Erucic acid (BioDeep_00000000996)

 

Secondary id: BioDeep_00000176813, BioDeep_00000396901, BioDeep_00000628733, BioDeep_00000870831

human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite BioNovoGene_Lab2019 natural product


代谢物信息卡片


(13Z)-docos-13-enoic acid

化学式: C22H42O2 (338.3185)
中文名称: 二十二碳烯酸(芥酸), 芥酸
谱图信息: 最多检出来源 Homo sapiens(blood) 25.28%

Reviewed

Last reviewed on 2024-07-01.

Cite this Page

Erucic acid. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China. https://query.biodeep.cn/s/erucic_acid (retrieved 2024-12-22) (BioDeep RN: BioDeep_00000000996). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

分子结构信息

SMILES: C(=C/CCCCCCCCCCCC(=O)O)/CCCCCCCC
InChI: InChI=1S/C22H42O2/c1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18-19-20-21-22(23)24/h9-10H,2-8,11-21H2,1H3,(H,23,24)

描述信息

Before genetic engineering, plant breeders were aiming to produce a less-bitter-tasting multi-purpose oil from rapeseed that would appeal to a larger market by making it more palatable for cattle and other livestock. While it was possible to breed out much of the pungent-tasting glucosinolates, one of the dominant erucic acid genes would get stripped out of the genome as well, greatly reducing its valuable erucic acid content. Studies on rats show lipodosis problems when fed high quantities of erucic acid, however, so this did not hinder saleability. Later trials showed that rats had the same problems with other vegetable fatty acids, because rats are poor at metabolising some fats. The plant breeding industry later changed "low erucic acid" to be its unique selling proposition over that of its competitors.; Erucic acid is a monounsaturated omega-9 fatty acid found mainly in the Brassica family of plants such as canola, rapeseed, wallflower seed, mustard seed as well as Brussels spouts and broccoli. Some Brassica cultivars can have up to 40 to 50 percent of their oil recovered as erucic acid. Erucic acid is also known as cis-13-docosenoic acid. The trans isomer is known as brassidic acid. Erucic acid occurs in nature only along with bitter-tasting compounds. Erucic acid has many of the same uses as mineral oils but with the advantage that it is more readily bio-degradable. Its high tolerance to temperature makes it suitable for transmission oil. Its ability to polymerize and dry means it can be - and is - used as a binder for oil paints. Increased levels of eicosenoic acid (20:ln9) and erucic acid (22:1n9) have been found in the red blood cell membranes of autistic subjects with developmental regression (PMID: 16581239). Erucic acid is broken down long-chain acyl-coenzyme A (CoA) dehydrogenase, which is produced in the liver. This enzyme breaks this long chain fatty acid into shorter-chain fatty acids. human infants have relatively low amounts of this enzyme and because of this, babies should not be given foods high in erucic acid.; Erucic acid is a monounsaturated omega-9 fatty acid, denoted 22:1 ?-9. It is prevalent in rapeseed, wallflower seed, and mustard seed, making up 40-50\\% of their oils. Erucic acid is also known as cis-13-docosenoic acid and the trans isomer is known as brassidic acid.; The name erucic means: of or pertaining to eruca; which is a genus of flowering plants in the family Brassicaceae. It is also the Latin for coleworth, which today is better known as kale. Erucic acid is produced naturally (together with other fatty acids) across a great range of green plants, but especially so in members of the brassica family. It is highest in some of the rapeseed varieties of brassicas, kale and mustard being some of the highest, followed by Brussels spouts and broccoli. For industrial purposes, a High-Erucic Acid Rapeseed (HEAR) has been developed. These cultivars can yield 40\\% to 60\\% of the total oil recovered as erucic acid.
Erucic acid is a 22-carbon, monounsaturated omega-9 fatty acid found mainly in the Brassica family of plants such as canola, rapeseed, wallflower seed, mustard seed as well as Brussels spouts and broccoli. Some Brassica cultivars can have up to 40 to 50 percent of their oil recovered as erucic acid. Erucic acid is also known as cis-13-docosenoic acid. The trans isomer is known as brassidic acid. Erucic acid occurs in nature only along with bitter-tasting compounds. Erucic acid has many of the same uses as mineral oils but with the advantage that it is more readily bio-degradable. Its high tolerance to temperature makes it suitable for transmission oil. Erucic acid’s ability to polymerize and dry means it can be - and is - used as a binder for oil paints. Increased levels of eicosenoic acid (20:Ln9) and erucic acid (22:1N9) have been found in the red blood cell membranes of autistic subjects with developmental regression (PMID: 16581239 ). Erucic acid is broken down long-chain acyl-coenzyme A (CoA) dehydrogenase, which is produced in the liver. This enzyme breaks this long chain fatty acid into shorter-chain fatty acids. Human infants have relatively low amounts of this enzyme and because of this, babies should not be given foods high in erucic acid. Food-grade rapeseed oil (also known as canola oil) is regulated to a maximum of 2\\% erucic acid by weight in the US and 5\\% in the EU, with special regulations for infant food. Canola was bred from rapeseed cultivars of B. napus and B. rapa at the University of Manitoba, Canada. Canola oil is derived from a variety of rapeseed that is low in erucic acid.
Erucic acid is a docosenoic acid having a cis- double bond at C-13. It is found particularly in brassicas - it is a major component of mustard and rapeseed oils and is produced by broccoli, Brussels sprouts, kale, and wallflowers. It is a conjugate acid of an erucate.
Erucic acid is a natural product found in Dipteryx lacunifera, Myrtus communis, and other organisms with data available.
Erucic Acid is a monounsaturated very long-chain fatty acid with a 22-carbon backbone and a single double bond originating from the 9th position from the methyl end, with the double bond in the cis- configuration.
See also: Cod Liver Oil (part of).
A docosenoic acid having a cis- double bond at C-13. It is found particularly in brassicas - it is a major component of mustard and rapeseed oils and is produced by broccoli, Brussels sprouts, kale, and wallflowers.

同义名列表

96 个代谢物同义名

ERUCIC ACID (CONSTITUENT OF BORAGE SEED OIL); erucic acid, potassium salt, (Z)-isomer; erucic acid, sodium salt, (Z)-isomer; Erucic acid, technical, ~90\\% (GC); Erucic acid, >=99\\% (capillary GC); 13-docosenoic acid (ACD/Name 4.0); 13-Docosenoic acid, (13Z)-, dimer; Erucic acid, analytical standard; DELTA(13)-CIS-DOCOSENOIC ACID; cis-Delta(13)-docosenoic acid; .delta.13-cis-Docosenoic acid; delta.13-cis-Docosenoic acid; delta 13-cis-Docosenoic acid; DELTA 13:14-DOCOSENOIC ACID; 13-DOCOSENSAEURE (ALTSTOFF); delta13-cis-Docosenoic acid; 13-DOCOSENsaure (ALTSTOFF); 13-Docosenoic acid, (13Z)-; delta13:14-Docosenoic acid; (13Z)-13-Docosenoic acid #; cis-delta(13)-Docosenoate; (13Z)-docos-13-enoic acid; cis-Δ(13)-docosenoic acid; Docosenoic acid, 13-(Z)-; delta 13-cis-Docosenoate; delta.13-cis-Docosenoate; (13Z)-13-Docosenoic acid; 13-Docosenoic acid, (Z)-; Cis 13-docosaenoic Acid; 13-Docosenoic acid, (Z); Cis-docos-13-enoic Acid; Fatty Acid 22:1 n-9 cis; Δ13-cis-docosenoic acid; erucic acid, (Z)-isomer; (Z)-Docos-13-enoic acid; erucic acid, (E)-isomer; Fatty Acid cis 22:1 n-9; cis-13-Docosenoic acid; 13-cis-Docosenoic acid; (Z)-Docos-13-enoicacid; (Z)-13-Docosenoic acid; (13Z)-Docosenoic acid; 13(Z)-Docosenoic Acid; cis-Δ(13)-docosenoate; (13Z)-13-Docosenoate; Docosensaure, 13-cic; Z-13-Docosenoic acid; docos-13c-enoic acid; 13Z-docosenoic acid; Erucic acid, >=99\\%; (Z)-Docos-13-enoate; ERUCIC ACID [HSDB]; 13-cis-Docosenoate; 13-docosenoic acid; ERUCIC ACID [INCI]; (Z)-13-docosenoate; cis-13-Erucic acid; cis-13-Docosenoate; (13Z)-Docosenoate; Erucic acid, 85\\%; Edenor C 22 Eruca; ERUCIC ACID [MI]; Docos-13C-enoate; (Z)-Erucic acid; 13-Docosensaure; cis-erucic acid; C22-fatty acid; cis-eruic acid; NOURACID RE 07; 13-docosenoate; FA(22:1(13Z)); C22:1,n-9 cis; docosensaure; Prifrac 2990; Tox21_200242; Erucic acid; Erucasaeure; 22:1omega9; erucasaure; cis-Eruate; JARIC 22:1; FA(22:1n9); AI3-18180; 22:1(N-9); 22:1 n-9; C22:1n-9; FA 22:1; Erucate; trans-13-docosenoic acid; trans-brassidic acid; docos-13-enoic acid; 13E-docosenoic acid; Prifac 2990; Erucic Acid; Erucic acid; Erucic acid



数据库引用编号

32 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

398 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(1)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(397)

PharmGKB(0)

109 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 7 ALB, BDNF, CAT, ELANE, PINK1, PPARG, TBCE
Peripheral membrane protein 1 ACHE
Endoplasmic reticulum membrane 5 DGAT1, FADS2, HSD17B12, HSP90B1, SCD
Nucleus 6 ACHE, ALB, HSP90B1, PINK1, PPARA, PPARG
cytosol 8 ABCD2, ALB, CAT, ELANE, HSP90B1, LIPE, PINK1, PPARG
dendrite 1 BDNF
phagocytic vesicle 1 ELANE
centrosome 1 ALB
nucleoplasm 3 ATP2B1, PPARA, PPARG
RNA polymerase II transcription regulator complex 1 PPARG
Cell membrane 4 ACHE, ATP2B1, CD8A, LIPE
Multi-pass membrane protein 6 ABCD2, ATP2B1, DGAT1, FADS2, HSD17B12, SCD
Synapse 2 ACHE, ATP2B1
cell surface 2 ACHE, ELANE
glutamatergic synapse 1 ATP2B1
Golgi apparatus 2 ACHE, ALB
Golgi membrane 1 INS
growth cone 1 PINK1
mitochondrial inner membrane 1 PINK1
neuromuscular junction 1 ACHE
presynaptic membrane 1 ATP2B1
smooth endoplasmic reticulum 1 HSP90B1
synaptic vesicle 1 BDNF
Cytoplasm, cytosol 2 LIPE, PINK1
plasma membrane 6 ACHE, ATP2B1, CD8A, DGAT1, F2, FADS2
synaptic vesicle membrane 1 ATP2B1
Membrane 11 ACHE, ATP2B1, BDNF, CAT, DGAT1, FADS2, HSD17B12, HSP90B1, LIPE, PINK1, SCD
axon 2 BDNF, PINK1
basolateral plasma membrane 1 ATP2B1
caveola 1 LIPE
extracellular exosome 6 ALB, ATP2B1, CAT, ELANE, F2, HSP90B1
endoplasmic reticulum 5 ALB, HSD17B12, HSP90B1, PINK1, SCD
extracellular space 6 ACHE, ALB, BDNF, ELANE, F2, INS
perinuclear region of cytoplasm 5 ACHE, BDNF, HSP90B1, PINK1, PPARG
mitochondrion 2 CAT, PINK1
protein-containing complex 3 ALB, CAT, HSP90B1
intracellular membrane-bounded organelle 3 ATP2B1, CAT, PPARG
Single-pass type I membrane protein 1 CD8A
Secreted 5 ACHE, ALB, BDNF, F2, INS
extracellular region 9 ACHE, ALB, BDNF, CAT, CD8A, ELANE, F2, HSP90B1, INS
Mitochondrion outer membrane 1 PINK1
Single-pass membrane protein 1 PINK1
mitochondrial outer membrane 1 PINK1
[Isoform 2]: Secreted 1 CD8A
mitochondrial matrix 1 CAT
Extracellular side 1 ACHE
anchoring junction 1 ALB
Cytoplasmic vesicle, secretory vesicle, synaptic vesicle membrane 1 ATP2B1
external side of plasma membrane 1 CD8A
nucleolus 1 SCD
midbody 1 HSP90B1
Mitochondrion inner membrane 1 PINK1
Cytoplasm, cytoskeleton 1 TBCE
focal adhesion 2 CAT, HSP90B1
microtubule 1 TBCE
extracellular matrix 1 HSD17B12
Peroxisome 2 ABCD2, CAT
basement membrane 1 ACHE
Peroxisome matrix 1 CAT
peroxisomal matrix 1 CAT
peroxisomal membrane 2 ABCD2, CAT
mitochondrial intermembrane space 1 PINK1
collagen-containing extracellular matrix 3 ELANE, F2, HSP90B1
secretory granule 1 ELANE
lateral plasma membrane 1 ATP2B1
receptor complex 2 CD8A, PPARG
ciliary basal body 1 ALB
chromatin 3 PINK1, PPARA, PPARG
cell projection 1 ATP2B1
cytoskeleton 1 PINK1
centriole 1 ALB
spindle pole 1 ALB
blood microparticle 2 ALB, F2
Basolateral cell membrane 1 ATP2B1
Lipid-anchor, GPI-anchor 1 ACHE
endosome lumen 1 INS
Lipid droplet 1 LIPE
Membrane, caveola 1 LIPE
specific granule membrane 1 DGAT1
Melanosome 1 HSP90B1
Presynaptic cell membrane 1 ATP2B1
cell body 1 PINK1
side of membrane 1 ACHE
sperm plasma membrane 1 HSP90B1
Peroxisome membrane 1 ABCD2
plasma membrane raft 1 CD8A
ficolin-1-rich granule lumen 1 CAT
secretory granule lumen 2 CAT, INS
Golgi lumen 2 F2, INS
endoplasmic reticulum lumen 5 ALB, BDNF, F2, HSP90B1, INS
transcription repressor complex 1 ELANE
platelet alpha granule lumen 1 ALB
specific granule lumen 1 ELANE
transport vesicle 1 INS
azurophil granule lumen 1 ELANE
Endoplasmic reticulum-Golgi intermediate compartment membrane 1 INS
immunological synapse 1 ATP2B1
Sarcoplasmic reticulum lumen 1 HSP90B1
ribonucleoprotein complex 1 TBCE
synaptic cleft 1 ACHE
[Isoform 1]: Cell membrane 1 CD8A
Lewy body 1 PINK1
Cytoplasmic vesicle, phagosome 1 ELANE
astrocyte projection 1 PINK1
endocytic vesicle lumen 1 HSP90B1
ribosome 1 TBCE
T cell receptor complex 1 CD8A
catalase complex 1 CAT
endoplasmic reticulum chaperone complex 1 HSP90B1
photoreceptor ribbon synapse 1 ATP2B1
[Isoform H]: Cell membrane 1 ACHE
[Neurotrophic factor BDNF precursor form]: Secreted 1 BDNF
ciliary transition fiber 1 ALB
fatty acid elongase complex 1 HSD17B12


文献列表

  • Shiqi Xu, Shan Chen, Jialing Cai, Tao Yan, Mengxin Tu, Ruisen Wang, Shuijin Hua, Lixi Jiang. Genomic and transcriptome analyses reveal potential contributors to erucic acid biosynthesis in seeds of rapeseed (Brassica napus). TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik. 2024 May; 137(6):129. doi: 10.1007/s00122-024-04642-9. [PMID: 38740615]
  • Xueying Ai, Ali Mahmoud El-Badri, Maria Batool, Hongxiang Lou, Gengdong Gao, Chenyang Bai, Zongkai Wang, Chunji Jiang, Xinhua Zhao, Bo Wang, Jie Kuai, Zhenghua Xu, Jing Wang, Graham John King, Haiqiu Yu, Guangsheng Zhou, Tingdong Fu. Morpho-Physiochemical Indices and Transcriptome Analysis Reveal the Role of Glucosinolate and Erucic Acid in Response to Drought Stress during Seed Germination of Rapeseed. International journal of molecular sciences. 2024 Mar; 25(6):. doi: 10.3390/ijms25063308. [PMID: 38542283]
  • Hongbo Liu, Jinbo Zhu, Bingxin Zhang, Qingyang Li, Cui Liu, Qian Huang, Peng Cui. The functional divergence of homologous GPAT9 genes contributes to the erucic acid content of Brassica napus seeds. BMC plant biology. 2024 Jan; 24(1):69. doi: 10.1186/s12870-024-04734-0. [PMID: 38262947]
  • Qiang Liang, Wei Xiong, Qi Zhou, Cheng Cui, Xia Xu, Ling Zhao, Pu Xuan, Yingzheng Yao. Glucosinolates or erucic acid, which one contributes more to volatile flavor of fragrant rapeseed oil?. Food chemistry. 2023 Jun; 412(?):135594. doi: 10.1016/j.foodchem.2023.135594. [PMID: 36731240]
  • Adam Yasgar, Danielle Bougie, Richard T Eastman, Ruili Huang, Misha Itkin, Jennifer Kouznetsova, Caitlin Lynch, Crystal McKnight, Mitch Miller, Deborah K Ngan, Tyler Peryea, Pranav Shah, Paul Shinn, Menghang Xia, Xin Xu, Alexey V Zakharov, Anton Simeonov. Quantitative Bioactivity Signatures of Dietary Supplements and Natural Products. ACS pharmacology & translational science. 2023 May; 6(5):683-701. doi: 10.1021/acsptsci.2c00194. [PMID: 37200814]
  • G F Hartnell, S Lemke, D Moore, A Matthews, M A Nemeth, R Brister, S Liu, C Aulbach. Performance and health of broiler chickens fed low erucic acid, lower fiber pennycress (CoverCressTM) grain. Poultry science. 2022 Dec; 102(3):102432. doi: 10.1016/j.psj.2022.102432. [PMID: 36682128]
  • Meric A Altinoz. Could dietary erucic acid lower risk of brain tumors? An epidemiological look to Chinese population with implications for prevention and treatment. Metabolic brain disease. 2022 12; 37(8):2643-2651. doi: 10.1007/s11011-022-01022-4. [PMID: 35704146]
  • Asako Takahashi, Mayu Ishizaki, Yoshifumi Kimira, Yukari Egashira, Shizuka Hirai. Erucic Acid-Rich Yellow Mustard Oil Improves Insulin Resistance in KK-Ay Mice. Molecules (Basel, Switzerland). 2021 Jan; 26(3):. doi: 10.3390/molecules26030546. [PMID: 33494317]
  • Danuta Kurasiak-Popowska, Małgorzata Graczyk, Kinga Stuper-Szablewska. Winter camelina seeds as a raw material for the production of erucic acid-free oil. Food chemistry. 2020 Nov; 330(?):127265. doi: 10.1016/j.foodchem.2020.127265. [PMID: 32540525]
  • Ana Claver, Marina de la Vega, Raquel Rey-Giménez, María Á Luján, Rafael Picorel, M Victoria López, Miguel Alfonso. Functional analysis of β-ketoacyl-CoA synthase from biofuel feedstock Thlaspi arvense reveals differences in the triacylglycerol biosynthetic pathway among Brassicaceae. Plant molecular biology. 2020 Oct; 104(3):283-296. doi: 10.1007/s11103-020-01042-7. [PMID: 32740897]
  • Xiaocui Chen, Lin Shang, Senwen Deng, Ping Li, Kai Chen, Ting Gao, Xiao Zhang, Zhilan Chen, Jia Zeng. Peroxisomal oxidation of erucic acid suppresses mitochondrial fatty acid oxidation by stimulating malonyl-CoA formation in the rat liver. The Journal of biological chemistry. 2020 07; 295(30):10168-10179. doi: 10.1074/jbc.ra120.013583. [PMID: 32493774]
  • Asako Takahashi, Hirofumi Dohi, Yukari Egashira, Shizuka Hirai. Erucic acid derived from rosemary regulates differentiation of mesenchymal stem cells into osteoblasts/adipocytes via suppression of peroxisome proliferator-activated receptor γ transcriptional activity. Phytotherapy research : PTR. 2020 Jun; 34(6):1358-1366. doi: 10.1002/ptr.6607. [PMID: 31989712]
  • Peter Gajdoš, Jaroslav Hambalko, Ondrej Slaný, Milan Čertík. Conversion of waste materials into very long chain fatty acids by the recombinant yeast Yarrowia lipolytica. FEMS microbiology letters. 2020 03; 367(6):. doi: 10.1093/femsle/fnaa042. [PMID: 32129852]
  • Takahiko Mitsui, Satoru Kira, Tatsuya Ihara, Norifumi Sawada, Hiroshi Nakagomi, Tatsuya Miyamoto, Hiroshi Shimura, Sachiko Tsuchiya, Mie Kanda, Masayuki Takeda. Metabolism of fatty acids and bile acids in plasma is associated with overactive bladder in males: potential biomarkers and targets for novel treatments in a metabolomics analysis. International urology and nephrology. 2020 Feb; 52(2):233-238. doi: 10.1007/s11255-019-02299-8. [PMID: 31587188]
  • Kamil Demski, Simon Jeppson, Ida Lager, Agnieszka Misztak, Katarzyna Jasieniecka-Gazarkiewicz, Małgorzata Waleron, Sten Stymne, Antoni Banaś. Isoforms of Acyl-CoA:Diacylglycerol Acyltransferase2 Differ Substantially in Their Specificities toward Erucic Acid. Plant physiology. 2019 12; 181(4):1468-1479. doi: 10.1104/pp.19.01129. [PMID: 31619508]
  • Meric A Altinoz, Aysel Ozpinar. PPAR-δ and erucic acid in multiple sclerosis and Alzheimer's Disease. Likely benefits in terms of immunity and metabolism. International immunopharmacology. 2019 Apr; 69(?):245-256. doi: 10.1016/j.intimp.2019.01.057. [PMID: 30738994]
  • Michaela McGinn, Winthrop B Phippen, Ratan Chopra, Sunil Bansal, Brice A Jarvis, Mary E Phippen, Kevin M Dorn, Maliheh Esfahanian, Tara J Nazarenus, Edgar B Cahoon, Timothy P Durrett, M David Marks, John C Sedbrook. Molecular tools enabling pennycress (Thlaspi arvense) as a model plant and oilseed cash cover crop. Plant biotechnology journal. 2019 04; 17(4):776-788. doi: 10.1111/pbi.13014. [PMID: 30230695]
  • Paweł Paśko, Agnieszka Galanty, Paweł Żmudzki, Joanna Gdula-Argasińska, Paweł Zagrodzki. Influence of different light conditions and time of sprouting on harmful and beneficial aspects of rutabaga sprouts in comparison to their roots and seeds. Journal of the science of food and agriculture. 2019 Jan; 99(1):302-308. doi: 10.1002/jsfa.9188. [PMID: 29876936]
  • Nina Behnke, Edy Suprianto, Christian Möllers. A major QTL on chromosome C05 significantly reduces acid detergent lignin (ADL) content and increases seed oil and protein content in oilseed rape (Brassica napus L.). TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik. 2018 Nov; 131(11):2477-2492. doi: 10.1007/s00122-018-3167-6. [PMID: 30143828]
  • Bo Wang, Zhikun Wu, Zhaohong Li, Qinghua Zhang, Jianlin Hu, Yingjie Xiao, Dongfang Cai, Jiangsheng Wu, Graham J King, Haitao Li, Kede Liu. Dissection of the genetic architecture of three seed-quality traits and consequences for breeding in Brassica napus. Plant biotechnology journal. 2018 07; 16(7):1336-1348. doi: 10.1111/pbi.12873. [PMID: 29265559]
  • Lenka Havlickova, Zhesi He, Lihong Wang, Swen Langer, Andrea L Harper, Harjeevan Kaur, Martin R Broadley, Vasilis Gegas, Ian Bancroft. Validation of an updated Associative Transcriptomics platform for the polyploid crop species Brassica napus by dissection of the genetic architecture of erucic acid and tocopherol isoform variation in seeds. The Plant journal : for cell and molecular biology. 2018 Jan; 93(1):181-192. doi: 10.1111/tpj.13767. [PMID: 29124814]
  • Gulam Rabbani, Mohammad Hassan Baig, Arif Tasleem Jan, Eun Ju Lee, Mohsin Vahid Khan, Masihuz Zaman, Abd-ElAziem Farouk, Rizwan Hasan Khan, Inho Choi. Binding of erucic acid with human serum albumin using a spectroscopic and molecular docking study. International journal of biological macromolecules. 2017 Dec; 105(Pt 3):1572-1580. doi: 10.1016/j.ijbiomac.2017.04.051. [PMID: 28414112]
  • Sandy Fillet, Carmen Ronchel, Carla Callejo, María-José Fajardo, Helena Moralejo, José L Adrio. Engineering Rhodosporidium toruloides for the production of very long-chain monounsaturated fatty acid-rich oils. Applied microbiology and biotechnology. 2017 Oct; 101(19):7271-7280. doi: 10.1007/s00253-017-8461-8. [PMID: 28812146]
  • Dinghong Li, Zhao Lei, Jiayu Xue, Guangcan Zhou, Yueyu Hang, Xiaoqin Sun. Regulation of FATTY ACID ELONGATION1 expression and production in Brassica oleracea and Capsella rubella. Planta. 2017 Oct; 246(4):763-778. doi: 10.1007/s00425-017-2731-7. [PMID: 28674753]
  • Jianghua Shi, Chunxiu Lang, Fulin Wang, Xuelong Wu, Renhu Liu, Tao Zheng, Dongqing Zhang, Jinqing Chen, Guanting Wu. Depressed expression of FAE1 and FAD2 genes modifies fatty acid profiles and storage compounds accumulation in Brassica napus seeds. Plant science : an international journal of experimental plant biology. 2017 Oct; 263(?):177-182. doi: 10.1016/j.plantsci.2017.07.014. [PMID: 28818373]
  • Samia Hadj Ahmed, Nadia Kaoubaa, Wafa Kharroubi, Amira Zarrouk, Mohamed Fadhel Najjar, Fathi Batbout, Habib Gamra, Gerard Lizard, Mohamed Hammami. Association of plasma fatty acid alteration with the severity of coronary artery disease lesions in Tunisian patients. Lipids in health and disease. 2017 Aug; 16(1):154. doi: 10.1186/s12944-017-0538-y. [PMID: 28806974]
  • Zhen-Zhu Su, Ting Wang, Neeraj Shrivastava, You-Yuan Chen, Xiaoxi Liu, Chao Sun, Yufeng Yin, Qi-Kang Gao, Bing-Gan Lou. Piriformospora indica promotes growth, seed yield and quality of Brassica napus L. Microbiological research. 2017 Jun; 199(?):29-39. doi: 10.1016/j.micres.2017.02.006. [PMID: 28454707]
  • Serap Durakli Velioglu, Havva Tumay Temiz, Elif Ercioglu, Hasan Murat Velioglu, Ali Topcu, Ismail Hakki Boyaci. Use of Raman spectroscopy for determining erucic acid content in canola oil. Food chemistry. 2017 Apr; 221(?):87-90. doi: 10.1016/j.foodchem.2016.10.044. [PMID: 27979286]
  • Ana Claver, Raquel Rey, M Victoria López, Rafael Picorel, Miguel Alfonso. Identification of target genes and processes involved in erucic acid accumulation during seed development in the biodiesel feedstock Pennycress (Thlaspi arvense L.). Journal of plant physiology. 2017 Jan; 208(?):7-16. doi: 10.1016/j.jplph.2016.10.011. [PMID: 27889523]
  • Mariam A Ahmed, Reena V Kartha, Richard C Brundage, James Cloyd, Cynthia Basu, Bradley P Carlin, Richard O Jones, Ann B Moser, Ali Fatemi, Gerald V Raymond. A model-based approach to assess the exposure-response relationship of Lorenzo's oil in adrenoleukodystrophy. British journal of clinical pharmacology. 2016 06; 81(6):1058-66. doi: 10.1111/bcp.12897. [PMID: 26836218]
  • Asia Nosheen, Asghari Bano, Faizan Ullah. Bioinoculants: A sustainable approach to maximize the yield of Ethiopian mustard (Brassica carinata L.) under low input of chemical fertilizers. Toxicology and industrial health. 2016 Feb; 32(2):270-7. doi: 10.1177/0748233713498453. [PMID: 24097367]
  • Cynthia Basu, Mariam A Ahmed, Reena V Kartha, Richard C Brundage, Gerald V Raymond, James C Cloyd, Bradley P Carlin. A hierarchical Bayesian approach for combining pharmacokinetic/pharmacodynamic modeling and Phase IIa trial design in orphan drugs: Treating adrenoleukodystrophy with Lorenzo's oil. Journal of biopharmaceutical statistics. 2016; 26(6):1025-1039. doi: 10.1080/10543406.2016.1226326. [PMID: 27547896]
  • Jun Zou, Yusheng Zhao, Peifa Liu, Lei Shi, Xiaohua Wang, Meng Wang, Jinling Meng, Jochen Christoph Reif. Seed Quality Traits Can Be Predicted with High Accuracy in Brassica napus Using Genomic Data. PloS one. 2016; 11(11):e0166624. doi: 10.1371/journal.pone.0166624. [PMID: 27880793]
  • S Ahmad, H A Sadaqat, M H N Tahir, F S Awan. An insight in the genetic control and interrelationship of some quality traits in Brassica napus. Genetics and molecular research : GMR. 2015 Dec; 14(4):17941-50. doi: 10.4238/2015.december.22.19. [PMID: 26782440]
  • Jianghua Shi, Chunxiu Lang, Xuelong Wu, Renhu Liu, Tao Zheng, Dongqing Zhang, Jinqing Chen, Guanting Wu. RNAi knockdown of fatty acid elongase1 alters fatty acid composition in Brassica napus. Biochemical and biophysical research communications. 2015 Oct; 466(3):518-22. doi: 10.1016/j.bbrc.2015.09.062. [PMID: 26381181]
  • Yang Shu, Weiwei Xue, Xiaoying Xu, Zhimin Jia, Xiaojun Yao, Shuwen Liu, Lihong Liu. Interaction of erucic acid with bovine serum albumin using a multi-spectroscopic method and molecular docking technique. Food chemistry. 2015 Apr; 173(?):31-7. doi: 10.1016/j.foodchem.2014.09.164. [PMID: 25465991]
  • Rui Guan, Xueyuan Li, Per Hofvander, Xue-Rong Zhou, Danni Wang, Sten Stymne, Li-Hua Zhu. RNAi targeting putative genes in phosphatidylcholine turnover results in significant change in fatty acid composition in Crambe abyssinica seed oil. Lipids. 2015 Apr; 50(4):407-16. doi: 10.1007/s11745-015-4004-1. [PMID: 25753896]
  • Feng Li, Biyun Chen, Kun Xu, Jinfeng Wu, Weilin Song, Ian Bancroft, Andrea L Harper, Martin Trick, Shengyi Liu, Guizhen Gao, Nian Wang, Guixin Yan, Jiangwei Qiao, Jun Li, Hao Li, Xin Xiao, Tianyao Zhang, Xiaoming Wu. Genome-wide association study dissects the genetic architecture of seed weight and seed quality in rapeseed (Brassica napus L.). DNA research : an international journal for rapid publication of reports on genes and genomes. 2014 Aug; 21(4):355-67. doi: 10.1093/dnares/dsu002. [PMID: 24510440]
  • Christine Wendlinger, Simon Hammann, Walter Vetter. Various concentrations of erucic acid in mustard oil and mustard. Food chemistry. 2014 Jun; 153(?):393-7. doi: 10.1016/j.foodchem.2013.12.073. [PMID: 24491745]
  • Alexandra V Amosova, Lyudmila V Zemtsova, Zoya E Grushetskaya, Tatiana E Samatadze, Galina V Mozgova, Yadviga E Pilyuk, Valentina T Volovik, Natalia V Melnikova, Alexandr V Zelenin, Valentina A Lemesh, Olga V Muravenko. Intraspecific chromosomal and genetic polymorphism in Brassica napus L. detected by cytogenetic and molecular markers. Journal of genetics. 2014 Apr; 93(1):133-43. doi: 10.1007/s12041-014-0351-6. [PMID: 24840830]
  • Rui Guan, Ida Lager, Xueyuan Li, Sten Stymne, Li-Hua Zhu. Bottlenecks in erucic acid accumulation in genetically engineered ultrahigh erucic acid Crambe abyssinica. Plant biotechnology journal. 2014 Feb; 12(2):193-203. doi: 10.1111/pbi.12128. [PMID: 24119222]
  • S Khodadoust, A Mohammadzadeh, J Mohammadi, C Irajie, M Ramezani. Identification and determination of the fatty acid composition of Quercus brantii growing in southwestern Iran by GC-MS. Natural product research. 2014; 28(8):573-6. doi: 10.1080/14786419.2014.880915. [PMID: 24499169]
  • Farzad Javidfar, Bifang Cheng. Construction of a genetic linkage map and QTL analysis of erucic acid content and glucosinolate components in yellow mustard (Sinapis alba L.). BMC plant biology. 2013 Sep; 13(?):142. doi: 10.1186/1471-2229-13-142. [PMID: 24066707]
  • Xiaoqin Sun, Hui Pang, Mimi Li, Bin Peng, Haisong Guo, Qinqin Yan, Yueyu Hang. Evolutionary pattern of the FAE1 gene in brassicaceae and its correlation with the erucic acid trait. PloS one. 2013; 8(12):e83535. doi: 10.1371/journal.pone.0083535. [PMID: 24358289]
  • Ruchika Tripathi, S B Agrawal. Effects of ambient and elevated level of ozone on Brassica campestris L. with special reference to yield and oil quality parameters. Ecotoxicology and environmental safety. 2012 Nov; 85(?):1-12. doi: 10.1016/j.ecoenv.2012.08.012. [PMID: 22986091]
  • Taghreed A Ibrahim. Chemical composition and biological activity of extracts from Salvia bicolor Desf. growing in Egypt. Molecules (Basel, Switzerland). 2012 Sep; 17(10):11315-34. doi: 10.3390/molecules171011315. [PMID: 23011275]
  • Marco Cappa, Carla Bizzarri, Anna Petroni, Gianfranca Carta, Lina Cordeddu, Massimiliano Valeriani, Catello Vollono, Loredana De Pasquale, Milena Blasevich, Sebastiano Banni. A mixture of oleic, erucic and conjugated linoleic acids modulates cerebrospinal fluid inflammatory markers and improve somatosensorial evoked potential in X-linked adrenoleukodystrophy female carriers. Journal of inherited metabolic disease. 2012 Sep; 35(5):899-907. doi: 10.1007/s10545-011-9432-3. [PMID: 22189598]
  • Xueyuan Li, Eibertus N van Loo, Jens Gruber, Jing Fan, Rui Guan, Margrit Frentzen, Sten Stymne, Li-Hua Zhu. Development of ultra-high erucic acid oil in the industrial oil crop Crambe abyssinica. Plant biotechnology journal. 2012 Sep; 10(7):862-70. doi: 10.1111/j.1467-7652.2012.00709.x. [PMID: 22642539]
  • Qingyong Yang, Chuchuan Fan, Zhenhua Guo, Jie Qin, Jianzhong Wu, Qingyuan Li, Tingdong Fu, Yongming Zhou. Identification of FAD2 and FAD3 genes in Brassica napus genome and development of allele-specific markers for high oleic and low linolenic acid contents. TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik. 2012 Aug; 125(4):715-29. doi: 10.1007/s00122-012-1863-1. [PMID: 22534790]
  • Qu-Huan Ma, Xiao-Feng Shi, Bin Fan, Dong-Yan Liu. [Study on the chemical constituents from Patrinia scabra]. Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials. 2012 Aug; 35(8):1257-9. doi: ". [PMID: 23320358]
  • Jingjing Liu, Shuang Liang, Xiaoxi Liu, J Andrew Brown, Kylie E Newman, Manjula Sunkara, Andrew J Morris, Saloni Bhatnagar, Xiangan Li, Aurora Pujol, Gregory A Graf. The absence of ABCD2 sensitizes mice to disruptions in lipid metabolism by dietary erucic acid. Journal of lipid research. 2012 Jun; 53(6):1071-9. doi: 10.1194/jlr.m022160. [PMID: 22493092]
  • Andreas Girke, Antje Schierholt, Heiko C Becker. Extending the rapeseed gene pool with resynthesized Brassica napus II: Heterosis. TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik. 2012 Apr; 124(6):1017-26. doi: 10.1007/s00122-011-1765-7. [PMID: 22159759]
  • Atta Ofori, Antje Schierholt, Heiko C Becker. Biomass yield and heterosis of crosses within and between European winter cultivars of turnip rape (Brassica rapa L.). Journal of applied genetics. 2012 Feb; 53(1):31-5. doi: 10.1007/s13353-011-0067-8. [PMID: 22002119]
  • C M O'Neill, C Morgan, C Hattori, M Brennan, U Rosas, H Tschoep, P X Deng, D Baker, R Wells, I Bancroft. Towards the genetic architecture of seed lipid biosynthesis and accumulation in Arabidopsis thaliana. Heredity. 2012 Feb; 108(2):115-23. doi: 10.1038/hdy.2011.54. [PMID: 21731053]
  • Jan Bocianowski, Katarzyna Mikołajczyk, Iwona Bartkowiak-Broda. Determination of fatty acid composition in seed oil of rapeseed (Brassica napus L.) by mutated alleles of the FAD3 desaturase genes. Journal of applied genetics. 2012 Feb; 53(1):27-30. doi: 10.1007/s13353-011-0062-0. [PMID: 21912934]
  • Yanshi Xia, Zhengxiang Ning, Guihua Bai, Ronghua Li, Guijun Yan, Kadambot H M Siddique, Michael Baum, Peiguo Guo. Allelic variations of a light harvesting chlorophyll a/b-binding protein gene (Lhcb1) associated with agronomic traits in barley. PloS one. 2012; 7(5):e37573. doi: 10.1371/journal.pone.0037573. [PMID: 22662173]
  • F Guillon, C Larré, F Petipas, A Berger, J Moussawi, H Rogniaux, A Santoni, L Saulnier, F Jamme, M Miquel, L Lepiniec, B Dubreucq. A comprehensive overview of grain development in Brachypodium distachyon variety Bd21. Journal of experimental botany. 2012 Jan; 63(2):739-55. doi: 10.1093/jxb/err298. [PMID: 22016425]
  • Naser A Anjum, Sarvajeet S Gill, Shahid Umar, Iqbal Ahmad, Armando C Duarte, Eduarda Pereira. Improving growth and productivity of Oleiferous Brassicas under changing environment: significance of nitrogen and sulphur nutrition, and underlying mechanisms. TheScientificWorldJournal. 2012; 2012(?):657808. doi: 10.1100/2012/657808. [PMID: 22629181]
  • Semih Otles, Buket Yalcin. Phenolic compounds analysis of root, stalk, and leaves of nettle. TheScientificWorldJournal. 2012; 2012(?):564367. doi: 10.1100/2012/564367. [PMID: 22593694]
  • Adrian P Brown, Johan T M Kroon, David Swarbreck, Melanie Febrer, Tony R Larson, Ian A Graham, Mario Caccamo, Antoni R Slabas. Tissue-specific whole transcriptome sequencing in castor, directed at understanding triacylglycerol lipid biosynthetic pathways. PloS one. 2012; 7(2):e30100. doi: 10.1371/journal.pone.0030100. [PMID: 22319559]
  • Zhiyong Hu, Wei Hua, Shunmou Huang, Hongli Yang, Gaomiao Zhan, Xinfa Wang, Guihua Liu, Hanzhong Wang. Discovery of pod shatter-resistant associated SNPs by deep sequencing of a representative library followed by bulk segregant analysis in rapeseed. PloS one. 2012; 7(4):e34253. doi: 10.1371/journal.pone.0034253. [PMID: 22529909]
  • Janine Hellenbrand, Eva-Maria Biester, Jens Gruber, Mats Hamberg, Margrit Frentzen. Fatty acyl-CoA reductases of birds. BMC biochemistry. 2011 Dec; 12(?):64. doi: 10.1186/1471-2091-12-64. [PMID: 22151413]
  • Anja Bus, Niklas Körber, Rod J Snowdon, Benjamin Stich. Patterns of molecular variation in a species-wide germplasm set of Brassica napus. TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik. 2011 Dec; 123(8):1413-23. doi: 10.1007/s00122-011-1676-7. [PMID: 21847624]
  • Fupeng Li, Chaozhi Ma, Xia Wang, Changbin Gao, Jianfeng Zhang, Yuanyuan Wang, Na Cong, Xinghua Li, Jing Wen, Bin Yi, Jinxiong Shen, Jinxing Tu, Tingdong Fu. Characterization of Sucrose transporter alleles and their association with seed yield-related traits in Brassica napus L. BMC plant biology. 2011 Nov; 11(?):168. doi: 10.1186/1471-2229-11-168. [PMID: 22112023]
  • Wei-Luen Yu, William Ansari, Nathan G Schoepp, Michael J Hannon, Stephen P Mayfield, Michael D Burkart. Modifications of the metabolic pathways of lipid and triacylglycerol production in microalgae. Microbial cell factories. 2011 Nov; 10(?):91. doi: 10.1186/1475-2859-10-91. [PMID: 22047615]
  • Avery Sengupta, Mahua Ghosh. Hypolipidemic effect of mustard oil enriched with medium chain fatty acid and polyunsaturated fatty acid. Nutrition (Burbank, Los Angeles County, Calif.). 2011 Nov; 27(11-12):1183-93. doi: 10.1016/j.nut.2011.01.010. [PMID: 21621386]
  • Nian Wang, Wei Qian, Ida Suppanz, Lijuan Wei, Bizeng Mao, Yan Long, Jinling Meng, Andreas E Müller, Christian Jung. Flowering time variation in oilseed rape (Brassica napus L.) is associated with allelic variation in the FRIGIDA homologue BnaA.FRI.a. Journal of experimental botany. 2011 Nov; 62(15):5641-58. doi: 10.1093/jxb/err249. [PMID: 21862478]
  • Marzena Kurowska, Agata Daszkowska-Golec, Damian Gruszka, Marek Marzec, Miriam Szurman, Iwona Szarejko, Miroslaw Maluszynski. TILLING: a shortcut in functional genomics. Journal of applied genetics. 2011 Nov; 52(4):371-90. doi: 10.1007/s13353-011-0061-1. [PMID: 21912935]
  • Gisella Terre'Blanche, Mietha M van der Walt, Jacobus J Bergh, Lodewyk J Mienie. Treatment of an adrenomyeloneuropathy patient with Lorenzo's oil and supplementation with docosahexaenoic acid--a case report. Lipids in health and disease. 2011 Aug; 10(?):152. doi: 10.1186/1476-511x-10-152. [PMID: 21871076]
  • Helin Tan, Xiaohui Yang, Fengxia Zhang, Xiu Zheng, Cunmin Qu, Jinye Mu, Fuyou Fu, Jiana Li, Rongzhan Guan, Hongsheng Zhang, Guodong Wang, Jianru Zuo. Enhanced seed oil production in canola by conditional expression of Brassica napus LEAFY COTYLEDON1 and LEC1-LIKE in developing seeds. Plant physiology. 2011 Jul; 156(3):1577-88. doi: 10.1104/pp.111.175000. [PMID: 21562329]
  • Brian S Rett, Jay Whelan. Increasing dietary linoleic acid does not increase tissue arachidonic acid content in adults consuming Western-type diets: a systematic review. Nutrition & metabolism. 2011 Jun; 8(?):36. doi: 10.1186/1743-7075-8-36. [PMID: 21663641]
  • Xu-Yan Dong, Lu-Lu Guo, Fang Wei, Ju-Fang Li, Mu-Lan Jiang, Guang-Ming Li, Yuan-Di Zhao, Hong Chen. Some characteristics and functional properties of rapeseed protein prepared by ultrasonication, ultrafiltration and isoelectric precipitation. Journal of the science of food and agriculture. 2011 Jun; 91(8):1488-98. doi: 10.1002/jsfa.4339. [PMID: 21384382]
  • Peter Rzehak, Sibylle Koletzko, Berthold Koletzko, Stefanie Sausenthaler, Dietrich Reinhardt, Armin Grübl, Carl Peter Bauer, Ursula Krämer, Christina Bollrath, Andrea von Berg, Dietrich Berdel, H-Erich Wichmann, Joachim Heinrich. Growth of infants fed formula rich in canola oil (low erucic acid rapeseed oil). Clinical nutrition (Edinburgh, Scotland). 2011 Jun; 30(3):339-45. doi: 10.1016/j.clnu.2010.11.002. [PMID: 21130544]
  • Ooi-Kock Teh, Umi Salamah Ramli. Characterization of a KCS-like KASII from Jessenia bataua that elongates saturated and monounsaturated stearic acids in Arabidopsis thaliana. Molecular biotechnology. 2011 Jun; 48(2):97-108. doi: 10.1007/s12033-010-9350-x. [PMID: 21113689]
  • Julie Vanden Bussche, Julie A L Kiebooms, Nathalie De Clercq, Yoann Deceuninck, Bruno Le Bizec, Hubert F De Brabander, Lynn Vanhaecke. Feed or food responsible for the presence of low-level thiouracil in urine of livestock and humans?. Journal of agricultural and food chemistry. 2011 May; 59(10):5786-92. doi: 10.1021/jf200556x. [PMID: 21504236]
  • Fan Liu, Fang-Fang Qiao, Man-Li Tong, Li-Li Liu, Zuo-Gen Fu, Bing Dan, Li-Rong Lin, Tian-Ci Yang, Zhong-Ying Zhang. Further evaluation of a novel nano-scale gene vector for in vivo transfection of siRNA. Journal of cellular biochemistry. 2011 May; 112(5):1329-36. doi: 10.1002/jcb.23046. [PMID: 21312242]
  • A M Smooker, R Wells, C Morgan, F Beaudoin, K Cho, F Fraser, I Bancroft. The identification and mapping of candidate genes and QTL involved in the fatty acid desaturation pathway in Brassica napus. TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik. 2011 Apr; 122(6):1075-90. doi: 10.1007/s00122-010-1512-5. [PMID: 21184048]
  • Arun Jagannath, Yashpal Singh Sodhi, Vibha Gupta, Arundhati Mukhopadhyay, Neelakantan Arumugam, Indira Singh, Soma Rohatgi, Pradeep Kumar Burma, Akshay Kumar Pradhan, Deepak Pental. Eliminating expression of erucic acid-encoding loci allows the identification of "hidden" QTL contributing to oil quality fractions and oil content in Brassica juncea (Indian mustard). TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik. 2011 Apr; 122(6):1091-103. doi: 10.1007/s00122-010-1515-2. [PMID: 21188349]
  • Jun Wang, Derek J Lydiate, Isobel A P Parkin, Cyril Falentin, Régine Delourme, Pierre W C Carion, Graham J King. Integration of linkage maps for the Amphidiploid Brassica napus and comparative mapping with Arabidopsis and Brassica rapa. BMC genomics. 2011 Feb; 12(?):101. doi: 10.1186/1471-2164-12-101. [PMID: 21306613]
  • Harrie van Erp, Philip D Bates, Julie Burgal, Jay Shockey, John Browse. Castor phospholipid:diacylglycerol acyltransferase facilitates efficient metabolism of hydroxy fatty acids in transgenic Arabidopsis. Plant physiology. 2011 Feb; 155(2):683-93. doi: 10.1104/pp.110.167239. [PMID: 21173026]
  • Birgit Waltenberger, Daniela Schuster, Sompol Paramapojn, Wandee Gritsanapan, Gerhard Wolber, Judith M Rollinger, Hermann Stuppner. Predicting cyclooxygenase inhibition by three-dimensional pharmacophoric profiling. Part II: Identification of enzyme inhibitors from Prasaplai, a Thai traditional medicine. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2011 Jan; 18(2-3):119-33. doi: 10.1016/j.phymed.2010.08.002. [PMID: 20851587]
  • Jan Willmann, Herbert Thiele, Dieter Leibfritz. Combined reversed phase HPLC, mass spectrometry, and NMR spectroscopy for a fast separation and efficient identification of phosphatidylcholines. Journal of biomedicine & biotechnology. 2011; 2011(?):. doi: 10.1155/2011/385786. [PMID: 20871812]
  • Giuseppe Impallomeni, Alberto Ballistreri, Giovanni Marco Carnemolla, Salvatore P P Guglielmino, Marco Sebastiano Nicolò, Maria Grazia Cambria. Synthesis and characterization of poly(3-hydroxyalkanoates) from Brassica carinata oil with high content of erucic acid and from very long chain fatty acids. International journal of biological macromolecules. 2011 Jan; 48(1):137-45. doi: 10.1016/j.ijbiomac.2010.10.013. [PMID: 21035502]
  • Jiaqin Shi, Ruiyuan Li, Jun Zou, Yan Long, Jinling Meng. A dynamic and complex network regulates the heterosis of yield-correlated traits in rapeseed (Brassica napus L.). PloS one. 2011; 6(7):e21645. doi: 10.1371/journal.pone.0021645. [PMID: 21747942]
  • Pasqualina Magliano, Dominique Sanglard, Yves Poirier. Repercussion of a deficiency in mitochondrial ß-oxidation on the carbon flux of short-chain fatty acids to the peroxisomal ß-oxidation cycle in Aspergillus nidulans. Biochimica et biophysica acta. 2010 Dec; 1801(12):1386-92. doi: 10.1016/j.bbalip.2010.08.008. [PMID: 20736083]
  • Guo-Zhang Wu, Hong-Wei Xue. Arabidopsis β-ketoacyl-[acyl carrier protein] synthase i is crucial for fatty acid synthesis and plays a role in chloroplast division and embryo development. The Plant cell. 2010 Nov; 22(11):3726-44. doi: 10.1105/tpc.110.075564. [PMID: 21081696]
  • Guang-Jun Jing, Zuo-Gen Fu, Bing Dan, Li-Rong Lin, Tian-Ci Yang, Song-Lin Shi. Development and evaluation of a novel nano-scale vector for siRNA. Journal of cellular biochemistry. 2010 Nov; 111(4):881-8. doi: 10.1002/jcb.22776. [PMID: 20665545]
  • Carolyn Hutcheon, Renata F Ditt, Mark Beilstein, Luca Comai, Jesara Schroeder, Elianna Goldstein, Christine K Shewmaker, Thu Nguyen, Jay De Rocher, Jack Kiser. Polyploid genome of Camelina sativa revealed by isolation of fatty acid synthesis genes. BMC plant biology. 2010 Oct; 10(?):233. doi: 10.1186/1471-2229-10-233. [PMID: 20977772]
  • Atnan Uğur, Ipek Süntar, Sinem Aslan, Ilkay Erdoğan Orhan, Murat Kartal, Nazim Sekeroğlu, Dursun Eşiyok, Bilge Sener. Variations in fatty acid compositions of the seed oil of Eruca sativa Mill. caused by different sowing periods and nitrogen forms. Pharmacognosy magazine. 2010 Oct; 6(24):305-8. doi: 10.4103/0973-1296.71801. [PMID: 21120033]
  • J Bruce German, Cora J Dillard. Saturated fats: a perspective from lactation and milk composition. Lipids. 2010 Oct; 45(10):915-23. doi: 10.1007/s11745-010-3445-9. [PMID: 20652757]
  • Yun-dong Shi, Lin Jia, Xiang Li, Jian-zhong Ma, Fei Liu, Tai-bo Shen. [Studies on the spectrum of tea seed oily properties]. Guang pu xue yu guang pu fen xi = Guang pu. 2010 Sep; 30(9):2504-7. doi: ". [PMID: 21105428]
  • Olivier Berdeaux, Stéphane Gregoire, Cindie Fournier, William W Christie, Pierre Lambelet, Jean-Louis Sébédio. Detection of lactobacillic acid in low erucic rapeseed oil--A note of caution when quantifying cyclic fatty acid monomers in vegetable oils. Chemistry and physics of lipids. 2010 Sep; 163(7):698-702. doi: 10.1016/j.chemphyslip.2010.07.002. [PMID: 20654602]
  • D Józefiak, A Ptak, S Kaczmarek, P Mackowiak, M Sassek, B A Slominski. Multi-carbohydrase and phytase supplementation improves growth performance and liver insulin receptor sensitivity in broiler chickens fed diets containing full-fat rapeseed. Poultry science. 2010 Sep; 89(9):1939-46. doi: 10.3382/ps.2010-00694. [PMID: 20709979]
  • Prakash Sharma, Vikas Kumar, Amit Kumar Sinha, Jayant Ranjan, H M P Kithsiri, Gudipati Venkateshwarlu. Comparative fatty acid profiles of wild and farmed tropical freshwater fish rohu (Labeo rohita). Fish physiology and biochemistry. 2010 Sep; 36(3):411-417. doi: 10.1007/s10695-009-9309-7. [PMID: 19288256]
  • Frédéric Domergue, Sollapura J Vishwanath, Jérôme Joubès, Jasmine Ono, Jennifer A Lee, Matthieu Bourdon, Reem Alhattab, Christine Lowe, Stéphanie Pascal, René Lessire, Owen Rowland. Three Arabidopsis fatty acyl-coenzyme A reductases, FAR1, FAR4, and FAR5, generate primary fatty alcohols associated with suberin deposition. Plant physiology. 2010 Aug; 153(4):1539-54. doi: 10.1104/pp.110.158238. [PMID: 20571114]
  • Z K Navabi, I A P Parkin, J C Pires, Z Xiong, M R Thiagarajah, A G Good, M H Rahman. Introgression of B-genome chromosomes in a doubled haploid population of Brassica napus x B. carinata. Genome. 2010 Aug; 53(8):619-29. doi: 10.1139/g10-039. [PMID: 20725149]
  • Yunbao Liu, Muraleedharan G Nair. An efficient and economical MTT assay for determining the antioxidant activity of plant natural product extracts and pure compounds. Journal of natural products. 2010 Jul; 73(7):1193-5. doi: 10.1021/np1000945. [PMID: 20565070]
  • Nian Wang, Lei Shi, Fang Tian, Huicai Ning, Xiaoming Wu, Yan Long, Jinling Meng. Assessment of FAE1 polymorphisms in three Brassica species using EcoTILLING and their association with differences in seed erucic acid contents. BMC plant biology. 2010 Jul; 10(?):137. doi: 10.1186/1471-2229-10-137. [PMID: 20594317]
  • Kioumars Ghamkhar, Janine Croser, Nader Aryamanesh, Margaret Campbell, Nina Kon'kova, Clive Francis. Camelina (Camelina sativa (L.) Crantz) as an alternative oilseed: molecular and ecogeographic analyses. Genome. 2010 Jul; 53(7):558-67. doi: 10.1139/g10-034. [PMID: 20616877]