,13as,13bs,15as,15bs)-7,13a-dihydroxy-5a-[(1r)-1-hydroxyethyl]-7b,9a,12,15a-tetramethyl-3-oxo-5h,6h,7h,7ah,8h,9h,10h,13h,14h,15h,15bh-chryseno[2,1-c]oxepine-13b-carboxylate

methyl (5as,7r,7as,7br,9as,13as,13bs,15as,15bs)-7,13a-dihydroxy-5a-[(1r)-1-hydroxyethyl]-7b,9a,12,15a-tetramethyl-3-oxo-5h,6h,7h,7ah,8h,9h,10h,13h,14h,15h,15bh-chryseno[2,1-c]oxepine-13b-carboxylate

C30H44O7 (516.3086874)


   

methyl (5ar,6r,7s,7as,7br,9ar,13as,13bs,15as,15bs)-6,7,13a-trihydroxy-5a-(1-hydroxyethyl)-7b,9a,15a-trimethyl-12-methylidene-3-oxo-5h,6h,7h,7ah,8h,9h,10h,11h,13h,14h,15h,15bh-chryseno[2,1-c]oxepine-13b-carboxylate

methyl (5ar,6r,7s,7as,7br,9ar,13as,13bs,15as,15bs)-6,7,13a-trihydroxy-5a-(1-hydroxyethyl)-7b,9a,15a-trimethyl-12-methylidene-3-oxo-5h,6h,7h,7ah,8h,9h,10h,11h,13h,14h,15h,15bh-chryseno[2,1-c]oxepine-13b-carboxylate

C30H44O8 (532.3036024)


   

methyl (5ar,6r,7s,7as,7br,9ar,13as,13bs,15as,15bs)-7-(acetyloxy)-6,13a-dihydroxy-5a-(1-hydroxyethyl)-7b,9a,15a-trimethyl-12-methylidene-3-oxo-5h,6h,7h,7ah,8h,9h,10h,11h,13h,14h,15h,15bh-chryseno[2,1-c]oxepine-13b-carboxylate

methyl (5ar,6r,7s,7as,7br,9ar,13as,13bs,15as,15bs)-7-(acetyloxy)-6,13a-dihydroxy-5a-(1-hydroxyethyl)-7b,9a,15a-trimethyl-12-methylidene-3-oxo-5h,6h,7h,7ah,8h,9h,10h,11h,13h,14h,15h,15bh-chryseno[2,1-c]oxepine-13b-carboxylate

C32H46O9 (574.3141666)


   

methyl 6-(acetyloxy)-7,13a-dihydroxy-5a-(1-hydroxyethyl)-7b,9a,12,15a-tetramethyl-3-oxo-5h,6h,7h,7ah,8h,9h,10h,13h,14h,15h,15bh-chryseno[2,1-c]oxepine-13b-carboxylate

methyl 6-(acetyloxy)-7,13a-dihydroxy-5a-(1-hydroxyethyl)-7b,9a,12,15a-tetramethyl-3-oxo-5h,6h,7h,7ah,8h,9h,10h,13h,14h,15h,15bh-chryseno[2,1-c]oxepine-13b-carboxylate

C32H46O9 (574.3141666)


   

methyl 6,7,13a-trihydroxy-5a-(1-hydroxyethyl)-7b,9a,12,15a-tetramethyl-3-oxo-5h,6h,7h,7ah,8h,9h,10h,13h,14h,15h,15bh-chryseno[2,1-c]oxepine-13b-carboxylate

methyl 6,7,13a-trihydroxy-5a-(1-hydroxyethyl)-7b,9a,12,15a-tetramethyl-3-oxo-5h,6h,7h,7ah,8h,9h,10h,13h,14h,15h,15bh-chryseno[2,1-c]oxepine-13b-carboxylate

C30H44O8 (532.3036024)


   

methyl (1s,2r,5s,6r,10s,11r,12s,14r,15s,16s,18s,21r,22s,24r)-6,12,24-tris(acetyloxy)-22-[(acetyloxy)methyl]-10-hydroxy-2,5,14,21-tetramethyl-8-methylidene-19-oxo-17,20-dioxahexacyclo[12.10.0.0²,¹¹.0⁵,¹⁰.0¹⁵,²².0¹⁶,¹⁸]tetracosane-11-carboxylate

methyl (1s,2r,5s,6r,10s,11r,12s,14r,15s,16s,18s,21r,22s,24r)-6,12,24-tris(acetyloxy)-22-[(acetyloxy)methyl]-10-hydroxy-2,5,14,21-tetramethyl-8-methylidene-19-oxo-17,20-dioxahexacyclo[12.10.0.0²,¹¹.0⁵,¹⁰.0¹⁵,²².0¹⁶,¹⁸]tetracosane-11-carboxylate

C38H52O14 (732.3356891999999)


   

methyl (5ar,6r,7s,7as,7br,9as,13as,13br,15as,15bs)-6,7,13a-trihydroxy-5a-[(1r)-1-hydroxyethyl]-7b,9a,12,15a-tetramethyl-3-oxo-5h,6h,7h,7ah,8h,9h,10h,13h,14h,15h,15bh-chryseno[2,1-c]oxepine-13b-carboxylate

methyl (5ar,6r,7s,7as,7br,9as,13as,13br,15as,15bs)-6,7,13a-trihydroxy-5a-[(1r)-1-hydroxyethyl]-7b,9a,12,15a-tetramethyl-3-oxo-5h,6h,7h,7ah,8h,9h,10h,13h,14h,15h,15bh-chryseno[2,1-c]oxepine-13b-carboxylate

C30H44O8 (532.3036024)


   

methyl (4s,4as,6ar,6bs,7s,8s,8as,9r,10s,12as,12bs,14as,14bs)-10-(acetyloxy)-8a-[(acetyloxy)methyl]-7,8,14a,14b-tetrahydroxy-4a,6a,9,12b-tetramethyl-2-methylidene-tetradecahydro-1h-picene-4-carboxylate

methyl (4s,4as,6ar,6bs,7s,8s,8as,9r,10s,12as,12bs,14as,14bs)-10-(acetyloxy)-8a-[(acetyloxy)methyl]-7,8,14a,14b-tetrahydroxy-4a,6a,9,12b-tetramethyl-2-methylidene-tetradecahydro-1h-picene-4-carboxylate

C34H52O10 (620.3560292)


   

methyl 7,13a-dihydroxy-5a-(1-hydroxyethyl)-7b,9a,12,15a-tetramethyl-3-oxo-5h,6h,7h,7ah,8h,9h,10h,13h,14h,15h,15bh-chryseno[2,1-c]oxepine-13b-carboxylate

methyl 7,13a-dihydroxy-5a-(1-hydroxyethyl)-7b,9a,12,15a-tetramethyl-3-oxo-5h,6h,7h,7ah,8h,9h,10h,13h,14h,15h,15bh-chryseno[2,1-c]oxepine-13b-carboxylate

C30H44O7 (516.3086874)


   

methyl (5as,7r,7ar,7br,9as,13as,13bs,15as,15br)-7,13a-dihydroxy-5a-[(1s)-1-hydroxyethyl]-7b,9a,12,15a-tetramethyl-3-oxo-5h,6h,7h,7ah,8h,9h,10h,13h,14h,15h,15bh-chryseno[2,1-c]oxepine-13b-carboxylate

methyl (5as,7r,7ar,7br,9as,13as,13bs,15as,15br)-7,13a-dihydroxy-5a-[(1s)-1-hydroxyethyl]-7b,9a,12,15a-tetramethyl-3-oxo-5h,6h,7h,7ah,8h,9h,10h,13h,14h,15h,15bh-chryseno[2,1-c]oxepine-13b-carboxylate

C30H44O7 (516.3086874)


   

methyl 6-(acetyloxy)-7,13a-dihydroxy-5a-(1-hydroxyethyl)-7b,9a,15a-trimethyl-12-methylidene-3-oxo-5h,6h,7h,7ah,8h,9h,10h,11h,13h,14h,15h,15bh-chryseno[2,1-c]oxepine-13b-carboxylate

methyl 6-(acetyloxy)-7,13a-dihydroxy-5a-(1-hydroxyethyl)-7b,9a,15a-trimethyl-12-methylidene-3-oxo-5h,6h,7h,7ah,8h,9h,10h,11h,13h,14h,15h,15bh-chryseno[2,1-c]oxepine-13b-carboxylate

C32H46O9 (574.3141666)


   

methyl (5as,7r,7as,7br,9as,13as,13br,15as,15bs)-7,13a-dihydroxy-5a-[(1r)-1-hydroxyethyl]-7b,9a,12,15a-tetramethyl-3-oxo-5h,6h,7h,7ah,8h,9h,10h,13h,14h,15h,15bh-chryseno[2,1-c]oxepine-13b-carboxylate

methyl (5as,7r,7as,7br,9as,13as,13br,15as,15bs)-7,13a-dihydroxy-5a-[(1r)-1-hydroxyethyl]-7b,9a,12,15a-tetramethyl-3-oxo-5h,6h,7h,7ah,8h,9h,10h,13h,14h,15h,15bh-chryseno[2,1-c]oxepine-13b-carboxylate

C30H44O7 (516.3086874)


   

methyl (5as,7r,7as,7br,9ar,13as,13br,15as,15bs)-7,13a-dihydroxy-5a-[(1r)-1-hydroxyethyl]-7b,9a,12,15a-tetramethyl-3-oxo-5h,6h,7h,7ah,8h,9h,10h,11h,14h,15h,15bh-chryseno[2,1-c]oxepine-13b-carboxylate

methyl (5as,7r,7as,7br,9ar,13as,13br,15as,15bs)-7,13a-dihydroxy-5a-[(1r)-1-hydroxyethyl]-7b,9a,12,15a-tetramethyl-3-oxo-5h,6h,7h,7ah,8h,9h,10h,11h,14h,15h,15bh-chryseno[2,1-c]oxepine-13b-carboxylate

C30H44O7 (516.3086874)


   

methyl 6,12,24-tris(acetyloxy)-22-[(acetyloxy)methyl]-10-hydroxy-2,5,14,21-tetramethyl-8-methylidene-19-oxo-17,20-dioxahexacyclo[12.10.0.0²,¹¹.0⁵,¹⁰.0¹⁵,²².0¹⁶,¹⁸]tetracosane-11-carboxylate

methyl 6,12,24-tris(acetyloxy)-22-[(acetyloxy)methyl]-10-hydroxy-2,5,14,21-tetramethyl-8-methylidene-19-oxo-17,20-dioxahexacyclo[12.10.0.0²,¹¹.0⁵,¹⁰.0¹⁵,²².0¹⁶,¹⁸]tetracosane-11-carboxylate

C38H52O14 (732.3356891999999)


   

methyl 3,21-bis(acetyloxy)-2,13,20,25-tetrahydroxy-5,8,22-trimethyl-11-methylidene-24-oxahexacyclo[15.5.3.0¹,¹⁸.0⁴,¹⁷.0⁵,¹⁴.0⁸,¹³]pentacosane-14-carboxylate

methyl 3,21-bis(acetyloxy)-2,13,20,25-tetrahydroxy-5,8,22-trimethyl-11-methylidene-24-oxahexacyclo[15.5.3.0¹,¹⁸.0⁴,¹⁷.0⁵,¹⁴.0⁸,¹³]pentacosane-14-carboxylate

C34H50O11 (634.335295)


   

methyl (5ar,6r,7s,7as,7br,9ar,13as,13bs,15as,15bs)-6-(acetyloxy)-7,13a-dihydroxy-5a-[(1r)-1-hydroxyethyl]-7b,9a,15a-trimethyl-12-methylidene-3-oxo-5h,6h,7h,7ah,8h,9h,10h,11h,13h,14h,15h,15bh-chryseno[2,1-c]oxepine-13b-carboxylate

methyl (5ar,6r,7s,7as,7br,9ar,13as,13bs,15as,15bs)-6-(acetyloxy)-7,13a-dihydroxy-5a-[(1r)-1-hydroxyethyl]-7b,9a,15a-trimethyl-12-methylidene-3-oxo-5h,6h,7h,7ah,8h,9h,10h,11h,13h,14h,15h,15bh-chryseno[2,1-c]oxepine-13b-carboxylate

C32H46O9 (574.3141666)


   

methyl 7,13a-dihydroxy-5a-(1-hydroxyethyl)-7b,9a,12,15a-tetramethyl-3-oxo-5h,6h,7h,7ah,8h,9h,10h,11h,14h,15h,15bh-chryseno[2,1-c]oxepine-13b-carboxylate

methyl 7,13a-dihydroxy-5a-(1-hydroxyethyl)-7b,9a,12,15a-tetramethyl-3-oxo-5h,6h,7h,7ah,8h,9h,10h,11h,14h,15h,15bh-chryseno[2,1-c]oxepine-13b-carboxylate

C30H44O7 (516.3086874)


   

methyl 3-(acetyloxy)-2,13,20,21,25-pentahydroxy-5,8,22-trimethyl-11-methylidene-24-oxahexacyclo[15.5.3.0¹,¹⁸.0⁴,¹⁷.0⁵,¹⁴.0⁸,¹³]pentacosane-14-carboxylate

methyl 3-(acetyloxy)-2,13,20,21,25-pentahydroxy-5,8,22-trimethyl-11-methylidene-24-oxahexacyclo[15.5.3.0¹,¹⁸.0⁴,¹⁷.0⁵,¹⁴.0⁸,¹³]pentacosane-14-carboxylate

C32H48O10 (592.3247308)


   

methyl (1s,2s,3s,4r,5r,8r,13s,14s,17s,18r,20r,21r,22r,25s)-3-(acetyloxy)-2,13,20,21,25-pentahydroxy-5,8,22-trimethyl-11-methylidene-24-oxahexacyclo[15.5.3.0¹,¹⁸.0⁴,¹⁷.0⁵,¹⁴.0⁸,¹³]pentacosane-14-carboxylate

methyl (1s,2s,3s,4r,5r,8r,13s,14s,17s,18r,20r,21r,22r,25s)-3-(acetyloxy)-2,13,20,21,25-pentahydroxy-5,8,22-trimethyl-11-methylidene-24-oxahexacyclo[15.5.3.0¹,¹⁸.0⁴,¹⁷.0⁵,¹⁴.0⁸,¹³]pentacosane-14-carboxylate

C32H48O10 (592.3247308)


   

methyl (5as,7r,7as,7br,9as,13as,13bs,15as,15br)-7,13a-dihydroxy-5a-[(1s)-1-hydroxyethyl]-7b,9a,12,15a-tetramethyl-3-oxo-5h,6h,7h,7ah,8h,9h,10h,13h,14h,15h,15bh-chryseno[2,1-c]oxepine-13b-carboxylate

methyl (5as,7r,7as,7br,9as,13as,13bs,15as,15br)-7,13a-dihydroxy-5a-[(1s)-1-hydroxyethyl]-7b,9a,12,15a-tetramethyl-3-oxo-5h,6h,7h,7ah,8h,9h,10h,13h,14h,15h,15bh-chryseno[2,1-c]oxepine-13b-carboxylate

C30H44O7 (516.3086874)


   

methyl (4as,4bs,6as,7s,8r,9r,10s,10as,10br,12as)-4a,9,10-trihydroxy-8-[(1r)-1-hydroxyethyl]-8-(hydroxymethyl)-7-(3-methoxy-3-oxopropyl)-3,6a,10b,12a-tetramethyl-1,4,5,6,7,9,10,10a,11,12-decahydrochrysene-4b-carboxylate

methyl (4as,4bs,6as,7s,8r,9r,10s,10as,10br,12as)-4a,9,10-trihydroxy-8-[(1r)-1-hydroxyethyl]-8-(hydroxymethyl)-7-(3-methoxy-3-oxopropyl)-3,6a,10b,12a-tetramethyl-1,4,5,6,7,9,10,10a,11,12-decahydrochrysene-4b-carboxylate

C31H50O9 (566.345465)