Gene Association: RIPK3
UniProt Search:
RIPK3 (PROTEIN_CODING)
Function Description: receptor interacting serine/threonine kinase 3
found 57 associated metabolites with current gene based on the text mining result from the pubmed database.
(-)-Arctiin
Natural compounds from herbs are recognized as an important source of therapeutic agents. Seeking for natural products with high selectivity and less side effects merits considerable efforts. Arctium lappa, also known as burdock, is widely consumed in East Asia, Europe and America to promote well-being for hundreds of years. In Chinese traditional medicine, Arctium lappa (mainly roots, and, to a less extend, seeds and leaves) is an important herbal medicinal preparation. It is commonly used for alleviating symptoms of inflammatory disorders, such as anemopyretic cold, cough, measles, urticaria and furuncle (Shin et al., 2015; Zhao et al., 2009). In addition, Arctium lappa is applied to treat various skin disorders including eczema and acne (Chan et al., 2011; Miglani and Manchanda, 2014). Lignans are the most characteristic phytoconstituents of Arctium lappa. Among them, ATG (Formula:C21H24O6; PubChem CID:64,981) and its glycoside, arctiin are the major bioactive compounds (Fig. 1). ATG, rich in roots and seeds of Arctium lappa, has attracted a great deal of attention due to its prominent therapeutic potential. It possesses many biological activities such as anti-oxidative stress (Lü et al., 2016), anti-cancer (He et al., 2018; Shabgah et al., 2021), anti-virus (Gao et al., 2018a) and anti-inflammation (Hyam et al., 2013; Zhao et al., 2009). Significant curative effects of ATG have been demonstrated on a wide range of human diseases including cancers, autoimmune disorders, chronic diseases, viral infections and other health concerns. The bioactivity of ATG largely depend on its chemical structure. For instance, the chiral carbon atom in the lactone ring is essential for the anti-tumor effect of ATG as (–)-arctigenin exhibits greater tumor suppression effect than (+)-arctigenin (Awale et al., 2014). Furthermore, the dibenzyl butyrolactone is key for the interactions between ATG and proteins. (-)-arctiin is a member of the class of compounds known as lignan glycosides. Lignan glycosides are aromatic polycyclic compounds containing a carbohydrate component glycosidically linked to a lignan moiety. They include 1-aryltetralin lactones (-)-arctiin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). (-)-arctiin can be found in burdock, which makes (-)-arctiin a potential biomarker for the consumption of this food product. Arctiin is a glycoside and a lignan. Arctiin is a natural product found in Abeliophyllum distichum, Forsythia suspensa, and other organisms with data available. Arctiin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=20362-31-6 (retrieved 2024-06-28) (CAS RN: 20362-31-6). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Arctiin (NSC 315527) is a plant lignan extracted from burdock seeds and has anti-cancer activity. Arctiin (NSC 315527) is a plant lignan extracted from burdock seeds and has anti-cancer activity.
Bufalin
Bufalin is a cardiotonic steroid toxin[1] originally isolated from Chinese toad venom, which is a component of some traditional Chinese medicines.[2][3] Bufalin has in vitro antitumor effects against various malignant cell lines, including hepatocellular[4] and lung carcinoma.[5] However, as with other bufadienolides, its potential use is hampered by its cardiotoxicity.[6] Bufalin is a 14beta-hydroxy steroid that is bufan-20,22-dienolide having hydroxy substituents at the 5beta- and 14beta-positions. It has been isolated from the skin of the toad Bufo bufo. It has a role as an antineoplastic agent, a cardiotonic drug, an anti-inflammatory agent and an animal metabolite. It is a 3beta-hydroxy steroid and a 14beta-hydroxy steroid. It is functionally related to a bufanolide. Bufalin is a natural product found in Cunninghamella blakesleeana, Bufo gargarizans, and other organisms with data available. Bufalin is an active ingredient and one of the glycosides in the traditional Chinese medicine ChanSu; it is also a bufadienolide toxin originally isolated from the venom of the Chinese toad Bufo gargarizans, with potential cardiotonic and antineoplastic activity. Although the mechanism of action of bufalin is still under investigation, this agent is a specific Na+/K+-ATPase inhibitor and can induce apoptosis in cancer cell lines through the activation of the transcription factor AP-1 via a mitogen activated protein kinase (MAPK) pathway. A 14beta-hydroxy steroid that is bufan-20,22-dienolide having hydroxy substituents at the 5beta- and 14beta-positions. It has been isolated from the skin of the toad Bufo bufo. Bufalin is an active component isolated from Chan Su, acts as a potent Na+/K+-ATPase inhibitor, binds to the subunit α1, α2 and α3, with Kd of 42.5, 45 and 40 nM, respectively[1][2]. Anti-cancer activity[2]. Bufalin is an active component isolated from Chan Su, acts as a potent Na+/K+-ATPase inhibitor, binds to the subunit α1, α2 and α3, with Kd of 42.5, 45 and 40 nM, respectively[1][2]. Anti-cancer activity[2].
Vincamine
Vincamine is a vinca alkaloid, an alkaloid ester, an organic heteropentacyclic compound, a methyl ester and a hemiaminal. It has a role as an antihypertensive agent, a vasodilator agent and a metabolite. It is functionally related to an eburnamenine. Vincamine is a monoterpenoid indole alkaloid obtained from the leaves of *Vinca minor* with a vasodilatory property. Studies indicate that vincamine increases the regional cerebral blood flow. Vincamine is a natural product found in Vinca difformis, Vinca major, and other organisms with data available. A major alkaloid of Vinca minor L., Apocynaceae. It has been used therapeutically as a vasodilator and antihypertensive agent, particularly in cerebrovascular disorders. Vincamine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=1617-90-9 (retrieved 2024-07-01) (CAS RN: 1617-90-9). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Vincamine?is a monoterpenoid indole alkaloid extracted from the?Madagascar periwinkle. Vincamine?is a peripheral?vasodilator?and exerts a selective vasoregulator action on the brain microcapilar circulation[1]. Vincamine?is a?GPR40?agonist and acts as a β-cell protector by ameliorating β-cell dysfunction and promoting glucose-stimulated insulin secretion (GSIS).?Vincamine?improves glucose homeostasis?in vivo, and has the potential for the type 2 diabetes mellitus (T2DM) research[2]. Vincamine?is a monoterpenoid indole alkaloid extracted from the?Madagascar periwinkle. Vincamine?is a peripheral?vasodilator?and exerts a selective vasoregulator action on the brain microcapilar circulation[1]. Vincamine?is a?GPR40?agonist and acts as a β-cell protector by ameliorating β-cell dysfunction and promoting glucose-stimulated insulin secretion (GSIS).?Vincamine?improves glucose homeostasis?in vivo, and has the potential for the type 2 diabetes mellitus (T2DM) research[2].
Evodiamine
Evodiamine is a member of beta-carbolines. Evodiamine is a natural product found in Vepris soyauxii, Cryptocarya, and other organisms with data available. Origin: Plant; Formula(Parent): C19H17N3O; Bottle Name:Evodiamine; PRIME Parent Name:Evodiamine; PRIME in-house No.:V0296; SubCategory_DNP: Monoterpenoid indole alkaloids, Indoloquinolizidine alkaloids, Indole alkaloids Formula(Parent): C19H17N3O; Bottle Name:Evodiamine; Origin: Plant; PRIME Parent Name:Evodiamine; PRIME in-house No.:V0296; SubCategory_DNP: Monoterpenoid indole alkaloids, Indoloquinolizidine alkaloids, Indole alkaloids Annotation level-1 (±)-Evodiamine, a quinazolinocarboline alkaloid, is a Top1 inhibitor. Evodiamine exhibits anti-inflammatory, antiobesity, and antitumor effects. (±)-Evodiamine inhibits the proliferation of a wide variety of tumor cells by inducing their apoptosis[1]. Evodiamine is an alkaloid isolated from the fruit of Evodia rutaecarpa Bentham with diverse biological activities including anti-inflammatory, anti-obesity, and antitumor. Evodiamine is an alkaloid isolated from the fruit of Evodia rutaecarpa Bentham with diverse biological activities including anti-inflammatory, anti-obesity, and antitumor.
Fisetin
Fisetin is a 7-hydroxyflavonol with additional hydroxy groups at positions 3, 3 and 4. It has a role as an EC 5.99.1.3 [DNA topoisomerase (ATP-hydrolysing)] inhibitor, an antioxidant, an anti-inflammatory agent, a metabolite, a plant metabolite and a geroprotector. It is a 3-hydroxyflavonoid, a 7-hydroxyflavonol and a tetrahydroxyflavone. It is a conjugate acid of a fisetin(1-). Fisetin is a natural product found in Acacia carneorum, Acacia buxifolia, and other organisms with data available. Fisetin is an orally bioavailable naturally occurring polyphenol found in many fruits and vegetables, with potential antioxidant, neuroprotective, anti-inflammatory, antineoplastic, senolytic, and longevity promoting activities. Upon administration, fisetin, as an antioxidant, scavenges free radicals, protect cells from oxidative stress, and is able to upregulate glutathione. It inhibits pro-inflammatory mediators, such as tumor necrosis factor alpha (TNF-a), interleukin-6 (IL-6), and nuclear factor kappa B (NF-kB). Fisetin promotes cellular metabolism, reduces senescence, regulates sirtuin function and may promote longevity. Fisetin also exerts anti-cancer activity by inhibiting certain signaling pathways. It also inhibits certain anti-apoptotic proteins and induces apoptosis in susceptible cells. COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials A 7-hydroxyflavonol with additional hydroxy groups at positions 3, 3 and 4. C274 - Antineoplastic Agent > C2189 - Signal Transduction Inhibitor C26170 - Protective Agent > C1509 - Neuroprotective Agent C26170 - Protective Agent > C275 - Antioxidant Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS 3,7,3,4-tetrahydroxyflavone, also known as 5-desoxyquercetin or fisetinidin, is a member of the class of compounds known as flavonols. Flavonols are compounds that contain a flavone (2-phenyl-1-benzopyran-4-one) backbone carrying a hydroxyl group at the 3-position. Thus, 3,7,3,4-tetrahydroxyflavone is considered to be a flavonoid lipid molecule. 3,7,3,4-tetrahydroxyflavone is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). 3,7,3,4-tetrahydroxyflavone is a bitter tasting compound found in soy bean, which makes 3,7,3,4-tetrahydroxyflavone a potential biomarker for the consumption of this food product. relative retention time with respect to 9-anthracene Carboxylic Acid is 0.847 [Raw Data] CB035_Fisetin_pos_20eV_CB000018.txt [Raw Data] CB035_Fisetin_pos_30eV_CB000018.txt [Raw Data] CB035_Fisetin_pos_40eV_CB000018.txt [Raw Data] CB035_Fisetin_pos_10eV_CB000018.txt [Raw Data] CB035_Fisetin_pos_50eV_CB000018.txt [Raw Data] CB035_Fisetin_neg_10eV_000011.txt [Raw Data] CB035_Fisetin_neg_30eV_000011.txt [Raw Data] CB035_Fisetin_neg_40eV_000011.txt [Raw Data] CB035_Fisetin_neg_20eV_000011.txt [Raw Data] CB035_Fisetin_neg_50eV_000011.txt Fisetin is a natural flavonol found in many fruits and vegetables with various benefits, such as antioxidant, anticancer, neuroprotection effects. Fisetin is a natural flavonol found in many fruits and vegetables with various benefits, such as antioxidant, anticancer, neuroprotection effects. Fisetin is a natural flavonol found in many fruits and vegetables with various benefits, such as antioxidant, anticancer, neuroprotection effects.
Jujuboside B
Jujuboside B is a triterpenoid. Jujuboside B is a natural product found in Ziziphus spina-christi, Ziziphus jujuba, and Hovenia dulcis with data available. Jujuboside B1 is found in fruits. Jujuboside B1 is isolated from seeds of Zizyphus jujuba (Chinese date). Isolated from seeds of Zizyphus jujuba (Chinese date). Jujuboside B1 is found in fruits. Jujuboside B is one of the major bioactive constituents isolated from Zizyphus jujuba. Jujuboside B can inhibit platelet aggregation[1]. Jujuboside B is one of the major bioactive constituents isolated from Zizyphus jujuba. Jujuboside B can inhibit platelet aggregation[1].
Shikonin
Shikonin is a hydroxy-1,4-naphthoquinone. Shikonin is a natural product found in Echium plantagineum, Arnebia hispidissima, and other organisms with data available. See also: Arnebia guttata root (part of); Arnebia euchroma root (part of); Lithospermum erythrorhizon root (part of). D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents Shikonin is a major component of a Chinese herbal medicine named zicao. Shikonin is a potent TMEM16A chloride channel inhibitor with an IC50 of 6.5 μM[1]. Shikonin is a specific pyruvate kinase M2 (PKM2) inhibitor[2] and can also inhibit TNF-α and NF-κB pathway[3]. Shikonin decreases exosome secretion through the inhibition of glycolysis[4]. Shikonin inhibits AIM2 inflammasome activation[7]. Shikonin is a major component of a Chinese herbal medicine named zicao. Shikonin is a potent TMEM16A chloride channel inhibitor with an IC50 of 6.5 μM[1]. Shikonin is a specific pyruvate kinase M2 (PKM2) inhibitor[2] and can also inhibit TNF-α and NF-κB pathway[3]. Shikonin decreases exosome secretion through the inhibition of glycolysis[4]. Shikonin inhibits AIM2 inflammasome activation[7].
Acetylshikonin
Acetylshikonin is an acetate ester and a hydroxy-1,4-naphthoquinone. Acetylshikonin is a natural product found in Echium plantagineum, Lithospermum erythrorhizon, and other organisms with data available. Acetylshikonin, derived from the root of Lithospermum erythrorhizon, has anti-cancer and antiinflammation activity. Acetylshikonin is a non-selective cytochrome P450 inhibitor against all P450s (IC50 values range from 1.4-4.0 μM). Acetylshikonin is an AChE inhibitor and exhibits potent antiapoptosis activity[1][2][3]. Acetylshikonin, derived from the root of Lithospermum erythrorhizon, has anti-cancer and antiinflammation activity. Acetylshikonin is a non-selective cytochrome P450 inhibitor against all P450s (IC50 values range from 1.4-4.0 μM). Acetylshikonin is an AChE inhibitor and exhibits potent antiapoptosis activity[1][2][3].
Aconitate [cis or trans]
cis-Aconitic acid is an intermediate in the tricarboxylic acid cycle produced by the dehydration of citric acid. The enzyme aconitase (aconitate hydratase; EC 4.2.1.3) catalyses the stereo-specific isomerization of citrate to isocitrate via cis-aconitate in the tricarboxylic acid cycle. Present in apple fruits, maple syrup and passion fruit juice cis-Aconitic acid, also known as (Z)-aconitic acid, plays several important biological roles: Intermediate in the Citric Acid Cycle: cis-Aconitic acid is an intermediate in the tricarboxylic acid (TCA) cycle, also known as the Krebs cycle or citric acid cycle. It is formed from citrate by the enzyme aconitase and is rapidly converted into isocitrate, another key intermediate in the cycle. The TCA cycle is central to cellular respiration, generating energy-rich molecules like NADH and FADH2. Regulation of Aconitase Activity: The conversion of citrate to cis-aconitate and then to isocitrate by aconitase is an important regulatory step in the TCA cycle. This conversion helps in maintaining the balance of the cycle and is influenced by factors like the energy status of the cell. Role in Cholesterol Synthesis: cis-Aconitic acid is also involved in the synthesis of cholesterol. It serves as a precursor for the synthesis of mevalonate, a key intermediate in the cholesterol biosynthesis pathway. Potential Involvement in Disease: Altered metabolism or accumulation of cis-aconitic acid has been associated with certain diseases, including neurodegenerative disorders and cancer. Its role in these conditions is an area of ongoing research. Plant Growth and Development: In plants, cis-aconitic acid has been found to play a role in growth and development, including seed germination and leaf senescence. In summary, cis-aconitic acid is a crucial intermediate in the TCA cycle, impacting energy production and various metabolic pathways in cells. Its role extends to cholesterol synthesis and potentially to various disease processes, highlighting its importance in cellular metabolism and physiology. cis-Aconitic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=585-84-2 (retrieved 2024-07-01) (CAS RN: 585-84-2). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). (Z)-Aconitic acid (cis-Aconitic acid) is the cis-isomer of Aconitic acid. (Z)-Aconitic acid (cis-Aconitic acid) is an intermediate in the tricarboxylic acid cycle produced by the dehydration of citric acid. (Z)-Aconitic acid (cis-Aconitic acid) is the cis-isomer of Aconitic acid. (Z)-Aconitic acid (cis-Aconitic acid) is an intermediate in the tricarboxylic acid cycle produced by the dehydration of citric acid.
Itaconic acid
Itaconic acid is a dicarboxylic acid that is methacrylic acid in which one of the methyl hydrogens is substituted by a carboxylic acid group. It has a role as a fungal metabolite and a human metabolite. It is a dicarboxylic acid and an olefinic compound. It derives from a succinic acid. It is a conjugate acid of an itaconate(2-). This dicarboxylic acid is a white solid that is soluble in water, ethanol, and acetone. Historically, itaconic acid was obtained by the distillation of citric acid, but currently it is produced by fermentation. The name itaconic acid was devised as an anagram of aconitic acid, another derivative of citric acid. Itaconic acid, also known as itaconate, belongs to the class of organic compounds known as branched fatty acids. These are fatty acids containing a branched chain. Itaconic acid is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Since the 1960s, it is produced industrially by the fermentation of carbohydrates such as glucose or molasses using fungi such as Aspergillus itaconicus or Aspergillus terreus. For A. terreus the itaconate pathway is mostly elucidated. The generally accepted route for itaconate is via glycolysis, tricarboxylic acid cycle, and a decarboxylation of cis-aconitate to itaconate via cis-aconitate-decarboxylase. The smut fungus Ustilago maydis uses an alternative route. Cis-aconitate is converted to the thermodynamically favoured trans-aconitate via aconitate-Δ-isomerase (Adi1). trans-Aconitate is further decarboxylated to itaconate by trans-aconitate-decarboxylase (Tad1). Itaconic acid is also produced in cells of macrophage lineage. It was shown that itaconate is a covalent inhibitor of the enzyme isocitrate lyase in vitro. As such, itaconate may possess antibacterial activities against bacteria expressing isocitrate lyase (such as Salmonella enterica and Mycobacterium tuberculosis). It is also sythesized in the laboratory, where dry distillation of citric acid affords itaconic anhydride, which undergoes hydrolysis to itaconic acid. Itaconic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=97-65-4 (retrieved 2024-07-01) (CAS RN: 97-65-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Itaconic acid, a precursor of polymers, chemicals, and fuels, can be synthesized by many fungi. Itaconic acid also is a macrophage-specific metabolite. Itaconic acid mediates crosstalk between macrophage metabolism and peritoneal tumors[1][2].
4-tert-Butylphenol
4-tert-Butylphenol, also known as butylphen or PTBP, belongs to the class of organic compounds known as phenylpropanes. These are organic compounds containing a phenylpropane moiety. 4-tert-Butylphenol is a leather and oakmoss tasting compound. 4-tert-Butylphenol has been detected, but not quantified, in herbs and spices. 4-Tert-butylphenol is structurally similar to the melanin precursor tyrosine, and acts as a substrate for tyrosinase. 4-tert-Butylphenol is a potentially toxic compound. Tyrosinase oxidizes 4-tert-butylphenol to a quinone (4-tert-butylcyclohexa-3,5-diene-1,2-dione) which in turn rapidly reacts with glutathione (GSH). A depletion of the GSH defence system may allow the quinone to generate reactive oxygen species that damage melanocytes and induce apoptosis, leading to leukoderma/vitiligo.
Thiodiacetic acid
Thiodiacetic acid belongs to the family of Thiodiacetic Acid Derivatives. These are compounds containing a thiodiacetic acid group (or esters/salts thereof) which is made up of two 2-sulfanylacetic (OC(=O)CS) acid moieties sharing their sulfur atom.
Carteolol
Carteolol is only found in individuals that have used or taken this drug. It is a beta-adrenergic antagonist used as an anti-arrhythmia agent, an anti-angina agent, an antihypertensive agent, and an antiglaucoma agent. [PubChem]The primary mechanism of the ocular hypotensive action of carteolol in reducing intraocular pressure is most likely a decrease in aqueous humor production. This process is initiated by the non-selective beta1 and beta2 adrenergic receptor blockade. C - Cardiovascular system > C07 - Beta blocking agents > C07A - Beta blocking agents > C07AA - Beta blocking agents, non-selective S - Sensory organs > S01 - Ophthalmologicals > S01E - Antiglaucoma preparations and miotics > S01ED - Beta blocking agents C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C72900 - Adrenergic Antagonist D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013565 - Sympatholytics D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D018674 - Adrenergic Antagonists D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents
Methotrimeprazine
Methotrimeprazine is only found in individuals that have used or taken this drug. It is a phenothiazine with pharmacological activity similar to that of both chlorpromazine and promethazine. It has the histamine-antagonist properties of the antihistamines together with central nervous system effects resembling those of chlorpromazine. (From Martindale, The Extra Pharmacopoeia, 30th ed, p604)Methotrimeprazines antipsychotic effect is largely due to its antagonism of dopamine receptors in the brain. In addition, its binding to 5HT2 receptors may also play a role. N - Nervous system > N05 - Psycholeptics > N05A - Antipsychotics > N05AA - Phenothiazines with aliphatic side-chain D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018492 - Dopamine Antagonists C78272 - Agent Affecting Nervous System > C267 - Antiemetic Agent > C740 - Phenothiazine D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics KEIO_ID M099; [MS2] KO009123 KEIO_ID M099 Levomepromazine (Methotrimeprazine) is an orally available neuroleptic agent, which is commonly used to relieve nausea and vomiting in palliative care settings. Levomepromazine has antagonist actions at multiple neurotransmitter receptor sites, including dopaminergic, cholinergic, serotonin and histamine receptors[1].
Tetrabromobisphenol A
CONFIDENCE standard compound; INTERNAL_ID 495; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5465; ORIGINAL_PRECURSOR_SCAN_NO 5462 CONFIDENCE standard compound; INTERNAL_ID 495; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5489; ORIGINAL_PRECURSOR_SCAN_NO 5484 CONFIDENCE standard compound; INTERNAL_ID 495; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5496; ORIGINAL_PRECURSOR_SCAN_NO 5494 CONFIDENCE standard compound; INTERNAL_ID 495; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5494; ORIGINAL_PRECURSOR_SCAN_NO 5491 CONFIDENCE standard compound; INTERNAL_ID 495; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5505; ORIGINAL_PRECURSOR_SCAN_NO 5503 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 8638 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 8242
C.I. Natural Red 20
Red dye component of alkanet root extract used for colouring sausage casings, margarine, confectionery and wine. This extract, formerly FEMA 2016, has been removed from the FEMA GRAS (Generally Recognized As Safe) list. Not permitted in Germany. Japan approved Red dye component of alkanet root extract used for colouring sausage casings, margarine, confectionery and wine. This extract, formerly FEMA 2016, has been removed from the FEMA GRAS list. Not permitted in Germany. Japan approved. C.I. Natural Red 20 is a naphthoquinone. C.I. Natural Red 20 is a natural product found in Boraginaceae, Lithospermum erythrorhizon, and other organisms with data available. D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents (-)-Alkannin, found in Alkanna tinctoria, is used as a food coloring. (-)-Alkannin shows anticancer activity, arrests cell cycle, and induces apoptosis. (-)-Alkannin improves hepatic inflammation in a Rho-kinase pathway[1][2][3]. (-)-Alkannin, found in Alkanna tinctoria, is used as a food coloring. (-)-Alkannin shows anticancer activity, arrests cell cycle, and induces apoptosis. (-)-Alkannin improves hepatic inflammation in a Rho-kinase pathway[1][2][3]. (-)-Alkannin, found in Alkanna tinctoria, is used as a food coloring. (-)-Alkannin shows anticancer activity, arrests cell cycle, and induces apoptosis. (-)-Alkannin improves hepatic inflammation in a Rho-kinase pathway[1][2][3]. (-)-Alkannin, found in Alkanna tinctoria, is used as a food coloring. (-)-Alkannin shows anticancer activity, arrests cell cycle, and induces apoptosis. (-)-Alkannin improves hepatic inflammation in a Rho-kinase pathway[1][2][3]. Shikonin is a major component of a Chinese herbal medicine named zicao. Shikonin is a potent TMEM16A chloride channel inhibitor with an IC50 of 6.5 μM[1]. Shikonin is a specific pyruvate kinase M2 (PKM2) inhibitor[2] and can also inhibit TNF-α and NF-κB pathway[3]. Shikonin decreases exosome secretion through the inhibition of glycolysis[4]. Shikonin inhibits AIM2 inflammasome activation[7]. Shikonin is a major component of a Chinese herbal medicine named zicao. Shikonin is a potent TMEM16A chloride channel inhibitor with an IC50 of 6.5 μM[1]. Shikonin is a specific pyruvate kinase M2 (PKM2) inhibitor[2] and can also inhibit TNF-α and NF-κB pathway[3]. Shikonin decreases exosome secretion through the inhibition of glycolysis[4]. Shikonin inhibits AIM2 inflammasome activation[7].
Imidacloprid
Imidacloprid is an insecticide Imidacloprid is a neonicotinoid, which is a class of neuro-active insecticides modeled after nicotine. Imidacloprid is a patented chemical, Imidacloprid is manufactured by Bayer Cropscience (part of Bayer AG) and sold under trade names Kohinor, Admire, Advantage, Gaucho, Merit, Confidor, Hachikusan, Premise, Prothor, and Winner. It is marketed as pest control, seed treatment, an insecticide spray, termite control, flea control, and a systemic insecticide. CONFIDENCE standard compound; INTERNAL_ID 60; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6493; ORIGINAL_PRECURSOR_SCAN_NO 6491 CONFIDENCE standard compound; INTERNAL_ID 60; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6445; ORIGINAL_PRECURSOR_SCAN_NO 6444 CONFIDENCE standard compound; INTERNAL_ID 60; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3049; ORIGINAL_PRECURSOR_SCAN_NO 3048 CONFIDENCE standard compound; INTERNAL_ID 60; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3058; ORIGINAL_PRECURSOR_SCAN_NO 3055 CONFIDENCE standard compound; INTERNAL_ID 60; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6460; ORIGINAL_PRECURSOR_SCAN_NO 6459 CONFIDENCE standard compound; INTERNAL_ID 60; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6485; ORIGINAL_PRECURSOR_SCAN_NO 6481 CONFIDENCE standard compound; INTERNAL_ID 60; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3058; ORIGINAL_PRECURSOR_SCAN_NO 3056 CONFIDENCE standard compound; INTERNAL_ID 60; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6489; ORIGINAL_PRECURSOR_SCAN_NO 6486 CONFIDENCE standard compound; INTERNAL_ID 60; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3125; ORIGINAL_PRECURSOR_SCAN_NO 3122 CONFIDENCE standard compound; INTERNAL_ID 60; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3059; ORIGINAL_PRECURSOR_SCAN_NO 3056 D010575 - Pesticides > D007306 - Insecticides > D000073943 - Neonicotinoids D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents CONFIDENCE standard compound; EAWAG_UCHEM_ID 2709 CONFIDENCE standard compound; INTERNAL_ID 3036 CONFIDENCE standard compound; INTERNAL_ID 2322 CONFIDENCE standard compound; INTERNAL_ID 8394 D016573 - Agrochemicals Insecticide
13-L-Hydroperoxylinoleic acid
(9z,11e)-(13s)-13-hydroperoxyoctadeca-9,11-dienoate, also known as 13s-hydroperoxy-9z,11e-octadecadienoic acid or 13(S)-hpode, belongs to lineolic acids and derivatives class of compounds. Those are derivatives of lineolic acid. Lineolic acid is a polyunsaturated omega-6 18 carbon long fatty acid, with two CC double bonds at the 9- and 12-positions. Thus, (9z,11e)-(13s)-13-hydroperoxyoctadeca-9,11-dienoate is considered to be an octadecanoid lipid molecule (9z,11e)-(13s)-13-hydroperoxyoctadeca-9,11-dienoate is practically insoluble (in water) and a weakly acidic compound (based on its pKa). (9z,11e)-(13s)-13-hydroperoxyoctadeca-9,11-dienoate can be synthesized from octadeca-9,11-dienoic acid (9z,11e)-(13s)-13-hydroperoxyoctadeca-9,11-dienoate can also be synthesized into pinellic acid and 13(S)-HPODE methyl ester (9z,11e)-(13s)-13-hydroperoxyoctadeca-9,11-dienoate can be found in a number of food items such as lingonberry, lemon thyme, watermelon, and agave, which makes (9z,11e)-(13s)-13-hydroperoxyoctadeca-9,11-dienoate a potential biomarker for the consumption of these food products (9z,11e)-(13s)-13-hydroperoxyoctadeca-9,11-dienoate can be found primarily in blood. 13-L-Hydroperoxylinoleic acid (13(S)-HPODE) is one of the primary products of the major polyunsaturated fatty acids (linoleic acid and arachidonic acid) from the 15-lipoxygenase pathway (EC 1.13.11.31). 13(S)-HPODE is a rather unstable metabolite and is rapidly metabolized to more stable secondary products such as diverse forms of hydroxy fatty acids (via reduction of the hydroperoxy group), alkoxy radicals (via homolytic cleavage of the peroxy group), forms of dihydro(pero)xy fatty acids (via lipoxygenase-catalysed double and triple oxygenation), or epoxy leukotrienes (via a hydrogen abstraction from a doubly allylic methylene group and a homolytic cleavage of the hydroperoxy group) (PMID: 9082450). D009676 - Noxae > D016877 - Oxidants > D010545 - Peroxides
Prunetin
Prunetin is a hydroxyisoflavone that is genistein in which the hydroxy group at position 7 is replaced by a methoxy group. It has a role as a metabolite, an EC 1.3.1.22 [3-oxo-5alpha-steroid 4-dehydrogenase (NADP(+))] inhibitor, an anti-inflammatory agent and an EC 1.2.1.3 [aldehyde dehydrogenase (NAD(+))] inhibitor. It is a hydroxyisoflavone and a member of 7-methoxyisoflavones. It is functionally related to a genistein. It is a conjugate acid of a prunetin-5-olate. Prunetin is a natural product found in Iris milesii, Prunus leveilleana, and other organisms with data available. Occurs in several Prunus subspecies and Glycyrrhiza glabra (licorice). Prunetin is found in tea, herbs and spices, and sour cherry. Prunetin is found in herbs and spices. Prunetin occurs in several Prunus species and Glycyrrhiza glabra (licorice). A hydroxyisoflavone that is genistein in which the hydroxy group at position 7 is replaced by a methoxy group. Prunetin, an O-methylated isoflavone, possesses anti-inflammatory activity. Prunetin is a potent human aldehyde dehydrogenases inhibitor[1][2]. Prunetin, an O-methylated isoflavone, possesses anti-inflammatory activity. Prunetin is a potent human aldehyde dehydrogenases inhibitor[1][2]. Prunetin, an O-methylated isoflavone, possesses anti-inflammatory activity. Prunetin is a potent human aldehyde dehydrogenases inhibitor[1][2].
Dehydroabietic acid
Dehydroabietic acid belongs to the class of organic compounds known as diterpenoids. These are terpene compounds formed by four isoprene units. Dehydroabietic acid possesses antiviral activity[1]. Dehydroabietic acid possesses antiviral activity[1].
Eucalyptol
Eucalyptol is an organic compound that is a colourless liquid. It is a cyclic ether and a monoterpene. Eucalyptol is a natural constituent of a number of aromatic plants and their essential oil fraction. Eucalyptol was given GRAS (Generally Recognized As Safe) status by the Flavor and Extract Manufacturers Association FEMA, 1965 and is approved by the Food and Drug Administration for food use. 1,8-Dihydroxy-10-carboxy-p-menthane, 2-hydroxy-cineole, and 3-hydroxy-cineole are the main metabolites of eucalyptol. Toxicological data available on eucalyptol are rather limited. Following accidental exposure, death was reported in two cases after ingestion of 3.5-5 mL of essential eucalyptus oil, but a number of recoveries have also been described for much higher amounts of oil. In a 1994 report released by five top cigarette companies, eucalyptol was listed as one of the 599 additives to cigarettes. It is usually added to improve the flavour (PMID:12048025). R - Respiratory system > R05 - Cough and cold preparations > R05C - Expectorants, excl. combinations with cough suppressants > R05CA - Expectorants COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials C78273 - Agent Affecting Respiratory System > C74536 - Mucolytic Agent D019141 - Respiratory System Agents > D000996 - Antitussive Agents D000074385 - Food Ingredients > D005503 - Food Additives D010592 - Pharmaceutic Aids > D005421 - Flavoring Agents D010575 - Pesticides > D007302 - Insect Repellents D003358 - Cosmetics > D009067 - Mouthwashes D001697 - Biomedical and Dental Materials D002491 - Central Nervous System Agents D000890 - Anti-Infective Agents D020011 - Protective Agents D016573 - Agrochemicals D012997 - Solvents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
lipid IVA
Coumermycin
D000970 - Antineoplastic Agents > D059003 - Topoisomerase Inhibitors > D059005 - Topoisomerase II Inhibitors C254 - Anti-Infective Agent > C258 - Antibiotic D004791 - Enzyme Inhibitors
Arborinine
Arborinine is found in herbs and spices. Arborinine is an alkaloid from Ruta graveolens (rue
Aloperine
Aloperine is a natural product found in Thinicola incana, Sophora alopecuroides, and other organisms with data available. Aloperine is an alkaloid in sophora plants such as Sophora alopecuroides L, which has shown anti-cancer, anti-inflammatory and anti-virus properties[1]. Aloperine is widely used to treat patients with allergic contact dermatitis eczema and other skin inflammation in China[2]. Aloperine induces apoptosis and autophagy in HL-60 cells[1]. Aloperine is an alkaloid in sophora plants such as Sophora alopecuroides L, which has shown anti-cancer, anti-inflammatory and anti-virus properties[1]. Aloperine is widely used to treat patients with allergic contact dermatitis eczema and other skin inflammation in China[2]. Aloperine induces apoptosis and autophagy in HL-60 cells[1].
Sodium sulfate
A - Alimentary tract and metabolism > A06 - Drugs for constipation > A06A - Drugs for constipation > A06AD - Osmotically acting laxatives A - Alimentary tract and metabolism > A12 - Mineral supplements > A12C - Other mineral supplements > A12CA - Sodium C78275 - Agent Affecting Blood or Body Fluid > C29730 - Electrolyte Replacement Agent D005765 - Gastrointestinal Agents > D002400 - Cathartics Acidity regulator Same as: D01732
1,3-Dichloro-2-propanol
D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D003432 - Cross-Linking Reagents D009676 - Noxae > D009153 - Mutagens
Lipid IVA
cis-Aconitic acid
(Z)-Aconitic acid (cis-Aconitic acid) is the cis-isomer of Aconitic acid. (Z)-Aconitic acid (cis-Aconitic acid) is an intermediate in the tricarboxylic acid cycle produced by the dehydration of citric acid. (Z)-Aconitic acid (cis-Aconitic acid) is the cis-isomer of Aconitic acid. (Z)-Aconitic acid (cis-Aconitic acid) is an intermediate in the tricarboxylic acid cycle produced by the dehydration of citric acid.
Alkannin
Alkannin is a hydroxy-1,4-naphthoquinone. Alkannin is a natural product found in Arnebia hispidissima, Alkanna cappadocica, and other organisms with data available. D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents (-)-Alkannin, found in Alkanna tinctoria, is used as a food coloring. (-)-Alkannin shows anticancer activity, arrests cell cycle, and induces apoptosis. (-)-Alkannin improves hepatic inflammation in a Rho-kinase pathway[1][2][3]. (-)-Alkannin, found in Alkanna tinctoria, is used as a food coloring. (-)-Alkannin shows anticancer activity, arrests cell cycle, and induces apoptosis. (-)-Alkannin improves hepatic inflammation in a Rho-kinase pathway[1][2][3]. (-)-Alkannin, found in Alkanna tinctoria, is used as a food coloring. (-)-Alkannin shows anticancer activity, arrests cell cycle, and induces apoptosis. (-)-Alkannin improves hepatic inflammation in a Rho-kinase pathway[1][2][3]. (-)-Alkannin, found in Alkanna tinctoria, is used as a food coloring. (-)-Alkannin shows anticancer activity, arrests cell cycle, and induces apoptosis. (-)-Alkannin improves hepatic inflammation in a Rho-kinase pathway[1][2][3].
Dehydroabietic acid
Dehydroabietic acid is an abietane diterpenoid that is abieta-8,11,13-triene substituted at position 18 by a carboxy group. It has a role as a metabolite and an allergen. It is an abietane diterpenoid, a monocarboxylic acid and a carbotricyclic compound. It is functionally related to an abietic acid. It is a conjugate acid of a dehydroabietate. Dehydroabietic acid is a natural product found in Nostoc, Relhania corymbosa, and other organisms with data available. Dehydroabietic acid belongs to the class of organic compounds known as diterpenoids. These are terpene compounds formed by four isoprene units. An abietane diterpenoid that is abieta-8,11,13-triene substituted at position 18 by a carboxy group. Dehydroabietic acid possesses antiviral activity[1]. Dehydroabietic acid possesses antiviral activity[1].
Prunetin
Prunetin, an O-methylated isoflavone, possesses anti-inflammatory activity. Prunetin is a potent human aldehyde dehydrogenases inhibitor[1][2]. Prunetin, an O-methylated isoflavone, possesses anti-inflammatory activity. Prunetin is a potent human aldehyde dehydrogenases inhibitor[1][2]. Prunetin, an O-methylated isoflavone, possesses anti-inflammatory activity. Prunetin is a potent human aldehyde dehydrogenases inhibitor[1][2].
Cineole
R - Respiratory system > R05 - Cough and cold preparations > R05C - Expectorants, excl. combinations with cough suppressants > R05CA - Expectorants COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials C78273 - Agent Affecting Respiratory System > C74536 - Mucolytic Agent D019141 - Respiratory System Agents > D000996 - Antitussive Agents D000074385 - Food Ingredients > D005503 - Food Additives D010592 - Pharmaceutic Aids > D005421 - Flavoring Agents D010575 - Pesticides > D007302 - Insect Repellents D003358 - Cosmetics > D009067 - Mouthwashes D001697 - Biomedical and Dental Materials D002491 - Central Nervous System Agents D000890 - Anti-Infective Agents D020011 - Protective Agents D016573 - Agrochemicals D012997 - Solvents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
cis-Aconitic acid
The cis-isomer of aconitic acid. (Z)-Aconitic acid (cis-Aconitic acid) is the cis-isomer of Aconitic acid. (Z)-Aconitic acid (cis-Aconitic acid) is an intermediate in the tricarboxylic acid cycle produced by the dehydration of citric acid. (Z)-Aconitic acid (cis-Aconitic acid) is the cis-isomer of Aconitic acid. (Z)-Aconitic acid (cis-Aconitic acid) is an intermediate in the tricarboxylic acid cycle produced by the dehydration of citric acid.
Itaconic acid
A dicarboxylic acid that is methacrylic acid in which one of the methyl hydrogens is substituted by a carboxylic acid group. Itaconic acid, a precursor of polymers, chemicals, and fuels, can be synthesized by many fungi. Itaconic acid also is a macrophage-specific metabolite. Itaconic acid mediates crosstalk between macrophage metabolism and peritoneal tumors[1][2].
Arctiin
Annotation level-1 Arctiin (NSC 315527) is a plant lignan extracted from burdock seeds and has anti-cancer activity. Arctiin (NSC 315527) is a plant lignan extracted from burdock seeds and has anti-cancer activity.
Imidacloprid
D010575 - Pesticides > D007306 - Insecticides > D000073943 - Neonicotinoids D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents D016573 - Agrochemicals
CARTEOLOL
C - Cardiovascular system > C07 - Beta blocking agents > C07A - Beta blocking agents > C07AA - Beta blocking agents, non-selective S - Sensory organs > S01 - Ophthalmologicals > S01E - Antiglaucoma preparations and miotics > S01ED - Beta blocking agents C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C72900 - Adrenergic Antagonist D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013565 - Sympatholytics D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D018674 - Adrenergic Antagonists D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents
Levomepromazine
N - Nervous system > N05 - Psycholeptics > N05A - Antipsychotics > N05AA - Phenothiazines with aliphatic side-chain D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018492 - Dopamine Antagonists C78272 - Agent Affecting Nervous System > C267 - Antiemetic Agent > C740 - Phenothiazine D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics Levomepromazine (Methotrimeprazine) is an orally available neuroleptic agent, which is commonly used to relieve nausea and vomiting in palliative care settings. Levomepromazine has antagonist actions at multiple neurotransmitter receptor sites, including dopaminergic, cholinergic, serotonin and histamine receptors[1].
Vincamin
C - Cardiovascular system > C04 - Peripheral vasodilators > C04A - Peripheral vasodilators D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents C78272 - Agent Affecting Nervous System > C47795 - CNS Stimulant D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents D000970 - Antineoplastic Agents > D014748 - Vinca Alkaloids CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2327 Vincamine?is a monoterpenoid indole alkaloid extracted from the?Madagascar periwinkle. Vincamine?is a peripheral?vasodilator?and exerts a selective vasoregulator action on the brain microcapilar circulation[1]. Vincamine?is a?GPR40?agonist and acts as a β-cell protector by ameliorating β-cell dysfunction and promoting glucose-stimulated insulin secretion (GSIS).?Vincamine?improves glucose homeostasis?in vivo, and has the potential for the type 2 diabetes mellitus (T2DM) research[2]. Vincamine?is a monoterpenoid indole alkaloid extracted from the?Madagascar periwinkle. Vincamine?is a peripheral?vasodilator?and exerts a selective vasoregulator action on the brain microcapilar circulation[1]. Vincamine?is a?GPR40?agonist and acts as a β-cell protector by ameliorating β-cell dysfunction and promoting glucose-stimulated insulin secretion (GSIS).?Vincamine?improves glucose homeostasis?in vivo, and has the potential for the type 2 diabetes mellitus (T2DM) research[2].
Sodium sulfate
A - Alimentary tract and metabolism > A06 - Drugs for constipation > A06A - Drugs for constipation > A06AD - Osmotically acting laxatives A - Alimentary tract and metabolism > A12 - Mineral supplements > A12C - Other mineral supplements > A12CA - Sodium C78275 - Agent Affecting Blood or Body Fluid > C29730 - Electrolyte Replacement Agent D005765 - Gastrointestinal Agents > D002400 - Cathartics
3-Hydroxyflavanone
The simplest member of the class of dihydroflavonols that is flavanone with a hydroxy substituent at the 3-position. A monohydroxyflavanone in which the hydroxy group is located at position 3.
Terpan
R - Respiratory system > R05 - Cough and cold preparations > R05C - Expectorants, excl. combinations with cough suppressants > R05CA - Expectorants COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials C78273 - Agent Affecting Respiratory System > C74536 - Mucolytic Agent D019141 - Respiratory System Agents > D000996 - Antitussive Agents D000074385 - Food Ingredients > D005503 - Food Additives D010592 - Pharmaceutic Aids > D005421 - Flavoring Agents D010575 - Pesticides > D007302 - Insect Repellents D003358 - Cosmetics > D009067 - Mouthwashes D001697 - Biomedical and Dental Materials D002491 - Central Nervous System Agents D000890 - Anti-Infective Agents D020011 - Protective Agents D016573 - Agrochemicals D012997 - Solvents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
Viset
COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials C274 - Antineoplastic Agent > C2189 - Signal Transduction Inhibitor C26170 - Protective Agent > C1509 - Neuroprotective Agent C26170 - Protective Agent > C275 - Antioxidant Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Fisetin is a natural flavonol found in many fruits and vegetables with various benefits, such as antioxidant, anticancer, neuroprotection effects. Fisetin is a natural flavonol found in many fruits and vegetables with various benefits, such as antioxidant, anticancer, neuroprotection effects. Fisetin is a natural flavonol found in many fruits and vegetables with various benefits, such as antioxidant, anticancer, neuroprotection effects.
Jujuboside
Jujuboside B is a triterpenoid. Jujuboside B is a natural product found in Ziziphus spina-christi, Ziziphus jujuba, and Hovenia dulcis with data available. Jujuboside B is one of the major bioactive constituents isolated from Zizyphus jujuba. Jujuboside B can inhibit platelet aggregation[1]. Jujuboside B is one of the major bioactive constituents isolated from Zizyphus jujuba. Jujuboside B can inhibit platelet aggregation[1].
ARNEBIN-3
Acetylshikonin is an acetate ester and a hydroxy-1,4-naphthoquinone. Acetylshikonin is a natural product found in Echium plantagineum, Lithospermum erythrorhizon, and other organisms with data available. Acetylshikonin, derived from the root of Lithospermum erythrorhizon, has anti-cancer and antiinflammation activity. Acetylshikonin is a non-selective cytochrome P450 inhibitor against all P450s (IC50 values range from 1.4-4.0 μM). Acetylshikonin is an AChE inhibitor and exhibits potent antiapoptosis activity[1][2][3]. Acetylshikonin, derived from the root of Lithospermum erythrorhizon, has anti-cancer and antiinflammation activity. Acetylshikonin is a non-selective cytochrome P450 inhibitor against all P450s (IC50 values range from 1.4-4.0 μM). Acetylshikonin is an AChE inhibitor and exhibits potent antiapoptosis activity[1][2][3].
Coumermycin A1
A hydroxycoumarin antibiotic that is obtained from Streptomyces rishiriensis and exhibits potent antibacterial and anticancer activity. D000970 - Antineoplastic Agents > D059003 - Topoisomerase Inhibitors > D059005 - Topoisomerase II Inhibitors C254 - Anti-Infective Agent > C258 - Antibiotic D004791 - Enzyme Inhibitors
Sodium sulfate
A - Alimentary tract and metabolism > A06 - Drugs for constipation > A06A - Drugs for constipation > A06AD - Osmotically acting laxatives A - Alimentary tract and metabolism > A12 - Mineral supplements > A12C - Other mineral supplements > A12CA - Sodium C78275 - Agent Affecting Blood or Body Fluid > C29730 - Electrolyte Replacement Agent D005765 - Gastrointestinal Agents > D002400 - Cathartics Same as: D01732
1,3-DICHLORO-2-PROPANOL
D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D003432 - Cross-Linking Reagents D009676 - Noxae > D009153 - Mutagens