Gene Association: MAP2K4

UniProt Search: MAP2K4 (PROTEIN_CODING)
Function Description: mitogen-activated protein kinase kinase 4

found 30 associated metabolites with current gene based on the text mining result from the pubmed database.

Cytidine

4-amino-1-((2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)pyrimidin-2(1H)-one

C9H13N3O5 (243.0855)


Cytidine is a nucleoside that is composed of the base cytosine linked to the five-carbon sugar D-ribose. Cytidine is a pyrimidine that besides being incorporated into nucleic acids, can serve as a substrate for the salvage pathway of pyrimidine nucleotide synthesis. It is a precursor of cytidine triphosphate (CTP) needed in the phosphatidylcholine (PC) and phosphatidylethanolamine (PE) biosynthetic pathways. These variations probably reflect the species differences in cytidine deaminase, the enzyme that converts cytidine to uridine in the body. The transport of cytidine into the brains extracellular fluid, and then into neurons and glia, are essential prerequisites for cytidine to be utilized in the brain. An efficient mechanism mediating the brain uptake of circulating cytidine has not yet been demonstrated. The biosynthesis of PC, the most abundant phosphatide in the brain, via the Kennedy pathway requires phosphocholine and cytidine triphosphate (CTP), a cytidine nucleotide involved in the rate-limiting step. The enzyme that converts CTP to endogenous CDP-choline (CTP:phosphocholine cytidylyltransferase) is unsaturated at physiological brain CTP levels. APOBEC is a family of enzymes that has been discovered with the ability to deaminate cytidines on RNA or DNA. The human apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like 3G protein (APOBEC3G, or hA3G), provides cells with an intracellular antiretroviral activity that is associated with the hypermutation of viral DNA through cytidine deamination. Indeed, hA3G belongs to a family of vertebrate proteins that contains one or two copies of a signature sequence motif unique to cytidine deaminases (CTDAs) (PMID: 16769123, 15780864, 16720547). Cytidine is a nucleoside that is composed of the base cytosine linked to the five-carbon sugar D-ribose. Cytidine is a pyrimidine that besides being incorporated into nucleic acids, can serve as substrate for the salvage pathway of pyrimidine nucleotide synthesis; as precursor of the cytidine triphosphate (CTP) needed in the phosphatidylcholine (PC) and phosphatidylethanolamine (PE) biosynthetic pathway. These variations probably reflect the species differences in cytidine deaminase, the enzyme that converts cytidine to uridine in the body. The transports of cytidine into the brains extracellular fluid, and then into neurons and glia, are essential prerequisites for cytidine to be utilized in brain. An efficient mechanism mediating the brain uptake of circulating cytidine has not yet been demonstrated. The biosynthesis of PC, the most abundant phosphatide in the brain, via the Kennedy pathway requires phosphocholine and cytidine triphosphate (CTP), a cytidine nucleotide, which is involved in the rate-limiting step. The enzyme that converts CTP to endogenous CDP-choline (CTP: phosphocholine cytidylyltransferase) is unsaturated at physiological brain CTP levels. Cytidine is a white crystalline powder. (NTP, 1992) Cytidine is a pyrimidine nucleoside in which cytosine is attached to ribofuranose via a beta-N(1)-glycosidic bond. It has a role as a human metabolite, a Saccharomyces cerevisiae metabolite, an Escherichia coli metabolite and a mouse metabolite. It is functionally related to a cytosine. Cytidine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Cytidine is a natural product found in Fritillaria thunbergii, Castanopsis fissa, and other organisms with data available. Cytidine is a pyrimidine nucleoside comprised of a cytosine bound to ribose via a beta-N1-glycosidic bond. Cytidine is a precursor for uridine. Both cytidine and uridine are utilized in RNA synthesis. Cytidine is a metabolite found in or produced by Saccharomyces cerevisiae. A pyrimidine nucleoside that is composed of the base CYTOSINE linked to the five-carbon sugar D-RIBOSE. A pyrimidine nucleoside in which cytosine is attached to ribofuranose via a beta-N(1)-glycosidic bond. [Spectral] Cytidine (exact mass = 243.08552) and 3,4-Dihydroxy-L-phenylalanine (exact mass = 197.06881) and NAD+ (exact mass = 663.10912) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. [Spectral] Cytidine (exact mass = 243.08552) and 3,4-Dihydroxy-L-phenylalanine (exact mass = 197.06881) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. [Spectral] Cytidine (exact mass = 243.08552) and S-Adenosyl-L-homocysteine (exact mass = 384.12159) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. Cytidine is a pyrimidine nucleoside and acts as a component of RNA. Cytidine is a precursor of uridine. Cytidine controls neuronal-glial glutamate cycling, affecting cerebral phospholipid metabolism, catecholamine synthesis, and mitochondrial function[1][2][3]. Cytidine is a pyrimidine nucleoside and acts as a component of RNA. Cytidine is a precursor of uridine. Cytidine controls neuronal-glial glutamate cycling, affecting cerebral phospholipid metabolism, catecholamine synthesis, and mitochondrial function[1][2][3]. Cytidine is a pyrimidine nucleoside and acts as a component of RNA. Cytidine is a precursor of uridine. Cytidine controls neuronal-glial glutamate cycling, affecting cerebral phospholipid metabolism, catecholamine synthesis, and mitochondrial function[1][2][3].

   

2'-Hydroxydaidzein

2,4,7-Trihydroxyisoflavone; 2-Hydroxydaidzein; 7,2,4-Trihydroxyisoflavone

C15H10O5 (270.0528)


2-hydroxydaidzein is a hydroxyisoflavone that is daidzein bearing an additional hydroxy substituent at position 2. It has a role as an anti-inflammatory agent. It is functionally related to a daidzein. It is a conjugate acid of a 2-hydroxydaidzein(1-). 2-Hydroxydaidzein is a natural product found in Viola hondoensis, Crotalaria pallida, and other organisms with data available. Isolated from pods of Phaseolus vulgaris (kidney bean) and Phaseolus lunatus (butter bean). 2-Hydroxydaidzein is found in many foods, some of which are butternut squash, ginger, summer grape, and yam. 2-Hydroxydaidzein is found in common bean. 2-Hydroxydaidzein is isolated from pods of Phaseolus vulgaris (kidney bean) and Phaseolus lunatus (butter bean A hydroxyisoflavone that is daidzein bearing an additional hydroxy substituent at position 2. 2′-Hydroxydaidzein is a metabolite. 2′-Hydroxydaidzein inhibits the release of chemical mediator from inflammatory cells. 2′-Hydroxydaidzein significantly inhibits lysozyme and β-glucuronidase release from rat neutrophils, which is stimulated with fMLP/CB, respectively[1].

   

Butin_(molecule)

4H-1-BENZOPYRAN-4-ONE, 2-(3,4-DIHYDROXYPHENYL)-2,3-DIHYDRO-7-HYDROXY-, (2S)-

C15H12O5 (272.0685)


Butin is a trihydroxyflavanone in which the three hydroxy substituents are located at positions 3, 4 and 7. It is found in Acacia mearnsii, Vernonia anthelmintica and Dalbergia odorifera and has a protective affect against oxidative stress-induced mitochondrial dysfunction. It has a role as an antioxidant, a protective agent and a metabolite. It is a trihydroxyflavanone and a member of 4-hydroxyflavanones. Butin is a natural product found in Dipteryx lacunifera, Acacia vestita, and other organisms with data available. A trihydroxyflavanone in which the three hydroxy substituents are located at positions 3, 4 and 7. It is found in Acacia mearnsii, Vernonia anthelmintica and Dalbergia odorifera and has a protective affect against oxidative stress-induced mitochondrial dysfunction. (-)-Butin is the S enantiomer of Butin. Butin is a major biologically active flavonoid isolated from the heartwood of Dalbergia odorifera, with strong antioxidant, antiplatelet and anti-inflammatory activities[1][2]. (-)-Butin is the S enantiomer of Butin. Butin is a major biologically active flavonoid isolated from the heartwood of Dalbergia odorifera, with strong antioxidant, antiplatelet and anti-inflammatory activities[1][2]. (-)-Butin is the S enantiomer of Butin. Butin is a major biologically active flavonoid isolated from the heartwood of Dalbergia odorifera, with strong antioxidant, antiplatelet and anti-inflammatory activities[1][2]. (-)-Butin is the S enantiomer of Butin. Butin is a major biologically active flavonoid isolated from the heartwood of Dalbergia odorifera, with strong antioxidant, antiplatelet and anti-inflammatory activities[1][2]. Butin is a major biologically active flavonoid isolated from the heartwood of Dalbergia odorifera, with strong antioxidant, antiplatelet and anti-inflammatory activities. Butin significantly alleviates myocardial infarction and improves heart function, together with prevents diabetes-induced cardiac oxidative damage in rat[1][2]. Butin is a major biologically active flavonoid isolated from the heartwood of Dalbergia odorifera, with strong antioxidant, antiplatelet and anti-inflammatory activities. Butin significantly alleviates myocardial infarction and improves heart function, together with prevents diabetes-induced cardiac oxidative damage in rat[1][2].

   

Beta-Tyrosine

3-Amino-3-(4-hydroxyphenyl)propionic acid

C9H11NO3 (181.0739)


The use of tyrosine kinase receptor inhibitors is increasingly becoming a valuable therapeutic alternative in tumors carrying activated tyrosine kinase receptors. GMR beta tyrosine residues are not necessary for activation of the JAK/STAT pathway, or for proliferation, viability, or adhesion signaling in Ba/F3 cells, although tyrosine residues significantly affect the magnitude of the response. (PMID:10372132). The use of tyrosine kinase receptor inhibitors is increasingly becoming a valuable therapeutic alternative in tumors carrying activated tyrosine kinase receptors. KEIO_ID A176

   

L-Glutamine

(2S)-2,5-diamino-5-oxopentanoic acid

C5H10N2O3 (146.0691)


Glutamine (Gln), also known as L-glutamine is an alpha-amino acid. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Amino acids are organic compounds that contain amino (–NH2) and carboxyl (–COOH) functional groups, along with a side chain (R group) specific to each amino acid. Structurally, glutamine is similar to the amino acid glutamic acid. However, instead of having a terminal carboxylic acid, it has an amide. Glutamine is one of 20 proteinogenic amino acids, i.e., the amino acids used in the biosynthesis of proteins. Glutamine is found in all organisms ranging from bacteria to plants to animals. It is classified as an aliphatic, polar amino acid. In humans glutamine is considered a non-essential amino acid. Enzymatically, glutamine is formed by replacing a side-chain hydroxyl of glutamic acid with an amine functional group. More specifically, glutamine is synthesized by the enzyme glutamine synthetase from glutamate and ammonia. The most relevant glutamine-producing tissue are skeletal muscles, accounting for about 90\\\\\\% of all glutamine synthesized. Glutamine is also released, in small amounts, by the lungs and brain. In human blood, glutamine is the most abundant free amino acid. Dietary sources of glutamine include protein-rich foods such as beef, chicken, fish, dairy products, eggs, beans, beets, cabbage, spinach, carrots, parsley, vegetable juices, wheat, papaya, Brussels sprouts, celery and kale. Glutamine is one of the few amino acids that can directly cross the blood–brain barrier. Glutamine is often used as a supplement in weightlifting, bodybuilding, endurance and other sports, as well as by those who suffer from muscular cramps or pain, particularly elderly people. In 2017, the U.S. Food and Drug Administration (FDA) approved L-glutamine oral powder, marketed as Endari, to reduce severe complications of sickle cell disease in people aged five years and older with the disorder. Subjects who were treated with L-glutamine oral powder experienced fewer hospital visits for pain treated with a parenterally administered narcotic or ketorolac. The main use of glutamine within the diet of either group is as a means of replenishing the bodys stores of amino acids that have been used during exercise or everyday activities. Studies which have looked into problems with excessive consumption of glutamine thus far have proved inconclusive. However, normal supplementation is healthy mainly because glutamine is supposed to be supplemented after prolonged periods of exercise (for example, a workout or exercise in which amino acids are required for use) and replenishes amino acid stores. This is one of the main reasons glutamine is recommended during fasting or for people who suffer from physical trauma, immune deficiencies, or cancer. There is a significant body of evidence that links glutamine-enriched diets with positive intestinal effects. These include maintenance of gut barrier function, aiding intestinal cell proliferation and differentiation, as well as generally reducing septic morbidity and the symptoms of Irritable Bowel Syndrome (IBS). The reason for such "cleansing" properties is thought to stem from the fact that the intestinal extraction rate of glutamine is higher than that for other amino acids, and is therefore thought to be the most viable option when attempting to alleviate conditions relating to the gastrointestinal tract. These conditions were discovered after comparing plasma concentration within the gut between glutamine-enriched and non glutamine-enriched diets. However, even though glutamine is thought to have "cleansing" properties and effects, it is unknown to what extent glutamine has clinical benefits, due to the varied concentrations of glutamine in varieties of food. It is also known that glutamine has positive effects in reducing healing time after operations. Hospital waiting times after abdominal s... L-glutamine, also known as L-2-aminoglutaramic acid or levoglutamide, is a member of the class of compounds known as L-alpha-amino acids. L-alpha-amino acids are alpha amino acids which have the L-configuration of the alpha-carbon atom. L-glutamine is soluble (in water) and a moderately acidic compound (based on its pKa). L-glutamine can be found in a number of food items such as acorn, yautia, ohelo berry, and oregon yampah, which makes L-glutamine a potential biomarker for the consumption of these food products. L-glutamine can be found primarily in most biofluids, including blood, sweat, breast milk, and cerebrospinal fluid (CSF), as well as throughout most human tissues. L-glutamine exists in all living species, ranging from bacteria to humans. In humans, L-glutamine is involved in several metabolic pathways, some of which include amino sugar metabolism, the oncogenic action of 2-hydroxyglutarate, mercaptopurine metabolism pathway, and transcription/Translation. L-glutamine is also involved in several metabolic disorders, some of which include the oncogenic action of d-2-hydroxyglutarate in hydroxygluaricaciduria, tay-sachs disease, xanthinuria type I, and adenosine deaminase deficiency. Moreover, L-glutamine is found to be associated with carbamoyl Phosphate Synthetase Deficiency, epilepsy, schizophrenia, and alzheimers disease. L-glutamine is a non-carcinogenic (not listed by IARC) potentially toxic compound. L-glutamine is a drug which is used for nutritional supplementation, also for treating dietary shortage or imbalance. L-Glutamine (L-Glutamic acid 5-amide) is a non-essential amino acid present abundantly throughout the body and involved in many metabolic processes. L-Glutamine provides a source of carbons for oxidation in some cells[1][2]. L-Glutamine (L-Glutamic acid 5-amide) is a non-essential amino acid present abundantly throughout the body and involved in many metabolic processes. L-Glutamine provides a source of carbons for oxidation in some cells[1][2]. L-Glutamine (L-Glutamic acid 5-amide) is a non-essential amino acid present abundantly throughout the body and involved in many metabolic processes. L-Glutamine provides a source of carbons for oxidation in some cells[1][2].

   

Taurolithocholate 3-sulfate

2-[[(4R)-4-[(3R,5R,10S,13R,17R)-10,13-dimethyl-3-sulfooxy-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl]pentanoyl]amino]ethanesulfonic acid

C26H45NO8S2 (563.2586)


Taurolithocholic acid 3-sulfate is a sulfated bile acid. Under normal circumstances, bile acid sulfation is a minor pathway. However in the presence of cholestasis, the fraction of the bile acid pool which is sulfated increases. Sulfation of bile acids increases the aqueous solubility of the amphipathic compounds and results in more efficient renal clearance as well as in decreased reabsorption from the intestinal lumen. Bile acids are steroid acids found predominantly in the bile of mammals. The distinction between different bile acids is minute, depending only on the presence or absence of hydroxyl groups on positions 3, 7, and 12. Bile acids are physiological detergents that facilitate excretion, absorption, and transport of fats and sterols in the intestine and liver. Bile acids are also steroidal amphipathic molecules derived from the catabolism of cholesterol. They modulate bile flow and lipid secretion, are essential for the absorption of dietary fats and vitamins, and have been implicated in the regulation of all the key enzymes involved in cholesterol homeostasis. Bile acids recirculate through the liver, bile ducts, small intestine and portal vein to form an enterohepatic circuit. They exist as anions at physiological pH and, consequently, require a carrier for transport across the membranes of the enterohepatic tissues. The unique detergent properties of bile acids are essential for the digestion and intestinal absorption of hydrophobic nutrients. Bile acids have potent toxic properties (e.g. membrane disruption) and there are a plethora of mechanisms to limit their accumulation in blood and tissues (PMID: 11316487, 16037564, 12576301, 11907135). Taurolithocholic acid 3-sulfate is a sulfated bile acid. Under normal circumstances, bile acid sulfation is a minor pathway. However in the presence of cholestasis, the fraction of the bile acid pool which is sulfated increases. Sulfation of bile acids increases the aqueous solubility of the amphipathic compounds and results in more efficient renal clearance as well as in decreased reabsorption from the intestinal lumen. Bile acids are steroid acids found predominantly in bile of mammals. The distinction between different bile acids is minute, depends only on presence or absence of hydroxyl groups on positions 3, 7, and 12. Bile acids are physiological detergents that facilitate excretion, absorption, and transport of fats and sterols in the intestine and liver. Bile acids are also steroidal amphipathic molecules derived from the catabolism of cholesterol. They modulate bile flow and lipid secretion, are essential for the absorption of dietary fats and vitamins, and have been implicated in the regulation of all the key enzymes involved in cholesterol homeostasis. Bile acids recirculate through the liver, bile ducts, small intestine and portal vein to form an enterohepatic circuit. They exist as anions at physiological pH and, consequently, require a carrier for transport across the membranes of the enterohepatic tissues. The unique detergent properties of bile acids are essential for the digestion and intestinal absorption of hydrophobic nutrients. Bile acids have potent toxic properties (e.g., membrane disruption) and there are a plethora of mechanisms to limit their accumulation in blood and tissues. (PMID: 11316487, 16037564, 12576301, 11907135) [HMDB] D005765 - Gastrointestinal Agents > D001647 - Bile Acids and Salts D005765 - Gastrointestinal Agents > D002793 - Cholic Acids KEIO_ID T072

   

Gesfid

methyl (E)-3-dimethoxyphosphoryloxybut-2-enoate

C7H13O6P (224.045)


D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor D010575 - Pesticides > D007306 - Insecticides D004791 - Enzyme Inhibitors D016573 - Agrochemicals

   

Propoxur

2-(1-Methylethoxy)phenyl methylcarbamic acid

C11H15NO3 (209.1052)


CONFIDENCE standard compound; INTERNAL_ID 365; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7950; ORIGINAL_PRECURSOR_SCAN_NO 7947 CONFIDENCE standard compound; INTERNAL_ID 365; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7933; ORIGINAL_PRECURSOR_SCAN_NO 7930 CONFIDENCE standard compound; INTERNAL_ID 365; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7922; ORIGINAL_PRECURSOR_SCAN_NO 7920 CONFIDENCE standard compound; INTERNAL_ID 365; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7940; ORIGINAL_PRECURSOR_SCAN_NO 7937 CONFIDENCE standard compound; INTERNAL_ID 365; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7982; ORIGINAL_PRECURSOR_SCAN_NO 7979 CONFIDENCE standard compound; INTERNAL_ID 365; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7967; ORIGINAL_PRECURSOR_SCAN_NO 7964 D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor D010575 - Pesticides > D007306 - Insecticides D004791 - Enzyme Inhibitors D016573 - Agrochemicals

   

Rottlerin

(2E) -1- [ 6- [ (3-Acetyl-2,4,6-trihydroxy-5-methylphenyl) methyl ] -5,7-dihydroxy-2,2-dimethyl-2H-1-benzopyran-8-yl ] -3-phenyl-2-propene-1-one

C30H28O8 (516.1784)


Rottlerin is a chromenol that is 2,2-dimethyl-2H-chromene substituted by hydroxy groups at positions 5 and 7, a 3-acetyl-2,4,6-trihydroxy-5-methylbenzyl group at position 6 and a (1E)-3-oxo-1-phenylprop-1-en-3-yl group at position 8. A potassium channel opener, it is isolated from Mallotus philippensis. It has a role as an antineoplastic agent, an apoptosis inducer, a metabolite, a K-ATP channel agonist, an antihypertensive agent and an anti-allergic agent. It is an enone, a chromenol, a benzenetriol, a methyl ketone and an aromatic ketone. Rottlerin is a natural product found in Mallotus philippensis with data available. A chromenol that is 2,2-dimethyl-2H-chromene substituted by hydroxy groups at positions 5 and 7, a 3-acetyl-2,4,6-trihydroxy-5-methylbenzyl group at position 6 and a (1E)-3-oxo-1-phenylprop-1-en-3-yl group at position 8. A potassium channel opener, it is isolated from Mallotus philippensis. D004791 - Enzyme Inhibitors relative retention time with respect to 9-anthracene Carboxylic Acid is 1.546 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.549 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.548 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.550 Rottlerin, a natural product purified from Mallotus Philippinensis, is a specific PKC inhibitor, with IC50 values for PKCδ of 3-6 μM, PKCα,β,γ of 30-42 μM, PKCε,η,ζ of 80-100 μM. Rottlerin acts as a direct mitochondrial uncoupler, and stimulates autophagy by targeting a signaling cascade upstream of mTORC1. Rottlerin induces apoptosis via caspase 3 activation[1][2][3]. Rottlerin inhibits HIV-1 integration and Rabies virus (RABV) infection[4][5]. Rottlerin, a natural product purified from Mallotus Philippinensis, is a specific PKC inhibitor, with IC50 values for PKCδ of 3-6 μM, PKCα,β,γ of 30-42 μM, PKCε,η,ζ of 80-100 μM. Rottlerin acts as a direct mitochondrial uncoupler, and stimulates autophagy by targeting a signaling cascade upstream of mTORC1. Rottlerin induces apoptosis via caspase 3 activation[1][2][3]. Rottlerin inhibits HIV-1 integration and Rabies virus (RABV) infection[4][5].

   

Anisomycin

Flagecidin;Wuningmeisu C

C14H19NO4 (265.1314)


An antibiotic isolated from various Streptomyces species. It interferes with protein and DNA synthesis by inhibiting peptidyl transferase or the 80S ribosome system. D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents D004791 - Enzyme Inhibitors > D019384 - Nucleic Acid Synthesis Inhibitors D004791 - Enzyme Inhibitors > D011500 - Protein Synthesis Inhibitors D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents C254 - Anti-Infective Agent > C258 - Antibiotic relative retention time with respect to 9-anthracene Carboxylic Acid is 0.392 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.387 Anisomycin is a potent protein synthesis inhibitor which interferes with protein and DNA synthesis by inhibiting peptidyl transferase or the 80S ribosome system[1]. Anisomycin is a JNK activator, which increases phospho-JNK[2][3]. Anisomycin is a bacterial antibiotic[4].

   

Tautomycin

Tautomycin from Streptomyces spiroverticillatus

C41H66O13 (766.4503)


D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors D004791 - Enzyme Inhibitors

   

p-Xylene

1,4-Dimethylbenzene

C8H10 (106.0782)


P-xylene, also known as para-xylene or 1,4-dimethylbenzene, is a member of the class of compounds known as P-xylenes. P-xylenes are aromatic compounds that contain a p-xylene moiety, which is a monocyclic benzene carrying exactly two methyl groups at the 1- and 4-positions. P-xylene can be found in a number of food items such as black walnut, yellow bell pepper, green bell pepper, and parsley, which makes P-xylene a potential biomarker for the consumption of these food products. P-xylene can be found primarily in feces and saliva. P-xylene is formally rated as an unfounded non-carcinogenic (IARC 3) potentially toxic compound. p-Xylene (para-xylene) is an aromatic hydrocarbon. It is one of the three isomers of dimethylbenzene known collectively as xylenes. The p- stands for para-, indicating that the two methyl groups in p-xylene occupy the diametrically opposite substituent positions 1 and 4. It is in the positions of the two methyl groups, their arene substitution pattern, that it differs from the other isomers, o-xylene and m-xylene. All have the same chemical formula C6H4(CH3)2. All xylene isomers are colorless and highly flammable. The odor threshold of p-xylene is 0.62 parts per million (ppm) . If the compound has been ingested, rapid gastric lavage should be performed using 5\\% sodium bicarbonate. For skin contact, the skin should be washed with soap and water. If the compound has entered the eyes, they should be washed with large quantities of isotonic saline or water. In serious cases, atropine and/or pralidoxime should be administered. Anti-cholinergic drugs work to counteract the effects of excess acetylcholine and reactivate AChE. Atropine can be used as an antidote in conjunction with pralidoxime or other pyridinium oximes (such as trimedoxime or obidoxime), though the use of -oximes has been found to be of no benefit, or possibly harmful, in at least two meta-analyses. Atropine is a muscarinic antagonist, and thus blocks the action of acetylcholine peripherally (T3DB). p-Xylene is an aromatic hydrocarbon based on benzene with two methyl substituents with the chemical formula C8H10 or C6H4(CH3)2. The “p” stands for para, identifying the location of the methyl groups as across from one another. (Wikipedia)

   

Ethyl trans-p-methoxycinnamate

Ethyl (2E)-3-(4-methoxyphenyl)-2-propenoate

C12H14O3 (206.0943)


Ethyl trans-p-methoxycinnamate is found in fats and oils. Ethyl trans-p-methoxycinnamate is a major constituent of oil of Kaempferia galanga (galangal (E)-Ethyl p-methoxycinnamate is a natural product found in Kaempferia galangal with anti-inflammatory, anti-neoplastic and anti-microbial effects. (E)-Ethyl p-methoxycinnamate inhibits COX-1 and COX-2 in vitro with IC50s of 1.12 and 0.83 μM, respectively[1]. (E)-Ethyl p-methoxycinnamate is a natural product found in Kaempferia galangal with anti-inflammatory, anti-neoplastic and anti-microbial effects. (E)-Ethyl p-methoxycinnamate inhibits COX-1 and COX-2 in vitro with IC50s of 1.12 and 0.83 μM, respectively[1].

   

Naspm

1-Naphthylacetylspermine

C22H34N4O (370.2732)


Naspm (1-Naphthyl acetyl spermine), a synthetic analogue of Joro spider toxin, is a calcium permeable AMPA (CP-AMPA) receptors antagonist.

   

palytoxin

palytoxin

C129H223N3O54 (2678.4795)


A polyol marine coelenterate toxin composed of substituted N-3-hydroxypropyl-trans-3-amidoacrylamides and produced by species of Palythoa and Zoanthus soft corals (collectively called zoantharians), either as a defence mechanism or to assist them in capturing prey. An ionophore that forms cation channels through Na+/K+-ATPase, it is a potent vasoconstrictor useful in evaluation of anti-angina agents. It is considered to be one of the most poisonous non-protein substances known, second only to maitotoxin in terms of toxicity in mice. D009676 - Noxae > D011042 - Poisons > D003064 - Cnidarian Venoms D009676 - Noxae > D011042 - Poisons > D008387 - Marine Toxins D009676 - Noxae > D011042 - Poisons > D014688 - Venoms

   

Cinobufotalin

(1R,2R,2aR,3aS,3bR,5aS,7S,9aR,9bS,11aR)-5a,7-dihydroxy-9a,11a-dimethyl-1-(2-oxo-2H-pyran-5-yl)hexadecahydronaphtho[1,2:6,7]indeno[1,7a-b]oxiren-2-yl acetate

C26H34O7 (458.2304)


Cinobufotalin is a natural product found in Bufo and Bufo bufo with data available. Cinobufotalin is a bufadienolide isolated from toad venom and utilized in traditional Chinese medicine (TCM) for its cardiotonic, diuretic and hemostatic effects, with potential cytotoxic and antineoplastic activities. Upon administration and although the exact mechanism of action(s) (MoAs) through which this agent exerts its effects have yet to be fully discovered, cinobufotalin causes DNA fragmentation, decreases mitochondrial membrane potential (MMP), increases intracellular calcium (Ca2+) ion concentrations and reactive oxygen species (ROS) production, upregulates Fas protein and activates cytochrome C, various caspases, Bid and Bax. This causes cell cycle arrest, induces apoptosis and inhibits tumor cell growth and survival. In addition, cinobufotalin inhibits the activity of sphingosine kinase 1 (SphK1) and induces pro-apoptotic ceramide production, which further promotes tumor cell apoptosis. Cinobufotalin also induces mitochondrial protein cyclophilin D (Cyp-D)-dependent opening of the mitochondrial permeability transition pore (mPTP), which may contribute to cinobufotalin-induced non-apoptotic death of certain tumor cells. D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002018 - Bufanolides Cinobufotalin is a cardiotonic steroids or bufadienolides, is extracted from the skin secretions of the giant toads. Cinobufotalin has been used as a cardiotonic, diuretic and a hemostatic agent, Cinobufotalin is also a potential anti-lung cancer agent[1].

   

DL-Glutamine

DL-Glutamine

C5H10N2O3 (146.0691)


DL-Glutamine is used for biochemical research and drug synthesis.

   

3-amino-3-(4-hydroxyphenyl)propanoic acid

(R)-3-Amino-3-(4-hydroxy-phenyl)-propionic acid

C9H11NO3 (181.0739)


A beta-amino acid comprising propionic acid having amino and 4-hydroxyphenyl groups attached at the 3-position.

   

Arabinofuranosylcytosine

4-amino-1-[3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-1,2-dihydropyrimidin-2-one

C9H13N3O5 (243.0855)


Isolated from the mushroom Xerocomus nigromaculatus of unknown palatability This compound has been identified in human blood as reported by (PMID: 31557052 ). Arabinofuranosylcytosine is not a naturally occurring metabolite and is only found in those individuals exposed to this compound or its derivatives. Technically Arabinofuranosylcytosine is part of the human exposome. The exposome can be defined as the collection of all the exposures of an individual in a lifetime and how those exposures relate to health. An individual's exposure begins before birth and includes insults from environmental and occupational sources. Arabinofuranosylcytosine (Ara-C), also known as cytarabine, is a chemotherapeutic agent that is widely used in the treatment of various types of cancer, particularly hematological malignancies such as acute myeloid leukemia (AML) and chronic myeloid leukemia (CML). The biological functions of Ara-C are primarily related to its antineoplastic properties, which are derived from its mechanism of action within the cell. Here is a detailed description of its biological functions: 1. **Inhibition of DNA Synthesis**: Ara-C functions as a nucleoside analog, which means it resembles the natural building blocks of DNA. Once inside the cell, Ara-C is converted to its active metabolite, araCTP (arabinofuranosylcytosine triphosphate). AraCTP competes with the natural deoxycytidine triphosphate (dCTP) for incorporation into the growing DNA chain during the S phase of the cell cycle. Because Ara-C lacks a 3'-hydroxyl group, its incorporation into DNA leads to chain termination, effectively stopping DNA synthesis. 2. **Cell Cycle Specificity**: Ara-C is most effective against cells that are actively dividing. Since it targets cells in the S phase of the cell cycle, it is particularly harmful to rapidly dividing cancer cells, which often spend a significant portion of their cycle in this phase. 3. **Inhibition of DNA Repair**: Beyond its direct effect on DNA synthesis, Ara-C can also interfere with DNA repair mechanisms. This is because the incorporation of Ara-C into DNA can cause mispairing and induce DNA damage, which the cell may be unable to repair properly. 4. **Cell Death Induction**: The inhibition of DNA synthesis and the induction of DNA damage can lead to cell death through apoptosis or necrosis. Cells that cannot replicate their DNA or repair the damage caused by Ara-C activation are programmed to die, which is a desirable outcome in the context of cancer treatment. 5. **Immune System Modulation**: In some cases, Ara-C can also modulate the immune system, although this is not its primary function. It can affect the function and proliferation of immune cells, which can have implications for both its therapeutic effects and side effects. 6. **Enzymatic Conversion**: Ara-C must be activated within the cell by the enzyme deoxycytidine kinase (dCK), which phosphorylates it to Ara-CMP (monophosphate), then to Ara-CDP (diphosphate), and finally to Ara-CTP. The efficiency of this conversion can vary between different types of cancer cells and normal cells, contributing to the selectivity of Ara-C's action. 7. **Cross-Linking Potential**: Although less common, Ara-C can also form cross-links with DNA, further complicating DNA structure and function, which can contribute to its cytotoxic effects. The biological functions of Ara-C are complex and can vary depending on the dose, the specific cancer type, and the individual patient's metabolism. Its use is carefully monitored in clinical settings due to its potential for significant side effects, including myelosuppression (decreased production of blood cells), gastrointestinal toxicity, and central nervous system toxicity.

   

Ethyl trans-p-methoxycinnamate

2-Propenoic acid, 3-(4-methoxyphenyl)-, ethyl ester, (2E)-

C12H14O3 (206.0943)


Ethyl trans-p-methoxycinnamate is found in fats and oils. Ethyl trans-p-methoxycinnamate is a major constituent of oil of Kaempferia galanga (galangal Ethyl p-methoxycinnamate is a natural product found in Hedychium spicatum and Kaempferia galanga with data available. (E)-Ethyl p-methoxycinnamate is a natural product found in Kaempferia galangal with anti-inflammatory, anti-neoplastic and anti-microbial effects. (E)-Ethyl p-methoxycinnamate inhibits COX-1 and COX-2 in vitro with IC50s of 1.12 and 0.83 μM, respectively[1]. (E)-Ethyl p-methoxycinnamate is a natural product found in Kaempferia galangal with anti-inflammatory, anti-neoplastic and anti-microbial effects. (E)-Ethyl p-methoxycinnamate inhibits COX-1 and COX-2 in vitro with IC50s of 1.12 and 0.83 μM, respectively[1].

   

Ethyl trans-p-methoxycinnamate

2-Propenoic acid, 3-(4-methoxyphenyl)-, ethyl ester, (2E)-

C12H14O3 (206.0943)


Ethyl trans-p-methoxycinnamate is found in fats and oils. Ethyl trans-p-methoxycinnamate is a major constituent of oil of Kaempferia galanga (galangal Ethyl p-methoxycinnamate is a natural product found in Hedychium spicatum and Kaempferia galanga with data available. (E)-Ethyl p-methoxycinnamate is a natural product found in Kaempferia galangal with anti-inflammatory, anti-neoplastic and anti-microbial effects. (E)-Ethyl p-methoxycinnamate inhibits COX-1 and COX-2 in vitro with IC50s of 1.12 and 0.83 μM, respectively[1]. (E)-Ethyl p-methoxycinnamate is a natural product found in Kaempferia galangal with anti-inflammatory, anti-neoplastic and anti-microbial effects. (E)-Ethyl p-methoxycinnamate inhibits COX-1 and COX-2 in vitro with IC50s of 1.12 and 0.83 μM, respectively[1].

   

mevinphos

Pesticide1_Mevinphos Isomer 1*_C7H13O6P_2-Butenoic acid, 3-[(dimethoxyphosphinyl)oxy]-, methyl ester, (2E)-

C7H13O6P (224.045)


D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor D010575 - Pesticides > D007306 - Insecticides D004791 - Enzyme Inhibitors D016573 - Agrochemicals

   

propoxur

Pesticide3_Propoxur_C11H15NO3_Baygon

C11H15NO3 (209.1052)


D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor D010575 - Pesticides > D007306 - Insecticides D004791 - Enzyme Inhibitors D016573 - Agrochemicals

   

Chromar

InChI=1\C8H10\c1-7-3-5-8(2)6-4-7\h3-6H,1-2H

C8H10 (106.0782)


   

6Z-0282

(E)-3-(4-methoxyphenyl)prop-2-enoic acid ethyl ester

C12H14O3 (206.0943)


(E)-Ethyl p-methoxycinnamate is a natural product found in Kaempferia galangal with anti-inflammatory, anti-neoplastic and anti-microbial effects. (E)-Ethyl p-methoxycinnamate inhibits COX-1 and COX-2 in vitro with IC50s of 1.12 and 0.83 μM, respectively[1]. (E)-Ethyl p-methoxycinnamate is a natural product found in Kaempferia galangal with anti-inflammatory, anti-neoplastic and anti-microbial effects. (E)-Ethyl p-methoxycinnamate inhibits COX-1 and COX-2 in vitro with IC50s of 1.12 and 0.83 μM, respectively[1].

   

Bolfo

Carbamic acid, methyl-, o-isopropoxyphenyl ester

C11H15NO3 (209.1052)


D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor D010575 - Pesticides > D007306 - Insecticides D004791 - Enzyme Inhibitors D016573 - Agrochemicals

   

P-XYLENE

P-XYLENE

C8H10 (106.0782)


   

Taurolithocholic acid 3-sulfate

Taurolithocholic acid 3-sulfate

C26H45NO8S2 (563.2586)


D005765 - Gastrointestinal Agents > D001647 - Bile Acids and Salts D005765 - Gastrointestinal Agents > D002793 - Cholic Acids

   

Tautomycin from Streptomyces spiroverticillatus

Tautomycin from Streptomyces spiroverticillatus

C41H66O13 (766.4503)


D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors D004791 - Enzyme Inhibitors

   

1-Naphthylacetylspermine

1-Naphthylacetylspermine

C22H34N4O (370.2732)


Naspm (1-Naphthyl acetyl spermine), a synthetic analogue of Joro spider toxin, is a calcium permeable AMPA (CP-AMPA) receptors antagonist.