Gene Association: SLC52A2
UniProt Search:
SLC52A2 (PROTEIN_CODING)
Function Description: solute carrier family 52 member 2
found 11 associated metabolites with current gene based on the text mining result from the pubmed database.
Flavin adenine dinucleotide
FAD is a flavin adenine dinucleotide in which the substituent at position 10 of the flavin nucleus is a 5-adenosyldiphosphoribityl group. It has a role as a human metabolite, an Escherichia coli metabolite, a mouse metabolite, a prosthetic group and a cofactor. It is a vitamin B2 and a flavin adenine dinucleotide. It is a conjugate acid of a FAD(3-). A condensation product of riboflavin and adenosine diphosphate. The coenzyme of various aerobic dehydrogenases, e.g., D-amino acid oxidase and L-amino acid oxidase. (Lehninger, Principles of Biochemistry, 1982, p972) Flavin adenine dinucleotide is approved for use in Japan under the trade name Adeflavin as an ophthalmic treatment for vitamin B2 deficiency. Flavin adenine dinucleotide is a natural product found in Bacillus subtilis, Eremothecium ashbyi, and other organisms with data available. FAD is a metabolite found in or produced by Saccharomyces cerevisiae. A condensation product of riboflavin and adenosine diphosphate. The coenzyme of various aerobic dehydrogenases, e.g., D-amino acid oxidase and L-amino acid oxidase. (Lehninger, Principles of Biochemistry, 1982, p972) Flavin adenine dinucleotide (FAD) is a redox-active coenzyme associated with various proteins, which is involved with several enzymatic reactions in metabolism. FAD, also known as adeflavin or flamitajin b, belongs to the class of organic compounds known as flavin nucleotides. These are nucleotides containing a flavin moiety. Flavin is a compound that contains the tricyclic isoalloxazine ring system, which bears 2 oxo groups at the 2- and 4-positions. FAD is a drug which is used to treat eye diseases caused by vitamin b2 deficiency, such as keratitis and blepharitis. FAD exists in all living species, ranging from bacteria to humans. In humans, FAD is involved in the metabolic disorder called the medium chain acyl-coa dehydrogenase deficiency (mcad) pathway. Outside of the human body, FAD has been detected, but not quantified in several different foods, such as other bread, passion fruits, asparagus, kelps, and green bell peppers. It is a flavoprotein in which the substituent at position 10 of the flavin nucleus is a 5-adenosyldiphosphoribityl group. A condensation product of riboflavin and adenosine diphosphate. The coenzyme of various aerobic dehydrogenases, e.g., D-amino acid oxidase and L-amino acid oxidase. (Lehninger, Principles of Biochemistry, 1982, p972) [HMDB]. FAD is found in many foods, some of which are common sage, kiwi, spearmint, and ceylon cinnamon. A flavin adenine dinucleotide in which the substituent at position 10 of the flavin nucleus is a 5-adenosyldiphosphoribityl group. FAD. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=146-14-5 (retrieved 2024-07-01) (CAS RN: 146-14-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Flavin adenine dinucleotide (FAD) is a redox cofactor, more specifically a prosthetic group of a protein, involved in several important enzymatic reactions in metabolism.
Riboflavin (Vitamin B2)
Riboflavin or vitamin B2 is an easily absorbed, water-soluble micronutrient with a key role in maintaining human health. Like the other B vitamins, it supports energy production by aiding in the metabolizing of fats, carbohydrates, and proteins. Vitamin B2 is also required for red blood cell formation and respiration, antibody production, and for regulating human growth and reproduction. It is essential for healthy skin, nails, hair growth and general good health, including regulating thyroid activity. Riboflavin is found in milk, eggs, malted barley, liver, kidney, heart, and leafy vegetables. Riboflavin is yellow or orange-yellow in color and in addition to being used as a food coloring it is also used to fortify some foods. It can be found in baby foods, breakfast cereals, sauces, processed cheese, fruit drinks and vitamin-enriched milk products. The richest natural source is yeast. It occurs in the free form only in the retina of the eye, in whey, and in urine; its principal forms in tissues and cells are as flavin mononucleotide and flavin adenine dinucleotide. Riboflavin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=83-88-5 (retrieved 2024-07-01) (CAS RN: 83-88-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Riboflavin (vitamin B2) is an extremely easily absorbed micronutrient. Riboflavin (vitamin B2) is an extremely easily absorbed micronutrient.
Flavin mononucleotide
Flavin mononucleotide, also known as riboflavin 5-monophosphate or riboflavine dihydrogen phosphate, is a member of the class of compounds known as flavin nucleotides. Flavin nucleotides are nucleotides containing a flavin moiety. Flavin is a compound that contains the tricyclic isoalloxazine ring system, which bears 2 oxo groups at the 2- and 4-positions. Flavin mononucleotide is practically insoluble (in water) and a moderately acidic compound (based on its pKa). Flavin mononucleotide can be found in a number of food items such as spinach, elliotts blueberry, tea leaf willow, and black mulberry, which makes flavin mononucleotide a potential biomarker for the consumption of these food products. Flavin mononucleotide can be found primarily in blood, as well as throughout most human tissues. Flavin mononucleotide exists in all living species, ranging from bacteria to humans. In humans, flavin mononucleotide is involved in several metabolic pathways, some of which include riboflavin metabolism, pyrimidine metabolism, beta-alanine metabolism, and doxorubicin metabolism pathway. Flavin mononucleotide is also involved in several metabolic disorders, some of which include beta ureidopropionase deficiency, UMP synthase deficiency (orotic aciduria), carnosinuria, carnosinemia, and hypophosphatasia. Moreover, flavin mononucleotide is found to be associated with anorexia nervosa. Flavin mononucleotide (FMN), or riboflavin-5′-phosphate, is a biomolecule produced from riboflavin (vitamin B2) by the enzyme riboflavin kinase and functions as prosthetic group of various oxidoreductases including NADH dehydrogenase as well as cofactor in biological blue-light photo receptors. During the catalytic cycle, a reversible interconversion of the oxidized (FMN), semiquinone (FMNH•) and reduced (FMNH2) forms occurs in the various oxidoreductases. FMN is a stronger oxidizing agent than NAD and is particularly useful because it can take part in both one- and two-electron transfers. In its role as blue-light photo receptor, (oxidized) FMN stands out from the conventional photo receptors as the signaling state and not an E/Z isomerization . Flavin mononucleotide (FMN), or riboflavin-5′-phosphate, is a biomolecule produced from riboflavin (vitamin B2) by the enzyme riboflavin kinase and functions as the prosthetic group of various oxidoreductases, including NADH dehydrogenase, as well as cofactor in biological blue-light photo receptors. During the catalytic cycle, a reversible interconversion of the oxidized (FMN), semiquinone (FMNH), and reduced (FMNH2) forms occurs in the various oxidoreductases. FMN is a stronger oxidizing agent than NAD and is particularly useful because it can take part in both one- and two-electron transfers. In its role as blue-light photo receptor, (oxidized) FMN stands out from the conventional photo receptors as the signaling state and not an E/Z isomerization. It is the principal form in which riboflavin is found in cells and tissues. It requires more energy to produce, but is more soluble than riboflavin. Flavin mononucleotide belongs to the class of organic compounds known as flavin nucleotides. These are nucleotides containing a flavin moiety. Flavin is a compound that contains the tricyclic isoalloxazine ring system, which bears 2 oxo groups at the 2- and 4-positions. Flavin mononucleotide exists in all living species, ranging from bacteria to humans. Within humans, flavin mononucleotide participates in a number of enzymatic reactions. In particular, formic acid and flavin mononucleotide can be biosynthesized from FMNH2; which is catalyzed by the enzyme lanosterol 14-alpha demethylase. In addition, formic acid and flavin mononucleotide can be biosynthesized from FMNH2 through the action of the enzyme lanosterol 14-alpha demethylase. In humans, flavin mononucleotide is involved in bloch pathway (cholesterol biosynthesis). Outside of the human body, flavin mononucleotide has been detected, but not quantified in several different foods, such as mandarin orange (clementine, tangerine), horseradish tree, black elderberries, angelica, and ostrich ferns. Acquisition and generation of the data is financially supported in part by CREST/JST. D018977 - Micronutrients > D014815 - Vitamins
Lumichrome
Lumichrome, also known as light folinic acid or 7,8-dimethyl-10-ribitylisoalloxazine, is a derivative of riboflavin (vitamin B2). The chemical structure of lumichrome consists of a heterocyclic isoalloxazine ring, which is a fused pyridine and pyrazine ring system. The isoalloxazine ring contains a methyl group at the 7 and 8 positions and is substituted at the 10 position with a ribityl group, which is a 5-carbon chain derived from ribose with a methyl group at the 2’ position. Photocatalytic Activity: Lumichrome exhibits photocatalytic activity and can act as a photosensitizer. It can absorb light energy and transfer it to other molecules, potentially triggering photochemical reactions. Fluorescence: Lumichrome is known for its fluorescence properties. This characteristic makes it useful in various applications, including fluorescence microscopy and as a labeling agent in biological assays. Antioxidant Properties: Lumichrome has been found to have antioxidant properties. It can scavenge free radicals, which may help in protecting cells from oxidative stress. Metabolic Intermediate: In the body, lumichrome can be formed from riboflavin through photochemical or enzymatic degradation. It may play a role in the metabolism of flavins and could be involved in the recycling of flavin cofactors. Potential Biomarker: Due to its presence in biological tissues and its fluorescence properties, lumichrome has been proposed as a potential biomarker for certain diseases and conditions. Plant Pigment: In plants, lumichrome can be involved in light capture and energy transfer processes, although it is not a chlorophyll pigment. It may contribute to the overall light-harvesting capabilities of plant tissues. While lumichrome has several interesting chemical and biological properties, it is not considered an essential nutrient like its parent compound, riboflavin. Its exact role in biological systems is still an area of ongoing research. Lumichrome, a photodegradation product of Riboflavin, is an endogenous compound in humans. Lumichrome inhibits human lung cancer cell growth and induces apoptosis via a p53-dependent mechanism[1][2].
Isobutyryl-CoA
Isobutyryl-CoA is a substrate for Acyl-CoA dehydrogenase (short-chain specific, mitochondrial), Acyl-CoA dehydrogenase (medium-chain specific, mitochondrial) and Acyl-CoA dehydrogenase (long-chain specific, mitochondrial). [HMDB] Isobutyryl-CoA is a substrate for Acyl-CoA dehydrogenase (short-chain specific, mitochondrial), Acyl-CoA dehydrogenase (medium-chain specific, mitochondrial) and Acyl-CoA dehydrogenase (long-chain specific, mitochondrial). Acquisition and generation of the data is financially supported in part by CREST/JST.
Riboflavin
D-Ribitol in which the hydroxy group at position 5 is substituted by a 7,8-dimethyl-2,4-dioxo-3,4-dihydrobenzo[g]pteridin-10(2H)-yl moiety. It is a nutritional factor found in milk, eggs, malted barley, liver, kidney, heart, and leafy vegetables, but the richest natural source is yeast. The free form occurs only in the retina of the eye, in whey, and in urine; its principal forms in tissues and cells are as flavin mononucleotide and flavin-adenine dinucleotide. D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents A - Alimentary tract and metabolism > A11 - Vitamins D018977 - Micronutrients > D014815 - Vitamins S - Sensory organs > S01 - Ophthalmologicals D003879 - Dermatologic Agents relative retention time with respect to 9-anthracene Carboxylic Acid is 0.581 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.582 Riboflavin (vitamin B2) is an extremely easily absorbed micronutrient. Riboflavin (vitamin B2) is an extremely easily absorbed micronutrient.
Flavin adenine dinucleotide
COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Flavin adenine dinucleotide (FAD) is a redox cofactor, more specifically a prosthetic group of a protein, involved in several important enzymatic reactions in metabolism.
Flavin mononucleotide
A flavin mononucleotide that is riboflavin (vitamin B2) in which the primary hydroxy group has been converted to its dihydrogen phosphate ester. D018977 - Micronutrients > D014815 - Vitamins
Lumichrome
A compound showing blue fluorescence, formed by a photolysis of riboflavin in acid or neutral solution. Lumichrome, a photodegradation product of Riboflavin, is an endogenous compound in humans. Lumichrome inhibits human lung cancer cell growth and induces apoptosis via a p53-dependent mechanism[1][2].
CoA 4:0
Isobutyryl-CoA
A short-chain, methyl-branched fatty acyl-CoA that is the S-isobutyryl derivative of coenzyme A.