Riboflavin (Vitamin B2) (BioDeep_00000001427)
Secondary id: BioDeep_00000175303, BioDeep_00000398523
natural product human metabolite PANOMIX_OTCML-2023 blood metabolite BioNovoGene_Lab2019
代谢物信息卡片
化学式: C17H20N4O6 (376.1383)
中文名称: 维生素B2, (-)-核黄素, 核黄素
谱图信息:
最多检出来源 Homo sapiens(feces) 10.12%
Last reviewed on 2024-09-14.
Cite this Page
Riboflavin (Vitamin B2). BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China.
https://query.biodeep.cn/s/riboflavin_(vitamin_b2) (retrieved
2024-12-22) (BioDeep RN: BioDeep_00000001427). Licensed
under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
分子结构信息
SMILES: CC1=C(C)C=C2N(C[C@H](O)[C@H](O)[C@H](O)CO)C3=NC(=O)NC(=O)C3=NC2=C1
InChI: InChI=1S/C17H20N4O6/c1-7-3-9-10(4-8(7)2)21(5-11(23)14(25)12(24)6-22)15-13(18-9)16(26)20-17(27)19-15/h3-4,11-12,14,22-25H,5-6H2,1-2H3,(H,20,26,27)
描述信息
Riboflavin or vitamin B2 is an easily absorbed, water-soluble micronutrient with a key role in maintaining human health. Like the other B vitamins, it supports energy production by aiding in the metabolizing of fats, carbohydrates, and proteins. Vitamin B2 is also required for red blood cell formation and respiration, antibody production, and for regulating human growth and reproduction. It is essential for healthy skin, nails, hair growth and general good health, including regulating thyroid activity. Riboflavin is found in milk, eggs, malted barley, liver, kidney, heart, and leafy vegetables. Riboflavin is yellow or orange-yellow in color and in addition to being used as a food coloring it is also used to fortify some foods. It can be found in baby foods, breakfast cereals, sauces, processed cheese, fruit drinks and vitamin-enriched milk products. The richest natural source is yeast. It occurs in the free form only in the retina of the eye, in whey, and in urine; its principal forms in tissues and cells are as flavin mononucleotide and flavin adenine dinucleotide.
Riboflavin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=83-88-5 (retrieved 2024-07-01) (CAS RN: 83-88-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Riboflavin (vitamin B2) is an extremely easily absorbed micronutrient.
Riboflavin (vitamin B2) is an extremely easily absorbed micronutrient.
同义名列表
44 个代谢物同义名
7,8-dimethyl-10-[(2S,3S,4R)-2,3,4,5-tetrahydroxypentyl]-2H,3H,4H,10H-benzo[g]pteridine-2,4-dione; 7,8-Dimethyl-10-(D-ribo-2,3,4,5-tetrahydroxypentyl)-benzo[g]pteridine-2,4(3H,10H)-dione; 7,8-Dimethyl-10-(D-ribo-2,3,4,5-tetrahydroxypentyl)benzo[g]pteridine-2,4(3H,10H)-dione; 1-Deoxy-1-(3,4-dihydro-7,8-dimethyl-2,4-dioxobenzo[g]pteridin-10(2H)-yl)-D-ribitol; 1-Deoxy-1-(7,8-dimethyl-2,4-dioxo-3,4-dihydrobenzo[g]pteridin-10(2H)-yl)pentitol; 7,8-Dimethyl-10-(D-ribo-2,3,4,5-tetrahydroxypentyl)isoalloxazine; 6,7-Dimethyl-9-D-ribitylisoalloxazine; 7,8-Dimethyl-10-ribitylisoalloxazine; Benzo[g]pteridine riboflavin deriv.; 6,7-Dimethyl-9-ribitylisoalloxazine; Russupteridine yellow III; Riboflavin (Vitamin B2); FOOD Yellow 15; (-)-Riboflavin; Riboflavinum; Lactoflavine; San yellow b; Lactoflavin; Vitaflavine; Ribocrisina; Riboflavine; Riboflavina; Vitamin b 2; Vitasan b2; Vitamin b2; Riboflavin; Flavin BB; Beflavine; Lactobene; Vitamin g; Flavaxin; Beflavin; Bisulase; Ribotone; Riboderm; Ribovel; Flaxain; Ribipca; Ribosyn; e 101; e101; Hyre; Riboflavin; Vitamin B2
数据库引用编号
38 个数据库交叉引用编号
- ChEBI: CHEBI:17015
- KEGG: C00255
- KEGGdrug: D00050
- PubChem: 493570
- PubChem: 1072
- HMDB: HMDB0000244
- Metlin: METLIN233
- DrugBank: DB00140
- ChEMBL: CHEMBL511565
- ChEMBL: CHEMBL1534
- Wikipedia: Riboflavin
- MeSH: Riboflavin
- MetaCyc: RIBOFLAVIN
- KNApSAcK: C00001552
- foodb: FDB012160
- chemspider: 431981
- CAS: 83-88-5
- MoNA: PS100401
- MoNA: RP013103
- MoNA: PR100399
- MoNA: PR100856
- MoNA: RP013111
- MoNA: RP013113
- MoNA: PS100402
- MoNA: PS100404
- MoNA: RP013112
- MoNA: RP013101
- MoNA: PS100403
- MoNA: RP013102
- PMhub: MS000000492
- PDB-CCD: RBF
- 3DMET: B01201
- NIKKAJI: J3.876H
- RefMet: Riboflavin
- medchemexpress: HY-B0456
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-278
- PubChem: 3554
- KNApSAcK: 17015
分类词条
相关代谢途径
Reactome(0)
BioCyc(0)
PlantCyc(0)
代谢反应
261 个相关的代谢反应过程信息。
Reactome(12)
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Vitamin B2 (riboflavin) metabolism:
FAD + H2O ⟶ AMP + FMN
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Vitamin B2 (riboflavin) metabolism:
FAD + H2O ⟶ AMP + FMN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Vitamin B2 (riboflavin) metabolism:
FAD + H2O ⟶ AMP + FMN
BioCyc(1)
- flavin biosynthesis I (bacteria and plants):
2,5-diamino-6-(5-phospho-D-ribosylamino)pyrimidin-4(3H)-one + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
WikiPathways(5)
- Folate metabolism:
Thromboxane A2 ⟶ Thromboxane B2
- Selenium micronutrient network:
Ascorbic acid ⟶ Dehydroascorbic acid
- Selenium micronutrient network:
Ascorbic acid ⟶ Dehydroascorbic acid
- Folate metabolism:
Thromboxane A2 ⟶ Thromboxane B2
- Riboflavin and CoQ disorders:
RIB ⟶ FMN
Plant Reactome(234)
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Flavin biosynthesis:
ATP + RIB ⟶ ADP + FMN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Flavin biosynthesis:
GTP + H2O ⟶ 2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + HCOOH + PPi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
9-mercaptodethiobiotin ⟶ Btn
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Flavin biosynthesis:
GTP + H2O ⟶ 2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + HCOOH + PPi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Flavin biosynthesis:
ATP + RIB ⟶ ADP + FMN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Flavin biosynthesis:
5-amino-6-(5'-phosphoribosylamino)uracil + H+ + TPNH ⟶ 5-amino-6-(5'-phosphoribitylamino)uracil + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(9)
- Riboflavin Metabolism:
FAD + Water ⟶ Adenosine monophosphate + Flavin Mononucleotide
- Flavin Biosynthesis:
5-Amino-6-(5'-phosphoribosylamino)uracil + Hydrogen Ion + NADPH ⟶ 5-Amino-6-(5'-phosphoribitylamino)uracil + NADP
- Riboflavin Metabolism:
Adenosine triphosphate + Riboflavin ⟶ Adenosine diphosphate + Flavin Mononucleotide
- Riboflavin Metabolism:
FAD + Water ⟶ Adenosine monophosphate + Flavin Mononucleotide
- Riboflavin Metabolism:
FAD + Water ⟶ Adenosine monophosphate + Flavin Mononucleotide
- Riboflavin Metabolism:
FAD + Water ⟶ Adenosine monophosphate + Flavin Mononucleotide
- Riboflavin Metabolism:
FAD + Water ⟶ Adenosine monophosphate + Flavin Mononucleotide
- Riboflavin Metabolism:
FAD + Water ⟶ Adenosine monophosphate + Flavin Mononucleotide
- Flavin Biosynthesis:
Adenosine triphosphate + Riboflavin ⟶ Adenosine diphosphate + Flavin Mononucleotide + Hydrogen Ion
PharmGKB(0)
19 个相关的物种来源信息
- 8296 - Ambystoma mexicanum: 10.3389/FCELL.2020.562940
- 3702 - Arabidopsis thaliana: 10.1016/S0031-9422(00)00013-3
- 41057 - Aspergillus unilateralis: 10.1002/CHIN.200523199
- 6669 - Daphnia pulex: 10.1038/SREP25125
- 7227 - Drosophila melanogaster: 10.1038/S41467-019-11933-Z
- 33171 - Eremothecium ashbyi: 10.1248/CPB.12.492
- 33169 - Eremothecium gossypii:
- 145467 - Formica polyctena: 10.1515/ZNB-1969-0914
- 9606 - Homo sapiens:
- 9606 - Homo sapiens: -
- 228586 - Humulus Scandens (Lour.) Merr.: -
- 4113 - Solanum tuberosum: 10.1007/BF02854349
- 1883 - Streptomyces:
- 32046 - Synechococcus elongatus: 10.1111/1462-2920.12899
- 178174 - Syzygium: 10.1016/S2221-1691(12)60050-1
- 5691 - Trypanosoma brucei: 10.1371/JOURNAL.PNTD.0001618
- 157791 - Vigna Radiata: -
- 29760 - Vitis vinifera: 10.1016/J.DIB.2020.106469
- 569774 - 金线莲: -
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Germán Bosch, Marta Fuentes, Javier Erro, Ángel M Zamarreño, José M García-Mina. Hydrolysis of riboflavins in root exudates under iron deficiency and alkaline stress.
Plant physiology and biochemistry : PPB.
2024 May; 210(?):108573. doi:
10.1016/j.plaphy.2024.108573
. [PMID: 38569423] - Sofia Sturm, Günter Niegisch, Joachim Windolf, Christoph V Suschek. Exposure of Bladder Cancer Cells to Blue Light (λ = 453 nm) in the Presence of Riboflavin Synergistically Enhances the Cytotoxic Efficiency of Gemcitabine.
International journal of molecular sciences.
2024 Apr; 25(9):. doi:
10.3390/ijms25094868
. [PMID: 38732087] - Maria Faustino, Tiago Lourenço, Simon Strobbe, Da Cao, André Fonseca, Isabel Rocha, Dominique Van Der Straeten, M Margarida Oliveira. Mathematical kinetic modelling followed by in vitro and in vivo assays reveal the bifunctional rice GTPCHII/DHBPS enzymes and demonstrate the key roles of OsRibA proteins in the vitamin B2 pathway.
BMC plant biology.
2024 Mar; 24(1):220. doi:
10.1186/s12870-024-04878-z
. [PMID: 38532321] - Carolina Garciglia-Mercado, Claudia A Contreras, Francisco J Choix, Luz E de-Bashan, Gracia A Gómez-Anduro, Oskar A Palacios. Metabolic and physiological adaptations of microalgal growth-promoting bacterium Azospirillum brasilense growing under biogas atmosphere: a microarray-based transcriptome analysis.
Archives of microbiology.
2024 Mar; 206(4):173. doi:
10.1007/s00203-024-03890-z
. [PMID: 38492040] - Habiba Kanwal, Syed Hammad Raza, Shafaqat Ali, Muhammad Iqbal, Mudassir Iqbal Shad. Effect of riboflavin on redox balance, osmolyte accumulation, methylglyoxal generation and nutrient acquisition in indian squash (Praecitrullus fistulosus L.) under chromium toxicity.
Environmental science and pollution research international.
2024 Mar; 31(14):20881-20897. doi:
10.1007/s11356-024-32516-6
. [PMID: 38381295] - Kamonthip Jiadkong, Anisa Nazera Fauzia, Nobuo Yamaguchi, Akihiro Ueda. Exogenous riboflavin (vitamin B2) application enhances salinity tolerance through the activation of its biosynthesis in rice seedlings under salinity stress.
Plant science : an international journal of experimental plant biology.
2024 Feb; 339(?):111929. doi:
10.1016/j.plantsci.2023.111929
. [PMID: 38007197] - Bing Wen, Runqi Tang, Shuyao Tang, Yuan Sun, Jingwen Xu, Dandan Zhao, Tan Wang, Chuanzhu Yan. A comparative study on riboflavin responsive multiple acyl-CoA dehydrogenation deficiency due to variants in FLAD1 and ETFDH gene.
Journal of human genetics.
2024 Jan; ?(?):. doi:
10.1038/s10038-023-01216-3
. [PMID: 38228875] - Morteza Haramshahi, Thoraya Mohamed Elhassan A-Elgadir, Hamid Mahmood Abdullah Daabo, Yahya Altinkaynak, Ahmed Hjazi, Archana Saxena, Mazin A A Najm, Abbas F Almulla, Ali Alsaalamy, Mohammad Amin Kashani. Nutrient patterns and risk of diabetes mellitus type 2: a case-control study.
BMC endocrine disorders.
2024 Jan; 24(1):10. doi:
10.1186/s12902-024-01540-5
. [PMID: 38229053] - Menachem Sadeh, Amir Dory, Dorit Lev, Keren Yosovich, Ron Dabby. Riboflavin-responsive lipid-storage myopathy in elderly patients.
Journal of the neurological sciences.
2024 Jan; 456(?):122808. doi:
10.1016/j.jns.2023.122808
. [PMID: 38043332] - Xiang Li, Jie Yang, Erbao Shi, Yiguang Lu, Xiaochao Song, Huifeng Luo, Jundong Wang, Chen Liang, Jianhai Zhang. Riboflavin alleviates fluoride-induced ferroptosis by IL-17A-independent system Xc-/GPX4 pathway and iron metabolism in testicular Leydig cells.
Environmental pollution (Barking, Essex : 1987).
2024 Jan; 344(?):123332. doi:
10.1016/j.envpol.2024.123332
. [PMID: 38199481] - Xuemei Bao, Danmin Ke, Wei Wang, Fahui Ye, Jiangyi Zeng, Yuan Zong. High fatty acid accumulation and coloration molecular mechanism of the elm mushroom (Pleurotus citrinopileatus).
Bioscience, biotechnology, and biochemistry.
2024 Jan; ?(?):. doi:
10.1093/bbb/zbad183
. [PMID: 38171531] - V M Kodentsova, O V Kosheleva, O A Vrzhesinskaya, G V Guseva, V A Zotov, S N Leonenko, N V Zhilinskaya. [Influence of the rat diet enrichment with oat β-gucans on the assimilation of B group vitamins, mineral elements and lipid metabolism].
Voprosy pitaniia.
2024; 93(1):72-79. doi:
10.33029/0042-8833-2024-93-1-72-79
. [PMID: 38555611] - Udhghatri Kolli, Richa Jalodia, Shamsudheen Moidunny, Praveen Kumar Singh, Yuguang Ban, Junyi Tao, Gonzalo Nathaniel Cantu, Eridania Valdes, Sundaram Ramakrishnan, Sabita Roy. Multi-omics analysis revealing the interplay between gut microbiome and the host following opioid use.
Gut microbes.
2023 12; 15(2):2246184. doi:
10.1080/19490976.2023.2246184
. [PMID: 37610102] - Wei Chen, Jinhao Su, Yubin Liu, Tianmei Gao, Xiaohui Ji, Hanzhou Li, Huajun Li, Yuansong Wang, Hui Zhang, Shuquan Lv. Crocin Ameliorates Diabetic Nephropathy through Regulating Metabolism, CYP4A11/PPARγ, and TGF-β/Smad Pathways in Mice.
Current drug metabolism.
2023 Nov; ?(?):. doi:
10.2174/0113892002257928231031113337
. [PMID: 37936469] - María Ciudad-Mulero, Laura Domínguez, Patricia Morales, Virginia Fernández-Ruiz, Montaña Cámara. A Review of Foods of Plant Origin as Sources of Vitamins with Proven Activity in Oxidative Stress Prevention according to EFSA Scientific Evidence.
Molecules (Basel, Switzerland).
2023 Oct; 28(21):. doi:
10.3390/molecules28217269
. [PMID: 37959689] - Ying Zhao, Yan Lin, Bin Wang, Fuchen Liu, Dandan Zhao, Wei Wang, Hong Ren, Jiayin Wang, Zhihong Xu, Chuanzhu Yan, Kunqian Ji. A Missense Variant in AIFM1 Caused Mitochondrial Dysfunction and Intolerance to Riboflavin Deficiency.
Neuromolecular medicine.
2023 Aug; ?(?):. doi:
10.1007/s12017-023-08750-5
. [PMID: 37603145] - Xiaoping Xu, Chunyu Zhang, Xiaoqiong Xu, Roudi Cai, Qingxu Guan, Xiaohui Chen, Yukun Chen, Zihao Zhang, Xu XuHan, Yuling Lin, Zhongxiong Lai. Riboflavin mediates m6A modification targeted by miR408, promoting early somatic embryogenesis in longan.
Plant physiology.
2023 07; 192(3):1799-1820. doi:
10.1093/plphys/kiad139
. [PMID: 36930572] - María José Sosa, José Luis Fonseca, Aya Sakaya, María Noel Urrutia, Gabriela Petroselli, Rosa Erra-Balsells, Matías I Quindt, Sergio M Bonesi, Gonzalo Cosa, Mariana Vignoni, Andrés H Thomas. Alkylation converts riboflavin into an efficient photosensitizer of phospholipid membranes.
Biochimica et biophysica acta. Biomembranes.
2023 06; 1865(5):184155. doi:
10.1016/j.bbamem.2023.184155
. [PMID: 37003545] - A S AlGhamdi, H Alsalhi, N Almutairi, B Alotaibi, A A Barakat, H K Khanam, F ElGendy, A A Alawfi. Push out bond strength of fiber post to radicular dentin using Q-mix, lemon/garlic extract, and riboflavin activated by photodynamic therapy as a final canal irrigant.
European review for medical and pharmacological sciences.
2023 05; 27(9):3793-3798. doi:
10.26355/eurrev_202305_32284
. [PMID: 37203803] - Yu-Zhu Ding, Yi-Da Zhang, Yan-Ping Shi. Transition metal composites for selective analysis of vitamin B2 in rice by ultrahigh-performance liquid chromatography-tandem mass spectrometry.
Journal of chromatography. A.
2023 Mar; 1693(?):463881. doi:
10.1016/j.chroma.2023.463881
. [PMID: 36857984] - Tianzuo Wang, Jing Wang, Di Zhang, Li Chen, Min Liu, Xinxin Zhang, Wolfgang Schmidt, Wen-Hao Zhang. Protein kinase MtCIPK12 modulates iron reduction in Medicago truncatula by regulating riboflavin biosynthesis.
Plant, cell & environment.
2023 03; 46(3):991-1003. doi:
10.1111/pce.14527
. [PMID: 36578264] - Rafael Rivera-Lugo, Shuo Huang, Frank Lee, Raphaël Méheust, Anthony T Iavarone, Ashley M Sidebottom, Eric Oldfield, Daniel A Portnoy, Samuel H Light. Distinct Energy-Coupling Factor Transporter Subunits Enable Flavin Acquisition and Extracytosolic Trafficking for Extracellular Electron Transfer in Listeria monocytogenes.
mBio.
2023 02; 14(1):e0308522. doi:
10.1128/mbio.03085-22
. [PMID: 36744898] - Mengran Zhang, Huaqing Chen, Wenlong Zhang, Yan Liu, Liuyan Ding, Junwei Gong, Runfang Ma, Shaohui Zheng, Yunlong Zhang. Biomimetic Remodeling of Microglial Riboflavin Metabolism Ameliorates Cognitive Impairment by Modulating Neuroinflammation.
Advanced science (Weinheim, Baden-Wurttemberg, Germany).
2023 Feb; ?(?):e2300180. doi:
10.1002/advs.202300180
. [PMID: 36799538] - Shaimaa H Mohammed, Mohamed M Baz, Moustafa Ibrahim, Ibrahim T Radwan, Abdelfattah Selim, Abdel-Fattah D Dawood, Hanan A A Taie, Salwa Abdalla, Hanem F Khater. Acaricide resistance and novel photosensitizing approach as alternative acaricides against the camel tick, Hyalomma dromedarii.
Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.
2023 Jan; 22(1):87-101. doi:
10.1007/s43630-022-00301-4
. [PMID: 36127561] - Neda Farnad, Khalil Farhadi. Introducing potato starch-ecofriendly silver nanoparticles as a novel binary system for nanoencapsulation of riboflavin.
Food chemistry.
2023 Jan; 398(?):133910. doi:
10.1016/j.foodchem.2022.133910
. [PMID: 35973296] - Joseph H Lynch, Sanja Roje. A higher plant FAD synthetase is fused to an inactivated FAD pyrophosphatase.
The Journal of biological chemistry.
2022 12; 298(12):102626. doi:
10.1016/j.jbc.2022.102626
. [PMID: 36273586] - Shiya Liang, Fengjiao Zhang, Songgui He, Weigang Li, Zhenqiang Wu. Promoting lipid oxidation and release of volatiles of pork fat pulp by lipase, blue light with riboflavin in liquor immersion.
Journal of food science.
2022 Dec; 87(12):5276-5288. doi:
10.1111/1750-3841.16379
. [PMID: 36382852] - Nafisa Olfat, Marziyeh Ashoori, Ahmad Saedisomeolia. Riboflavin is an antioxidant: a review update.
The British journal of nutrition.
2022 11; 128(10):1887-1895. doi:
10.1017/s0007114521005031
. [PMID: 35115064] - Jingya Liu, Jingang Huang, Weishuai Li, Zhuoer Shi, Yuanyuan Lin, Rongbing Zhou, Jianfang Meng, Junhong Tang, Pingzhi Hou. Coupled process of in-situ sludge fermentation and riboflavin-mediated nitrogen removal for low carbon wastewater treatment.
Bioresource technology.
2022 Nov; 363(?):127928. doi:
10.1016/j.biortech.2022.127928
. [PMID: 36096329] - Xinyang Li, Yingyi Mao, Shuang Liu, Jin Wang, Xiang Li, Yanrong Zhao, David R Hill, Shuo Wang. Vitamins, Vegetables and Metal Elements Are Positively Associated with Breast Milk Oligosaccharide Composition among Mothers in Tianjin, China.
Nutrients.
2022 Oct; 14(19):. doi:
10.3390/nu14194131
. [PMID: 36235783] - Rebecca S Sherbo, Pamela A Silver, Daniel G Nocera. Riboflavin synthesis from gaseous nitrogen and carbon dioxide by a hybrid inorganic-biological system.
Proceedings of the National Academy of Sciences of the United States of America.
2022 09; 119(37):e2210538119. doi:
10.1073/pnas.2210538119
. [PMID: 36067303] - Zhiying Li, Jiabin Wang, Yunliu Fu, Yonglin Jing, Bilan Huang, Ying Chen, Qinglong Wang, Xiao Bing Wang, Chunyang Meng, Qingquan Yang, Li Xu. The Musa troglodytarum L. genome provides insights into the mechanism of non-climacteric behaviour and enrichment of carotenoids.
BMC biology.
2022 08; 20(1):186. doi:
10.1186/s12915-022-01391-3
. [PMID: 36002843] - Kumari Vishakha, Shatabdi Das, Arnab Ganguli. Photodynamic antibacterial and antibiofilm activity of riboflavin against Xanthomonas oryzae pv oryzae: an ecofriendly strategy to combat bacterial leaf blight (BLB) rice disease.
Archives of microbiology.
2022 Aug; 204(9):566. doi:
10.1007/s00203-022-03183-3
. [PMID: 35982196] - Qi Yu, Jin Zou, Guanwei Peng, Feng Gao, Yansha Gao, Guorong Fan, Shangxing Chen, Limin Lu. A facile fabrication of ratiometric electrochemical sensor for sensitive detection of riboflavin based on hierarchical porous biochar derived from KOH-activated Soulangeana sepals.
Nanotechnology.
2022 Aug; 33(44):. doi:
10.1088/1361-6528/ac83c8
. [PMID: 35878583] - Bo-Wen Yang, Tao Xu, Yan Liu, Tian Zhao, Fan Xiao, Bai-Yi Lu. Impact of photosensitizers and light wavelength on photooxidation of phytosterols in soymilk emulsions.
Food research international (Ottawa, Ont.).
2022 08; 158(?):111508. doi:
10.1016/j.foodres.2022.111508
. [PMID: 35840217] - Tirthankar Sinha, Larissa Ikelle, Mustafa S Makia, Ryan Crane, Xue Zhao, Mashal Kakakhel, Muayyad R Al-Ubaidi, Muna I Naash. Riboflavin deficiency leads to irreversible cellular changes in the RPE and disrupts retinal function through alterations in cellular metabolic homeostasis.
Redox biology.
2022 08; 54(?):102375. doi:
10.1016/j.redox.2022.102375
. [PMID: 35738087] - Qiuzhen Tian, Gang Wang, Xuexia Ma, Qingwen Shen, Mengli Ding, Xueyi Yang, Xiaoli Luo, Rongrong Li, Zhenghui Wang, Xiangyang Wang, Zhiyuan Fu, Qinghua Yang, Jihua Tang, Guifeng Wang. Riboflavin integrates cellular energetics and cell cycle to regulate maize seed development.
Plant biotechnology journal.
2022 08; 20(8):1487-1501. doi:
10.1111/pbi.13826
. [PMID: 35426230] - Jinru Zhang, Jingzhe Han, Yaye Wang, Yue Wu, Lixia Ma, Xueqin Song, Guang Ji. Characterization of 31 Patients with Riboflavin-Responsive Multiple acyl-CoA Dehydrogenase Deficiency.
Balkan medical journal.
2022 07; 39(4):290-296. doi:
10.4274/balkanmedj.galenos.2022.2022-1-127
. [PMID: 35734957] - Ruilan Dong, Lan Luo, Xiaobin Liu, Guanghui Yu. Effects of riboflavin on boar sperm motility, sperm quality, enzyme activity and antioxidant status during cryopreservation.
Veterinary medicine and science.
2022 07; 8(4):1509-1518. doi:
10.1002/vms3.833
. [PMID: 35561277] - Maria Tolomeo, Guglielmina Chimienti, Martina Lanza, Roberto Barbaro, Alessia Nisco, Tiziana Latronico, Piero Leone, Giuseppe Petrosillo, Grazia Maria Liuzzi, Bryony Ryder, Michal Inbar-Feigenberg, Matilde Colella, Angela M S Lezza, Rikke K J Olsen, Maria Barile. Retrograde response to mitochondrial dysfunctions associated to LOF variations in FLAD1 exon 2: unraveling the importance of RFVT2.
Free radical research.
2022 Jul; 56(7-8):511-525. doi:
10.1080/10715762.2022.2146501
. [PMID: 36480241] - Jurriaan Brekelmans, Mor M Dickman, Shwetabh Verma, Samuel Arba-Mosquera, Ruth Goldschmidt, Alexandra Goz, Alexander Brandis, Tos T J M Berendschot, Isabelle E Y Saelens, Arie L Marcovich, Avigdor Scherz, Rudy M M A Nuijts. Excimer laser-assisted corneal epithelial pattern ablation for corneal cross-linking.
Acta ophthalmologica.
2022 Jun; 100(4):422-430. doi:
10.1111/aos.15021
. [PMID: 34533277] - Jilei Lin, Siying Cheng, Jing Zhang, Shuhua Yuan, Lei Zhang, Jinhong Wu, Jiande Chen, Mingyu Tang, Yabin Hu, Shilu Tong, Liebin Zhao, Yong Yin. The Association between Daily Dietary Intake of Riboflavin and Lung Function Impairment Related with Dibutyl Phthalate Exposure and the Possible Mechanism.
Nutrients.
2022 May; 14(11):. doi:
10.3390/nu14112282
. [PMID: 35684081] - Eleni Petrou, Georgios K Nikolopoulos, Anastasios G Kriebardis, Katerina Pantavou, Electra Loukopoulou, Andreas G Tsantes, Hara T Georgatzakou, Eirini Maratou, Evdoxia Rapti, Sofia Mellou, Styliani Kokoris, Argyri Gialeraki, Argirios E Tsantes. Haemostatic profile of riboflavin-treated apheresis platelet concentrates.
Blood transfusion = Trasfusione del sangue.
2022 05; 20(3):223-234. doi:
10.2450/2021.0089-21
. [PMID: 34059193] - Congyun Jin, Atsushi Yonezawa. Recent advances in riboflavin transporter RFVT and its genetic disease.
Pharmacology & therapeutics.
2022 05; 233(?):108023. doi:
10.1016/j.pharmthera.2021.108023
. [PMID: 34662687] - Leander B Crocker, Ju Hyun Lee, Suraj Mital, Gabrielle C Mills, Sina Schack, Andrea Bistrović-Popov, Christoph O Franck, Ioanna Mela, Clemens F Kaminski, Graham Christie, Ljiljana Fruk. Tuning riboflavin derivatives for photodynamic inactivation of pathogens.
Scientific reports.
2022 04; 12(1):6580. doi:
10.1038/s41598-022-10394-7
. [PMID: 35449377] - Inés Ripa, José Ángel Ruiz-Masó, Nicola De Simone, Pasquale Russo, Giuseppe Spano, Gloria Del Solar. A single change in the aptamer of the Lactiplantibacillus plantarum rib operon riboswitch severely impairs its regulatory activity and leads to a vitamin B2 - overproducing phenotype.
Microbial biotechnology.
2022 04; 15(4):1253-1269. doi:
10.1111/1751-7915.13919
. [PMID: 34599851] - Alice Pavanello, Debora Fabbri, Paola Calza, Debora Battiston, Miguel A Miranda, M Luisa Marin. Biomimetic photooxidation of noscapine sensitized by a riboflavin derivative in water: The combined role of natural dyes and solar light in environmental remediation.
Journal of photochemistry and photobiology. B, Biology.
2022 Apr; 229(?):112415. doi:
10.1016/j.jphotobiol.2022.112415
. [PMID: 35231758] - Yun-Yang Zhu, Kiran Thakur, Jing-Yu Feng, Jian-Guo Zhang, Fei Hu, Carlos L Cespedes-Acuña, Chenzhong Liao, Zhao-Jun Wei. Riboflavin Bioenriched Soymilk Alleviates Oxidative Stress Mediated Liver Injury, Intestinal Inflammation, and Gut Microbiota Modification in B2 Depletion-Repletion Mice.
Journal of agricultural and food chemistry.
2022 Mar; 70(12):3818-3831. doi:
10.1021/acs.jafc.2c00117
. [PMID: 35302755] - Bing Wen, Shuyao Tang, Xiaoqing Lv, Duoling Li, Jingwen Xu, Rikke Katrine Jentoft Olsen, Yuying Zhao, Wei Li, Tan Wang, Kai Shao, Dandan Zhao, Chuanzhu Yan. Clinical, pathological and genetic features and follow-up of 110 patients with late-onset MADD: a single-center retrospective study.
Human molecular genetics.
2022 03; 31(7):1115-1129. doi:
10.1093/hmg/ddab308
. [PMID: 34718578] - Rafael Rivera-Lugo, Samuel H Light, Nicholas E Garelis, Daniel A Portnoy. RibU is an essential determinant of Listeria pathogenesis that mediates acquisition of FMN and FAD during intracellular growth.
Proceedings of the National Academy of Sciences of the United States of America.
2022 03; 119(13):e2122173119. doi:
10.1073/pnas.2122173119
. [PMID: 35316134] - Shymaa Ryhan Bashandy, Mohamed Hemida Abd-Alla, Ghada Abd-Elmonsef Mahmoud. Using fermentation waste of ethanol-producing yeast for bacterial riboflavin production and recycling of spent bacterial mass for enhancing the growth of oily plants.
Journal of applied microbiology.
2022 Mar; 132(3):2020-2033. doi:
10.1111/jam.15221
. [PMID: 34265162] - Xiang Li, Jie Yang, Chen Liang, Wei Yang, Qianlong Zhu, Huifeng Luo, Xueyan Liu, Jundong Wang, Jianhai Zhang. Potential Protective Effect of Riboflavin Against Pathological Changes in the Main Organs of Male Mice Induced by Fluoride Exposure.
Biological trace element research.
2022 Mar; 200(3):1262-1273. doi:
10.1007/s12011-021-02746-7
. [PMID: 33961201] - Prakriti Kashyap, Sanjay Kumar. Ice structuring protein extract of Hordeum vulgare var. dolma grain reduces drip loss and loss of soluble vitamin content in peas during frozen storage.
Cryobiology.
2022 Feb; 104(?):1-7. doi:
10.1016/j.cryobiol.2021.11.178
. [PMID: 34826400] - A H F Vale, D C Nascimento, A R Pineros, R G Ferreira, J D Santos, D C Aragon, F Q Cunha, F S Ramalho, J C Alves-Filho, A P C P Carlotti. Riboflavin did not provide anti-inflammatory or antioxidant effects in an experimental model of sepsis.
Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas.
2022; 55(?):e12107. doi:
10.1590/1414-431x2022e12107
. [PMID: 35648977] - Xi-Xi Liu, Peng-Fei Wu, Ying-Zi Liu, Ya-Ling Jiang, Mei-Dan Wan, Xue-Wen Xiao, Qi-Jie Yang, Bin Jiao, Xin-Xin Liao, Jun-Ling Wang, Shao-Hui Liu, Xuewei Zhang, Lu Shen. Association Between Serum Vitamins and the Risk of Alzheimer's Disease in Chinese Population.
Journal of Alzheimer's disease : JAD.
2022; 85(2):829-836. doi:
10.3233/jad-215104
. [PMID: 34864672] - O A Vrzhesinskaya, S N Leonenko, V M Kodentsova, N A Beketova, O V Kosheleva, V V Pilipenko, O A Plotnikova, R I Alekseeva, Kh Kh Sharafetdinov. [Vitamin supply of patients with type 2 diabetes mellitus complicated by nephropathy].
Voprosy pitaniia.
2022; 91(2):58-71. doi:
10.33029/0042-8833-2022-91-2-58-71
. [PMID: 35596636] - Elisabeth Synnøve Nilsen Husebye, Bettina Riedel, Anne-Lise Bjørke-Monsen, Olav Spigset, Anne Kjersti Daltveit, Nils Erik Gilhus, Marte Helene Bjørk. Vitamin B status and association with antiseizure medication in pregnant women with epilepsy.
Epilepsia.
2021 12; 62(12):2968-2980. doi:
10.1111/epi.17076
. [PMID: 34590314] - Haitao Hu, Deyong Ren, Jiang Hu, Hongzhen Jiang, Ping Chen, Dali Zeng, Qian Qian, Longbiao Guo. WHITE AND LESION-MIMIC LEAF1, encoding a lumazine synthase, affects reactive oxygen species balance and chloroplast development in rice.
The Plant journal : for cell and molecular biology.
2021 12; 108(6):1690-1703. doi:
10.1111/tpj.15537
. [PMID: 34628678] - Susan Yonemura, Lindsay Hartson, Taru S Dutt, Marcela Henao-Tamayo, Raymond Goodrich, Susanne Marschner. Preservation of neutralizing antibody function in COVID-19 convalescent plasma treated using a riboflavin and ultraviolet light-based pathogen reduction technology.
Vox sanguinis.
2021 Nov; 116(10):1076-1083. doi:
10.1111/vox.13108
. [PMID: 33835489] - Cheng-Peng Sun, Jing Yi, Fan Wei, Xia Lv, Sa Deng, Bao-Jing Zhang, Wen-Yu Zhao, Xiao-Chi Ma. UV-light-driven photooxidation of harmaline catalyzed by riboflavin: Product characterization and mechanisms.
Fitoterapia.
2021 Nov; 155(?):105054. doi:
10.1016/j.fitote.2021.105054
. [PMID: 34626737] - Haider Shah, Luca Pagano, Anuj Vakharia, Giulia Coco, Kunal A Gadhvi, Stephen B Kaye, Vito Romano. Impact of COVID-19 on keratoconus patients waiting for corneal cross linking.
European journal of ophthalmology.
2021 Nov; 31(6):3490-3493. doi:
10.1177/11206721211001315
. [PMID: 33719638] - Yun Jeong Lee, Soo Yeon Kim, Man Jin Kim, Ae Ryoung Kim, Jong-Mok Lee, Jong-Hee Chae. Infant with early onset bilateral facial and bulbar weakness: Successful treatment of riboflavin in multiple acyl-CoA dehydrogenase deficiency caused by biallelic nonsense FLAD1 variants.
Neuromuscular disorders : NMD.
2021 11; 31(11):1194-1198. doi:
10.1016/j.nmd.2021.07.006
. [PMID: 34454814] - Nicolas Malvaux, Anne Schuhmacher, Fanette Defraigne, Remy Jacob, Aicha Bah, Marcia Cardoso. Remodelling whole blood processing through automation and pathogen reduction technology at the Luxembourg Red Cross.
Transfusion and apheresis science : official journal of the World Apheresis Association : official journal of the European Society for Haemapheresis.
2021 Oct; 60(5):103195. doi:
10.1016/j.transci.2021.103195
. [PMID: 34147359] - Jeffrey Y W Mak, Ligong Liu, David P Fairlie. Chemical Modulators of Mucosal Associated Invariant T Cells.
Accounts of chemical research.
2021 09; 54(17):3462-3475. doi:
10.1021/acs.accounts.1c00359
. [PMID: 34415738] - Duo Zhou, Meiling Ye, Zhenzhen Hu, Yu Zhang, Lin Zhu, Rulai Yang, Xinwen Huang. Screening of multiple acyl-CoA dehydrogenase deficiency in newborns and follow-up of patients.
Zhejiang da xue xue bao. Yi xue ban = Journal of Zhejiang University. Medical sciences.
2021 Aug; 50(4):454-462. doi:
10.3724/zdxbyxb-2021-0261
. [PMID: 34704421] - O S Vlasova, F A Bichkaeva. Age-related changes in the parameters of carbohydrate metabolism and supply of vitamins B1, B2 in residents of two northern regions.
Klinicheskaia laboratornaia diagnostika.
2021 Aug; 66(8):465-471. doi:
10.51620/0869-2084-2021-66-8-465-471
. [PMID: 34388316] - Yong-Sheng Tian, Jing Xu, Bo Wang, Xiao-Yan Fu, Jian-Jie Gao, Hong-Juan Han, Zhen-Jun Li, Li-Juan Wang, Fu-Jian Zhang, Wen-Hui Zhang, Yong-Dong Deng, Yu Wang, Ri-He Peng, Quan-Hong Yao. Riboflavin fortification of rice endosperm by metabolic engineering.
Plant biotechnology journal.
2021 08; 19(8):1483-1485. doi:
10.1111/pbi.13615
. [PMID: 33977612] - Su-Chun How, Ta-Hsien Lin, Chun-Chao Chang, Steven S-S Wang. Examining the effect of bovine serum albumin on the properties and drug release behavior of β-lactoglobulin-derived amyloid fibril-based hydrogels.
International journal of biological macromolecules.
2021 Aug; 184(?):79-91. doi:
10.1016/j.ijbiomac.2021.06.003
. [PMID: 34097969] - Takashi Uebanso, Mai Suyama, Takaaki Shimohata, Kazuaki Mawatari, Akira Takahashi. Effect of Vitamin B2-Deficient Diet on Hydroxyproline- or Obesity-Induced Hyperoxaluria in Mice.
Molecular nutrition & food research.
2021 08; 65(15):e2100226. doi:
10.1002/mnfr.202100226
. [PMID: 34110671] - Marcelo Munoz, Antony El-Khoury, Cagla Eren Cimenci, Mayte Gonzalez-Gomez, Robert A Hunter, David Lomboni, Fabio Variola, Benjamin H Rotstein, Lucas L R Vono, Liane M Rossi, Ana Maria Edwards, Emilio I Alarcon. Riboflavin Surface Modification of Poly(vinyl chloride) for Light-Triggered Control of Bacterial Biofilm and Virus Inactivation.
ACS applied materials & interfaces.
2021 Jul; 13(27):32251-32262. doi:
10.1021/acsami.1c08042
. [PMID: 34181389] - Lu Kang, Chuhui Lin, Fanghong Ning, Xuezhi Sun, Min Zhang, Hongyang Zhang, Yuerong Wang, Ping Hu. Rapid determination of folic acid and riboflavin in urine by polypyrrole magnetic solid-phase extractant combined ultra-performance liquid chromatography.
Journal of chromatography. A.
2021 Jul; 1648(?):462192. doi:
10.1016/j.chroma.2021.462192
. [PMID: 33984649] - Turid Helen Felli Lunde, Lindsay Hartson, Shawn Lawrence Bailey, Tor Audun Hervig. In vitro characteristics and in vivo platelet quality of whole blood treated with riboflavin and UVA/UVB light and stored for 24 hours at room temperature.
Transfusion.
2021 07; 61 Suppl 1(?):S101-S110. doi:
10.1111/trf.16500
. [PMID: 34269459] - Alexander I Kostin, Maria N Lundgren, Andrey Y Bulanov, Elena A Ladygina, Karina S Chirkova, Alexander L Gintsburg, Denis Y Logunov, Inna V Dolzhikova, Dmitry V Shcheblyakov, Natalia V Borovkova, Mikhail A Godkov, Alexey I Bazhenov, Valeriy V Shustov, Alina S Bogdanova, Alina R Kamalova, Vladimir V Ganchin, Eugene A Dombrovskiy, Stanislav E Volkov, Nataliya E Drozdova, Sergey S Petrikov. Impact of pathogen reduction methods on immunological properties of the COVID-19 convalescent plasma.
Vox sanguinis.
2021 Jul; 116(6):665-672. doi:
10.1111/vox.13056
. [PMID: 33734455] - Domenico Plantone, Matteo Pardini, Giuseppe Rinaldi. Riboflavin in Neurological Diseases: A Narrative Review.
Clinical drug investigation.
2021 Jun; 41(6):513-527. doi:
10.1007/s40261-021-01038-1
. [PMID: 33886098] - R Levit, G Savoy de Giori, A de Moreno de LeBlanc, J G LeBlanc. Evaluation of vitamin-producing and immunomodulatory lactic acid bacteria as a potential co-adjuvant for cancer therapy in a mouse model.
Journal of applied microbiology.
2021 Jun; 130(6):2063-2074. doi:
10.1111/jam.14918
. [PMID: 33128836] - Tim Berger, Nóra Szentmáry, Lorenz Latta, Berthold Seitz, Tanja Stachon. NF-κB, iNOS, IL-6, and collagen 1 and 5 expression in healthy and keratoconus corneal fibroblasts after 0.1\% riboflavin UV-A illumination.
Graefe's archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie.
2021 May; 259(5):1225-1234. doi:
10.1007/s00417-020-05058-z
. [PMID: 33443628] - Meshari Alabdullatif, Imad Eldin Osman, Mai Alrasheed, Sandra Ramirez-Arcos, Manal Alyousef, Sahar Althawadi, Hind Alhumiadan. Evaluation of riboflavin and ultraviolet light treatment against Klebsiella pneumoniae in whole blood-derived platelets: A pilot study.
Transfusion.
2021 05; 61(5):1562-1569. doi:
10.1111/trf.16347
. [PMID: 33687079] - Kate Porter, John K Lodge. Determination of selected water-soluble vitamins (thiamine, riboflavin, nicotinamide and pyridoxine) from a food matrix using hydrophilic interaction liquid chromatography coupled with mass spectroscopy.
Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.
2021 May; 1171(?):122541. doi:
10.1016/j.jchromb.2021.122541
. [PMID: 33773258] - Concetta Scimone, Simona Alibrandi, Luigi Donato, Salvatore V Giofrè, Giacomo Rao, Antonina Sidoti, Rosalia D'Angelo. Antiretroviral treatment leading to secondary trimethylaminuria: Genetic associations and successful management with riboflavin.
Journal of clinical pharmacy and therapeutics.
2021 Apr; 46(2):304-309. doi:
10.1111/jcpt.13315
. [PMID: 33247860] - Edward S Sim, Harish Dharmarajan, Devi Sai Sri Kavya Boorgu, Lindsey Goyal, Michael Weinstock, Rachel Whelan, Monika E Freiser, Timothy E Corcoran, Noel Jabbour, Eric Wang, David H Chi. Novel Use of Vitamin B2 as a Fluorescent Tracer in Aerosol and Droplet Contamination Models in Otolaryngology.
The Annals of otology, rhinology, and laryngology.
2021 Mar; 130(3):280-285. doi:
10.1177/0003489420949588
. [PMID: 32795090] - Xin-Yi Liu, Xue-Jiao Chen, Miao Zhao, Zhi-Qiang Wang, Hai-Zhu Chen, Hong-Fu Li, Chen-Ji Wang, Shi-Fei Wu, Chao Peng, Yue Yin, Hong-Xia Fu, Min-Ting Lin, Long Yu, Zhi-Qi Xiong, Zhi-Ying Wu, Ning Wang. CHIP control degradation of mutant ETF:QO through ubiquitylation in late-onset multiple acyl-CoA dehydrogenase deficiency.
Journal of inherited metabolic disease.
2021 03; 44(2):450-468. doi:
10.1002/jimd.12361
. [PMID: 33438237] - Po-Yu Lin, Wen-Chen Liang, Wei-An Liao, Yuan-Ting Sun. Exacerbation of myopathy triggered by antiobesity drugs in a patient with multiple acyl-CoA dehydrogenase deficiency.
BMC neurology.
2021 Feb; 21(1):93. doi:
10.1186/s12883-021-02121-y
. [PMID: 33639866] - Mariana Voicescu, Oana Craciunescu, Daniel G Angelescu, Rodica Tatia, Lucia Moldovan. Spectroscopic, molecular dynamics simulation and biological studies of Flavin MonoNucleotide and Flavin Adenine Dinucleotide in biomimetic systems.
Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.
2021 Feb; 246(?):118997. doi:
10.1016/j.saa.2020.118997
. [PMID: 33032115] - Zahra Gheshlaghi, Adrián Luis-Villarroya, Ana Álvarez-Fernández, Reza Khorassani, Javier Abadía. Iron deficient Medicago scutellata grown in nutrient solution at high pH accumulates and secretes large amounts of flavins.
Plant science : an international journal of experimental plant biology.
2021 Feb; 303(?):110664. doi:
10.1016/j.plantsci.2020.110664
. [PMID: 33487332] - Zihan Wang, Li Zhang, Yumin Hao, Wenjuan Dong, Yang Liu, Shengmei Song, Shaomin Shuang, Chuan Dong, Xiaojuan Gong. Ratiometric fluorescent sensors for sequential on-off-on determination of riboflavin, Ag+ and l-cysteine based on NPCl-doped carbon quantum dots.
Analytica chimica acta.
2021 Feb; 1144(?):1-13. doi:
10.1016/j.aca.2020.11.054
. [PMID: 33453785] - Luciano Dibona-Villanueva, Denis Fuentealba. Novel Chitosan-Riboflavin Conjugate with Visible Light-Enhanced Antifungal Properties against Penicillium digitatum.
Journal of agricultural and food chemistry.
2021 Jan; 69(3):945-954. doi:
10.1021/acs.jafc.0c08154
. [PMID: 33438400] - Yanlin Jian, He Eun Forbes, Fabian Hulpia, Martijn D P Risseeuw, Guy Caljon, Hélène Munier-Lehmann, Helena I M Boshoff, Serge Van Calenbergh. 2-((3,5-Dinitrobenzyl)thio)quinazolinones: Potent Antimycobacterial Agents Activated by Deazaflavin (F420)-Dependent Nitroreductase (Ddn).
Journal of medicinal chemistry.
2021 01; 64(1):440-457. doi:
10.1021/acs.jmedchem.0c01374
. [PMID: 33347317] - G V Voronin, I A Bubnova, V V Averich, K G Sarkisova. [Precorneal tear film after corneal collagen cross-linking in keratoconus (preliminary report)].
Vestnik oftalmologii.
2021; 137(5. Vyp. 2):224-230. doi:
10.17116/oftalma2021137052224
. [PMID: 34669331] - Nahla M Mansour, Wagiha S Elkalla, Yasser M Ragab, Mohamed A Ramadan. Inhibition of acetic acid-induced colitis in rats by new Pediococcus acidilactici strains, vitamin producers recovered from human gut microbiota.
PloS one.
2021; 16(7):e0255092. doi:
10.1371/journal.pone.0255092
. [PMID: 34310635] - Tuoyu Zhou, Rong Li, Shuting Zhang, Shuai Zhao, Monika Sharma, Saurabh Kulshrestha, Aman Khan, Apurva Kakade, Huawen Han, Yongyan Niu, Xiangkai Li. A copper-specific microbial fuel cell biosensor based on riboflavin biosynthesis of engineered Escherichia coli.
Biotechnology and bioengineering.
2021 01; 118(1):210-222. doi:
10.1002/bit.27563
. [PMID: 32915455] - Van T Pham, Sophie Fehlbaum, Nicole Seifert, Nathalie Richard, Maaike J Bruins, Wilbert Sybesma, Ateequr Rehman, Robert E Steinert. Effects of colon-targeted vitamins on the composition and metabolic activity of the human gut microbiome- a pilot study.
Gut microbes.
2021 Jan; 13(1):1-20. doi:
10.1080/19490976.2021.1875774
. [PMID: 33615992] - Congyun Jin, Yoshihiro Matsui, Atsushi Yonezawa, Satoshi Imai, Takashi Ogihara, Kotaro Itohara, Shunsaku Nakagawa, Takayuki Nakagawa, Kazuo Matsubara. Complete Deletion of Slc52a2 Causes Embryonic Lethality in Mice.
Biological & pharmaceutical bulletin.
2021; 44(2):283-286. doi:
10.1248/bpb.b20-00751
. [PMID: 33518683] - Pasquale Russo, Nicola De Simone, Vittorio Capozzi, Mari Luz Mohedano, José Ángel Ruiz-Masó, Gloria Del Solar, Paloma López, Giuseppe Spano. Selection of Riboflavin Overproducing Strains of Lactic Acid Bacteria and Riboflavin Direct Quantification by Fluorescence.
Methods in molecular biology (Clifton, N.J.).
2021; 2280(?):3-14. doi:
10.1007/978-1-0716-1286-6_1
. [PMID: 33751425] - Ana Rita da Silva Ferreira, Hannah R Wardill, Rick Havinga, Wim J E Tissing, Hermie J M Harmsen. Prophylactic Treatment with Vitamins C and B2 for Methotrexate-Induced Gastrointestinal Mucositis.
Biomolecules.
2020 Dec; 11(1):. doi:
10.3390/biom11010034
. [PMID: 33383956] - Yiming Zheng, Yawen Zhao, Wei Zhang, Zhaoxia Wang, Yun Yuan. Late-onset multiple acyl-CoA dehydrogenase deficiency mimicking myositis in an elderly patient: a case report.
BMC neurology.
2020 Dec; 20(1):436. doi:
10.1186/s12883-020-02010-w
. [PMID: 33267805] - Kun Huang, Hui-Qian Duan, Qiu-Xiang Li, Yue-Bei Luo, Huan Yang. Investigation of adult-onset multiple acyl-CoA dehydrogenase deficiency associated with peripheral neuropathy.
Neuropathology : official journal of the Japanese Society of Neuropathology.
2020 Dec; 40(6):531-539. doi:
10.1111/neup.12667
. [PMID: 32608139] - Ibrahim M Alhazza, Iftekhar Hassan, Hossam Ebaid, Jameel Al-Tamimi, Saleh H Alwasel. Chemopreventive effect of riboflavin on the potassium bromate-induced renal toxicity in vivo.
Naunyn-Schmiedeberg's archives of pharmacology.
2020 12; 393(12):2355-2364. doi:
10.1007/s00210-020-01938-7
. [PMID: 32666286] - Ki-Hoon Park, Seok-Hyung Kim. Adult zebrafish as an in vivo drug testing model for ethanol induced acute hepatic injury.
Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.
2020 Dec; 132(?):110836. doi:
10.1016/j.biopha.2020.110836
. [PMID: 33035832] - Mengyi Liu, Chun Zhou, Zhuxian Zhang, Qinqin Li, Panpan He, Yuanyuan Zhang, Huan Li, Chengzhang Liu, Xianhui Qin. Inverse Association Between Riboflavin Intake and New-Onset Hypertension: A Nationwide Cohort Study in China.
Hypertension (Dallas, Tex. : 1979).
2020 12; 76(6):1709-1716. doi:
10.1161/hypertensionaha.120.16211
. [PMID: 33131313]