NCBI Taxonomy: 2956716

Asaraceae (ncbi_taxid: 2956716)

found 500 associated metabolites at family taxonomy rank level.

Ancestor: Piperales

Child Taxonomies: Asarum, Saruma

Germacrone

3,7-Cyclodecadien-1-one, 3,7-dimethyl-10-(1-methylethylidene)-, (E,E)-

C15H22O (218.1670562)


(E,E)-germacrone is a germacrane sesquiterpenoid that has formula C15H22O. It is a natural product found in traditional medicinal plants of the family Zingiberaceae. The compound exhibits a range of pharmacological activities including anti-inflammatory, anticancer, antiviral, anti-androgenic, antioxidant, antimicrobial, antifungal, neuroprotective and insecticidal activities. It has a role as a volatile oil component, an antiviral agent, an insecticide, an anti-inflammatory agent, an antioxidant, an antineoplastic agent, an apoptosis inducer, an autophagy inducer, an antimicrobial agent, an androgen antagonist, a neuroprotective agent, a plant metabolite, an antifungal agent, an antitussive, an antifeedant and a hepatoprotective agent. It is a germacrane sesquiterpenoid and an olefinic compound. Germacrone is a natural product found in Rhododendron calostrotum, Rhododendron nivale, and other organisms with data available. A germacrane sesquiterpenoid that has formula C15H22O. It is a natural product found in traditional medicinal plants of the family Zingiberaceae. The compound exhibits a range of pharmacological activities including anti-inflammatory, anticancer, antiviral, anti-androgenic, antioxidant, antimicrobial, antifungal, neuroprotective and insecticidal activities. Germacrone is a member of the class of compounds known as germacrane sesquiterpenoids. Germacrane sesquiterpenoids are sesquiterpenoids having the germacrane skeleton, with a structure characterized by a cyclodecane ring substituted with an isopropyl and two methyl groups. Germacrone is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Germacrone can be found in common thyme and turmeric, which makes germacrone a potential biomarker for the consumption of these food products. Germacrone is an antiviral isolate of Geranium macrorrhizum . Germacrone is extracted from Rhizoma Curcuma. Germacrone inhibits influenza virus infection[1]. Germacrone is extracted from Rhizoma Curcuma. Germacrone inhibits influenza virus infection[1].

   

Vanillic acid

4-hydroxy-3-methoxybenzoic acid

C8H8O4 (168.0422568)


Vanillic acid is a phenolic acid found in some forms of vanilla and many other plant extracts. It is a flavouring and scent agent that produces a pleasant, creamy odour. It is the intermediate product in the two-step bioconversion of ferulic acid to vanillin (J Biotechnol 1996;50(2-3):107-13). Vanillic acid, which is a chlorogenic acid, is an oxidized form of vanillin. It is also an intermediate in the production of vanillin from ferulic acid. Vanillic acid is a metabolic byproduct of caffeic acid and is often found in the urine of humans who have consumed coffee, chocolate, tea, and vanilla-flavoured confectionary. Vanillic acid selectively and specifically inhibits 5nucleotidase activity (PMID: 16899266). Vanillic acid is a microbial metabolite found in Amycolatopsis, Delftia, and Pseudomonas (PMID: 11152072, 10543794, 11728709, 9579070). Vanillic acid is a phenolic acid found in some forms of vanilla and many other plant extracts. It is a flavoring and scent agent that produces a pleasant, creamy odor. It is the intermediate product in the two-step bioconversion of ferulic acid to vanillin. (J Biotechnol 1996;50(2-3):107-13). Vanillic acid, which is a chlorogenic acid, is an oxidized form of vanillin. It is also an intermediate in the production of vanillin from ferulic acid. Vanillic acid is a metabolic byproduct of caffeic acid and is often found in the urine of humans who have consumed coffee, chocolate, tea and vanilla-flavored confectionary. Vanillic acid selectively and specifically inhibits 5nucleotidase activity. (PMID: 16899266). Vanillic acid is a monohydroxybenzoic acid that is 4-hydroxybenzoic acid substituted by a methoxy group at position 3. It has a role as a plant metabolite. It is a monohydroxybenzoic acid and a methoxybenzoic acid. It is a conjugate acid of a vanillate. Vanillic acid is a natural product found in Ficus septica, Haplophyllum cappadocicum, and other organisms with data available. Vanillic acid is a metabolite found in or produced by Saccharomyces cerevisiae. A flavoring agent. It is the intermediate product in the two-step bioconversion of ferulic acid to vanillin. (J Biotechnol 1996;50(2-3):107-13). A monohydroxybenzoic acid that is 4-hydroxybenzoic acid substituted by a methoxy group at position 3. Vanillic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=121-34-6 (retrieved 2024-06-29) (CAS RN: 121-34-6). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Vanillic acid is a flavoring agent found in edible plants and fruits, also found in Angelica sinensis. Vanillic acid inhibits NF-κB activation. Anti-inflammatory, antibacterial, and chemopreventive effects[1]. Vanillic acid is a flavoring agent found in edible plants and fruits, also found in Angelica sinensis. Vanillic acid inhibits NF-κB activation. Anti-inflammatory, antibacterial, and chemopreventive effects[1].

   

Camphor

Bicyclo[2.2.1]heptan-2-one, 1,7,7-trimethyl-, (.+/-.)-

C10H16O (152.12010859999998)


Camphor appears as a colorless or white colored crystalline powder with a strong mothball-like odor. About the same density as water. Emits flammable vapors above 150 °F. Used to make moth proofings, pharmaceuticals, and flavorings. Camphor is a cyclic monoterpene ketone that is bornane bearing an oxo substituent at position 2. A naturally occurring monoterpenoid. It has a role as a plant metabolite. It is a bornane monoterpenoid and a cyclic monoterpene ketone. Camphor is a natural product found in Xylopia aromatica, Xylopia sericea, and other organisms with data available. A bicyclic monoterpene ketone found widely in plants, especially CINNAMOMUM CAMPHORA. It is used topically as a skin antipruritic and as an anti-infective agent. A cyclic monoterpene ketone that is bornane bearing an oxo substituent at position 2. A naturally occurring monoterpenoid. C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent D000890 - Anti-Infective Agents relative retention time with respect to 9-anthracene Carboxylic Acid is 0.986 Camphor ((±)-Camphor) is a topical anti-infective and anti-pruritic and internally as a stimulant and carminative. However, Camphor is poisonous when ingested. Antiviral, antitussive, and anticancer activities[1]. Camphor is a TRPV3 agonist[2]. Camphor ((±)-Camphor) is a topical anti-infective and anti-pruritic and internally as a stimulant and carminative. However, Camphor is poisonous when ingested. Antiviral, antitussive, and anticancer activities[1]. Camphor is a TRPV3 agonist[2].

   

Rutin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-((((2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)-4H-chromen-4-one;Rutin

C27H30O16 (610.153378)


Rutin is a flavonoid known to have a variety of biological activities including antiallergic, anti-inflammatory, antiproliferative, and anticarcinogenic properties. A large number of flavonoids, mostly O-glycosides, are polyphenolic compounds of natural origin that are present in most fruits and vegetables. The average intake of the compounds by humans on a normal diet is more than 1 g per day. Although flavonoids are devoid of classical nutritional value, they are increasingly viewed as beneficial dietary components that act as potential protectors against human diseases such as coronary heart disease, cancers, and inflammatory bowel disease. Rutin acts as a quercetin deliverer to the large intestine; moreover, quercetin is extensively metabolized in the large intestine, which suggests that quercetin liberated from rutin and/or its colonic metabolites may play a role. Rutins anti-inflammatory actions are mediated through a molecular mechanism that underlies the quercetin-mediated therapeutic effects: quercetin-mediated inhibition of tumor necrosis factor-alpha (TNF-alpha)-induced nuclear factor kappa B (NFkB) activation. TNF-alpha-induced NFkB activity plays a central role in the production of pro-inflammatory mediators involved in progression of gut inflammation. (PMID:16132362). Rutin is a rutinoside that is quercetin with the hydroxy group at position C-3 substituted with glucose and rhamnose sugar groups. It has a role as a metabolite and an antioxidant. It is a disaccharide derivative, a quercetin O-glucoside, a tetrahydroxyflavone and a rutinoside. A flavonol glycoside found in many plants, including buckwheat; tobacco; forsythia; hydrangea; viola, etc. It has been used therapeutically to decrease capillary fragility. Rutin is a natural product found in Ficus virens, Visnea mocanera, and other organisms with data available. A flavonol glycoside found in many plants, including BUCKWHEAT; TOBACCO; FORSYTHIA; HYDRANGEA; VIOLA, etc. It has been used therapeutically to decrease capillary fragility. See also: Quercetin (related); Ginkgo (part of); Chamomile (part of) ... View More ... First isolated from Ruta graveolens (rue). Bioflavanoid. Quercetin 3-rutinoside is found in many foods, some of which are tea, bilberry, common oregano, and lemon grass. A rutinoside that is quercetin with the hydroxy group at position C-3 substituted with glucose and rhamnose sugar groups. C - Cardiovascular system > C05 - Vasoprotectives > C05C - Capillary stabilizing agents > C05CA - Bioflavonoids IPB_RECORD: 541; CONFIDENCE confident structure [Raw Data] CBA04_Rutin_neg_50eV.txt [Raw Data] CBA04_Rutin_pos_50eV.txt [Raw Data] CBA04_Rutin_neg_40eV.txt [Raw Data] CBA04_Rutin_pos_10eV.txt [Raw Data] CBA04_Rutin_neg_20eV.txt [Raw Data] CBA04_Rutin_neg_10eV.txt [Raw Data] CBA04_Rutin_neg_30eV.txt [Raw Data] CBA04_Rutin_pos_40eV.txt [Raw Data] CBA04_Rutin_pos_30eV.txt [Raw Data] CBA04_Rutin_pos_20eV.txt Rutin (Rutoside) is a flavonoid found in many plants and shows a wide range of biological activities including anti-inflammatory, antidiabetic, antioxidant, neuroprotective, nephroprotective, hepatoprotective and reducing Aβ oligomer activities. Rutin can cross the blood brain barrier. Rutin attenuates vancomycin-induced renal tubular cell apoptosis via suppression of apoptosis, mitochondrial dysfunction, and oxidative stress[1][2][3]. Rutin (Rutoside) is a flavonoid found in many plants and shows a wide range of biological activities including anti-inflammatory, antidiabetic, antioxidant, neuroprotective, nephroprotective, hepatoprotective and reducing Aβ oligomer activities. Rutin can cross the blood brain barrier. Rutin attenuates vancomycin-induced renal tubular cell apoptosis via suppression of apoptosis, mitochondrial dysfunction, and oxidative stress[1][2][3].

   

Pinoresinol

PHENOL, 4,4-(TETRAHYDRO-1H,3H-FURO(3,4-C)FURAN-1,4-DIYL)BIS(2-METHOXY-, (1S-(1.ALPHA.,3A.ALPHA.,4.BETA.,6A.ALPHA.))-

C20H22O6 (358.1416312)


Epipinoresinol is an enantiomer of pinoresinol having (+)-(1R,3aR,4S,6aR)-configuration. It has a role as a plant metabolite and a marine metabolite. Epipinoresinol is a natural product found in Pandanus utilis, Abeliophyllum distichum, and other organisms with data available. An enantiomer of pinoresinol having (+)-(1R,3aR,4S,6aR)-configuration. (+)-pinoresinol is an enantiomer of pinoresinol having (+)-1S,3aR,4S,6aR-configuration. It has a role as a hypoglycemic agent, a plant metabolite and a phytoestrogen. Pinoresinol is a natural product found in Pandanus utilis, Zanthoxylum beecheyanum, and other organisms with data available. See also: Acai fruit pulp (part of). An enantiomer of pinoresinol having (+)-1S,3aR,4S,6aR-configuration. relative retention time with respect to 9-anthracene Carboxylic Acid is 0.907 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.905 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.897 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.895 Pinoresinol is a lignol of plant origin serving for defense in a caterpillar. Pinoresinol drastically sensitizes cancer cells against TNF-related apoptosis-inducing ligand (TRAIL) -induced apoptosis[1][2]. Pinoresinol is a lignol of plant origin serving for defense in a caterpillar. Pinoresinol drastically sensitizes cancer cells against TNF-related apoptosis-inducing ligand (TRAIL) -induced apoptosis[1][2].

   

beta-Elemene

(1S,2S,4R)-1-ethenyl-1-methyl-2,4-bis(prop-1-en-2-yl)cyclohexane

C15H24 (204.1877904)


(-)-beta-elemene is the (-)-enantiomer of beta-elemene that has (1S,2S,4R)-configuration. It has a role as an antineoplastic agent. beta-Elemene is a natural product found in Xylopia sericea, Eupatorium cannabinum, and other organisms with data available. Beta-elemene is one of the isomers of elemene, a lipid soluble sesquiterpene and the active component isolated from the Chinese medicinal herb Rhizoma zedoariae with potential antineoplastic and chemopreventive activities. Although the exact mechanism of action through which beta-elemene exerts its effect has yet to be fully elucidated, this agent appears to induce apoptosis through different mechanisms of action and induces cell cycle arrest at different stages based on the tumor cell type involved. Beta-elemene may sensitize cancer cells to other chemotherapeutic agents. See also: Cannabis sativa subsp. indica top (part of). Beta-elemene, also known as B-elemen or 2,4-diisopropenyl-1-methyl-1-vinylcyclohexane, is a member of the class of compounds known as elemane sesquiterpenoids. Elemane sesquiterpenoids are sesquiterpenoids with a structure based on the elemane skeleton. Elemane is a monocyclic compound consisting of a cyclohexane ring substituted with a methyl group, an ethyl group, and two 1-methylethyl groups at the 1-, 1-, 2-, and 4-position, respectively. Beta-elemene is a fresh, herbal, and waxy tasting compound and can be found in a number of food items such as lovage, anise, spearmint, and orange mint, which makes beta-elemene a potential biomarker for the consumption of these food products. Beta-elemene can be found primarily in saliva. beta-Elemene belongs to the class of organic compounds known as elemane sesquiterpenoids. These are sesquiterpenoids with a structure based on the elemane skeleton. Elemane is a monocyclic compound consisting of a cyclohexane ring substituted with a methyl group, an ethyl group, and two 1-methylethyl groups at the 1-, 1-, 2-, and 4-position, respectively. beta-Elemene can be found in herbs, spices, and root vegetables, which makes beta-elemene a potential biomarker for the consumption of these food products. It is a constituent of sweet flag, juniper oils, and Mentha species. β-Elemene ((-)-β-Elemene; Levo-β-elemene) is isolated from natural plant Curcuma aromatica with an antitumor activity. β-Elemene can induce cell apoptosis. β-Elemene ((-)-β-Elemene; Levo-β-elemene) is isolated from natural plant Curcuma aromatica with an antitumor activity. β-Elemene can induce cell apoptosis.

   

Zingiberene

(S-(R*,S*))-5-(1,5-Dimethylhexen-4-yl)-2-methyl-1,3-cyclohexa-1,3-diene

C15H24 (204.18779039999998)


Zingiberene is 2-Methylcyclohexa-1,3-diene in which a hydrogen at the 5 position is substituted (R configuration) by a 6-methyl-hept-5-en-2-yl group (S configuration). It is a sesquiterpene found in the dried rhizomes of Indonesian ginger, Zingiber officinale. It is a sesquiterpene and a cyclohexadiene. It is an enantiomer of an ent-zingiberene. Zingiberene is a natural product found in Chaerophyllum azoricum, Helichrysum odoratissimum, and other organisms with data available. Constituent of ginger oiland is) also from wild thyme (Thymus serpyllum), long pepper (Piper longum) and kua (Curcuma zedoaria). Zingiberene is found in many foods, some of which are cloves, pepper (spice), ginger, and turmeric. Zingiberene is found in anise. Zingiberene is a constituent of ginger oil. Also from wild thyme (Thymus serpyllum), long pepper (Piper longum) and kua (Curcuma zedoaria)

   

Orcinol

InChI=1/C7H8O2/c1-5-2-6(8)4-7(9)3-5/h2-4,8-9H,1H

C7H8O2 (124.05242679999999)


Orcinol is a 5-alkylresorcinol in which the alkyl group is specified as methyl. It has a role as an Aspergillus metabolite. It is a 5-alkylresorcinol and a dihydroxytoluene. Orcinol is a natural product found in Calluna vulgaris, Rumex patientia, and other organisms with data available. A 5-alkylresorcinol in which the alkyl group is specified as methyl. D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents relative retention time with respect to 9-anthracene Carboxylic Acid is 0.272 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.266 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.263 KEIO_ID O013

   

(-)-beta-Pinene

Bicyclo(3.1.1)heptane, 6,6-dimethyl-2-methylene-, (1S,5S)-

C10H16 (136.1251936)


(-)-beta-pinene is the (1S,5S)-enantiomer of beta-pinene. It is an enantiomer of a (+)-beta-pinene. (-)-beta-Pinene is a natural product found in Curcuma amada, Molopospermum peloponnesiacum, and other organisms with data available. Flavouring ingredient. (-)-beta-Pinene is found in many foods, some of which are almond, hyssop, sweet bay, and common sage. (-)-beta-Pinene is found in almond. (-)-beta-Pinene is a flavouring ingredient. The (1S,5S)-enantiomer of beta-pinene. β-Pinene ((-)-β-Pinene), a major component of turpentine, inhibit infectious bronchitis virus (IBV) with an IC50 of 1.32 mM. β-Pinene presents antimicrobial activity[1][2]. β-Pinene ((-)-β-Pinene), a major component of turpentine, inhibit infectious bronchitis virus (IBV) with an IC50 of 1.32 mM. β-Pinene presents antimicrobial activity[1][2].

   

(2S,4R)-1,7,7-Trimethylbicyclo[2.2.1]heptan-2-ol

Bicyclo(2.2.1)heptan-2-ol, 1,7,7-trimethyl-, endo-(.+/-.)-

C10H18O (154.1357578)


Borneol appears as a white colored lump-solid with a sharp camphor-like odor. Burns readily. Slightly denser than water and insoluble in water. Used to make perfumes. Borneol is a bornane monoterpenoid that is 1,7,7-trimethylbicyclo[2.2.1]heptane substituted by a hydroxy group at position 2. It has a role as a volatile oil component and a metabolite. Isoborneol is a natural product found in Xylopia sericea, Eupatorium capillifolium, and other organisms with data available. Both Borneol and Isoborneol and their acetates and formates are used as flavouring agents. 2-Bornanol is found in turmeric. Isoborneol ((±)-Isoborneol) is a monoterpenoid alcohol present in the essential oils of numerous medicinal plants and has antioxidant and antiviral properties. Isoborneol is a potent inhibitor of herpes simplex virus type 1 (HSV-1)[1][2]. Isoborneol ((±)-Isoborneol) is a monoterpenoid alcohol present in the essential oils of numerous medicinal plants and has antioxidant and antiviral properties. Isoborneol is a potent inhibitor of herpes simplex virus type 1 (HSV-1)[1][2].

   

Myristicin

1-Methoxy-2,3-methylenedioxy-5-(2-propenyl)benzene

C11H12O3 (192.0786402)


Myristicin is an organic molecular entity. It has a role as a metabolite. Myristicin is a natural product found in Chaerophyllum azoricum, Peperomia bracteata, and other organisms with data available. Myristicin is found in anise. Myristicin is a constituent of dill, nutmeg, parsley and many other essential oils. May be responsible for psychotic effects of nutmeg at large doses Myristicin, 3-methoxy,4,5-methylendioxy-allylbenzene, is a natural organic compound present in the essential oil of nutmeg and to a lesser extent in other spices such as parsley and dill. Myristicin is a naturally occurring insecticide and acaricide with possible neurotoxic effects on dopaminergic neurons[citation needed]. It has hallucinogenic properties at doses much higher than used in cooking. Myristicin is a weak inhibitor of monoamine oxidase.Myristicin has been shown to exhibit apoptotic and hepatoprotective functions (A7836, A7837).Myristicin belongs to the family of Benzodioxoles. These are organic compounds containing a benzene ring fused to either isomers of dioxole. Myristicin is found in anise. Myristicin is a constituent of dill, nutmeg, parsley and many other essential oils. May be responsible for psychotic effects of nutmeg at large doses Myristicin, 3-methoxy,4,5-methylendioxy-allylbenzene, is a natural organic compound present in the essential oil of nutmeg and to a lesser extent in other spices such as parsley and dill. Myristicin is a naturally occurring insecticide and acaricide with possible neurotoxic effects on dopaminergic neurons[citation needed]. It has hallucinogenic properties at doses much higher than used in cooking. Myristicin is a weak inhibitor of monoamine oxidase Constituent of dill, nutmeg, parsley and many other essential oils. May be responsible for psychotic effects of nutmeg at large doses Myristicine ?act as a serotonin receptor antagonist, a weak monamine oxidase (MAO) inhibitor. Myristicine is the main component of nutmeg essential oil from Myristica fragrans?Houtt. Myristicine abuse produce hallucinogenic effects, organ damage, deliriumand others[1]. Myristicine is an orally bioavailable serotonin receptor antagonist and weak monoamine oxidase (MAO) inhibitor. Myristicine also exerts anti-cancer effects on gastric cancer cells by inhibiting the EGFR/ERK signaling pathway. Myristicine is the main component of nutmeg essential oil and has anti-cancer, anti-proliferative, antibacterial, anti-inflammatory and apoptosis-inducing effects. Myristicine abuse can produce hallucinogenic effects, organ damage, etc[1][2][3][4]. Myristicine is an orally bioavailable serotonin receptor antagonist and weak monoamine oxidase (MAO) inhibitor. Myristicine also exerts anti-cancer effects on gastric cancer cells by inhibiting the EGFR/ERK signaling pathway. Myristicine is the main component of nutmeg essential oil and has anti-cancer, anti-proliferative, antibacterial, anti-inflammatory and apoptosis-inducing effects. Myristicine abuse can produce hallucinogenic effects, organ damage, etc[1][2][3][4]. Myristicine ?act as a serotonin receptor antagonist, a weak monamine oxidase (MAO) inhibitor. Myristicine is the main component of nutmeg essential oil from Myristica fragrans?Houtt. Myristicine abuse produce hallucinogenic effects, organ damage, deliriumand others[1].

   

Thymol

Thymol, Pharmaceutical Secondary Standard; Certified Reference Material

C10H14O (150.1044594)


Thymol is a phenol that is a natural monoterpene derivative of cymene. It has a role as a volatile oil component. It is a member of phenols and a monoterpenoid. It derives from a hydride of a p-cymene. A phenol obtained from thyme oil or other volatile oils. It is used as a stabilizer in pharmaceutic preparations. It has been used for its antiseptic, antibacterial, and antifungal actions, and was formerly used as a vermifuge. (Dorland, 28th ed) Thymol is a natural product found in Xylopia aromatica, Xylopia sericea, and other organisms with data available. A phenol obtained from thyme oil or other volatile oils used as a stabilizer in pharmaceutical preparations, and as an antiseptic (antibacterial or antifungal) agent. See also: Paeonia lactiflora root (part of); Elymus repens root (part of); Eucalyptol; thymol (component of) ... View More ... Thymol is a phenol obtained from thyme oil or other volatile oils. It is used as a stabilizer in pharmaceutic preparations. It has been used for its antiseptic, antibacterial, and antifungal actions, and was formerly used as a vermifuge. Thymol is a monoterpene phenol derivative of cymene, C10H13OH, isomeric with carvacrol, found in oil of thyme, and extracted as a white crystalline substance of a pleasant aromatic odor and strong antiseptic properties. It is also called "hydroxy cymene". In a 1994 report released by five top cigarette companies, thymol is one of the 599 additives to cigarettes. Its use or purpose, however, is unknown, like most cigarette additives. Found in many essential oils. Especies found in the Labiatae. Rich sources are thyme oil, seed oil of Ptychotis ajowan and oils of horsemint (Monarda punctata) and Ocimum subspecies Flavouring ingredient C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent D000890 - Anti-Infective Agents > D000935 - Antifungal Agents A phenol that is a natural monoterpene derivative of cymene. Thymol is the main monoterpene phenol occurring in essential oils isolated from plants belonging to the Lamiaceae family, and other plants such as those belonging to the Verbenaceae, Scrophulariaceae, Ranunculaceae and Apiaceae families. Thymol has antioxidant, anti-inflammatory, antibacterial and antifungal effects[1]. Thymol is the main monoterpene phenol occurring in essential oils isolated from plants belonging to the Lamiaceae family, and other plants such as those belonging to the Verbenaceae, Scrophulariaceae, Ranunculaceae and Apiaceae families. Thymol has antioxidant, anti-inflammatory, antibacterial and antifungal effects[1].

   

alpha-Humulene

trans,trans,trans-2,6,6,9-Tetramethyl-1,4,8-cycloundecatriene

C15H24 (204.18779039999998)


alpha-Humulene, also known as alpha-caryophyllene, belongs to the class of organic compounds known as sesquiterpenoids. These are terpenes with three consecutive isoprene units. Thus, alpha-humulene is considered to be an isoprenoid lipid molecule. alpha-Humulene is found in allspice. alpha-Humulene is a constituent of many essential oils including hops (Humulus lupulus) and cloves (Syzygium aromaticum). (1E,4E,8E)-alpha-humulene is the (1E,4E,8E)-isomer of alpha-humulene. Humulene is a natural product found in Nepeta nepetella, Teucrium montanum, and other organisms with data available. See also: Caryophyllene (related). α-Humulene is a main constituent of Tanacetum vulgare L. (Asteraceae) essential oil with anti-inflammation (IC50=15±2 μg/mL). α-Humulene inhibits COX-2 and iNOS expression[1]. α-Humulene is a main constituent of Tanacetum vulgare L. (Asteraceae) essential oil with anti-inflammation (IC50=15±2 μg/mL). α-Humulene inhibits COX-2 and iNOS expression[1].

   

Geraniol

cis-3,7-Dimethyl-2,6-octadien-1-ol, >=97\\%, FCC, FG

C10H18O (154.1357578)


Geraniol, also known as beta-Geraniol, (E)-nerol (the isomer of nerol) or geranyl alcohol, is a monoterpenoid alcohol. It belongs to the class of organic compounds known as acyclic monoterpenoids. These are monoterpenes that do not contain a cycle. Monoterpenoids are terpenes that contain 10 carbon atoms and are comprised of two isoprene units. In plants, the biosynthesis of monoterpenes is known to occur mainly through the methyl-erythritol-phosphate (MEP) pathway in the plastids (PMID:7640522 ). Geranyl diphosphate (GPP) is a key intermediate in the biosynthesis of cyclic monoterpenes. GPP undergoes several cyclization reactions to yield a diverse number of cyclic arrangements. beta-Geraniol is an isoprenoid lipid molecule that is very hydrophobic, practically insoluble in water, and relatively neutral. beta-Geraniol has a sweet, citrus, and floral taste. beta-Geraniol is found in highest concentrations in common grapes, black walnuts, and common thymes and in lower concentrations in cardamoms, common oregano, and gingers. beta-Geraniol has also been detected in lemon verbena, oval-leaf huckleberries, common pea, sweet cherries, and nopals. It is found as an alcohol and as its ester in many essential oils including geranium oil. It is the primary part of rose oil, palmarosa oil, and citronella oil (Java type) and occurs in small quantities in geranium, lemon, and many other essential oils. Because it has a rose-like odor, it is commonly used in perfumes. It is used to create flavors such as peach, raspberry, grapefruit, red apple, plum, lime, orange, lemon, watermelon, pineapple, and blueberry. An alternate application has been found in the use of insect repellents or deterrants. Though it may repel mosquitoes, flies, lice, cockroaches, ants, and ticks, it is also produced by the scent glands of honey bees to help them mark nectar-bearing flowers and locate the entrances to their hives (http//doi:10.1051/apido:19900403). Extensive testing by Dr. Jerry Butler at the University of Florida has shown geraniol to be one of natures most effective insect repellents (PMID:20836800). Nerol is the (2Z)-stereoisomer of 3,7-dimethylocta-2,6-dien-1-ol. It has been isolated from the essential oils from plants like lemon grass. It has a role as a volatile oil component, a plant metabolite and a fragrance. Nerol is a natural product found in Eupatorium cannabinum, Vitis rotundifolia, and other organisms with data available. Nerol is a metabolite found in or produced by Saccharomyces cerevisiae. Constituent of many essential oils including neroli and bergamot oils. In essential oils it is a minor component always accompanied by geraniol. Flavouring agent The (2Z)-stereoisomer of 3,7-dimethylocta-2,6-dien-1-ol. It has been isolated from the essential oils from plants like lemon grass. Nerol is a constituent of neroli oil. Nerol Nerol triggers mitochondrial dysfunction and induces apoptosis via elevation of Ca2+ and ROS. Antifungal activity[1][2]. Nerol is a constituent of neroli oil. Nerol Nerol triggers mitochondrial dysfunction and induces apoptosis via elevation of Ca2+ and ROS. Antifungal activity[1][2]. Nerol is a constituent of neroli oil. Nerol Nerol triggers mitochondrial dysfunction and induces apoptosis via elevation of Ca2+ and ROS. Antifungal activity[1][2].

   

Geranyl acetate

Geranyl acetate, food grade (71\\% geranyl acetate, 29\\% citronellyl acetate)

C12H20O2 (196.14632200000003)


Geranyl acetate is a clear colorless liquid with an odor of lavender. (NTP, 1992) Geranyl acetate is a monoterpenoid that is the acetate ester derivative of geraniol. It has a role as a plant metabolite. It is an acetate ester and a monoterpenoid. It is functionally related to a geraniol. Geranyl acetate is a natural product found in Nepeta nepetella, Xylopia sericea, and other organisms with data available. See also: Lemon oil, cold pressed (part of); Coriander Oil (part of); Java citronella oil (part of). Neryl acetate is found in cardamom. Neryl acetate is found in citrus, kumquat and pummelo peel oils, ginger, cardamon, clary sage, myrtle leaf and myrtle berries. Neryl acetate is a flavouring agent A monoterpenoid that is the acetate ester derivative of geraniol. Geranyl acetate, an acyclic monoterpene ester derived from geraniol, is widely used in the cosmetics industry due to its pleasant scent[1]. Geranyl acetate can induces cell apoptosis[2]. Geranyl acetate, an acyclic monoterpene ester derived from geraniol, is widely used in the cosmetics industry due to its pleasant scent[1]. Geranyl acetate can induces cell apoptosis[2].

   

gamma-Terpinene

1-Isopropyl-4-methyl-1,4-cyclohexadiene, p-Mentha-1,4-diene

C10H16 (136.1251936)


Gamma-terpinene is one of three isomeric monoterpenes differing in the positions of their two double bonds (alpha- and beta-terpinene being the others). In gamma-terpinene the double bonds are at the 1- and 4-positions of the p-menthane skeleton. It has a role as an antioxidant, a plant metabolite, a volatile oil component and a human xenobiotic metabolite. It is a monoterpene and a cyclohexadiene. gamma-Terpinene is a natural product found in Teucrium montanum, Xylopia aromatica, and other organisms with data available. The terpinenes are three isomeric hydrocarbons that are classified as terpenes. Gamma-terpinene is one these three isomeric hydrocarbons. It is natural and has been isolated from a variety of plant sources (Wikipedia). It is a major component of essential oils made from Citrus Fruits and has strong antioxidant activity. It has a lemon odor and widely used in food, flavours, soaps, cosmetics, pharmaceutical, tabacco, confectionery and perfume industries (http://www.gyanflavoursexport.com). See also: Lemon oil, cold pressed (part of); Coriander Oil (part of); Mandarin oil (part of). Gamma-terpinene is one of four isomeric monoterpenes (the other three being alpha terpinene, beta terpinene and delta terpinene). It is a naturally occurring terpinene and has been isolated from a variety of plant sources. It has the highest boiling point of the four known terpinene isomers. It is a major component of essential oils made from citrus fruits and has a strong antioxidant activity. It has a lemon-like or lime-like odor and is widely used in food, flavours, soaps, cosmetics, pharmaceutical, tabacco, confectionery and perfume industries (http://www.gyanflavoursexport.com). The other isomers of gamma-terpinene, such as alpha-terpinene and delta-terpinene, have been isolated from cardamom and marjoram oils while beta terpinene appears to have no natural source. One of three isomeric monoterpenes differing in the positions of their two double bonds (alpha- and beta-terpinene being the others). In gamma-terpinene the double bonds are at the 1- and 4-positions of the p-menthane skeleton. Constituent of many essential oils e.g. Citrus, Eucalyptus, Mentha, Pinus subspecies Ajowan seed oil (Carum copticum) is a major source γ-Terpinene, a monoterpene, is an orally active antioxidant compound which can scavenge radicals directly. γ-Terpinene has potent antinociception activity[1]. γ-Terpinene, a monoterpene, is an orally active antioxidant compound which can scavenge radicals directly. γ-Terpinene has potent antinociception activity[1].

   

Anethole

1-(methyloxy)-4-[(1E)-prop-1-en-1-yl]benzene

C10H12O (148.08881019999998)


Present in anise, fennel and other plant oils. Extensively used in flavour industry. Anethole is found in many foods, some of which are white mustard, fennel, allspice, and sweet basil. cis-Anethole is found in anise. Only a low level is permitted in flavours Anethole is a type of aromatic compound used as a flavoring. It is a derivative of Phenylpropene and widely exists in nature. Anethole is a type of aromatic compound used as a flavoring. It is a derivative of Phenylpropene and widely exists in nature. Trans-Anethole ((E)-Anethole), a phenylpropene derivative isolated from Foeniculum vulgare, shows estrogenic activity at lower concentrations and cytotoxic at higher concentrations in cancer cell lines[1][2]. Trans-Anethole ((E)-Anethole) contributes a large component of the odor and flavor of anise and fennel, anise myrtle, liquorice, camphor, magnolia blossoms, and star anise[3]. Trans-Anethole ((E)-Anethole), a phenylpropene derivative isolated from Foeniculum vulgare, shows estrogenic activity at lower concentrations and cytotoxic at higher concentrations in cancer cell lines[1][2]. Trans-Anethole ((E)-Anethole) contributes a large component of the odor and flavor of anise and fennel, anise myrtle, liquorice, camphor, magnolia blossoms, and star anise[3].

   

Eugenol

Eugenol, Pharmaceutical Secondary Standard; Certified Reference Material

C10H12O2 (164.0837252)


Eugenol appears as clear colorless pale yellow or amber-colored liquid. Odor of cloves. Spicy pungent taste. (NTP, 1992) Eugenol is a phenylpropanoid formally derived from guaiacol with an allyl chain substituted para to the hydroxy group. It is a major component of clove essential oil, and exhibits antibacterial, analgesic and antioxidant properties. It has been widely used in dentistry to treat toothache and pulpitis. It has a role as an allergen, a human blood serum metabolite, a sensitiser, a volatile oil component, a flavouring agent, an EC 1.4.3.4 (monoamine oxidase) inhibitor, a radical scavenger, an antibacterial agent, an antineoplastic agent, an apoptosis inducer, an anaesthetic, an analgesic, a voltage-gated sodium channel blocker, a NF-kappaB inhibitor and an anti-inflammatory agent. It is a phenylpropanoid, a monomethoxybenzene, a member of phenols and an alkenylbenzene. It is functionally related to a guaiacol. Eugenol is a naturally occurring phenolic molecule found in several plants such as cinnamon, clove, and bay leaves. It has been used as a topical antiseptic as a counter-irritant and in dental preparations with zinc oxide for root canal sealing and pain control. Although not currently available in any FDA-approved products (including OTC), eugenol has been found to have anti-inflammatory, neuroprotective, antipyretic, antioxidant, antifungal and analgesic properties. Its exact mechanism of action is unknown, however, it has been shown to interfere with action potential conduction. There are a number of unapproved OTC products available containing eugenol that advertise its use for the treatment of toothache. Eugenol is a Standardized Chemical Allergen. The physiologic effect of eugenol is by means of Increased Histamine Release, and Cell-mediated Immunity. Eugenol, also called clove oil, is an aromatic oil extracted from cloves that is used widely as a flavoring for foods and teas and as an herbal oil used topically to treat toothache and more rarely to be taken orally to treat gastrointestinal and respiratory complaints. Eugenol in therapeutic doses has not been implicated in causing serum enzyme elevations or clinically apparent liver injury, but ingestions of high doses, as with an overdose, can cause severe liver injury. Eugenol is a natural product found in Dahlia sherffii, Elettaria cardamomum, and other organisms with data available. Eugenol is an allyl chain-substituted guaiacol, i.e. 2-methoxy-4-(2-propenyl)phenol. Eugenol is a member of the allylbenzene class of chemical compounds. It is a clear to pale yellow oily liquid extracted from certain essential oils especially from clove oil, nutmeg, cinnamon, and bay leaf. It is slightly soluble in water and soluble in organic solvents. It has a pleasant, spicy, clove-like odor. Eugenol is used in perfumeries, flavorings, essential oils and in medicine as a local antiseptic and anaesthetic. It was used in the production of isoeugenol for the manufacture of vanillin, though most vanillin is now produced from petrochemicals or from by-products of paper manufacture (Wikipedia). 4-Allyl-2-methoxyphenol is a metabolite found in or produced by Saccharomyces cerevisiae. A cinnamate derivative of the shikimate pathway found in CLOVE OIL and other PLANTS. See also: Cinnamon (part of); Clove Oil (part of); Cinnamon Leaf Oil (part of) ... View More ... Eugenol is an allyl chain-substituted guaiacol. Eugenol is a member of the phenylpropanoids class of chemical compounds. It is a clear to pale yellow oily liquid extracted from certain essential oils especially from clove oil, nutmeg, cinnamon, and bay leaf. It is slightly soluble in water and soluble in organic solvents. It has a pleasant, spicy, clove-like aroma. Eugenol is an allyl chain-substituted guaiacol, i.e. 2-methoxy-4-(2-propenyl)phenol. It is a clear to pale yellow oily liquid extracted from certain essential oils especially from clove oil, nutmeg, cinnamon, and bay leaf. Eugenol is used in perfumeries, flavorings, essential oils and in medicine as a local antiseptic and anaesthetic. It was used in the production of isoeugenol for the manufacture of vanillin, though most vanillin is now produced from petrochemicals or from by-products of paper manufacture (Wikipedia). Eugenol is used in perfumeries, flavorings, essential oils and in medicine as a local antiseptic and anesthetic. It is a key ingredient in Indonesian kretek (clove) cigarettes. It was used in the production of isoeugenol for the manufacture of vanillin, though most vanillin is now produced from phenol or from lignin. It is one of many compounds that is attractive to males of various species of orchid bees, who apparently gather the chemical to synthesize pheromones; it is commonly used as bait to attract and collect these bees for study. Eugenol has a very widespread occurrence in essential oils. Major component of clove oil. Also found in citrus and thyme oils. It is found in foods such as apple, apricot, banana and cherry fruits. Eugenol or 4-allyl-2-methoxyphenol is classified as a phenylpropanoid, formally derived from guaiacol, with an allyl chain positioned para to the hydroxy group. It is soluble in water, alcohol, chloroform, ether and oils. Eugenol is a neutral compound. It is biosynthesized from tyrosine. Eugenol is widely distributed in plants. It is a clear to pale yellow oily liquid extracted from clove oil, nutmeg, cinnamon, basil and bay leaf. It has a pleasant, spicy, clove-like odor with a spicy pungent taste. Eugenol is found in highest concentrations in cloves, allspices, and carrots and in lower concentrations in walnuts, ceylon cinnamons, and wild carrots. Eugenol has also been detected in shea tree, passion fruits, winged beans, fireweeds, and gingers, making it a potential biomarker for the consumption of these foods. Eugenol is used in perfumeries, flavorings and essential oils. It was first used for the manufacture of vanillin (https://doi.org/10.1021/ed054p776), though most vanillin is now produced from petrochemicals or from by-products of paper manufacture. Eugenol is hepatotoxic, meaning it may cause damage to the liver, if consumed in high doses. Eugenol has local antiseptic and anaesthetic properties (PMID:15089054 ; PMID:935250 ) and acts as positive allosteric modulators of the GABA-A receptor. It has high antioxidant, anti-proliferative, and anti-inflammatory activities with potential roles in alleviating and preventing cancer and inflammatory reactions (PMID:27771920 ). A phenylpropanoid formally derived from guaiacol with an allyl chain substituted para to the hydroxy group. It is a major component of clove essential oil, and exhibits antibacterial, analgesic and antioxidant properties. It has been widely used in dentistry to treat toothache and pulpitis. C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent D000890 - Anti-Infective Agents D012997 - Solvents [Raw Data] CB226_Eugenol_pos_10eV_CB000079.txt [Raw Data] CB226_Eugenol_pos_20eV_CB000079.txt [Raw Data] CB226_Eugenol_pos_40eV_CB000079.txt [Raw Data] CB226_Eugenol_pos_50eV_CB000079.txt [Raw Data] CB226_Eugenol_pos_30eV_CB000079.txt Eugenol is an essential oil found in cloves with antibacterial, anthelmintic and antioxidant activity. Eugenol is shown to inhibit lipid peroxidation. Eugenol is an essential oil found in cloves with antibacterial, anthelmintic and antioxidant activity. Eugenol is shown to inhibit lipid peroxidation.

   

Astragalin

5,7-dihydroxy-2-(4-hydroxyphenyl)-3-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-4H-chromen-4-one

C21H20O11 (448.100557)


Kaempferol 3-O-beta-D-glucoside is a kaempferol O-glucoside in which a glucosyl residue is attached at position 3 of kaempferol via a beta-glycosidic linkage. It has a role as a trypanocidal drug and a plant metabolite. It is a kaempferol O-glucoside, a monosaccharide derivative, a trihydroxyflavone and a beta-D-glucoside. It is a conjugate acid of a kaempferol 3-O-beta-D-glucoside(1-). Astragalin is a natural product found in Xylopia aromatica, Ficus virens, and other organisms with data available. See also: Moringa oleifera leaf (has part). Astragalin is found in alcoholic beverages. Astragalin is present in red wine. It is isolated from many plant species.Astragalin is a 3-O-glucoside of kaempferol. Astragalin is a chemical compound. It can be isolated from Phytolacca americana (the American pokeweed). A kaempferol O-glucoside in which a glucosyl residue is attached at position 3 of kaempferol via a beta-glycosidic linkage. Present in red wine. Isolated from many plant subspecies Acquisition and generation of the data is financially supported in part by CREST/JST. CONFIDENCE standard compound; INTERNAL_ID 173 Astragalin (Astragaline) a flavonoid with anti-inflammatory, antioxidant, anticancer, bacteriostatic activity. Astragalin inhibits cancer cells proliferation and migration, induces apoptosis. Astragalin is orally active and provides nerve and heart protection, and resistance against and osteoporosis[1]. Astragalin (Astragaline) a flavonoid with anti-inflammatory, antioxidant, anticancer, bacteriostatic activity. Astragalin inhibits cancer cells proliferation and migration, induces apoptosis. Astragalin is orally active and provides nerve and heart protection, and resistance against and osteoporosis[1].

   

Paeonol

1-(2-hydroxy-4-methoxyphenyl)ethan-1-one

C9H10O3 (166.062991)


A polyphenol metabolite detected in biological fluids [PhenolExplorer] Paeonol is an active extraction from the root of Paeonia suffruticosa, Paeonol inhibits MAO-A and MAO-B with IC50 of 54.6 μM and 42.5 μM, respectively. Paeonol is an active extraction from the root of Paeonia suffruticosa, Paeonol inhibits MAO-A and MAO-B with IC50 of 54.6 μM and 42.5 μM, respectively.

   

Benzaldehyde

benzaldehyde

C7H6O (106.0418626)


Benzaldehyde is occasionally found as a volatile component of urine. Benzaldehyde is an aromatic aldehyde used in cosmetics as a denaturant, a flavoring agent, and as a fragrance. Currently used in only seven cosmetic products, its highest reported concentration of use was 0.5\\\% in perfumes. Benzaldehyde is a generally regarded as safe (GRAS) food additive in the United States and is accepted as a flavoring substance in the European Union. Because Benzaldehyde rapidly metabolizes to Benzoic Acid in the skin, the available dermal irritation and sensitization data demonstrating no adverse reactions to Benzoic Acid were considered supportive of the safety of Benzaldehyde. Benzaldehyde is absorbed through skin and by the lungs, distributes to all well-perfused organs, but does not accumulate in any specific tissue type. After being metabolized to benzoic acid, conjugates are formed with glycine or glucuronic acid, and excreted in the urine. Several studies have suggested that Benzaldehyde can have carcinostatic or antitumor properties. Overall, at the concentrations used in cosmetics, Benzaldehyde was not considered a carcinogenic risk to humans. Although there are limited irritation and sensitization data available for Benzaldehyde, the available dermal irritation and sensitization data and ultraviolet (UV) absorption and phototoxicity data demonstrating no adverse reactions to Benzoic Acid support the safety of Benzaldehyde as currently used in cosmetic products. (PMID:16835129, Int J Toxicol. 2006;25 Suppl 1:11-27.). Benzaldehyde, a volatile organic compound, is naturally present in a variety of plants, particularly in certain fruits, nuts, and flowers. It plays a significant role in the aromatic profiles of these plants. For instance, benzaldehyde is a primary component of bitter almond oil, which was one of its earliest known natural sources. Besides bitter almonds, it is also found in fruits like cherries, peaches, and plums, as well as in flowers such as jasmine. In the food industry, benzaldehyde is occasionally used as a food additive to impart specific flavors. This prevalence in plants highlights that benzaldehyde is not only an industrial chemical but also a naturally occurring compound in the plant kingdom. Its presence in these natural sources underscores its significance in both nature and industry. Found in plants, especies in almond kernelsand is) also present in strawberry jam, leek, crispbread, cheese, black tea and several essential oils. Parent and derivs. (e.g. glyceryl acetal) are used as flavourings

   

Camphene

3,3-Dimethyl-2-methylidenebicyclo[2.2.1]heptane

C10H16 (136.1251936)


Camphene, also known as 2,2-dimethyl-3-methylenebicyclo[2.2.1]heptane or 2,2-dimethyl-3-methylenenorbornane, is a member of the class of compounds known as bicyclic monoterpenoids. Bicyclic monoterpenoids are monoterpenoids containing exactly 2 rings, which are fused to each other. Monoterpenoids are terpenes that contain 10 carbon atoms and are comprised of two isoprene units. The biosynthesis of monoterpenes is known to occur mainly through the methyl-erythritol-phosphate (MEP) pathway in plastids (PMID:7640522 ). Geranyl diphosphate (GPP) is a key intermediate in the biosynthesis of cyclic monoterpenes. GPP undergoes several cyclization reactions to yield a diverse number of cyclic arrangements. Camphene is nearly insoluble in water but very soluble in common organic solvents. It volatilizes readily at room temperature and has a pungent smell. It exists as a flammable, white solid that has a minty, citrus, eucalyptus odor. It is produced industrially by catalytic isomerization of the more common alpha-pinene. Camphene is used in the preparation of fragrances and in food additives for flavouring. In the mid-19th century it was used as a fuel for lamps, but this was limited by its explosiveness. Camphene exists in all eukaryotes, ranging from yeast to plants to humans. Camphene can be found in a number of food items such as dill, carrots, caraway, hyssop, lemon, orange, nutmeg seed, parsley, sage, thyme, turmeric and fennel, which makes camphene a potential biomarker for the consumption of these food products. It is a minor constituent of many essential oils such as turpentine, cypress oil, camphor oil, citronella oil, neroli, ginger oil, and valerian. Camphene is one of several monoterpenes that are found in cannabis plants (PMID:6991645 ). Camphene, also known as 2,2-dimethyl-3-methylenebicyclo[2.2.1]heptane or 2,2-dimethyl-3-methylenenorbornane, is a member of the class of compounds known as bicyclic monoterpenoids. Bicyclic monoterpenoids are monoterpenoids containing exactly 2 rings, which are fused to each other. Camphene is a camphor, fir needle, and herbal tasting compound and can be found in a number of food items such as cardamom, yellow bell pepper, common thyme, and coriander, which makes camphene a potential biomarker for the consumption of these food products. Camphene can be found primarily in feces and saliva. Camphene exists in all eukaryotes, ranging from yeast to humans. Camphene is a bicyclic monoterpene. It is nearly insoluble in water, but very soluble in common organic solvents. It volatilizes readily at room temperature and has a pungent smell. It is a minor constituent of many essential oils such as turpentine, cypress oil, camphor oil, citronella oil, neroli, ginger oil, and valerian. It is produced industrially by catalytic isomerization of the more common alpha-pinene. Camphene is used in the preparation of fragrances and as a food additive for flavoring. Its mid-19th century use as a fuel for lamps was limited by its explosiveness .

   

Isovaleraldehyde

3-Methyl-butyraldehyde

C5H10O (86.07316100000001)


Iso-Valeraldehyde, also known as isoamyl aldehyde or 3-methyl-butanal, belongs to the class of organic compounds known as alpha-hydrogen aldehydes. These are aldehydes with the general formula HC(H)(R)C(=O)H, where R is an organyl group. Iso-Valeraldehyde exists in all eukaryotes, ranging from yeast to humans. Iso-Valeraldehyde is an aldehydic, chocolate, and ethereal tasting compound. Iso-Valeraldehyde is found, on average, in the highest concentration within a few different foods, such as milk (cow), beers, and taco and in a lower concentration in kohlrabis, corns, and tortilla. Iso-Valeraldehyde has also been detected, but not quantified, in several different foods, such as muskmelons, highbush blueberries, fenugreeks, hazelnuts, and dills. This could make iso-valeraldehyde a potential biomarker for the consumption of these foods. A methylbutanal that is butanal substituted by a methyl group at position 3. Iso-Valeraldehyde, with regard to humans, has been found to be associated with several diseases such as ulcerative colitis, crohns disease, perillyl alcohol administration for cancer treatment, and hepatic encephalopathy; iso-valeraldehyde has also been linked to the inborn metabolic disorder celiac disease. Occurs in orange, bergamot, lemon, sandalwood, citronella, peppermint, eucalyptus and other oilsand is also in apple, grape, peach cider, vinegar, wines, wheatbreads, scallops and ginger

   

Longifolene

3,3,7-trimethyl-8-methylidenetricyclo[5.4.0.0²,⁹]undecane

C15H24 (204.18779039999998)


Longifolene is a member of the class of compounds known as sesquiterpenoids. Sesquiterpenoids are terpenes with three consecutive isoprene units. Longifolene is a sweet, fir needle, and medical tasting compound found in corn, mandarin orange (clementine, tangerine), rosemary, and star anise, which makes longifolene a potential biomarker for the consumption of these food products. Longifolene is the common (or trivial) chemical name of a naturally occurring, oily Liquid hydrocarbon found primarily in the high-boiling fraction of certain pine resins. The name is derived from that of a pine species from which the compound was isolated, Pinus longifolia (obsolete name for Pinus roxburghii Sarg.) Chemically, longifolene is a tricyclic sesquiterpene. This molecule is chiral, and the enantiomer commonly found in pines and other higher plants exhibits a positive optical rotation of +42.73¬∞. The other enantiomer (optical rotation ‚àí42.73¬∞) is found in small amounts in certain fungi and liverworts . Longifolene is a member of the class of compounds known as sesquiterpenoids. Sesquiterpenoids are terpenes with three consecutive isoprene units. Longifolene is a sweet, fir needle, and medical tasting compound found in corn, mandarin orange (clementine, tangerine), rosemary, and star anise, which makes longifolene a potential biomarker for the consumption of these food products. Longifolene is the common (or trivial) chemical name of a naturally occurring, oily liquid hydrocarbon found primarily in the high-boiling fraction of certain pine resins. The name is derived from that of a pine species from which the compound was isolated, Pinus longifolia (obsolete name for Pinus roxburghii Sarg.) Chemically, longifolene is a tricyclic sesquiterpene. This molecule is chiral, and the enantiomer commonly found in pines and other higher plants exhibits a positive optical rotation of +42.73°. The other enantiomer (optical rotation −42.73°) is found in small amounts in certain fungi and liverworts . (+)-Longifolene is a sesquiterpenoid and a metabolite in rabbits. (+)-Longifolen is converted to primary, secondary or tertiary alcohols in rabbits, among which the primary alcohol is predominant[1]. (+)-Longifolene is a sesquiterpenoid and a metabolite in rabbits. (+)-Longifolen is converted to primary, secondary or tertiary alcohols in rabbits, among which the primary alcohol is predominant[1]. (+)-Longifolene is a sesquiterpenoid and a metabolite in rabbits. (+)-Longifolen is converted to primary, secondary or tertiary alcohols in rabbits, among which the primary alcohol is predominant[1].

   

Terpinolene

1-methyl-4-(propan-2-ylidene)cyclohexene p-mentha-1,4(8)-diene

C10H16 (136.1251936)


Terpinolene (TPO), also known as alpha-terpinolene or isoterpinene, belongs to the class of organic compounds known as menthane monoterpenoids. These are monoterpenoids with a structure based on the o-, m-, or p-menthane backbone. P-menthane consists of the cyclohexane ring with a methyl group and a (2-methyl)-propyl group at the 1 and 4 ring position, respectively. The o- and m- menthanes are much rarer, and presumably arise by alkyl migration of p-menthanes. Thus, terpinolene is considered to be an isoprenoid lipid molecule. Terpinolene is a very hydrophobic monoterpenoid, practically insoluble in water, and relatively neutral. Monoterpenoids are terpenes that contain 10 carbon atoms and are comprised of two isoprene units. The biosynthesis of monoterpenes in plants is known to occur mainly through the methyl-erythritol-phosphate (MEP) pathway in the plastids (PMID:7640522 ). Geranyl diphosphate (GPP) is a key intermediate in the biosynthesis of cyclic monoterpenes. GPP undergoes several cyclization reactions to yield a diverse number of cyclic arrangements. Terpinolene is one of the constituents of turpentine and an isomer of terpinene. It appears colourless to pale yellow liquid. Alpha-terpinolene has been identified as an abundant monoterpene in the essential oil of Cannabis sativa plants (PMID:6991645 ). There are more than 140 known terpenes in cannabis and the combination of these terepenoids produces the skunky, fruity odor characteristic of C. savita. Although common in cannabis cultivars, terpinolene is typically found in relatively low amounts. On the other hand, the concentration of terpinolene can be has high as 30\\% of the essential oil. It is thought that terpinolene offers a mildly sedative effect and can reduce anxiety (PMID:28826544 ). In particular, terpinolene is a central nervous system depressant that has been shown to induce drowsiness (PMID:23339024 ). Terpinolene has been demonstrated to prevent LDL oxidation and is of potential interest in the treatment of atherogenesis and coronary artery disease (PMID:28826544 ). Terpinolene exhibits antifungal and larvicidal properties (PMID:28826544 ). Terpinolene is also an effective anti-microbial agent, particularly against E coli and Staphylococcus bacteria (PMID:16402540 ). Terpinolene is also employed as a fragrence ingredient in lotions, insect repellents (similar to other terpenes), perfumes, and soaps. Terpinolene is also a constituent of many other essential oils e. g. Citrus, Mentha, Juniperus, Myristica species. Parsnip oil (Pastinaca sativa) in particular, is a major source (40-70\\%). Terpinolene is a sweet, citrus, and fresh tasting compound. It produces a floral, woody or herbal aroma reminiscent of pine needles. In addition to being found in various plant essential oils, terpinolene is found in a few different foods and spices, such as allspice, apples, sage, rosemary, parsnips, nutmegs, and wild carrots and in a lower concentration in sweet bay, star anises, turmerics, apricots, cumins, evergreen blackberries, red bell peppers, and caraway. Constituent of many essential oils e.g. Citrus, Mentha, Juniperus, Myristica subspecies Parsnip oil (Pastinaca sativa) is a major source (40-70\\%). Flavouring ingredient. Terpinolene is found in many foods, some of which are coriander, ceylon cinnamon, pine nut, and caraway.

   

Tridecane

InChI=1/C13H28/c1-3-5-7-9-11-13-12-10-8-6-4-2/h3-13H2,1-2H

C13H28 (184.2190888)


Tridecane appears as an oily straw yellow clear liquid with a hydrocarbon odor. Flash point 190-196 °F. Specific gravity 0.76. Boiling point 456 °F. Repeated or prolonged skin contact may irritate or redden skin, progressing to dermatitis. Exposure to high concentrations of vapor may result in headache and stupor. Tridecane is a straight chain alkane containing 13 carbon atoms. It forms a component of the essential oils isolated from plants such as Abelmoschus esculentus. It has a role as a plant metabolite and a volatile oil component. Tridecane is a natural product found in Dryopteris assimilis, Thyanta perditor, and other organisms with data available. Tridecane is an alkane hydrocarbon with the chemical formula CH3(CH2)11CH3. Tridecane is found in allspice and it is also isolated from lime oil. It is a light, combustible colourless liquid that is used in the manufacture of paraffin products, the paper processing industry, in jet fuel research and in the rubber industry; furthermore, tridecane is used as a solvent and distillation chaser. n-tridecane is also one of the major chemicals secreted by some insects as a defense against predators. Tridecane has 802 constitutional isomers A straight chain alkane containing 13 carbon atoms. It forms a component of the essential oils isolated from plants such as Abelmoschus esculentus. Isolated from lime oil Tridecane is a short chain aliphatic hydrocarbon containing 13 carbon atoms. Tridecane is an volatile oil component isolated from essential oil of Piper aduncum L. Tridecane is a stress compound released by the brown marmorated stink bugs stress compound[1][2]. Tridecane is a short chain aliphatic hydrocarbon containing 13 carbon atoms. Tridecane is an volatile oil component isolated from essential oil of Piper aduncum L. Tridecane is a stress compound released by the brown marmorated stink bugs stress compound[1][2].

   

Hexanal

N-Caproic aldehyde

C6H12O (100.0888102)


Hexanal is an alkyl aldehyde found in human biofluids. Human milk samples collected from women contains hexanal. Among mediators of oxidative stress, highly reactive secondary aldehydic lipid peroxidation products can initiate the processes of spontaneous mutagenesis and carcinogenesis and can also act as a growth-regulating factors and signaling molecules. In specimens obtained from adult patients with brain astrocytomas, lower levels of n-hexanal are associated with poorer patient prognosis. Hexanal has also been identified as a uremic toxin according to the European Uremic Toxin Working Group (PMID:22626821). Hexanal is a volatile compound that has been associated with the development of undesirable flavours. The content of hexanal, which is a major breakdown product of linoleic acid (LA, n - 6 PUFA) oxidation, has been used to follow the course of lipid oxidation and off-flavour development in foods, and have been proposed as one potential marker of milk quality. A "cardboard-like" off-flavour is frequently associated with dehydrated milk products. This effect is highly correlated with the headspace concentration of hexanal. (Food Chemistry. Volume 107, Issue 1, 1 March 2008, Pages 558-569, PMID:17934948, 17487452). Constituent of many foodstuffs. A production of aerobic enzymatic transformations of plant constits. It is used in fruit flavours and in perfumery D000890 - Anti-Infective Agents > D000935 - Antifungal Agents D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals

   

Pentadecane

CH3-[CH2]13-CH3

C15H32 (212.2503872)


Pentadecane, also known as ch3-[ch2]13-ch3, is a member of the class of compounds known as alkanes. Alkanes are acyclic branched or unbranched hydrocarbons having the general formula CnH2n+2 , and therefore consisting entirely of hydrogen atoms and saturated carbon atoms. Thus, pentadecane is considered to be a hydrocarbon lipid molecule. Pentadecane is an alkane and waxy tasting compound and can be found in a number of food items such as dill, papaya, yellow bell pepper, and pepper (c. annuum), which makes pentadecane a potential biomarker for the consumption of these food products. Pentadecane can be found primarily in saliva. Pentadecane is a non-carcinogenic (not listed by IARC) potentially toxic compound. Pentadecane is an alkane hydrocarbon with the chemical formula C15H32 . Pentadecane belongs to the family of Acyclic Alkanes. These are acyclic hydrocarbons consisting only of n carbon atoms and m hydrogen atoms where m=2*n + 2

   

(-)-alpha-Curcumene

1-methyl-4-[(2R)-6-methylhept-5-en-2-yl]benzene

C15H22 (202.1721412)


1-[(2R)-hex-5-en-2-yl]-4-methylbenzene is a member of the class of compounds known as aromatic monoterpenoids. Aromatic monoterpenoids are monoterpenoids containing at least one aromatic ring. (-)-alpha-Curcumene belongs to the class of organic compounds known as sesquiterpenoids. These are terpenes with three consecutive isoprene units.

   

Apiole

4,7-dimethoxy-5-(prop-2-en-1-yl)-2H-1,3-benzodioxole

C12H14O4 (222.0892044)


Apiole is found in dill. Apiole occurs in Sassafras albidum (sassafras) and Anethum graveolens (dill) Apiol is an organic chemical compound, also known as parsley apiol, apiole or parsley camphor. It is found in celery, parsley seeds, and the essential oil of parsley. Heinrich Christoph Link, an apothecary in Leipzig, discovered the substance in 1715 as greenish crystals reduced by steam from oil of parsley. In 1855 Joret and Homolle discovered that apiol was an effective treatment of amenorrea or lack of menstruation. In medicine it has been used, as essential oil or in purified form, for the treatment of menstrual disorders. It is an irritant and in high doses it is toxic and can cause liver and kidney damage. Occurs in Sassafras albidum (sassafras) and Anethum graveolens (dill)

   

Dillapiol

1,3-Benzodioxole, 4,5-dimethoxy-6-(2-propenyl)- (9ci)

C12H14O4 (222.0892044)


Dillapiol is found in coriander. Dillapiol is a constituent of Japanese, Indian (Anethum sowa) and European (Anethum graveolens) dill oils and Piper species Also from seeds of Bunium persicum (black caraway) Dillapiole is an organic chemical compound and essential oil commonly extracted from dill weed, though can be found in a variety of other plants Constituent of Japanese, Indian (Anethum sowa) and European (Anethum graveolens) dill oils and Piper subspecies Also from seeds of Bunium persicum (black caraway)

   

Elemicin

4-(2-Ethyl-benzoimidazol-1-yl)-4-oxo-butyricacid

C12H16O3 (208.1099386)


Elemicin is an olefinic compound. Elemicin is a natural product found in Anemopsis californica, Asarum celsum, and other organisms with data available. Constituent of Elemi oil and Myristica fragrans (nutmeg). Elemicin is found in many foods, some of which are nutmeg, carrot, parsley, and tarragon. Elemicin is found in carrot. Elemicin is a constituent of Elemi oil and Myristica fragrans (nutmeg). Elemicin is an orally active alkenylbenzene widely distributed in many herbs and spices. Elemicin inhibits Stearoyl-CoA Desaturase 1 (SCD1) by metabolic activation. Elemicin has anti-influenza activities, antimicrobial, antioxidant, and antiviral activities. Elemicin and its reactive metabolite of 1′-Hydroxyelemicin can induce hepatotoxicity[1][2][3][4]. Elemicin is a alkenylbenzene widely distributed in many herbs and spices. Elemicin inhibits Stearoyl-CoA Desaturase 1 (SCD1) by metabolic activation. Elemicin is one of the main components in aromatic food and has antimicrobial, antioxidant, and antiviral activities. Elemicin possesses genotoxicity and carcinogenicity[1]. Elemicin is a alkenylbenzene widely distributed in many herbs and spices. Elemicin inhibits Stearoyl-CoA Desaturase 1 (SCD1) by metabolic activation. Elemicin is one of the main components in aromatic food and has antimicrobial, antioxidant, and antiviral activities. Elemicin possesses genotoxicity and carcinogenicity[1].

   

Myrtenal

6,6-Dimethyl-bicyclo[3,1,1]hept-2-ene-2-carboxaldehyde

C10H14O (150.1044594)


Occurs in orange, lemon, spearmint, pepper, thyme, juniper, calamus, ginger, myrtle, lemon balm, calabash, nutmeg, parsley seed and other plant oils. Myrtenal is found in many foods, some of which are peppermint, fruits, wild celery, and sweet bay. Myrtenal is found in cardamom. Myrtenal occurs in orange, lemon, spearmint, pepper, thyme, juniper, calamus, ginger, myrtle, lemon balm, calabash, nutmeg, parsley seed and other plant oils.

   

Pinocarveol

6,6-Dimethyl-3-hydroxy-2-methylenebicyclo(3.1.1)heptane

C10H16O (152.12010859999998)


Flavouring ingredient. Pinocarveol is found in many foods, some of which are spearmint, wild celery, hyssop, and sweet bay. Pinocarveol is found in hyssop. Pinocarveol is a flavouring ingredien

   

alpha-Terpineol acetate

2-(4-methylcyclohex-3-en-1-yl)propan-2-yl acetate

C12H20O2 (196.14632200000003)


alpha-Terpineol acetate, also known as a-terpineol acetic acid or p-menth-1-en-8-yl acetate, belongs to the class of organic compounds known as menthane monoterpenoids. These are monoterpenoids with a structure based on the o-, m-, or p-menthane backbone. P-menthane consists of the cyclohexane ring with a methyl group and a (2-methyl)-propyl group at the 1 and 4 ring position, respectively. The o- and m- menthanes are much rarer, and presumably arise by alkyl migration of p-menthanes. alpha-Terpineol acetate is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. α-Terpinyl acetate is a monoterpene ester isolated from Laurus nobilis L. essential oil. α-Terpinyl acetate is a competitive P450 2B6 substrate which binding to the active site of P450 2B6 with a Kd value of 5.4?μM[1][2]. α-Terpinyl acetate is a monoterpene ester isolated from Laurus nobilis L. essential oil. α-Terpinyl acetate is a competitive P450 2B6 substrate which binding to the active site of P450 2B6 with a Kd value of 5.4?μM[1][2].

   

Eucarvone

2,4-Cycloheptadien-1-one,2,6,6-trimethyl-

C10H14O (150.1044594)


Eucarvone is a member of the class of compounds known as monocyclic monoterpenoids. Monocyclic monoterpenoids are monoterpenoids containing 1 ring in the isoprene chain. Eucarvone is slightly soluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Eucarvone can be found in blackcurrant, which makes eucarvone a potential biomarker for the consumption of this food product.

   

Isoelemicin

1,2,3-Trimethoxy-5-(1E)-1-propen-1-ylbenzene; (E)-Isoelemicin; 1,2,3-Trimethoxy-5-((E)-prop-1-enyl)benzene; 1,2,3-Trimethoxy-5-[(1E)-1-propenyl]benzene

C12H16O3 (208.1099386)


Isoelemicin is found in herbs and spices. Isoelemicin is a constituent of oil of nutmeg Constituent of oil of nutmeg. Isoelemicin is found in ucuhuba and herbs and spices.

   

(+/-)-Asarinol A

5-Hydroxycara-3-ene-2-one

C10H14O2 (166.09937440000002)


   

Heterotropan

1-[2,3-dimethyl-4-(2,4,5-trimethoxyphenyl)cyclobutyl]-2,4,5-trimethoxybenzene

C24H32O6 (416.2198772)


Constituent of Acorus calamus (sweet flag). Acoradin is found in herbs and spices and root vegetables. Acoradin is found in herbs and spices. Acoradin is a constituent of Acorus calamus (sweet flag).

   

trans-Aconitic acid

(1E)-prop-1-ene-1,2,3-tricarboxylic acid

C6H6O6 (174.01643760000002)


trans-Aconitic acid, also known as trans-aconitate or (e)-aconitic acid, belongs to the class of organic compounds known as tricarboxylic acids and derivatives. These are carboxylic acids containing exactly three carboxyl groups. trans-Aconitic acid exists in all living species, ranging from bacteria to humans. trans-Aconitic acid is a dry, musty, and nut tasting compound. Outside of the human body, trans-aconitic acid has been detected, but not quantified in several different foods, such as garden tomato fruits, root vegetables, soy beans, and rices. trans-Aconitic acid is normally present in human urine, and it has been suggested that is present in larger amounts with Reyes syndrome and organic aciduria. trans-Aconitic acid in the urine is a biomarker for the consumption of soy products. trans-Aconitic acid is a substrate of enzyme trans-Aconitic acid 2-methyltransferase (EC2.1.1.144). Isolated from Asarum europaeum, from cane-sugar molasses, roasted chicory root, roasted malt barley, passion fruit, sorghum root and sugar beet. Flavouring agent used in fruit flavours and alcoholic beverages. Aconitic acid is an organic acid. The two isomers are cis-aconitic acid and trans-aconitic acid. The conjugate base of cis-aconitic acid, cis-aconitate is an intermediate in the isomerisation of citrate to isocitrate in the citric acid cycle. It is acted upon by aconitase. Trans-aconitate in the urine is a biomarker for the consumption of soy products. (E)-Aconitic acid is found in many foods, some of which are cereals and cereal products, rice, garden tomato (variety), and root vegetables. Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID A117 trans-Aconitic acid is present in normal human urine, and it has been suggested that is present in larger amounts with Reye's syndrome and organic aciduria. trans-Aconitic acid is a substrate of enzyme trans-aconitate 2-methyltransferase. trans-Aconitic acid is present in normal human urine, and it has been suggested that is present in larger amounts with Reye's syndrome and organic aciduria. trans-Aconitic acid is a substrate of enzyme trans-aconitate 2-methyltransferase.

   

Trifolin

5,7-dihydroxy-2-(4-hydroxyphenyl)-3-((2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yloxy)-4H-chromen-4-one

C21H20O11 (448.100557)


Kaempferol 3-o-beta-d-galactopyranoside, also known as trifolin or trifolioside, is a member of the class of compounds known as flavonoid-3-o-glycosides. Flavonoid-3-o-glycosides are phenolic compounds containing a flavonoid moiety which is O-glycosidically linked to carbohydrate moiety at the C3-position. Kaempferol 3-o-beta-d-galactopyranoside is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Kaempferol 3-o-beta-d-galactopyranoside can be found in horseradish, which makes kaempferol 3-o-beta-d-galactopyranoside a potential biomarker for the consumption of this food product. Kaempferol 3-O-beta-D-galactoside is a beta-D-galactoside compound with a 4,5,7-trihydroxychromen-3-yl group at the anomeric position. It has a role as a plant metabolite and an antifungal agent. It is a beta-D-galactoside, a monosaccharide derivative, a glycosyloxyflavone and a trihydroxyflavone. It is functionally related to a kaempferol. It is a conjugate acid of a kaempferol 3-O-beta-D-galactoside(1-). Trifolin is a natural product found in Lotus ucrainicus, Saxifraga tricuspidata, and other organisms with data available. Isoastragalin is found in fats and oils. Isoastragalin is isolated from Gossypium hirsutum (cotton) and other plant species. A beta-D-galactoside compound with a 4,5,7-trihydroxychromen-3-yl group at the anomeric position.

   

(-)-cis-Carveol

2-Methyl-5-(1-methylethenyl)-(1R-cis)-2-cyclohexen-1-ol

C10H16O (152.12010859999998)


(-)-cis-Carveol is found in citrus. (-)-cis-Carveol is a constituent of Valencia orange oil (Citrus sinensis). (-)-cis-Carveol is a flavouring agent Constituent of Valencia orange oil (Citrus sinensis). Flavouring agent. (-)-cis-Carveol is found in citrus.

   

Pinene

(1R,5R)-2,6,6-Trimethylbicyclo[3.1.1]hept-2-ene

C10H16 (136.1251936)


Pinene (is a bicyclic monoterpene chemical compound. There are two structural isomers of pinene found in nature: alpha-pinene and beta-pinene. As the name suggests, both forms are important constituents of pine resin; they are also found in the resins of many other conifers, as well as in non-coniferous plants. Both isomers are used by many insects in their chemical communication system.

   

β-Pinene

(1S,5S)-7,7-dimethyl-4-methylidene-bicyclo[3.1.1]heptane

C10H16 (136.1251936)


An isomer of pinene with an exocyclic double bond. It is a component of essential oils from many plants. Widely distributed in plants, usually associated with a-Pinene JPV84-W but in smaller amounts. Found in lime peel oil, ginger, nutmeg, mace, bitter fennel, rosemary and sage. Flavour ingredient β-Pinene ((-)-β-Pinene), a major component of turpentine, inhibit infectious bronchitis virus (IBV) with an IC50 of 1.32 mM. β-Pinene presents antimicrobial activity[1][2]. β-Pinene ((-)-β-Pinene), a major component of turpentine, inhibit infectious bronchitis virus (IBV) with an IC50 of 1.32 mM. β-Pinene presents antimicrobial activity[1][2].

   

(3R,6E)-nerolidol

(3R,6E)-nerolidol

C15H26O (222.1983546)


A (6E)-nerolidol in which the hydroxy group at positon 3 adopts an R-configuration. It is a fertility-related volatile compound secreted by the queens of higher termites from the subfamily Syntermitinae. Nerolidol is a natural membrane-active sesquiterpene, with antitumor, antibacterial, antifungal and antiparasitic activity[1]. Nerolidol is a natural membrane-active sesquiterpene, with antitumor, antibacterial, antifungal and antiparasitic activity[1].

   

patchoulol

(1R,3R,6S,7S)-2,2,6,8-tetramethyltricyclo[5.3.1.03,8]undecan-3-ol

C15H26O (222.1983546)


   

Paeonol

2 inverted exclamation mark -Hydroxy-4 inverted exclamation mark -methoxyacetophenone

C9H10O3 (166.062991)


Paeonol is a member of phenols and a member of methoxybenzenes. It has a role as a metabolite. Paeonol is a natural product found in Vincetoxicum paniculatum, Vincetoxicum glaucescens, and other organisms with data available. See also: Paeonia lactiflora root (part of); Paeonia X suffruticosa root (part of). A natural product found in Paeonia rockii subspeciesrockii. Paeonol is an active extraction from the root of Paeonia suffruticosa, Paeonol inhibits MAO-A and MAO-B with IC50 of 54.6 μM and 42.5 μM, respectively. Paeonol is an active extraction from the root of Paeonia suffruticosa, Paeonol inhibits MAO-A and MAO-B with IC50 of 54.6 μM and 42.5 μM, respectively.

   

Pinoresinol

Phenol,4-(tetrahydro-1H,3H-furo[3,4-c]furan-1,4-diyl)bis[2-methoxy-, [1S-(1.alpha.,3a.alpha.,4.alpha.,6a.alpha.)]-

C20H22O6 (358.1416312)


4-[6-(4-Hydroxy-3-methoxyphenyl)-1,3,3a,4,6,6a-hexahydrofuro[3,4-c]furan-3-yl]-2-methoxyphenol is a natural product found in Zanthoxylum riedelianum, Forsythia suspensa, and other organisms with data available. Pinoresinol is a lignol of plant origin serving for defense in a caterpillar. Pinoresinol drastically sensitizes cancer cells against TNF-related apoptosis-inducing ligand (TRAIL) -induced apoptosis[1][2]. Pinoresinol is a lignol of plant origin serving for defense in a caterpillar. Pinoresinol drastically sensitizes cancer cells against TNF-related apoptosis-inducing ligand (TRAIL) -induced apoptosis[1][2].

   

Diacetone alcohol

4-Hydroxy-2-keto-4-methylpentane

C6H12O2 (116.08372519999999)


Diacetone alcohol is found in fruits. Diacetone alcohol is isolated from the arctic bramble Rubus arcticu Isolated from the arctic bramble Rubus arcticus. Diacetone alcohol is found in papaya and fruits.

   

Nerolidol

[S-(E)]-3,7,11-trimethyldodeca-1,6,10-trien-3-ol

C15H26O (222.1983546)


A component of many essential oils. The (S)-enantiomer is the commoner and occurs mostly as the (S)-(E)-isomer. Flavouring agent. Nerolidol is found in many foods, some of which are coriander, sweet basil, roman camomile, and sweet orange. Nerolidol is found in bitter gourd. Nerolidol is a component of many essential oils. The (S)-enantiomer is the commoner and occurs mostly as the (S)-(E)-isomer. Nerolidol is a flavouring agent Nerolidol is a natural membrane-active sesquiterpene, with antitumor, antibacterial, antifungal and antiparasitic activity[1]. Nerolidol is a natural membrane-active sesquiterpene, with antitumor, antibacterial, antifungal and antiparasitic activity[1].

   

Quercetin 3-galactoside 7-rhamnoside

2-(3,4-dihydroxyphenyl)-5-hydroxy-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-7-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]-4H-chromen-4-one

C27H30O16 (610.153378)


Quercetin 3-galactoside 7-rhamnoside is found in broad bean. Quercetin 3-galactoside 7-rhamnoside is isolated from Caltha palustris, Cladothamnus pyrolaeflorus and Solanum species [CCD].

   

Undecane

CH3-[CH2]9-CH3

C11H24 (156.18779039999998)


Undecane, also known as CH3-[CH2]9-CH3 or hendekan, belongs to the class of organic compounds known as alkanes. These are acyclic branched or unbranched hydrocarbons having the general formula CnH2n+2 , and therefore consisting entirely of hydrogen atoms and saturated carbon atoms. Thus, undecane is considered to be a hydrocarbon lipid molecule. Undecane may also be used as an internal standard in gas chromatography when working with other hydrocarbons. For example, if one is working with a 50 m crosslinked methyl silicone capillary column with an oven temperature increasing slowly, beginning around 60 °C, an 11-carbon molecule like undecane may be used as an internal standard to be compared with the retention times of other 10-, 11-, or 12- carbon molecules, depending on their structures. Undecane is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. undecane has been detected, but not quantified, in cardamoms. This could make undecane a potential biomarker for the consumption of these foods. Since the boiling point of undecane (196 °C) is well known, it may be used as a comparison for retention times in a gas chromatograph for molecules whose structure has been freshly elucidated. It has 159 isomers. It is used as a mild sex attractant for various types of moths and cockroaches, and an alert signal for a variety of ants. Undecane, also known as ch3-[ch2]9-ch3 or hendekan, is a member of the class of compounds known as alkanes. Alkanes are acyclic branched or unbranched hydrocarbons having the general formula CnH2n+2 , and therefore consisting entirely of hydrogen atoms and saturated carbon atoms. Thus, undecane is considered to be a hydrocarbon lipid molecule. Undecane can be found in cardamom, which makes undecane a potential biomarker for the consumption of this food product. Undecane can be found primarily in feces, saliva, and urine. Undecane may also be used as an internal standard in gas chromatography when working with other hydrocarbons. Since the boiling point of undecane (196 °C) is well known, it may be used as a comparison for retention times in a gas chromatograph for molecules whose structure has been freshly elucidated. For example, if one is working with a 50 m crosslinked methyl silicone capillary column with an oven temperature increasing slowly, beginning around 60 °C, an 11-carbon molecule like undecane may be used as an internal standard to be compared with the retention times of other 10-, 11-, or 12- carbon molecules, depending on their structures .

   

delta-Amorphene

4,7-Dimethyl-1-(propan-2-yl)-1,2,3,5,6,8a-hexahydronaphthalene

C15H24 (204.18779039999998)


1(10),4-Cadinadiene is a cadinene (FDB009046) of the delta-serie [FooDB]. A cadinene (FDB009046) of the delta-serie [FooDB]

   

alpha-Curcumene

1-methyl-4-(6-methylhept-5-en-2-yl)benzene

C15H22 (202.1721412)


alpha-Curcumene belongs to the family of Sesquiterpenes. These are terpenes with three consecutive isoprene units

   

Linalyl acetate

3,7-Dimethyl-3-acetate(3R)-1,6-octadien-3-ol

C12H20O2 (196.14632200000003)


Linalyl acetate, also known as 3,7-dimethylocta-1,6-dien-3-yl acetate, is a monoterpenoid that is the acetate ester of linalool. It forms a principal component of the essential oils from bergamot and lavender. It is an acetate ester and a monoterpenoid that derives from linalool. Linalyl acetate is isolated from numerous plants and essential oils, e.g. clary sage, lavender, lemon etc., and it is used as a flavouring ingredient. Synthetic linalyl acetate is sometimes used as an adulterant in essential oils to make them more marketable. Isolated from numerous plants and essential oils, e.g. clary sage, lavender, lemon etc. Flavouring ingredient Linalyl acetate is the principal components of many plant essential oils with potentially anti-inflammatory activity[1]. Linalyl acetate is the principal components of many plant essential oils with potentially anti-inflammatory activity[1].

   

Hexadecane

1,2-EPOXYHEXADECANE

C16H34 (226.2660364)


Hexadecane, also known as cetan or CH3-[CH2]14-CH3, belongs to the class of organic compounds known as alkanes. These are acyclic branched or unbranched hydrocarbons having the general formula CnH2n+2 , and therefore consisting entirely of hydrogen atoms and saturated carbon atoms. Thus, hexadecane is considered to be a hydrocarbon lipid molecule. A straight-chain alkane with 16 carbon atoms. Hexadecane is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Hexadecane is an alkane tasting compound. Hexadecane is found, on average, in the highest concentration within black walnuts. Hexadecane has also been detected, but not quantified, in several different foods, such as allspices, cucumbers, tea, orange bell peppers, and herbs and spices. This could make hexadecane a potential biomarker for the consumption of these foods. Hexadecane, with regard to humans, has been linked to the inborn metabolic disorder celiac disease. Isolated from oil of Piper longum (long pepper)

   

1-Pentadecene

Pentadec-1-ene

C15H30 (210.234738)


1-Pentadecene, also known as pentadec-1-ene, belongs to the class of organic compounds known as unsaturated aliphatic hydrocarbons. These are aliphatic Hydrocarbons that contains one or more unsaturated carbon atoms. 1-Pentadecene is an unbranched fifteen-carbon alkene with one double bond between C-1 and C-2. These compounds contain one or more double or triple bonds. Thus, 1-pentadecene is considered to be a hydrocarbon lipid molecule. 1-Pentadecene is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. 1-Pentadecene is found, on average, in the highest concentration within safflowers. 1-Pentadecene has also been detected, but not quantified, in burdocks and watermelons. This could make 1-pentadecene a potential biomarker for the consumption of these foods. Occurs in beef and oakmoss oleoresin. 1-Pentadecene is found in many foods, some of which are animal foods, burdock, safflower, and watermelon.

   

xi-p-Menth-3-en-1-ol

1-methyl-4-(propan-2-yl)cyclohex-3-en-1-ol

C10H18O (154.1357578)


Constituent of oregano (Origanum vulgare), lime peel (Citrus aurantifolia) and mandarin peeland is) also present in grapefruit juice, cognac, wines, cocoa, black tea and cardamon. Flavouring agent. xi-p-Menth-3-en-1-ol is found in many foods, some of which are herbs and spices, cocoa and cocoa products, citrus, and tea. xi-p-Menth-3-en-1-ol is found in alcoholic beverages. xi-p-Menth-3-en-1-ol is a constituent of oregano (Origanum vulgare), lime peel (Citrus aurantifolia) and mandarin peel. Also present in grapefruit juice, cognac, wines, cocoa, black tea and cardamon. xi-p-Menth-3-en-1-ol is a flavouring agent.

   

(R)-2,5,11-Bisabolatriene

1-methyl-4-(6-methylhept-6-en-2-yl)cyclohexa-1,4-diene

C15H24 (204.18779039999998)


Constituent of the essential oil of Curcuma amada (mango-ginger) and Curcuma xanthorrhiza (Java turmeric). (R)-2,5,11-Bisabolatriene is found in many foods, some of which are herbs and spices, root vegetables, turmeric, and beverages. (R)-2,5,11-Bisabolatriene is found in beverages. (R)-2,5,11-Bisabolatriene is a constituent of the essential oil of Curcuma amada (mango-ginger) and Curcuma xanthorrhiza (Java turmeric)

   

beta-Terpinene

4-methylidene-1-(propan-2-yl)cyclohex-1-ene

C10H16 (136.1251936)


beta-Terpinene is found in cumin. beta-Terpinene is a constituent of Juniper and Myrica gale (bog myrtle) oils.The terpinenes are three isomeric hydrocarbons that are classified as terpenes. They each have the same molecular formula and carbon framework, but they differ in the position of carbon-carbon double bonds. alpha-Terpinene has been isolated from cardamom and marjoram oils, and from other natural sources. beta-Terpinene has no known natural source, but has been prepared synthetically from sabinene. gamma-Terpinene is natural and has been isolated from a variety of plant sources. (Wikipedia). Constituent of Juniper and Myrica gale (bog myrtle) oils

   

alpha-Phellandrene

2-Methyl-5-(1-methylethyl)-1,3-cyclohexadiene

C10H16 (136.1251936)


Phellandrene is the name for a pair of organic compounds that have a similar molecular structure and similar chemical properties. alpha-Phellandrene and beta-phellandrene are cyclic monoterpenes and are double-bond isomers. The phellandrenes are used in fragrances because of their pleasing aromas. Phellandrene is found in many foods, some of which are ceylon cinnamon, peppermint, anise, and dill. alpha-Phellandrene is found in allspice. Phellandrene is the name for a pair of organic compounds that have a similar molecular structure and similar chemical properties. alpha-Phellandrene and beta-phellandrene are cyclic monoterpenes and are double-bond isomers. The phellandrenes are used in fragrances because of their pleasing aromas. (Wikipedia

   

Thymol

[5-methyl-2-(propan-2-yl)phenyl]oxidanesulfonic acid

C10H14O (150.1044594)


Thymol Sulfate is also known as Thymol sulfuric acid. Thymol Sulfate is considered to be practically insoluble (in water) and acidic. Thymol (also known as 2-isopropyl-5-methylphenol, IPMP), C10H14O, is a natural monoterpenoid phenol derivative of p-Cymene, isomeric with carvacrol, found in oil of thyme, and extracted from Thymus vulgaris (common thyme), ajwain,[4] and various other plants as a white crystalline substance of a pleasant aromatic odor and strong antiseptic properties. Thymol also provides the distinctive, strong flavor of the culinary herb thyme, also produced from T. vulgaris. Thymol is only slightly soluble in water at neutral pH, but it is extremely soluble in alcohols and other organic solvents. It is also soluble in strongly alkaline aqueous solutions due to deprotonation of the phenol. Its dissociation constant (pKa) is 10.59±0.10.[5] Thymol absorbs maximum UV radiation at 274 nm.[6] Ancient Egyptians used thyme for embalming.[9] The ancient Greeks used it in their baths and burned it as incense in their temples, believing it was a source of courage. The spread of thyme throughout Europe was thought to be due to the Romans, as they used it to purify their rooms and to "give an aromatic flavour to cheese and liqueurs".[10] In the European Middle Ages, the herb was placed beneath pillows to aid sleep and ward off nightmares.[11] In this period, women also often gave knights and warriors gifts that included thyme leaves, because it was believed to bring courage to the bearer. Thyme was also used as incense and placed on coffins during funerals, because it was supposed to ensure passage into the next life.[12] The bee balms Monarda fistulosa and Monarda didyma, North American wildflowers, are natural sources of thymol. The Blackfoot Native Americans recognized these plants' strong antiseptic action and used poultices of the plants for skin infections and minor wounds. A tisane made from them was also used to treat mouth and throat infections caused by dental caries and gingivitis.[13] Thymol was first isolated by German chemist Caspar Neumann in 1719.[14] In 1853, French chemist Alexandre Lallemand[15] (1816-1886) named thymol and determined its empirical formula.[16] Thymol was first synthesized by Swedish chemist Oskar Widman[17] (1852-1930) in 1882.[18]

   

(1R,3As,4S,6aS)-1,4-di(benzo[d][1,3]dioxol-5-yl)hexahydrofuro[3,4-c]furan

5-[4-(2H-1,3-benzodioxol-5-yl)-hexahydrofuro[3,4-c]furan-1-yl]-2H-1,3-benzodioxole

C20H18O6 (354.1103328)


Constituent of sesame oil. (+)-Sesamin is found in many foods, some of which are ginkgo nuts, sesame, flaxseed, and fats and oils. D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents > D000924 - Anticholesteremic Agents D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D020011 - Protective Agents > D000975 - Antioxidants D009676 - Noxae > D000963 - Antimetabolites (-)-Asarinin is a extract lignan from Asarum sieboldii Miq., mainly produced in roots of this herb[1]. (-)-Asarinin is a extract lignan from Asarum sieboldii Miq., mainly produced in roots of this herb[1]. (-)-Asarinin is a extract lignan from Asarum sieboldii Miq., mainly produced in roots of this herb[1]. (-)-Asarinin is a extract lignan from Asarum sieboldii Miq., mainly produced in roots of this herb[1]. Sesamin, abundant lignan found in sesame oil, is a potent and selective delta 5 desaturase inhibitor in polyunsaturated fatty acid biosynthesis. Sesamin exerts effective neuroprotection against cerbral ischemia[1][2]. Sesamin, abundant lignan found in sesame oil, is a potent and selective delta 5 desaturase inhibitor in polyunsaturated fatty acid biosynthesis. Sesamin exerts effective neuroprotection against cerbral ischemia[1][2].

   

1,2,4-Trimethoxy-5-propenylbenzene

1,2,4-trimethoxy-5-(prop-1-en-1-yl)benzene

C12H16O3 (208.1099386)


Beta-asarone is a major ingredient of Acorus tatarinowii Schott, penetrates blood brain barrier, with the properties of immunosuppression, central nervous system inhibition, sedation, and hypothermy. Beta-asarone protects against Parkinson’s disease[1]. Beta-asarone is a major ingredient of Acorus tatarinowii Schott, penetrates blood brain barrier, with the properties of immunosuppression, central nervous system inhibition, sedation, and hypothermy. Beta-asarone protects against Parkinson’s disease[1].

   

7-Glucosyl-luteolin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4H-chromen-4-one

C21H20O12 (464.09547200000003)


   

Aconitic acid

prop-1-ene-1,2,3-tricarboxylic acid

C6H6O6 (174.01643760000002)


   

Epipinoresinol

4-[4-(4-hydroxy-3-methoxyphenyl)-hexahydrofuro[3,4-c]furan-1-yl]-2-methoxyphenol

C20H22O6 (358.1416312)


(+)-pinoresinol is a member of the class of compounds known as furanoid lignans. Furanoid lignans are lignans with a structure that contains either a tetrahydrofuran ring, a furan ring, or a furofuan ring system, that arises from the joining of the two phenylpropanoid units (+)-pinoresinol is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). (+)-pinoresinol can be found in a number of food items such as chanterelle, pecan nut, pine nut, and common hazelnut, which makes (+)-pinoresinol a potential biomarker for the consumption of these food products. Pinoresinol is a lignol of plant origin serving for defense in a caterpillar. Pinoresinol drastically sensitizes cancer cells against TNF-related apoptosis-inducing ligand (TRAIL) -induced apoptosis[1][2]. Pinoresinol is a lignol of plant origin serving for defense in a caterpillar. Pinoresinol drastically sensitizes cancer cells against TNF-related apoptosis-inducing ligand (TRAIL) -induced apoptosis[1][2].

   

Germacrone

3,7-dimethyl-10-(propan-2-ylidene)cyclodeca-3,7-dien-1-one

C15H22O (218.1670562)


   

isosafrole

5-(prop-1-en-1-yl)-2H-1,3-benzodioxole

C10H10O2 (162.06807600000002)


   

Methyl isoeugenol

1,2-dimethoxy-4-(prop-1-en-1-yl)benzene

C11H14O2 (178.09937440000002)


   

Patchoulol

2,2,6,8-tetramethyltricyclo[5.3.1.0³,⁸]undecan-3-ol

C15H26O (222.1983546)


   

Quercetin-3-o-rutinose

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-[(3,4,5-trihydroxy-6-{[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]methyl}oxan-2-yl)oxy]-4H-chromen-4-one

C27H30O16 (610.153378)


   

D-Selinene

4,8a-dimethyl-6-(propan-2-yl)-1,2,3,7,8,8a-hexahydronaphthalene

C15H24 (204.18779039999998)


Delta-selinene, also known as delta-selinen, is a member of the class of compounds known as eudesmane, isoeudesmane or cycloeudesmane sesquiterpenoids. Eudesmane, isoeudesmane or cycloeudesmane sesquiterpenoids are sesquiterpenoids with a structure based on the eudesmane skeleton. Delta-selinene can be found in allspice, lovage, and wild celery, which makes delta-selinene a potential biomarker for the consumption of these food products. Delta-selinene, also known as δ-selinen, is a member of the class of compounds known as eudesmane, isoeudesmane or cycloeudesmane sesquiterpenoids. Eudesmane, isoeudesmane or cycloeudesmane sesquiterpenoids are sesquiterpenoids with a structure based on the eudesmane skeleton. Delta-selinene can be found in allspice, lovage, and wild celery, which makes delta-selinene a potential biomarker for the consumption of these food products.

   

(3S),7-Dimethylocta-1,5,7-trien-3-ol

(5E)-3,7-dimethylocta-1,5,7-trien-3-ol

C10H16O (152.12010859999998)


Hotrienol, also known as 3,7-dimethyl-1,5(E),7-octatrien-3-ol, is a member of the class of compounds known as tertiary alcohols. Tertiary alcohols are compounds in which a hydroxy group, -OH, is attached to a saturated carbon atom R3COH (R not H ). Hotrienol is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Hotrienol can be found in tea, which makes hotrienol a potential biomarker for the consumption of this food product. Hotrienol may be a unique S.cerevisiae (yeast) metabolite.

   

Kaempferol 3-rhamno-glucoside

5,7-dihydroxy-2-(4-hydroxyphenyl)-3-{[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-({[(2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}methyl)oxan-2-yl]oxy}-4H-chromen-4-one

C27H30O15 (594.158463)


Kaempferol 3-rhamno-glucoside, also known as nicotiflorin or kaempferol 3-rutinoside, is a member of the class of compounds known as flavonoid-3-o-glycosides. Flavonoid-3-o-glycosides are phenolic compounds containing a flavonoid moiety which is O-glycosidically linked to carbohydrate moiety at the C3-position. Kaempferol 3-rhamno-glucoside is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Kaempferol 3-rhamno-glucoside can be found in ginkgo nuts and tea, which makes kaempferol 3-rhamno-glucoside a potential biomarker for the consumption of these food products. Nicotiflorin is a flavonoid glycoside extracted from a traditional Chinese medicine Carthamus tinctorius. Nicotiflorin shows potent antiglycation activity and neuroprotection effects. Nicotiflorin is a flavonoid glycoside extracted from a traditional Chinese medicine Carthamus tinctorius. Nicotiflorin shows potent antiglycation activity and neuroprotection effects.

   

gamma-Elemene

(1S,2S)-1-ethenyl-1-methyl-2-(prop-1-en-2-yl)-4-(propan-2-ylidene)cyclohexane

C15H24 (204.18779039999998)


Gamma-Elemene, also known as g-elemene, belongs to the class of organic compounds known as sesquiterpenoids. Sesquiterpenoids are terpenes that contain 15 carbon atoms and are comprised of three isoprene units. The biosynthesis of sesquiterpenes is known to occur mainly through the mevalonic acid pathway (MVA), in the cytosol. However, recent studies have found evidence of pathway crosstalk with the methyl-erythritol-phosphate (MEP) pathway in the cytosol. Farnesyl diphosphate (FPP) is a key intermediate in the biosynthesis of cyclic sesquiterpenes. FPP undergoes several cyclization reactions to yield a diverse number of cyclic arrangements. More formally, gamma-elemene is a cyclohexane substituted at positions 1, 1, 2, and 4 by methyl, vinyl, isopropenyl and isopropylidene groups, respectively. There are four known elemene isomers including α-, β-, γ-, and δ-elemene. The elemenes contribute to the floral aromas of some plants and are used as pheromones by some insects. Gamma-elemene is found in many essential plant oils including wormwood leaf oil, peppermint oil, pepper tree leaf oil, parsley leaf oil, orange peel oil, lime oil, juniper berry oil, hinoki leaf oil, angelica root oil, and angelica seed oil. Gamma-elemene has been shown to exhibit good insecticidal activity against the crop pest Spodoptera litura (tobacco cutworm or cotton leafworm) and could be useful as an eco-friendly biopesticide (PMID:28634795). Gamma-elemene, also known as (+)-G-elemene, is a member of the class of compounds known as sesquiterpenoids. Sesquiterpenoids are terpenes with three consecutive isoprene units. Gamma-elemene can be found in a number of food items such as sweet basil, mandarin orange (clementine, tangerine), sweet bay, and pot marjoram, which makes gamma-elemene a potential biomarker for the consumption of these food products.

   

Bornyl acetate

(1S,2R,4S)-1,7,7-trimethylbicyclo[2.2.1]heptan-2-yl acetate

C12H20O2 (196.14632200000003)


Bornyl acetate, also known as bornyl acetic acid, is a member of the class of compounds known as bicyclic monoterpenoids. Bicyclic monoterpenoids are monoterpenoids containing exactly 2 rings, which are fused to each other. Bornyl acetate is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Bornyl acetate is a camphor, cedar, and herbal tasting compound and can be found in a number of food items such as nutmeg, rosemary, spearmint, and sunflower, which makes bornyl acetate a potential biomarker for the consumption of these food products. (-)-Bornyl acetate (L-(-)-Bornyl acetate), isolated from hyssop oil, is a less active enantiomer of (+)-Bornyl acetate. (-)-Bornyl acetate possesses antifungal activity[1]. (-)-Bornyl acetate (L-(-)-Bornyl acetate), isolated from hyssop oil, is a less active enantiomer of (+)-Bornyl acetate. (-)-Bornyl acetate possesses antifungal activity[1]. (-)-Bornyl acetate (L-(-)-Bornyl acetate), isolated from hyssop oil, is a less active enantiomer of (+)-Bornyl acetate. (-)-Bornyl acetate possesses antifungal activity[1]. (-)-Bornyl acetate (L-(-)-Bornyl acetate), isolated from hyssop oil, is a less active enantiomer of (+)-Bornyl acetate. (-)-Bornyl acetate possesses antifungal activity[1]. Bornyl acetate is a potent odorant, exhibiting one of the highest flavor dilution factor (FD factor). Bornyl acetate possesses anti-cancer activity[1][2]. Bornyl acetate is a potent odorant, exhibiting one of the highest flavor dilution factor (FD factor). Bornyl acetate possesses anti-cancer activity[1][2].

   

D-Camphor

1,7,7-Trimethylbicyclo[2.2.1]heptan-2-one

C10H16O (152.12010859999998)


(+)-camphor, also known as formosa camphor or 2-bornanone, is a member of the class of compounds known as bicyclic monoterpenoids. Bicyclic monoterpenoids are monoterpenoids containing exactly 2 rings, which are fused to each other. Thus, (+)-camphor is considered to be an isoprenoid lipid molecule (+)-camphor is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). (+)-camphor is a bitter, camphor, and herbal tasting compound and can be found in a number of food items such as sugar apple, sunflower, fennel, and cardamom, which makes (+)-camphor a potential biomarker for the consumption of these food products. C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent D000890 - Anti-Infective Agents Camphor ((±)-Camphor) is a topical anti-infective and anti-pruritic and internally as a stimulant and carminative. However, Camphor is poisonous when ingested. Antiviral, antitussive, and anticancer activities[1]. Camphor is a TRPV3 agonist[2]. Camphor ((±)-Camphor) is a topical anti-infective and anti-pruritic and internally as a stimulant and carminative. However, Camphor is poisonous when ingested. Antiviral, antitussive, and anticancer activities[1]. Camphor is a TRPV3 agonist[2].

   

Nerolidol

(E)-3,7,11-Trimethyl-1,6,10-dodecatrien-3-ol, trans-3,7,11-Trimethyl-1,6,10-dodecatrien-3-ol

C15H26O (222.1983546)


Nerolidol is a farnesane sesquiterpenoid that is dodeca-1,6,10-triene which carries methyl groups at positions 3, 7 and 11 and a hydroxy group at position 3. It is a natural product that is present in various flowers and plants with a floral odor. Chemically, it exists in two geometric isomers, trans and cis forms. It is widely used in cosmetics (e.g. shampoos and perfumes), in non-cosmetic products (e.g. detergents and cleansers) and also as a food flavoring agent. It has a role as a flavouring agent, a cosmetic, a pheromone, a neuroprotective agent, an antifungal agent, an anti-inflammatory agent, an antihypertensive agent, an antioxidant, a volatile oil component, an insect attractant and a herbicide. It is a farnesane sesquiterpenoid, a tertiary allylic alcohol and a volatile organic compound. Nerolidol is a natural product found in Xylopia sericea, Rhododendron calostrotum, and other organisms with data available. Nerolidol is found in bitter gourd. Nerolidol is a component of many essential oils. The (S)-enantiomer is the commoner and occurs mostly as the (S)-(E)-isomer. Nerolidol is a flavouring agent. Nerolidol has been shown to exhibit anti-fungal function (A7933).Nerolidol belongs to the family of Sesquiterpenes. These are terpenes with three consecutive isoprene units. A nerolidol in which the double bond at position 6 adopts a trans-configuration. Nerolidol is a natural membrane-active sesquiterpene, with antitumor, antibacterial, antifungal and antiparasitic activity[1]. Nerolidol is a natural membrane-active sesquiterpene, with antitumor, antibacterial, antifungal and antiparasitic activity[1]. trans-Nerolidol is a sesquiterpene alcohol. It can be isolated from f aerial parts of Warionia saharae ex Benth. trans-Nerolidol improves the anti-proliferative effect of Doxorubicin (HY-15142A) against intestinal cancer cells in vitro. trans-Nerolidol also has anti-fungal activity[1][2]. trans-Nerolidol is a sesquiterpene alcohol. It can be isolated from f aerial parts of Warionia saharae ex Benth. trans-Nerolidol improves the anti-proliferative effect of Doxorubicin (HY-15142A) against intestinal cancer cells in vitro. trans-Nerolidol also has anti-fungal activity[1][2].

   

Patchoulol

1,6-METHANONAPHTHALEN-1(2H)-OL, OCTAHYDRO-4,8A,9,9-TETRAMETHYL-, (1R-(1.ALPHA.,4.BETA.,4A.ALPHA.,6.BETA.,8A.ALPHA.))-

C15H26O (222.1983546)


Patchouli alcohol is a carbotricyclic compound and sesquiterpenoid tertiary alcohol that is tricyclo[5.3.1.0(3,8)]undecan-3-ol which is substituted at positions 2, 2, 6 and 8 by methyl groups (the 1R,3R,6S,7S,8S-diastereoisomer). It is a tertiary alcohol, a sesquiterpenoid and a carbotricyclic compound. Patchouli alcohol is a natural product found in Valeriana fauriei, Desmos cochinchinensis, and other organisms with data available. Patchouli alcohol is a natural tricyclic sesquiterpene extracted from Pogostemon cablin (Blanco) Benth, and exhibits anti-Helicobacter pylori and anti-inflammatory properties[1]. Patchouli alcohol is a natural tricyclic sesquiterpene extracted from Pogostemon cablin (Blanco) Benth, and exhibits anti-Helicobacter pylori and anti-inflammatory properties[1].

   

sesamin

1,3-Benzodioxole, 5,5-(tetrahydro-1H,3H-furo(3,4-c)furan-1,4-diyl)bis-, (1S-(1.alpha.,3a.alpha.,4.alpha.,6a.alpha.))-

C20H18O6 (354.1103328)


D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents > D000924 - Anticholesteremic Agents D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D020011 - Protective Agents > D000975 - Antioxidants D009676 - Noxae > D000963 - Antimetabolites relative retention time with respect to 9-anthracene Carboxylic Acid is 1.233 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.236 Asarinin is a natural product found in Piper mullesua, Machilus thunbergii, and other organisms with data available. (-)-Asarinin is a natural product found in Zanthoxylum austrosinense, Horsfieldia irya, and other organisms with data available. (-)-Asarinin is a extract lignan from Asarum sieboldii Miq., mainly produced in roots of this herb[1]. (-)-Asarinin is a extract lignan from Asarum sieboldii Miq., mainly produced in roots of this herb[1]. (-)-Asarinin is a extract lignan from Asarum sieboldii Miq., mainly produced in roots of this herb[1]. (-)-Asarinin is a extract lignan from Asarum sieboldii Miq., mainly produced in roots of this herb[1]. Sesamin, abundant lignan found in sesame oil, is a potent and selective delta 5 desaturase inhibitor in polyunsaturated fatty acid biosynthesis. Sesamin exerts effective neuroprotection against cerbral ischemia[1][2]. Sesamin, abundant lignan found in sesame oil, is a potent and selective delta 5 desaturase inhibitor in polyunsaturated fatty acid biosynthesis. Sesamin exerts effective neuroprotection against cerbral ischemia[1][2].

   

Aristolone

2H-Cyclopropa(a)naphthalen-2-one, 1,1a,4,5,6,7,7a,7b-octahydro-1,1,7,7a-tetramethyl-, (1aalpha,7alpha,7aalpha,7balpha)-

C15H22O (218.1670562)


Aristolone is a natural product found in Litophyton erectum, Aristolochia clematitis, and other organisms with data available. Aristolone is a sesquiterpene isolated from Aristolochia debilis[1]. Aristolone is a sesquiterpene isolated from Aristolochia debilis[1].

   

asarinin

1,3-BENZODIOXOLE, 5,5-(TETRAHYDRO-1H,3H-FURO(3,4-C)FURAN-1,4-DIYL)BIS-, (1S-(1.ALPHA.,3A.ALPHA.,4.BETA.,6A.ALPHA.))-

C20H18O6 (354.1103328)


Episesamin is a natural product found in Zanthoxylum acanthopodium, Zanthoxylum beecheyanum, and other organisms with data available. (-)-Asarinin is a extract lignan from Asarum sieboldii Miq., mainly produced in roots of this herb[1]. (-)-Asarinin is a extract lignan from Asarum sieboldii Miq., mainly produced in roots of this herb[1]. (-)-Asarinin is a extract lignan from Asarum sieboldii Miq., mainly produced in roots of this herb[1]. (-)-Asarinin is a extract lignan from Asarum sieboldii Miq., mainly produced in roots of this herb[1].

   

Astragalin

5,7-dihydroxy-2-(4-hydroxyphenyl)-3-[[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-2-tetrahydropyranyl]oxy]-4-chromenone

C21H20O11 (448.100557)


Astragalin (Astragaline) a flavonoid with anti-inflammatory, antioxidant, anticancer, bacteriostatic activity. Astragalin inhibits cancer cells proliferation and migration, induces apoptosis. Astragalin is orally active and provides nerve and heart protection, and resistance against and osteoporosis[1]. Astragalin (Astragaline) a flavonoid with anti-inflammatory, antioxidant, anticancer, bacteriostatic activity. Astragalin inhibits cancer cells proliferation and migration, induces apoptosis. Astragalin is orally active and provides nerve and heart protection, and resistance against and osteoporosis[1].

   

neryl acetate

acetic acid geranyl ester

C12H20O2 (196.14632200000003)


Found in citrus, kumquat and pummelo peel oils, ginger, cardamon, clary sage, myrtle leaf and myrtle berries. Flavouring agent Geranyl acetate, an acyclic monoterpene ester derived from geraniol, is widely used in the cosmetics industry due to its pleasant scent[1]. Geranyl acetate can induces cell apoptosis[2]. Geranyl acetate, an acyclic monoterpene ester derived from geraniol, is widely used in the cosmetics industry due to its pleasant scent[1]. Geranyl acetate can induces cell apoptosis[2]. Neryl acetate is a chemical compound isolated from citrus oils[1]. Neryl acetate is a chemical compound isolated from citrus oils[1].

   

Curcumene

alpha-Curcumene

C15H22 (202.1721412)


   

Trifolin

5,7-dihydroxy-2-(4-hydroxyphenyl)-3-[[(2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-2-tetrahydropyranyl]oxy]-4-chromenone

C21H20O11 (448.100557)


Isolated from Gossypium hirsutum (cotton) and other plant subspecies Isoastragalin is found in fats and oils. Isolated from liquorice (Glycyrrhiza glabra). Acetylastragalin is found in herbs and spices. Widespread occurrence in plant world, e.g. Pinus sylvestris (Scotch pine) and fruits of Scolymus hispanicus (Spanish salsify). Kaempferol 3-galactoside is found in many foods, some of which are horseradish, almond, peach, and tea.

   

α-phellandrene

2-Methyl-5-(1-methylethyl)-1,3-cyclohexadiene

C10H16 (136.1251936)


One of a pair of phellandrene cyclic monoterpene double-bond isomers in which both double bonds are endocyclic (cf. alpha-phellandrene, where one of them is exocyclic).

   

3-(3,4-dimethoxyphenyl)prop-2-en-1-ol

3-(3,4-dimethoxyphenyl)prop-2-en-1-ol

C11H14O3 (194.0942894)


   

Rutin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-[[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-[[(2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyl-2-tetrahydropyranyl]oxymethyl]-2-tetrahydropyranyl]oxy]-4-chromenone

C27H30O16 (610.153378)


C - Cardiovascular system > C05 - Vasoprotectives > C05C - Capillary stabilizing agents > C05CA - Bioflavonoids CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2352 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.724 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.728 Acquisition and generation of the data is financially supported by the Max-Planck-Society IPB_RECORD: 1921; CONFIDENCE confident structure Rutin (Rutoside) is a flavonoid found in many plants and shows a wide range of biological activities including anti-inflammatory, antidiabetic, antioxidant, neuroprotective, nephroprotective, hepatoprotective and reducing Aβ oligomer activities. Rutin can cross the blood brain barrier. Rutin attenuates vancomycin-induced renal tubular cell apoptosis via suppression of apoptosis, mitochondrial dysfunction, and oxidative stress[1][2][3]. Rutin (Rutoside) is a flavonoid found in many plants and shows a wide range of biological activities including anti-inflammatory, antidiabetic, antioxidant, neuroprotective, nephroprotective, hepatoprotective and reducing Aβ oligomer activities. Rutin can cross the blood brain barrier. Rutin attenuates vancomycin-induced renal tubular cell apoptosis via suppression of apoptosis, mitochondrial dysfunction, and oxidative stress[1][2][3].

   

elemol

elemol

C15H26O (222.1983546)


A sesquiterpenoid that is isopropanol which is substituted at position 2 by a (3S,4S)-3-isopropenyl-4-methyl-4-vinylcyclohexyl group.

   
   

myrtenal

BICYCLO(3.1.1)HEPT-2-ENE-2-CARBOXALDEHYDE, 6,6-DIMETHYL-, (1R,5S)-REL-

C10H14O (150.1044594)


(-)-Myrtenal is a natural product found in Cyperus articulatus, Forsythia viridissima, and other organisms with data available. (?)-Myrtenal ((1R)-(?)-Myrtenal) is an orally active terpene with antitumour activity. (?)-Myrtenal ameliorates hyperglycemia by enhancing GLUT2 through Akt in the skeletal muscle and liver of diabetic rats[1][2]. (?)-Myrtenal ((1R)-(?)-Myrtenal) is an orally active terpene with antitumour activity. (?)-Myrtenal ameliorates hyperglycemia by enhancing GLUT2 through Akt in the skeletal muscle and liver of diabetic rats[1][2]. (?)-Myrtenal ((1R)-(?)-Myrtenal) is an orally active terpene with antitumour activity. (?)-Myrtenal ameliorates hyperglycemia by enhancing GLUT2 through Akt in the skeletal muscle and liver of diabetic rats[1][2]. (?)-Myrtenal ((1R)-(?)-Myrtenal) is an orally active terpene with antitumour activity. (?)-Myrtenal ameliorates hyperglycemia by enhancing GLUT2 through Akt in the skeletal muscle and liver of diabetic rats[1][2]. (?)-Myrtenal ((1R)-(?)-Myrtenal) is an orally active terpene with antitumour activity. (?)-Myrtenal ameliorates hyperglycemia by enhancing GLUT2 through Akt in the skeletal muscle and liver of diabetic rats[1][2]. (?)-Myrtenal ((1R)-(?)-Myrtenal) is an orally active terpene with antitumour activity. (?)-Myrtenal ameliorates hyperglycemia by enhancing GLUT2 through Akt in the skeletal muscle and liver of diabetic rats[1][2].

   

Anethole

trans-Anethole, Pharmaceutical Secondary Standard; Certified Reference Material

C10H12O (148.08881019999998)


Anethole appears as white crystals or a liquid. Odor of anise oil and a sweet taste. (NTP, 1992) Anethole is a monomethoxybenzene that is methoxybenzene substituted by a prop-1-en-1-yl group at position 4. It has a role as a plant metabolite. Anethole is a natural product found in Erucaria microcarpa, Anemopsis californica, and other organisms with data available. Anethole is a metabolite found in or produced by Saccharomyces cerevisiae. A monomethoxybenzene that is methoxybenzene substituted by a prop-1-en-1-yl group at position 4. D000074385 - Food Ingredients > D005503 - Food Additives D010592 - Pharmaceutic Aids > D005421 - Flavoring Agents Anethole is a type of aromatic compound used as a flavoring. It is a derivative of Phenylpropene and widely exists in nature. Anethole is a type of aromatic compound used as a flavoring. It is a derivative of Phenylpropene and widely exists in nature. Trans-Anethole ((E)-Anethole), a phenylpropene derivative isolated from Foeniculum vulgare, shows estrogenic activity at lower concentrations and cytotoxic at higher concentrations in cancer cell lines[1][2]. Trans-Anethole ((E)-Anethole) contributes a large component of the odor and flavor of anise and fennel, anise myrtle, liquorice, camphor, magnolia blossoms, and star anise[3]. Trans-Anethole ((E)-Anethole), a phenylpropene derivative isolated from Foeniculum vulgare, shows estrogenic activity at lower concentrations and cytotoxic at higher concentrations in cancer cell lines[1][2]. Trans-Anethole ((E)-Anethole) contributes a large component of the odor and flavor of anise and fennel, anise myrtle, liquorice, camphor, magnolia blossoms, and star anise[3].

   

Methyl isoeugenol

4-cis-Propenylveratrole; cis-Isoeugenol methyl ether;cis-Methylisoeugenol

C11H14O2 (178.09937440000002)


Isomethyleugenol is a phenylpropanoid, an olefinic compound and a dimethoxybenzene. Methylisoeugenol is a natural product found in Nicotiana bonariensis, Myrtus communis, and other organisms with data available. Methyl isoeugenol (MIE) is a natural food flavour that can be isolated from Pimenta pseudocaryophyllus leaf. Methyl isoeugenol shows anxiolytic and antidepressant like effects. Methyl isoeugenol is orally active[1]. Methyl isoeugenol (MIE) is a natural food flavour that can be isolated from Pimenta pseudocaryophyllus leaf. Methyl isoeugenol shows anxiolytic and antidepressant like effects. Methyl isoeugenol is orally active[1].

   

Linalyl acetate

Linalyl acetate

C12H20O2 (196.14632200000003)


Linalyl acetate is the principal components of many plant essential oils with potentially anti-inflammatory activity[1]. Linalyl acetate is the principal components of many plant essential oils with potentially anti-inflammatory activity[1].

   

Hyperoside

Quercetin 3-beta-D-galactopyranoside

C21H20O12 (464.09547200000003)


[Raw Data] CB050_Hyperoside_neg_50eV_000016.txt [Raw Data] CB050_Hyperoside_neg_40eV_000016.txt [Raw Data] CB050_Hyperoside_neg_30eV_000016.txt [Raw Data] CB050_Hyperoside_neg_20eV_000016.txt [Raw Data] CB050_Hyperoside_neg_10eV_000016.txt [Raw Data] CB050_Hyperoside_pos_50eV_CB000024.txt [Raw Data] CB050_Hyperoside_pos_40eV_CB000024.txt [Raw Data] CB050_Hyperoside_pos_30eV_CB000024.txt [Raw Data] CB050_Hyperoside_pos_20eV_CB000024.txt [Raw Data] CB050_Hyperoside_pos_10eV_CB000024.txt Hyperoside is a NF-κB inhibitor, found from Hypericum monogynum. Hyperoside shows anti-tumor, antifungal, anti-inflammatory, anti-viral, and anti-oxidative activities, and can induce apoptosis[1][2]. Hyperoside is a NF-κB inhibitor, found from Hypericum monogynum. Hyperoside shows anti-tumor, antifungal, anti-inflammatory, anti-viral, and anti-oxidative activities, and can induce apoptosis[1][2].

   

Verbenone

Bicyclo[3.1.1]hept-3-en-2-one, 4,6,6-trimethyl-, (1R-cis)-

C10H14O (150.1044594)


R - Respiratory system > R05 - Cough and cold preparations > R05C - Expectorants, excl. combinations with cough suppressants > R05CA - Expectorants 4,6,6-trimethylbicyclo[3.1.1]hept-3-en-2-one is a carbobicyclic compound that is bicyclo[3.1.1]heptane which is substituted by an oxo group at position 2 and by methyl groups at positions 4, 6 and 6, and which contains a double bond between positions 3 and 4. It is a carbobicyclic compound, a cyclic ketone and an enone. Verbenone is a natural product found in Eucalyptus fasciculosa, Eucalyptus intertexta, and other organisms with data available. relative retention time with respect to 9-anthracene Carboxylic Acid is 0.872 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.873 Verbenone ((-)-Verbenone) is a natural terpene in leaves of the tree, Verbena officinalis[1]. Verbenone has anti-aggregation pheromone and interrupts the attraction of bark beetles to their aggregation pheromones[2]. Verbenone ((-)-Verbenone) is a natural terpene in leaves of the tree, Verbena officinalis[1]. Verbenone has anti-aggregation pheromone and interrupts the attraction of bark beetles to their aggregation pheromones[2].

   

Sabinene

Bicyclo[3.1.0]hexane, 4-methylene-1-(1-methylethyl)-

C10H16 (136.1251936)


Sabinene is a thujene that is a bicyclic monoterpene isolated from the essential oils of various plant species. It has a role as a plant metabolite. Black pepper allergenic extract is used in allergenic testing. Laurus nobilis allergenic extract is used in allergenic testing. Nutmeg allergenic extract is used in allergenic testing. Sabinene is a natural product found in Teucrium montanum, Xylopia aromatica, and other organisms with data available. Carrot Seed Oil is the oil extracted from the seeds of Daucus carota. Carrot seed oil is primarily used in skin treatment preparations. A thujene that is a bicyclic monoterpene isolated from the essential oils of various plant species. 4(10)-thujene, also known as sabinen or 1-isopropyl-4-methylenebicyclo[3.1.0]hexane, is a member of the class of compounds known as bicyclic monoterpenoids. Bicyclic monoterpenoids are monoterpenoids containing exactly 2 rings, which are fused to each other. 4(10)-thujene is a citrus, pepper, and pine tasting compound and can be found in a number of food items such as sweet orange, green bell pepper, pot marjoram, and parsley, which makes 4(10)-thujene a potential biomarker for the consumption of these food products. Sabinene is an naturally occurring bicyclic monoterpene which can be used as flavorings, perfume additives, fine chemicals, and advanced biofuels. Sabinene is also an orally active compound to attenuates skeletal muscle atrophy and regulates ROS-mediated MAPK/MuRF-1 pathways[1][2]. Sabinene is an naturally occurring bicyclic monoterpene which can be used as flavorings, perfume additives, fine chemicals, and advanced biofuels. Sabinene is also an orally active compound to attenuates skeletal muscle atrophy and regulates ROS-mediated MAPK/MuRF-1 pathways[1][2].

   

trans-Aconitic acid

1-Propene-1,2,3-tricarboxylic acid

C6H6O6 (174.01643760000002)


The trans-isomer of aconitic acid. trans-Aconitic acid is present in normal human urine, and it has been suggested that is present in larger amounts with Reye's syndrome and organic aciduria. trans-Aconitic acid is a substrate of enzyme trans-aconitate 2-methyltransferase. trans-Aconitic acid is present in normal human urine, and it has been suggested that is present in larger amounts with Reye's syndrome and organic aciduria. trans-Aconitic acid is a substrate of enzyme trans-aconitate 2-methyltransferase.

   

Vanillic Acid

Vanillic acid hexoside

C8H8O4 (168.0422568)


Vanillic acid is a flavoring agent found in edible plants and fruits, also found in Angelica sinensis. Vanillic acid inhibits NF-κB activation. Anti-inflammatory, antibacterial, and chemopreventive effects[1]. Vanillic acid is a flavoring agent found in edible plants and fruits, also found in Angelica sinensis. Vanillic acid inhibits NF-κB activation. Anti-inflammatory, antibacterial, and chemopreventive effects[1].

   

Paeonol

Paeonol

C9H10O3 (166.062991)


Annotation level-1 Paeonol is an active extraction from the root of Paeonia suffruticosa, Paeonol inhibits MAO-A and MAO-B with IC50 of 54.6 μM and 42.5 μM, respectively. Paeonol is an active extraction from the root of Paeonia suffruticosa, Paeonol inhibits MAO-A and MAO-B with IC50 of 54.6 μM and 42.5 μM, respectively.

   

Thymol

InChI=1\C10H14O\c1-7(2)9-5-4-8(3)6-10(9)11\h4-7,11H,1-3H

C10H14O (150.1044594)


Thymol, also known as 1-hydroxy-5-methyl-2-isopropylbenzene or 2-isopropyl-5-methylphenol, is a member of the class of compounds known as aromatic monoterpenoids. Aromatic monoterpenoids are monoterpenoids containing at least one aromatic ring. Thus, thymol is considered to be an isoprenoid lipid molecule. Thymol is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Thymol can be synthesized from p-cymene. Thymol can also be synthesized into thymol sulfate and thymol sulfate(1-). Thymol is a camphor, herbal, and medicinal tasting compound and can be found in a number of food items such as anise, common oregano, caraway, and highbush blueberry, which makes thymol a potential biomarker for the consumption of these food products. Thymol can be found primarily in saliva and urine, as well as in human liver and skeletal muscle tissues. Thymol exists in all eukaryotes, ranging from yeast to humans. C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent D000890 - Anti-Infective Agents > D000935 - Antifungal Agents Thymol is the main monoterpene phenol occurring in essential oils isolated from plants belonging to the Lamiaceae family, and other plants such as those belonging to the Verbenaceae, Scrophulariaceae, Ranunculaceae and Apiaceae families. Thymol has antioxidant, anti-inflammatory, antibacterial and antifungal effects[1]. Thymol is the main monoterpene phenol occurring in essential oils isolated from plants belonging to the Lamiaceae family, and other plants such as those belonging to the Verbenaceae, Scrophulariaceae, Ranunculaceae and Apiaceae families. Thymol has antioxidant, anti-inflammatory, antibacterial and antifungal effects[1].

   

benzaldehyde

benzaldehyde-carbonyl-13c

C7H6O (106.0418626)


An arenecarbaldehyde that consists of benzene bearing a single formyl substituent; the simplest aromatic aldehyde and parent of the class of benzaldehydes.

   

Isovaleraldehyde

Isovaleraldehyde

C5H10O (86.07316100000001)


A methylbutanal that is butanal substituted by a methyl group at position 3. It occurs as a volatile constituent in olives.

   

Aconitic acid

1-Propene-1,2,3-tricarboxylic acid

C6H6O6 (174.01643760000002)


Aconitic acid is an organic acid. The two isomers are cis-aconitic acid and trans-aconitic acid. The conjugate base of cis-aconitic acid, cis-aconitate is an intermediate in the isomerisation of citrate to isocitrate in the citric acid cycle. It is acted upon by aconitase. Aconitic acid is found in many foods, some of which are oat, barley, red beetroot, and sunflower. Annotation level-2

   

Eugenol

Eugenol

C10H12O2 (164.0837252)


C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent D000890 - Anti-Infective Agents D012997 - Solvents Eugenol is an essential oil found in cloves with antibacterial, anthelmintic and antioxidant activity. Eugenol is shown to inhibit lipid peroxidation. Eugenol is an essential oil found in cloves with antibacterial, anthelmintic and antioxidant activity. Eugenol is shown to inhibit lipid peroxidation.

   

caryophyllene

(-)-beta-Caryophyllene

C15H24 (204.18779039999998)


A beta-caryophyllene in which the stereocentre adjacent to the exocyclic double bond has S configuration while the remaining stereocentre has R configuration. It is the most commonly occurring form of beta-caryophyllene, occurring in many essential oils, particularly oil of cloves. D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents β-Caryophyllene is a CB2 receptor agonist. β-Caryophyllene is a CB2 receptor agonist.

   

Xanthoxylol

4-[4-(2H-1,3-benzodioxol-5-yl)-hexahydrofuro[3,4-c]furan-1-yl]-2-methoxyphenol

C20H20O6 (356.125982)


   

D-Amorphene

4,7-Dimethyl-1-(propan-2-yl)-1,2,3,5,6,8a-hexahydronaphthalene

C15H24 (204.18779039999998)


   

Heterotropan

1-[2,3-dimethyl-4-(2,4,5-trimethoxyphenyl)cyclobutyl]-2,4,5-trimethoxybenzene

C24H32O6 (416.2198772)


   

Jyperin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-{[(2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4H-chromen-4-one

C21H20O12 (464.09547200000003)


Hyperoside is a NF-κB inhibitor, found from Hypericum monogynum. Hyperoside shows anti-tumor, antifungal, anti-inflammatory, anti-viral, and anti-oxidative activities, and can induce apoptosis[1][2]. Hyperoside is a NF-κB inhibitor, found from Hypericum monogynum. Hyperoside shows anti-tumor, antifungal, anti-inflammatory, anti-viral, and anti-oxidative activities, and can induce apoptosis[1][2].

   

Undecane

N-Undecane

C11H24 (156.18779039999998)


Undecane (also known as hendecane) is a liquid alkane hydrocarbon with the chemical formula CH3(CH2)9CH3. It is used as a mild sex attractant for various types of moths and cockroaches, and an alert signal for a variety of ants. It has 159 isomers. Undecane is found in many foods, some of which are sweet bay, lime, fenugreek, and allspice.

   

colforsin

3-butyl-1,3-dihydro-2-benzofuran-1-one

C12H14O2 (190.09937440000002)


   

Higenamine

1-[(4-hydroxyphenyl)methyl]-1,2,3,4-tetrahydroisoquinoline-6,7-diol

C16H17NO3 (271.1208372)


D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D006401 - Hematologic Agents > D005343 - Fibrinolytic Agents D020011 - Protective Agents > D002316 - Cardiotonic Agents D000893 - Anti-Inflammatory Agents D050299 - Fibrin Modulating Agents D002317 - Cardiovascular Agents D018501 - Antirheumatic Agents

   

Acetylfuran

5-17-09-00381 (Beilstein Handbook Reference)

C6H6O2 (110.0367776)


2-Acetylfuran (2-Furyl methyl ketone), an important flavour compound or intermediate in foods, is isolated from essential oils, sweet corn products, fruits and flowers. 2-Acetylfuran also can be formed from glucose and glycine by Maillard reaction. 2-Acetylfuran can be used to synthesis Cefuroxime[1][2].

   

borneol

1,7,7-Trimethyl-(1R,2S,4R)-rel-bicyclo[2.2.1]heptan-2-ol

C10H18O (154.1357578)


Flavouring agent. (±)-Borneol is found in many foods, some of which are pot marjoram, pepper (spice), saffron, and german camomile. Constituent of Curcuma aromatica and other plants. (+)-Borneol is found in nutmeg, herbs and spices, and ginger. Isoborneol ((±)-Isoborneol) is a monoterpenoid alcohol present in the essential oils of numerous medicinal plants and has antioxidant and antiviral properties. Isoborneol is a potent inhibitor of herpes simplex virus type 1 (HSV-1)[1][2]. Isoborneol ((±)-Isoborneol) is a monoterpenoid alcohol present in the essential oils of numerous medicinal plants and has antioxidant and antiviral properties. Isoborneol is a potent inhibitor of herpes simplex virus type 1 (HSV-1)[1][2].

   

Beta-Elemene

1-ethenyl-1-methyl-2,4-bis(prop-1-en-2-yl)cyclohexane

C15H24 (204.18779039999998)


β-Elemene ((-)-β-Elemene; Levo-β-elemene) is isolated from natural plant Curcuma aromatica with an antitumor activity. β-Elemene can induce cell apoptosis. β-Elemene ((-)-β-Elemene; Levo-β-elemene) is isolated from natural plant Curcuma aromatica with an antitumor activity. β-Elemene can induce cell apoptosis.

   

beta-Curcumene

1-methyl-4-(6-methylhept-6-en-2-yl)cyclohexa-1,4-diene

C15H24 (204.18779039999998)


   

b-Terpinene

4-methylidene-1-(propan-2-yl)cyclohex-1-ene

C10H16 (136.1251936)


   

Astragalin 7-rhamnoside

5-hydroxy-2-(4-hydroxyphenyl)-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-7-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]-4H-chromen-4-one

C27H30O15 (594.158463)


   

Quercetin 3-galactoside 7-rhamnoside

2-(3,4-dihydroxyphenyl)-5-hydroxy-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-7-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]-4H-chromen-4-one

C27H30O16 (610.153378)


   

xi-p-Menth-3-en-1-ol

1-methyl-4-(propan-2-yl)cyclohex-3-en-1-ol

C10H18O (154.1357578)


   

g-Muurolene

7-methyl-4-methylidene-1-(propan-2-yl)-1,2,3,4,4a,5,6,8a-octahydronaphthalene

C15H24 (204.18779039999998)


   

HEXADECANE

HEXADECANE

C16H34 (226.2660364)


A straight-chain alkane with 16 carbon atoms. It is a component of essential oil isolated from long pepper.

   

Pentadecane

n-pentadecane

C15H32 (212.2503872)


A straight-chain alkane with 15 carbon atoms. It is a component of volatile oils isolated from plants species like Scandix balansae.

   

1-PENTADECENE

1-PENTADECENE

C15H30 (210.234738)


An unbranched fifteen-carbon alkene with one double bond between C-1 and C-2.

   

4-Hydroxy-4-methylpentan-2-one

4-Hydroxy-4-methylpentan-2-one

C6H12O2 (116.08372519999999)


   

nerolidol

(±)-trans-Nerolidol

C15H26O (222.1983546)


A farnesane sesquiterpenoid that is dodeca-1,6,10-triene which carries methyl groups at positions 3, 7 and 11 and a hydroxy group at position 3. It is a natural product that is present in various flowers and plants with a floral odor. Chemically, it exists in two geometric isomers, trans and cis forms. It is widely used in cosmetics (e.g. shampoos and perfumes), in non-cosmetic products (e.g. detergents and cleansers) and also as a food flavoring agent. Nerolidol is a natural membrane-active sesquiterpene, with antitumor, antibacterial, antifungal and antiparasitic activity[1]. Nerolidol is a natural membrane-active sesquiterpene, with antitumor, antibacterial, antifungal and antiparasitic activity[1]. trans-Nerolidol is a sesquiterpene alcohol. It can be isolated from f aerial parts of Warionia saharae ex Benth. trans-Nerolidol improves the anti-proliferative effect of Doxorubicin (HY-15142A) against intestinal cancer cells in vitro. trans-Nerolidol also has anti-fungal activity[1][2]. trans-Nerolidol is a sesquiterpene alcohol. It can be isolated from f aerial parts of Warionia saharae ex Benth. trans-Nerolidol improves the anti-proliferative effect of Doxorubicin (HY-15142A) against intestinal cancer cells in vitro. trans-Nerolidol also has anti-fungal activity[1][2].

   

alpha-Curcumene

1-methyl-4-[(2R)-6-methylhept-5-en-2-yl]benzene

C15H22 (202.1721412)


Alpha-curcumene is also known as α-curcumene. Alpha-curcumene is a herb tasting compound and can be found in a number of food items such as pepper (spice), lovage, wild carrot, and rosemary, which makes alpha-curcumene a potential biomarker for the consumption of these food products.

   

(1Z,4E)-germacrene B

(1Z,4E)-germacra-1(10),4,7(11)-triene (1Z,5E)-1,5-dimethyl-8-(propan-2-ylidene)cyclodeca-1,5-diene

C15H24 (204.18779039999998)


   

(-)-alpha-Himachalene

(-)-2,7(14)-himachaladiene

C15H24 (204.18779039999998)


   
   
   

p-Menth-3-en-1-ol

p-Menth-3-en-1-ol

C10H18O (154.1357578)


   

3,4-Dimethoxycinnamyl alcohol

3,4-Dimethoxycinnamyl alcohol

C11H14O3 (194.0942894)


   

Elemene

(R,R)-1-isopropyl-4-methyl-3-(prop-1-en-2-yl)-4-vinylcyclohexene

C15H24 (204.18779039999998)


(-)-beta-elemene, also known as elemene or 2,4-diisopropenyl-1-methyl-1-vinylcyclohexane, is a member of the class of compounds known as elemane sesquiterpenoids. Elemane sesquiterpenoids are sesquiterpenoids with a structure based on the elemane skeleton. Elemane is a monocyclic compound consisting of a cyclohexane ring substituted with a methyl group, an ethyl group, and two 1-methylethyl groups at the 1-, 1-, 2-, and 4-position, respectively (-)-beta-elemene can be found in herbs and spices and root vegetables, which makes (-)-beta-elemene a potential biomarker for the consumption of these food products.

   

Bornyl acetate

(1R,2S,4R)-(+)-Bornyl acetate

C12H20O2 (196.14632200000003)


Same as: D09740 (-)-Bornyl acetate (L-(-)-Bornyl acetate), isolated from hyssop oil, is a less active enantiomer of (+)-Bornyl acetate. (-)-Bornyl acetate possesses antifungal activity[1]. (-)-Bornyl acetate (L-(-)-Bornyl acetate), isolated from hyssop oil, is a less active enantiomer of (+)-Bornyl acetate. (-)-Bornyl acetate possesses antifungal activity[1]. (-)-Bornyl acetate (L-(-)-Bornyl acetate), isolated from hyssop oil, is a less active enantiomer of (+)-Bornyl acetate. (-)-Bornyl acetate possesses antifungal activity[1]. (-)-Bornyl acetate (L-(-)-Bornyl acetate), isolated from hyssop oil, is a less active enantiomer of (+)-Bornyl acetate. (-)-Bornyl acetate possesses antifungal activity[1]. Bornyl acetate is a potent odorant, exhibiting one of the highest flavor dilution factor (FD factor). Bornyl acetate possesses anti-cancer activity[1][2]. Bornyl acetate is a potent odorant, exhibiting one of the highest flavor dilution factor (FD factor). Bornyl acetate possesses anti-cancer activity[1][2].

   

Humulene

trans,trans,trans-2,6,6,9-Tetramethyl-1,4,8-cycloundecatriene

C15H24 (204.18779039999998)


α-Humulene is a main constituent of Tanacetum vulgare L. (Asteraceae) essential oil with anti-inflammation (IC50=15±2 μg/mL). α-Humulene inhibits COX-2 and iNOS expression[1]. α-Humulene is a main constituent of Tanacetum vulgare L. (Asteraceae) essential oil with anti-inflammation (IC50=15±2 μg/mL). α-Humulene inhibits COX-2 and iNOS expression[1].

   

Vanillate

4-Hydroxy-3-methoxybenzoic acid

C8H8O4 (168.0422568)


Vanillic acid is a flavoring agent found in edible plants and fruits, also found in Angelica sinensis. Vanillic acid inhibits NF-κB activation. Anti-inflammatory, antibacterial, and chemopreventive effects[1]. Vanillic acid is a flavoring agent found in edible plants and fruits, also found in Angelica sinensis. Vanillic acid inhibits NF-κB activation. Anti-inflammatory, antibacterial, and chemopreventive effects[1].

   

Moslene

InChI=1\C10H16\c1-8(2)10-6-4-9(3)5-7-10\h4,7-8H,5-6H2,1-3H

C10H16 (136.1251936)


γ-Terpinene, a monoterpene, is an orally active antioxidant compound which can scavenge radicals directly. γ-Terpinene has potent antinociception activity[1]. γ-Terpinene, a monoterpene, is an orally active antioxidant compound which can scavenge radicals directly. γ-Terpinene has potent antinociception activity[1].

   

Myristicin

1,3-Benzodioxole, 4-methoxy-6-(2-propenyl)- (9CI)

C11H12O3 (192.0786402)


Myristicine ?act as a serotonin receptor antagonist, a weak monamine oxidase (MAO) inhibitor. Myristicine is the main component of nutmeg essential oil from Myristica fragrans?Houtt. Myristicine abuse produce hallucinogenic effects, organ damage, deliriumand others[1]. Myristicine is an orally bioavailable serotonin receptor antagonist and weak monoamine oxidase (MAO) inhibitor. Myristicine also exerts anti-cancer effects on gastric cancer cells by inhibiting the EGFR/ERK signaling pathway. Myristicine is the main component of nutmeg essential oil and has anti-cancer, anti-proliferative, antibacterial, anti-inflammatory and apoptosis-inducing effects. Myristicine abuse can produce hallucinogenic effects, organ damage, etc[1][2][3][4]. Myristicine is an orally bioavailable serotonin receptor antagonist and weak monoamine oxidase (MAO) inhibitor. Myristicine also exerts anti-cancer effects on gastric cancer cells by inhibiting the EGFR/ERK signaling pathway. Myristicine is the main component of nutmeg essential oil and has anti-cancer, anti-proliferative, antibacterial, anti-inflammatory and apoptosis-inducing effects. Myristicine abuse can produce hallucinogenic effects, organ damage, etc[1][2][3][4]. Myristicine ?act as a serotonin receptor antagonist, a weak monamine oxidase (MAO) inhibitor. Myristicine is the main component of nutmeg essential oil from Myristica fragrans?Houtt. Myristicine abuse produce hallucinogenic effects, organ damage, deliriumand others[1].

   

Isoelemicin

Benzene, 1,2,3-trimethoxy-5-(1-propenyl)-, (E)-

C12H16O3 (208.1099386)


   

Elemicin

Benzene, 1,2,3-trimethoxy-5-(2-propenyl)- (9CI)

C12H16O3 (208.1099386)


Elemicin is an orally active alkenylbenzene widely distributed in many herbs and spices. Elemicin inhibits Stearoyl-CoA Desaturase 1 (SCD1) by metabolic activation. Elemicin has anti-influenza activities, antimicrobial, antioxidant, and antiviral activities. Elemicin and its reactive metabolite of 1′-Hydroxyelemicin can induce hepatotoxicity[1][2][3][4]. Elemicin is a alkenylbenzene widely distributed in many herbs and spices. Elemicin inhibits Stearoyl-CoA Desaturase 1 (SCD1) by metabolic activation. Elemicin is one of the main components in aromatic food and has antimicrobial, antioxidant, and antiviral activities. Elemicin possesses genotoxicity and carcinogenicity[1]. Elemicin is a alkenylbenzene widely distributed in many herbs and spices. Elemicin inhibits Stearoyl-CoA Desaturase 1 (SCD1) by metabolic activation. Elemicin is one of the main components in aromatic food and has antimicrobial, antioxidant, and antiviral activities. Elemicin possesses genotoxicity and carcinogenicity[1].

   

Eucarvone

2,4-Cycloheptadien-1-one, 2,6,6-trimethyl-

C10H14O (150.1044594)


   

CHEBI:15385

(1S,8AR)-4,7-dimethyl-1-(propan-2-yl)-1,2,3,5,6,8a-hexahydronaphthalene

C15H24 (204.18779039999998)


   

Zetan

InChI=1\C16H34\c1-3-5-7-9-11-13-15-16-14-12-10-8-6-4-2\h3-16H2,1-2H

C16H34 (226.2660364)


   

Zingiberene

(S-(R*,S*))-5-(1,5-Dimethylhexen-4-yl)-2-methyl-1,3-cyclohexa-1,3-diene

C15H24 (204.18779039999998)


Zingiberene is 2-Methylcyclohexa-1,3-diene in which a hydrogen at the 5 position is substituted (R configuration) by a 6-methyl-hept-5-en-2-yl group (S configuration). It is a sesquiterpene found in the dried rhizomes of Indonesian ginger, Zingiber officinale. It is a sesquiterpene and a cyclohexadiene. It is an enantiomer of an ent-zingiberene. Zingiberene is a natural product found in Chaerophyllum azoricum, Helichrysum odoratissimum, and other organisms with data available.

   

Prenal

InChI=1\C5H8O\c1-5(2)3-4-6\h3-4H,1-2H

C5H8O (84.0575118)


   

cuminol

InChI=1\C10H14O\c1-8(2)10-5-3-9(7-11)4-6-10\h3-6,8,11H,7H2,1-2H

C10H14O (150.1044594)


4-Isopropylbenzyl alcohol is a chemical composition of the essential oils from the leaves and flowers of Camellia nitidissima. C. nitidissima possess multiple biological activities including antioxidant activity, anticancer activity, and cytotoxicity as well as inhibiting the formation of advanced glycation end-products[1]. 4-Isopropylbenzyl alcohol is a chemical composition of the essential oils from the leaves and flowers of Camellia nitidissima. C. nitidissima possess multiple biological activities including antioxidant activity, anticancer activity, and cytotoxicity as well as inhibiting the formation of advanced glycation end-products[1].

   

99-84-3

Cyclohexene, 4-methylene-1-(1-methylethyl)-

C10H16 (136.1251936)


   

Apiol

Benzene, 1-allyl-2,5-dimethoxy-3,4-(methylenedioxy)-

C12H14O4 (222.0892044)


   
   

Borneol

Bicyclo(2.2.1)heptan-2-ol, 1,7,7-trimethyl-, endo-(.+/-.)-

C10H18O (154.1357578)


Borneol appears as a white colored lump-solid with a sharp camphor-like odor. Burns readily. Slightly denser than water and insoluble in water. Used to make perfumes. Borneol is a bornane monoterpenoid that is 1,7,7-trimethylbicyclo[2.2.1]heptane substituted by a hydroxy group at position 2. It has a role as a volatile oil component and a metabolite. Isoborneol is a natural product found in Xylopia sericea, Eupatorium capillifolium, and other organisms with data available. A bornane monoterpenoid that is 1,7,7-trimethylbicyclo[2.2.1]heptane substituted by a hydroxy group at position 2. Isoborneol ((±)-Isoborneol) is a monoterpenoid alcohol present in the essential oils of numerous medicinal plants and has antioxidant and antiviral properties. Isoborneol is a potent inhibitor of herpes simplex virus type 1 (HSV-1)[1][2]. Isoborneol ((±)-Isoborneol) is a monoterpenoid alcohol present in the essential oils of numerous medicinal plants and has antioxidant and antiviral properties. Isoborneol is a potent inhibitor of herpes simplex virus type 1 (HSV-1)[1][2].

   

TERPINOLENE

TERPINOLENE

C10H16 (136.1251936)


A p-menthadiene with double bonds at positions 1 and 4(8).

   

(+)-gamma-cadinene

(+)-gamma-cadinene

C15H24 (204.18779039999998)


A member of the cadinene family of sesquiterpenes in which the isopropyl group is cis to the hydrogen at the adjacent bridgehead carbon (the 1S,4aR,8aR enantiomer).

   
   

Diacetone alcohol

4-Hydroxy-4-methyl-2-pentanone

C6H12O2 (116.08372519999999)


A beta-hydroxy ketone formed by hydroxylation of 4-methylpentan-2-one at the 4-position. It has been isolated from Achnatherum robustum.

   
   

Pinocarveol

Bicyclo[3.1.1]heptan-3-ol,6,6-dimethyl-2-methylene-

C10H16O (152.12010859999998)


A pinane monoterpenoid that is a bicyclo[3.1.1]heptane substituted by two methyl groups at position 6, a methylidene group at position 2 and a hydroxy group at position 3.

   

Dillapiol

Dillapiole

C12H14O4 (222.0892044)


A natural product found in Anethum graveolens.

   

cedrene

Cedarwood oil terpenes fraction

C15H24 (204.18779039999998)


(-)-Cedrene (α-cedrene) is a sesquiterpene constituent of cedarwood oils, with anti-leukemic, antimicrobial and anti-obesity activities[1]. (-)-Cedrene (α-cedrene) is a sesquiterpene constituent of cedarwood oils, with anti-leukemic, antimicrobial and anti-obesity activities[1]. (-)-Cedrene (α-cedrene) is a sesquiterpene constituent of cedarwood oils, with anti-leukemic, antimicrobial and anti-obesity activities[1]. (-)-Cedrene (α-cedrene) is a sesquiterpene constituent of cedarwood oils, with anti-leukemic, antimicrobial and anti-obesity activities[1].

   

beta-terpinene

beta-terpinene

C10H16 (136.1251936)


   

(R,R)-1-isopropyl-4-methyl-3-(prop-1-en-2-yl)-4-vinylcyclohexene

(R,R)-1-isopropyl-4-methyl-3-(prop-1-en-2-yl)-4-vinylcyclohexene

C15H24 (204.18779039999998)


   

delta-Cadinene

delta-Cadinene

C15H24 (204.18779039999998)


A member of the cadinene family of sesquiterpenes in which the double bonds are located at the 4-4a and 7-8 positions, and in which the isopropyl group at position 1 is cis to the hydrogen at the adjacent bridgehead carbon (position 8a).

   

6-methyleugenol

6-methyleugenol

C11H14O2 (178.09937440000002)


A phenylpropanoid consisting of eugenol having a methyl substituent at the 6-position.

   

3-Methylbut-2-enal

3-Methylbut-2-enal

C5H8O (84.0575118)


An enal consisting of but-2-ene with a methyl substituent at position 3 and an oxo group at position 1.

   

Pentan-1-ol

Pentan-1-ol

C5H12O (88.0888102)


A short-chain primary fatty alcohol that is pentane in which a hydrogen of one of the methyl groups is substituted by a hydroxy group. It has been isolated from Melicope ptelefolia.

   

(1s,2s,7s,8r)-11-[(1e)-3-hydroxyprop-1-en-1-yl]-3,3,5,8,10,10-hexamethoxy-7-(prop-2-en-1-yl)tricyclo[6.2.2.0²,⁷]dodeca-5,11-diene-4,9-dione

(1s,2s,7s,8r)-11-[(1e)-3-hydroxyprop-1-en-1-yl]-3,3,5,8,10,10-hexamethoxy-7-(prop-2-en-1-yl)tricyclo[6.2.2.0²,⁷]dodeca-5,11-diene-4,9-dione

C24H32O9 (464.2046222)


   

(4ar,5r,7as)-7a-methyl-5-(prop-1-en-2-yl)-3-(propan-2-ylidene)-tetrahydro-4h-cyclopenta[b]pyran-2-one

(4ar,5r,7as)-7a-methyl-5-(prop-1-en-2-yl)-3-(propan-2-ylidene)-tetrahydro-4h-cyclopenta[b]pyran-2-one

C15H22O2 (234.1619712)


   

(2e,4e,8z)-n-(2-methylpropyl)deca-2,4,8-trienimidic acid

(2e,4e,8z)-n-(2-methylpropyl)deca-2,4,8-trienimidic acid

C14H23NO (221.17795479999998)


   

4a,8,8-trimethyl-1h,1ah,5h,6h,7h-cyclopropa[e]naphthalen-2-one

4a,8,8-trimethyl-1h,1ah,5h,6h,7h-cyclopropa[e]naphthalen-2-one

C14H20O (204.151407)


   

(2e,4e)-n-(2-methylpropyl)dodeca-2,4,8,10-tetraenimidic acid

(2e,4e)-n-(2-methylpropyl)dodeca-2,4,8,10-tetraenimidic acid

C16H25NO (247.193604)


   
   

(4r,5r)-4-hydroxy-5-(2-hydroxypropan-2-yl)-2-methylcyclohex-2-en-1-one

(4r,5r)-4-hydroxy-5-(2-hydroxypropan-2-yl)-2-methylcyclohex-2-en-1-one

C10H16O3 (184.1099386)


   

3-(2-methylpropyl)-3a,4,5,6-tetrahydro-3h-2-benzofuran-1-one

3-(2-methylpropyl)-3a,4,5,6-tetrahydro-3h-2-benzofuran-1-one

C12H18O2 (194.1306728)


   

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-{[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-({[(2r,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}methyl)oxan-2-yl]oxy}chromen-4-one

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-{[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-({[(2r,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}methyl)oxan-2-yl]oxy}chromen-4-one

C27H30O16 (610.153378)


   

5-[(3as,4s,6as)-4-(2h-1,3-benzodioxol-5-yl)-hexahydrofuro[3,4-c]furan-1-yl]-2h-1,3-benzodioxole

5-[(3as,4s,6as)-4-(2h-1,3-benzodioxol-5-yl)-hexahydrofuro[3,4-c]furan-1-yl]-2h-1,3-benzodioxole

C20H18O6 (354.1103328)


   

(1r,8as)-1,4-dimethyl-7-(propan-2-ylidene)-2,3,5,6,8,8a-hexahydroazulen-1-ol

(1r,8as)-1,4-dimethyl-7-(propan-2-ylidene)-2,3,5,6,8,8a-hexahydroazulen-1-ol

C15H24O (220.18270539999997)


   
   

(1r,5s)-5-hydroxy-4,7,7-trimethyl-8-oxabicyclo[3.2.1]oct-3-en-2-one

(1r,5s)-5-hydroxy-4,7,7-trimethyl-8-oxabicyclo[3.2.1]oct-3-en-2-one

C10H14O3 (182.0942894)


   

(1S,6R)-3,7,7-trimethylbicyclo[4.1.0]hept-3-ene-2,5-dione

(1S,6R)-3,7,7-trimethylbicyclo[4.1.0]hept-3-ene-2,5-quinone

C10H12O2 (164.0837252)


{"Ingredient_id": "HBIN003312","Ingredient_name": "(1S,6R)-3,7,7-trimethylbicyclo[4.1.0]hept-3-ene-2,5-dione","Alias": "(1S,6R)-3,7,7-trimethylbicyclo[4.1.0]hept-3-ene-2,5-quinone","Ingredient_formula": "C10H12O2","Ingredient_Smile": "NA","Ingredient_weight": "164.2","OB_score": "64.22587061","CAS_id": "6617-34-1","SymMap_id": "SMIT05444","TCMID_id": "NA","TCMSP_id": "MOL003361","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}

   

asarinin

BG01067667; SCHEMBL6704290; 333JW641ML; CCRIS 8100; 11000-37-6; 1,3-Benzodioxole, 5,5'-(tetrahydro-1H,3H-furo(3,4-c)furan-1,4-diyl)bis-, (1R-(1alpha,3aalpha,4beta,6aalpha))-; (-)-Asarinin; ASARININ (-); NCGC00017230-02; Xanthoxyln S; CHEMBL1572261; 5-[(1S,3AS,4R,6AS)-4-(2H-1,3-BENZODIOXOL-5-YL)-HEXAHYDROFURO[3,4-C]FURAN-1-YL]-2H-1,3-BENZODIOXOLE; AK608252; ZINC12375085; Y0033; 133-04-0; AKOS000278098; MolPort-000-882-076; NCGC00142464-01; Asarinin; UNII-F6PWY73ZGT component PEYUIKBAABKQKQ-FQZPYLGXSA-N; 133A040; UNII-333JW641ML

C20H18O6 (354.1103328)


{"Ingredient_id": "HBIN017025","Ingredient_name": "asarinin","Alias": "BG01067667; SCHEMBL6704290; 333JW641ML; CCRIS 8100; 11000-37-6; 1,3-Benzodioxole, 5,5'-(tetrahydro-1H,3H-furo(3,4-c)furan-1,4-diyl)bis-, (1R-(1alpha,3aalpha,4beta,6aalpha))-; (-)-Asarinin; ASARININ (-); NCGC00017230-02; Xanthoxyln S; CHEMBL1572261; 5-[(1S,3AS,4R,6AS)-4-(2H-1,3-BENZODIOXOL-5-YL)-HEXAHYDROFURO[3,4-C]FURAN-1-YL]-2H-1,3-BENZODIOXOLE; AK608252; ZINC12375085; Y0033; 133-04-0; AKOS000278098; MolPort-000-882-076; NCGC00142464-01; Asarinin; UNII-F6PWY73ZGT component PEYUIKBAABKQKQ-FQZPYLGXSA-N; 133A040; UNII-333JW641ML","Ingredient_formula": "C20H18O6","Ingredient_Smile": "C1C2C(COC2C3=CC4=C(C=C3)OCO4)C(O1)C5=CC6=C(C=C5)OCO6","Ingredient_weight": "354.4 g/mol","OB_score": "NA","CAS_id": "NA","SymMap_id": "SMIT14388","TCMID_id": "1833","TCMSP_id": "NA","TCM_ID_id": "6595;16525","PubChem_id": "102004873","DrugBank_id": "NA"}

   

8a-methyl-5-methylidene-3-(propan-2-ylidene)-hexahydronaphthalen-2-one

8a-methyl-5-methylidene-3-(propan-2-ylidene)-hexahydronaphthalen-2-one

C15H22O (218.1670562)


   
   
   

(1r,2s,7s,8s)-3,3,5,8,10,10-hexamethoxy-7-(prop-2-en-1-yl)-11-{[(1r,2r,4r)-1,8,8-trimethoxy-7-oxo-5-(prop-2-en-1-yl)bicyclo[2.2.2]oct-5-en-2-yl]methyl}tricyclo[6.2.2.0²,⁷]dodeca-5,11-diene-4,9-dione

(1r,2s,7s,8s)-3,3,5,8,10,10-hexamethoxy-7-(prop-2-en-1-yl)-11-{[(1r,2r,4r)-1,8,8-trimethoxy-7-oxo-5-(prop-2-en-1-yl)bicyclo[2.2.2]oct-5-en-2-yl]methyl}tricyclo[6.2.2.0²,⁷]dodeca-5,11-diene-4,9-dione

C36H48O12 (672.3145608)


   

(1s,2s,7s,8r)-3,3,5,8,10,10-hexamethoxy-11-[(1e)-prop-1-en-1-yl]-7-(prop-2-en-1-yl)tricyclo[6.2.2.0²,⁷]dodeca-5,11-diene-4,9-dione

(1s,2s,7s,8r)-3,3,5,8,10,10-hexamethoxy-11-[(1e)-prop-1-en-1-yl]-7-(prop-2-en-1-yl)tricyclo[6.2.2.0²,⁷]dodeca-5,11-diene-4,9-dione

C24H32O8 (448.20970719999997)


   

(1s,2s,7s,8r)-3,3,5,8,10,10-hexamethoxy-7-(prop-2-en-1-yl)-11-{[(1s,2s,4s)-1,8,8-trimethoxy-7-oxo-5-(prop-2-en-1-yl)bicyclo[2.2.2]oct-5-en-2-yl]methyl}tricyclo[6.2.2.0²,⁷]dodeca-5,11-diene-4,9-dione

(1s,2s,7s,8r)-3,3,5,8,10,10-hexamethoxy-7-(prop-2-en-1-yl)-11-{[(1s,2s,4s)-1,8,8-trimethoxy-7-oxo-5-(prop-2-en-1-yl)bicyclo[2.2.2]oct-5-en-2-yl]methyl}tricyclo[6.2.2.0²,⁷]dodeca-5,11-diene-4,9-dione

C36H48O12 (672.3145608)


   

4-[(1s,3ar,4r,6ar)-4-(2h-1,3-benzodioxol-5-yl)-hexahydrofuro[3,4-c]furan-1-yl]-2-methoxyphenol

4-[(1s,3ar,4r,6ar)-4-(2h-1,3-benzodioxol-5-yl)-hexahydrofuro[3,4-c]furan-1-yl]-2-methoxyphenol

C20H20O6 (356.125982)


   

(1s,4s,7r)-1,3,3-trimethoxy-5-(prop-2-en-1-yl)-7-[(3,4,5-trimethoxyphenyl)methyl]bicyclo[2.2.2]oct-5-en-2-one

(1s,4s,7r)-1,3,3-trimethoxy-5-(prop-2-en-1-yl)-7-[(3,4,5-trimethoxyphenyl)methyl]bicyclo[2.2.2]oct-5-en-2-one

C24H32O7 (432.2147922)


   

2-ethenyl-2-methyl-3-(prop-1-en-2-yl)-5-(propan-2-ylidene)cyclohexan-1-ol

2-ethenyl-2-methyl-3-(prop-1-en-2-yl)-5-(propan-2-ylidene)cyclohexan-1-ol

C15H24O (220.18270539999997)


   

6-methyl-2-methylidene-6-(4-methylpent-3-en-1-yl)bicyclo[3.1.1]heptane

6-methyl-2-methylidene-6-(4-methylpent-3-en-1-yl)bicyclo[3.1.1]heptane

C15H24 (204.18779039999998)


   

5-hydroxy-4,7,7-trimethyl-8-oxabicyclo[3.2.1]oct-3-en-2-one

5-hydroxy-4,7,7-trimethyl-8-oxabicyclo[3.2.1]oct-3-en-2-one

C10H14O3 (182.0942894)


   

4-[(1s,3ar,4r,6ar)-4-(4-hydroxy-3-methoxyphenyl)-hexahydrofuro[3,4-c]furan-1-yl]-2-methoxyphenol

4-[(1s,3ar,4r,6ar)-4-(4-hydroxy-3-methoxyphenyl)-hexahydrofuro[3,4-c]furan-1-yl]-2-methoxyphenol

C20H22O6 (358.1416312)


   

(1s,3r,7s,8s)-2,2,6,8-tetramethyltricyclo[5.3.1.0³,⁸]undecan-3-ol

(1s,3r,7s,8s)-2,2,6,8-tetramethyltricyclo[5.3.1.0³,⁸]undecan-3-ol

C15H26O (222.1983546)


   

(1r,2s,7s,8s)-8-isopropyl-1,3-dimethyltricyclo[4.4.0.0²,⁷]dec-3-ene

(1r,2s,7s,8s)-8-isopropyl-1,3-dimethyltricyclo[4.4.0.0²,⁷]dec-3-ene

C15H24 (204.18779039999998)


   

3,3,5,8,10,10-hexamethoxy-11-(prop-1-en-1-yl)-7-(prop-2-en-1-yl)tricyclo[6.2.2.0²,⁷]dodeca-5,11-diene-4,9-dione

3,3,5,8,10,10-hexamethoxy-11-(prop-1-en-1-yl)-7-(prop-2-en-1-yl)tricyclo[6.2.2.0²,⁷]dodeca-5,11-diene-4,9-dione

C24H32O8 (448.20970719999997)


   

(1s,2r)-4-(2-hydroxypropan-2-yl)-1-methylcyclohex-3-ene-1,2-diol

(1s,2r)-4-(2-hydroxypropan-2-yl)-1-methylcyclohex-3-ene-1,2-diol

C10H18O3 (186.1255878)


   

(2e,4e,8z,10z)-n-(2-methylpropyl)tetradeca-2,4,8,10-tetraenimidic acid

(2e,4e,8z,10z)-n-(2-methylpropyl)tetradeca-2,4,8,10-tetraenimidic acid

C18H29NO (275.2249024)


   

(1ar,4as,8as)-4a,8,8-trimethyl-1h,1ah,5h,6h,7h-cyclopropa[e]naphthalen-2-one

(1ar,4as,8as)-4a,8,8-trimethyl-1h,1ah,5h,6h,7h-cyclopropa[e]naphthalen-2-one

C14H20O (204.151407)


   

4,10,11,11-tetramethyltricyclo[5.3.1.0¹,⁵]undec-9-ene

4,10,11,11-tetramethyltricyclo[5.3.1.0¹,⁵]undec-9-ene

C15H24 (204.18779039999998)


   

1-[2-hydroxy-4,6-bis({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy})phenyl]-3-(4-hydroxyphenyl)prop-2-en-1-one

1-[2-hydroxy-4,6-bis({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy})phenyl]-3-(4-hydroxyphenyl)prop-2-en-1-one

C27H32O15 (596.1741122)


   

5-hydroxy-3,7,7-trimethylbicyclo[4.1.0]hept-3-en-2-one

5-hydroxy-3,7,7-trimethylbicyclo[4.1.0]hept-3-en-2-one

C10H14O2 (166.09937440000002)


   

n-(2-methylpropyl)deca-2,4-dienimidic acid

n-(2-methylpropyl)deca-2,4-dienimidic acid

C14H25NO (223.193604)


   

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}chromen-4-one

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}chromen-4-one

C21H20O12 (464.09547200000003)


   

(1s,2s,8r)-3,3,5,8,10,10-hexamethoxy-11-[(1e)-prop-1-en-1-yl]-7-(prop-2-en-1-yl)tricyclo[6.2.2.0²,⁷]dodeca-5,11-diene-4,9-dione

(1s,2s,8r)-3,3,5,8,10,10-hexamethoxy-11-[(1e)-prop-1-en-1-yl]-7-(prop-2-en-1-yl)tricyclo[6.2.2.0²,⁷]dodeca-5,11-diene-4,9-dione

C24H32O8 (448.20970719999997)


   

(5s,6s)-6-ethenyl-3,6-dimethyl-5-(prop-1-en-2-yl)-4,5-dihydro-1-benzofuran-7-one

(5s,6s)-6-ethenyl-3,6-dimethyl-5-(prop-1-en-2-yl)-4,5-dihydro-1-benzofuran-7-one

C15H18O2 (230.1306728)


   

3,6,10-trimethyl-4h,7h,8h-cyclodeca[b]furan-11-one

3,6,10-trimethyl-4h,7h,8h-cyclodeca[b]furan-11-one

C15H18O2 (230.1306728)


   

(2e)-1-[2-hydroxy-4,6-bis({[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy})phenyl]-3-(4-hydroxyphenyl)prop-2-en-1-one

(2e)-1-[2-hydroxy-4,6-bis({[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy})phenyl]-3-(4-hydroxyphenyl)prop-2-en-1-one

C27H32O15 (596.1741122)


   
   

(4ar,7r,8ar)-4a-methyl-1-methylidene-7-(prop-1-en-2-yl)-octahydronaphthalene

(4ar,7r,8ar)-4a-methyl-1-methylidene-7-(prop-1-en-2-yl)-octahydronaphthalene

C15H24 (204.18779039999998)


   

(1s)-8-isopropyl-1,3-dimethyltricyclo[4.4.0.0²,⁷]dec-3-ene

(1s)-8-isopropyl-1,3-dimethyltricyclo[4.4.0.0²,⁷]dec-3-ene

C15H24 (204.18779039999998)


   

4-[(1r,3as,4r,6as)-4-(2h-1,3-benzodioxol-5-yl)-hexahydrofuro[3,4-c]furan-1-yl]-2-methoxyphenol

4-[(1r,3as,4r,6as)-4-(2h-1,3-benzodioxol-5-yl)-hexahydrofuro[3,4-c]furan-1-yl]-2-methoxyphenol

C20H20O6 (356.125982)


   

(1r,4s,5s)-1,8-dimethyl-4-(prop-1-en-2-yl)spiro[4.5]dec-7-ene

(1r,4s,5s)-1,8-dimethyl-4-(prop-1-en-2-yl)spiro[4.5]dec-7-ene

C15H24 (204.18779039999998)


   

(1r,2e,6e)-2,6-dimethyl-9-(propan-2-ylidene)cyclodeca-2,6-dien-1-yl acetate

(1r,2e,6e)-2,6-dimethyl-9-(propan-2-ylidene)cyclodeca-2,6-dien-1-yl acetate

C17H26O2 (262.1932696)


   

3,7,7-trimethylbicyclo[4.1.0]hept-3-ene-2,5-dione

3,7,7-trimethylbicyclo[4.1.0]hept-3-ene-2,5-dione

C10H12O2 (164.0837252)


   

5-hydroxy-2-(4-hydroxyphenyl)-3-{[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-7-{[(2r,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}chromen-4-one

5-hydroxy-2-(4-hydroxyphenyl)-3-{[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-7-{[(2r,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}chromen-4-one

C27H30O15 (594.158463)


   

(2e)-3-(2h-1,3-benzodioxol-5-yl)-n-(2-methylpropyl)prop-2-enimidic acid

(2e)-3-(2h-1,3-benzodioxol-5-yl)-n-(2-methylpropyl)prop-2-enimidic acid

C14H17NO3 (247.1208372)


   

(2e,4e)-n-(2-methylpropyl)deca-2,4,8-trienimidic acid

(2e,4e)-n-(2-methylpropyl)deca-2,4,8-trienimidic acid

C14H23NO (221.17795479999998)


   

4-[(1r,3ar,4s,6ar)-4-(2h-1,3-benzodioxol-5-yl)-hexahydrofuro[3,4-c]furan-1-yl]-2-methoxyphenol

4-[(1r,3ar,4s,6ar)-4-(2h-1,3-benzodioxol-5-yl)-hexahydrofuro[3,4-c]furan-1-yl]-2-methoxyphenol

C20H20O6 (356.125982)


   

(2e)-1-(2-hydroxy-6-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4-{[(2s,3s,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2r,3s,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}phenyl)-3-(4-hydroxyphenyl)prop-2-en-1-one

(2e)-1-(2-hydroxy-6-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4-{[(2s,3s,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2r,3s,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}phenyl)-3-(4-hydroxyphenyl)prop-2-en-1-one

C33H42O20 (758.2269332000001)


   

(1r,5s)-4,6,6-trimethylbicyclo[3.1.1]hept-3-en-2-one

(1r,5s)-4,6,6-trimethylbicyclo[3.1.1]hept-3-en-2-one

C10H14O (150.1044594)


   

(1s,4s,7s)-1,3,3-trimethoxy-5-(prop-2-en-1-yl)-7-[(3,4,5-trimethoxyphenyl)methyl]bicyclo[2.2.2]oct-5-en-2-one

(1s,4s,7s)-1,3,3-trimethoxy-5-(prop-2-en-1-yl)-7-[(3,4,5-trimethoxyphenyl)methyl]bicyclo[2.2.2]oct-5-en-2-one

C24H32O7 (432.2147922)


   

2-ethyl-6-methoxy-4-(prop-2-en-1-yl)phenol

2-ethyl-6-methoxy-4-(prop-2-en-1-yl)phenol

C12H16O2 (192.1150236)


   

1-[(1s,2r,3s,4r)-2,3-dimethyl-4-(2,4,5-trimethoxyphenyl)cyclobutyl]-2,4,5-trimethoxybenzene

1-[(1s,2r,3s,4r)-2,3-dimethyl-4-(2,4,5-trimethoxyphenyl)cyclobutyl]-2,4,5-trimethoxybenzene

C24H32O6 (416.2198772)


   
   

(4ar,5s,7as)-7a-methyl-5-(prop-1-en-2-yl)-3-(propan-2-ylidene)-tetrahydro-4h-cyclopenta[b]pyran-2-one

(4ar,5s,7as)-7a-methyl-5-(prop-1-en-2-yl)-3-(propan-2-ylidene)-tetrahydro-4h-cyclopenta[b]pyran-2-one

C15H22O2 (234.1619712)


   

3,3,5,8,10,10-hexamethoxy-7,11-bis(prop-2-en-1-yl)tricyclo[6.2.2.0²,⁷]dodeca-5,11-diene-4,9-dione

3,3,5,8,10,10-hexamethoxy-7,11-bis(prop-2-en-1-yl)tricyclo[6.2.2.0²,⁷]dodeca-5,11-diene-4,9-dione

C24H32O8 (448.20970719999997)


   

11-(3-hydroxyprop-1-en-1-yl)-3,3,5,8,10,10-hexamethoxy-7-(prop-2-en-1-yl)tricyclo[6.2.2.0²,⁷]dodeca-5,11-diene-4,9-dione

11-(3-hydroxyprop-1-en-1-yl)-3,3,5,8,10,10-hexamethoxy-7-(prop-2-en-1-yl)tricyclo[6.2.2.0²,⁷]dodeca-5,11-diene-4,9-dione

C24H32O9 (464.2046222)


   

2-(3,4-dihydroxyphenyl)-5-hydroxy-3-{[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-7-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}chromen-4-one

2-(3,4-dihydroxyphenyl)-5-hydroxy-3-{[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-7-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}chromen-4-one

C27H30O16 (610.153378)


   

(1r)-2,6-dimethyl-9-(propan-2-ylidene)cyclodeca-2,6-dien-1-ol

(1r)-2,6-dimethyl-9-(propan-2-ylidene)cyclodeca-2,6-dien-1-ol

C15H24O (220.18270539999997)


   

(2e)-1-(2-hydroxy-6-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}phenyl)-3-(4-hydroxyphenyl)prop-2-en-1-one

(2e)-1-(2-hydroxy-6-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}phenyl)-3-(4-hydroxyphenyl)prop-2-en-1-one

C33H42O20 (758.2269332000001)


   
   

(2s,7s)-3,3,7-trimethyl-8-methylidenetricyclo[5.4.0.0²,⁹]undecane

(2s,7s)-3,3,7-trimethyl-8-methylidenetricyclo[5.4.0.0²,⁹]undecane

C15H24 (204.18779039999998)


   

5-[(1s,3ar,4r,6as)-4-(2h-1,3-benzodioxol-5-yl)-hexahydrofuro[3,4-c]furan-1-yl]-2h-1,3-benzodioxole

5-[(1s,3ar,4r,6as)-4-(2h-1,3-benzodioxol-5-yl)-hexahydrofuro[3,4-c]furan-1-yl]-2h-1,3-benzodioxole

C20H18O6 (354.1103328)


   

5-[(1s,3as,4r,6as)-4-(2h-1,3-benzodioxol-5-yl)-hexahydrofuro[3,4-c]furan-1-yl]-2-methoxyphenol

5-[(1s,3as,4r,6as)-4-(2h-1,3-benzodioxol-5-yl)-hexahydrofuro[3,4-c]furan-1-yl]-2-methoxyphenol

C20H20O6 (356.125982)


   

(2e,4e)-n-(2-methylpropyl)deca-2,4-dienimidic acid

(2e,4e)-n-(2-methylpropyl)deca-2,4-dienimidic acid

C14H25NO (223.193604)


   

(5s)-4,11,11-trimethyl-10-methylidenetricyclo[5.3.1.0¹,⁵]undecane

(5s)-4,11,11-trimethyl-10-methylidenetricyclo[5.3.1.0¹,⁵]undecane

C15H24 (204.18779039999998)


   
   

(6e)-2,6-dimethyl-10-methylidenedodeca-2,6-diene

(6e)-2,6-dimethyl-10-methylidenedodeca-2,6-diene

C15H26 (206.2034396)


   

5-[4-(2h-1,3-benzodioxol-5-yl)-hexahydrofuro[3,4-c]furan-1-yl]-2-methoxyphenol

5-[4-(2h-1,3-benzodioxol-5-yl)-hexahydrofuro[3,4-c]furan-1-yl]-2-methoxyphenol

C20H20O6 (356.125982)


   

(1as,4ar,7as,7br)-1,1,7-trimethyl-4-methylidene-octahydro-1ah-cyclopropa[e]azulene

(1as,4ar,7as,7br)-1,1,7-trimethyl-4-methylidene-octahydro-1ah-cyclopropa[e]azulene

C15H24 (204.18779039999998)


   

(1r,2e,6e)-2,6-dimethyl-9-(propan-2-ylidene)cyclodeca-2,6-dien-1-ol

(1r,2e,6e)-2,6-dimethyl-9-(propan-2-ylidene)cyclodeca-2,6-dien-1-ol

C15H24O (220.18270539999997)


   

1,5-dimethyl-8-(propan-2-ylidene)cyclodeca-1,5-diene

1,5-dimethyl-8-(propan-2-ylidene)cyclodeca-1,5-diene

C15H24 (204.18779039999998)


   

stigmast-5-en-3-ol, (3β)-

stigmast-5-en-3-ol, (3β)-

C29H50O (414.386145)


   

(1r)-2,6-dimethyl-9-(propan-2-ylidene)cyclodeca-2,6-dien-1-yl acetate

(1r)-2,6-dimethyl-9-(propan-2-ylidene)cyclodeca-2,6-dien-1-yl acetate

C17H26O2 (262.1932696)


   
   

(2e)-1-(2-hydroxy-4-{[(2r,3r,4s,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-6-{[(2r,3s,4r,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)-3-(4-hydroxyphenyl)prop-2-en-1-one

(2e)-1-(2-hydroxy-4-{[(2r,3r,4s,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-6-{[(2r,3s,4r,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)-3-(4-hydroxyphenyl)prop-2-en-1-one

C27H32O15 (596.1741122)


   

(1r,2r)-1-(3,4-dimethoxyphenyl)propane-1,2,3-triol

(1r,2r)-1-(3,4-dimethoxyphenyl)propane-1,2,3-triol

C11H16O5 (228.0997686)


   

(1s,5r,7s,10r)-7-isopropyl-4,10-dimethyltricyclo[4.4.0.0¹,⁵]dec-3-ene

(1s,5r,7s,10r)-7-isopropyl-4,10-dimethyltricyclo[4.4.0.0¹,⁵]dec-3-ene

C15H24 (204.18779039999998)


   

4-[(1s,3ar,4s,6ar)-4-(2h-1,3-benzodioxol-5-yl)-hexahydrofuro[3,4-c]furan-1-yl]-2-methoxyphenol

4-[(1s,3ar,4s,6ar)-4-(2h-1,3-benzodioxol-5-yl)-hexahydrofuro[3,4-c]furan-1-yl]-2-methoxyphenol

C20H20O6 (356.125982)


   

(2e,4e,8z,10e)-n-(2-methylpropyl)dodeca-2,4,8,10-tetraenimidic acid

(2e,4e,8z,10e)-n-(2-methylpropyl)dodeca-2,4,8,10-tetraenimidic acid

C16H25NO (247.193604)


   

1-{1,3-dimethyl-2-oxabicyclo[2.2.2]octan-3-yl}-4-methylpent-3-en-2-one

1-{1,3-dimethyl-2-oxabicyclo[2.2.2]octan-3-yl}-4-methylpent-3-en-2-one

C15H24O2 (236.1776204)


   

2-[4-ethenyl-4-methyl-3-(prop-1-en-2-yl)cyclohexyl]propan-2-ol

2-[4-ethenyl-4-methyl-3-(prop-1-en-2-yl)cyclohexyl]propan-2-ol

C15H26O (222.1983546)


   

(4ar,8as)-1,4a-dimethyl-7-(propan-2-ylidene)-3,4,5,6,8,8a-hexahydronaphthalene

(4ar,8as)-1,4a-dimethyl-7-(propan-2-ylidene)-3,4,5,6,8,8a-hexahydronaphthalene

C15H24 (204.18779039999998)


   

(4as,8ar)-8a-methyl-5-methylidene-3-(propan-2-ylidene)-hexahydronaphthalen-2-one

(4as,8ar)-8a-methyl-5-methylidene-3-(propan-2-ylidene)-hexahydronaphthalen-2-one

C15H22O (218.1670562)


   

(1r,2r,7r,8s)-3,3,5,8,10,10-hexamethoxy-7,11-bis(prop-2-en-1-yl)tricyclo[6.2.2.0²,⁷]dodeca-5,11-diene-4,9-dione

(1r,2r,7r,8s)-3,3,5,8,10,10-hexamethoxy-7,11-bis(prop-2-en-1-yl)tricyclo[6.2.2.0²,⁷]dodeca-5,11-diene-4,9-dione

C24H32O8 (448.20970719999997)


   

(2z,4e)-7-(2h-1,3-benzodioxol-5-yl)-n-(2-methylpropyl)hepta-2,4-dienimidic acid

(2z,4e)-7-(2h-1,3-benzodioxol-5-yl)-n-(2-methylpropyl)hepta-2,4-dienimidic acid

C18H23NO3 (301.1677848)


   

(2e)-1-(2-hydroxy-6-{[(2r,3s,4r,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2s,3s,4r,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}phenyl)-3-(4-hydroxyphenyl)prop-2-en-1-one

(2e)-1-(2-hydroxy-6-{[(2r,3s,4r,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2s,3s,4r,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}phenyl)-3-(4-hydroxyphenyl)prop-2-en-1-one

C33H42O20 (758.2269332000001)


   

5-[(1s,3ar,4r,6ar)-4-(2h-1,3-benzodioxol-5-yl)-hexahydrofuro[3,4-c]furan-1-yl]-2h-1,3-benzodioxole

5-[(1s,3ar,4r,6ar)-4-(2h-1,3-benzodioxol-5-yl)-hexahydrofuro[3,4-c]furan-1-yl]-2h-1,3-benzodioxole

C20H18O6 (354.1103328)


   

4-methyl-1-[(1r,3s,4s)-1,3-dimethyl-2-oxabicyclo[2.2.2]octan-3-yl]pent-3-en-2-one

4-methyl-1-[(1r,3s,4s)-1,3-dimethyl-2-oxabicyclo[2.2.2]octan-3-yl]pent-3-en-2-one

C15H24O2 (236.1776204)


   
   

(3z,7z,9r)-4,8,12-trimethyl-10-oxabicyclo[7.3.1]trideca-1(12),3,7-trien-11-one

(3z,7z,9r)-4,8,12-trimethyl-10-oxabicyclo[7.3.1]trideca-1(12),3,7-trien-11-one

C15H20O2 (232.14632200000003)


   
   

(1s,2s,7s)-3,3,5,8,10,10-hexamethoxy-7,11-bis(prop-2-en-1-yl)tricyclo[6.2.2.0²,⁷]dodeca-5,11-diene-4,9-dione

(1s,2s,7s)-3,3,5,8,10,10-hexamethoxy-7,11-bis(prop-2-en-1-yl)tricyclo[6.2.2.0²,⁷]dodeca-5,11-diene-4,9-dione

C24H32O8 (448.20970719999997)


   

1,3,3-trimethoxy-5-(prop-2-en-1-yl)-7-[(3,4,5-trimethoxyphenyl)methyl]bicyclo[2.2.2]oct-5-en-2-one

1,3,3-trimethoxy-5-(prop-2-en-1-yl)-7-[(3,4,5-trimethoxyphenyl)methyl]bicyclo[2.2.2]oct-5-en-2-one

C24H32O7 (432.2147922)


   

4-ethenyl-1-isopropyl-4-methyl-3-(prop-1-en-2-yl)cyclohex-1-ene

4-ethenyl-1-isopropyl-4-methyl-3-(prop-1-en-2-yl)cyclohex-1-ene

C15H24 (204.18779039999998)


   

(4s,5s)-4,5-dihydroxy-2,6,6-trimethylcyclohept-2-en-1-one

(4s,5s)-4,5-dihydroxy-2,6,6-trimethylcyclohept-2-en-1-one

C10H16O3 (184.1099386)


   

(3z,7e,9r)-4,8,12-trimethyl-10-oxabicyclo[7.3.1]trideca-1(12),3,7-trien-11-one

(3z,7e,9r)-4,8,12-trimethyl-10-oxabicyclo[7.3.1]trideca-1(12),3,7-trien-11-one

C15H20O2 (232.14632200000003)


   

(1s,2s,7s,8r)-3,3,5,8,10,10-hexamethoxy-7,11-bis(prop-2-en-1-yl)tricyclo[6.2.2.0²,⁷]dodeca-5,11-diene-4,9-dione

(1s,2s,7s,8r)-3,3,5,8,10,10-hexamethoxy-7,11-bis(prop-2-en-1-yl)tricyclo[6.2.2.0²,⁷]dodeca-5,11-diene-4,9-dione

C24H32O8 (448.20970719999997)


   

n-(2-methylpropyl)deca-2,4,8-trienimidic acid

n-(2-methylpropyl)deca-2,4,8-trienimidic acid

C14H23NO (221.17795479999998)


   

(1s,4r,5r,7r)-4,11,11-trimethyl-10-methylidenetricyclo[5.3.1.0¹,⁵]undecane

(1s,4r,5r,7r)-4,11,11-trimethyl-10-methylidenetricyclo[5.3.1.0¹,⁵]undecane

C15H24 (204.18779039999998)


   

1-ethenyl-1,2-dimethyl-2-(prop-1-en-2-yl)-4-(propan-2-ylidene)cyclohexane

1-ethenyl-1,2-dimethyl-2-(prop-1-en-2-yl)-4-(propan-2-ylidene)cyclohexane

C16H26 (218.2034396)


   

(2s,7s,8r)-3,3,5,8,11,11-hexamethoxy-7,12-bis(prop-2-en-1-yl)tricyclo[7.2.1.0²,⁷]dodeca-5,9(12)-diene-4,10-dione

(2s,7s,8r)-3,3,5,8,11,11-hexamethoxy-7,12-bis(prop-2-en-1-yl)tricyclo[7.2.1.0²,⁷]dodeca-5,9(12)-diene-4,10-dione

C24H32O8 (448.20970719999997)


   

(1r,2r,3r)-2-ethenyl-2-methyl-3-(prop-1-en-2-yl)-5-(propan-2-ylidene)cyclohexan-1-ol

(1r,2r,3r)-2-ethenyl-2-methyl-3-(prop-1-en-2-yl)-5-(propan-2-ylidene)cyclohexan-1-ol

C15H24O (220.18270539999997)


   

(1s,2s,7s,8r)-3,3,5,8,10,10-hexamethoxy-7-(prop-2-en-1-yl)-11-{[(1s,2r,4s)-1,8,8-trimethoxy-7-oxo-5-(prop-2-en-1-yl)bicyclo[2.2.2]oct-5-en-2-yl]methyl}tricyclo[6.2.2.0²,⁷]dodeca-5,11-diene-4,9-dione

(1s,2s,7s,8r)-3,3,5,8,10,10-hexamethoxy-7-(prop-2-en-1-yl)-11-{[(1s,2r,4s)-1,8,8-trimethoxy-7-oxo-5-(prop-2-en-1-yl)bicyclo[2.2.2]oct-5-en-2-yl]methyl}tricyclo[6.2.2.0²,⁷]dodeca-5,11-diene-4,9-dione

C36H48O12 (672.3145608)


   

n-(2-methylpropyl)dodeca-2,4,8,10-tetraenimidic acid

n-(2-methylpropyl)dodeca-2,4,8,10-tetraenimidic acid

C16H25NO (247.193604)


   

(2e,4e,8z)-n-(2-methylpropyl)dodeca-2,4,8,10-tetraenimidic acid

(2e,4e,8z)-n-(2-methylpropyl)dodeca-2,4,8,10-tetraenimidic acid

C16H25NO (247.193604)


   

(2e,4e,8z,10z)-n-(2-methylpropyl)dodeca-2,4,8,10-tetraenimidic acid

(2e,4e,8z,10z)-n-(2-methylpropyl)dodeca-2,4,8,10-tetraenimidic acid

C16H25NO (247.193604)