2-Hydroxycinnamic acid (BioDeep_00000001088)
Secondary id: BioDeep_00000014759, BioDeep_00000400254
natural product human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite
代谢物信息卡片
化学式: C9H8O3 (164.0473)
中文名称: 邻羟基肉桂酸, (E)-3-(2-羟基苯基)丙烯酸, 邻羟基肉桂酸(邻香豆酸), 2-羟基肉桂酸
谱图信息:
最多检出来源 Homo sapiens(blood) 25.38%
Last reviewed on 2024-07-01.
Cite this Page
2-Hydroxycinnamic acid. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China.
https://query.biodeep.cn/s/2-hydroxycinnamic_acid (retrieved
2024-12-22) (BioDeep RN: BioDeep_00000001088). Licensed
under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
分子结构信息
SMILES: C1=CC=C(C(=C1)C=CC(=O)O)O
InChI: InChI=1S/C9H8O3/c10-8-4-2-1-3-7(8)5-6-9(11)12/h1-6,10H,(H,11,12)/b6-5+
描述信息
2-coumaric acid, also known as o-coumaric acid, is a monohydroxycinnamic acid in which the hydroxy substituent is located at C-2 of the phenyl ring. It has a role as a plant metabolite. It is a conjugate acid of a 2-coumarate. It is a hydroxycinnamic acid, an organic compound that is a hydroxy derivative of cinnamic acid. There are three isomers of coumaric acids: o-coumaric acid, m-coumaric acid, and p-coumaric acid, that differ by the position of the hydroxy substitution of the phenyl group. 2-Hydroxycinnamic acid belongs to the class of organic compounds known as hydroxycinnamic acids. Hydroxycinnamic acids are compounds containing an cinnamic acid where the benzene ring is hydroxylated. 2-Hydroxycinnamic acid exists in all living organisms, ranging from bacteria to humans. 2-Hydroxycinnamic acid has been found in a few different foods, such as corns, hard wheats, and olives and in a lower concentration in pomegranates, american cranberries, and peanuts. 2-Hydroxycinnamic acid has also been detected, but not quantified in several different foods, such as carrots, soy beans, ryes, rye bread, and turmerics.
Coumaric acid is a hydroxycinnamic acid, an organic compound that is a hydroxy derivative of cinnamic acid. There are three isomers, o-coumaric acid, m-coumaric acid, and p-coumaric acid, that differ by the position of the hydroxy substitution of the phenyl group. p-Coumaric acid is the most abundant isomer of the three in nature. o-Coumaric acid is found in many foods, some of which are common wheat, date, bilberry, and corn.
2-coumaric acid is a monohydroxycinnamic acid in which the hydroxy substituent is located at C-2 of the phenyl ring. It has a role as a plant metabolite. It is a conjugate acid of a 2-coumarate.
2-Hydroxycinnamic acid is a natural product found in Mikania glomerata, Coffea arabica, and other organisms with data available.
See also: Ipomoea aquatica leaf (part of).
The trans-isomer of 2-coumaric acid.
o-Coumaric acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=583-17-5 (retrieved 2024-07-01) (CAS RN: 583-17-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
同义名列表
74 个代谢物同义名
2-Hydroxycinnamic acid = o-Hydroxycinnamic acid = o-Coumaric acid; (2E)-3-(2-hydroxyphenyl)acrylic acid predominately trans-; 2-Hydroxycinnamic acid, predominantly trans, 97\\%; TRANS-2-HYDROXYCINNAMIC ACID; O-COUMARIC ACID; 2-Propenoic acid, 3-(2-hydroxyphenyl)-, (2E)-; 2-Propenoic acid, 3-(2-hydroxyphenyl)-, (E)-; 2-Hydroxycinnamic acid, predominantly trans; (2E)-3-(2-Hydroxyphenyl)-2-propenoic acid; (2E)-3-(2-hydroxyphenyl)prop-2-enoic acid; (E)-3-(2-hydroxyphenyl)prop-2-enoic acid; (E)-3-(2-Hydroxyphenyl)-2-propenoic acid; trans-3-(2-hydroxyphenyl)propenoic acid; 2-Propenoic acid, 3-(2-hydroxyphenyl)-; (2E)-3-(2-Hydroxyphenyl)-2-propenoate; (E)-3-(2-HYDROXY-PHENYL)-ACRYLIC ACID; (e)-3-(2-Hydroxyphenyl)-2-propenoate; 3-(2-hydroxyphenyl)prop-2-enoic acid; (2E)-3-(2-HYDROXYPHENYL)ACRYLIC ACID; 90E8F55A-AB69-4720-95AF-747C2DCA5471; 3-(2-Hydroxyphenyl)-2-propenoic acid; (E)-3-(2-hydroxyphenyl)-acrylic acid; (E)-3-(2-hydroxyphenyl)acrylic acid; 2-hydroxycinnamic acid, (Z)-isomer; 2-hydroxycinnamic acid, (E)-isomer; (e)-3-(2-Hydroxy-phenyl)-acrylate; trans-o-HydroxyzimtsA currencyure; 3-(2-hydroxyphenyl)prop-2-enoate; (2E)-3-(2-HYDROXYPHENYL)acrylate; 3-(2-hydroxyphenyl)acrylic acid; CINNAMIC ACID,2-HYDROXY (TRANS); CINNAMIC ACID, o-HYDROXY-, (E)-; 3-(2-hydroxyphenyl)acrylicacid; 2-HYDROXYCINNAMIC ACID, TRANS-; o-Hydroxy-trans-cinnamic acid; 2-Hydroxycinnamic acid, (2E)-; 2-Hydroxycinnamic acid, (E)-; trans-o-Hydroxycinnamic acid; trans-2-Hydroxycinnamic acid; (2E)-2-hydroxycinnamic acid; ortho-hydroxycinnamic acid; (E)-o-Hydroxycinnamic acid; (E)-2-hydroxycinnamic acid; o-Hydroxy-trans-cinnamate; Cinnamic acid, o-hydroxy-; (E)-o-Hydroxycinnamicacid; trans-o-Hydroxycinnamate; trans-2-Hydroxycinnamate; 2-Hydroxycinnamic acid; ortho-Hydroxycinnamate; (e)-O-Hydroxycinnamate; O-Hydroxycinnamic acid; (e)-2-Hydroxycinnamate; O-TRANS-COUMARIC ACID; 2-Hydroxycinamic acid; trans-o-Coumaric acid; trans-2-Coumaric acid; trans-2-coumaric acid; trans-o-Cumaric Acid; (E)-Coumarinic Acid; o-Hydroxycinnamate; 2-Hydroxycinnamate; trans-o-Coumarate; trans-2-Coumarate; O- COUMARIC ACID; UNII-23AU5FZB9C; o-Coumaric acid; 2-Coumaric acid; WLN: QV1U1R BQ; o-coumarate; 2-Coumarate; 23AU5FZB9C; 2-Hydroxycinnamic acid; trans-2-Hydroxycinnamate; 2-Hydroxycinnamic acid
数据库引用编号
41 个数据库交叉引用编号
- ChEBI: CHEBI:18125
- ChEBI: CHEBI:18176
- KEGG: C01772
- PubChem: 637540
- HMDB: HMDB0002641
- Metlin: METLIN306
- DrugBank: DB01650
- ChEMBL: CHEMBL52564
- Wikipedia: O-Coumaric_acid
- Wikipedia: o-coumaric acid
- MeSH: 2-hydroxycinnamic acid
- ChemIDplus: 0000614608
- MetaCyc: 2-COUMARATE
- MetaCyc: CPD-7418
- KNApSAcK: C00002729
- foodb: FDB011258
- chemspider: 553146
- MoNA: KO000443
- MoNA: KO000445
- MoNA: PR100593
- MoNA: PS031406
- MoNA: PS031401
- MoNA: PS031403
- MoNA: KO000444
- MoNA: KO000441
- MoNA: PR100185
- MoNA: PS031402
- MoNA: KO000442
- medchemexpress: HY-W012531
- PMhub: MS000000150
- MetaboLights: MTBLC18125
- PDB-CCD: 2HC
- 3DMET: B00349
- NIKKAJI: J55.415D
- RefMet: trans-o-Coumaric acid
- CAS: 614-60-8
- PubChem: 4905
- KNApSAcK: 18125
- LOTUS: LTS0065925
- wikidata: Q27102874
- LOTUS: LTS0142397
分类词条
相关代谢途径
Reactome(0)
BioCyc(0)
PlantCyc(0)
代谢反应
3 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(0)
WikiPathways(0)
Plant Reactome(3)
- Metabolism and regulation:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Secondary metabolism:
GPP + H2O ⟶ PPi + geraniol
- Coumarin biosynthesis (via 2-coumarate):
H2O + coumarinic acid-beta-D-glucoside ⟶ beta-D-glucose + coumarinate
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
181 个相关的物种来源信息
- 1080010 - Aloe africana: 10.1021/JF071110T
- 149627 - Amburana: LTS0142397
- 149628 - Amburana cearensis: 10.1590/S0103-50532010000900022
- 149628 - Amburana cearensis: LTS0142397
- 4037 - Apiaceae: LTS0142397
- 3702 - Arabidopsis thaliana: 10.1111/TPJ.14594
- 4710 - Arecaceae: LTS0142397
- 4219 - Artemisia: LTS0142397
- 259893 - Artemisia argyi: 10.1248/CPB.44.1656
- 259893 - Artemisia argyi: LTS0142397
- 6656 - Arthropoda: LTS0142397
- 4210 - Asteraceae: LTS0142397
- 3504 - Betula: LTS0142397
- 38787 - Betula pubescens: 10.1016/0305-1978(94)00092-U
- 38787 - Betula pubescens: LTS0142397
- 3514 - Betulaceae: LTS0142397
- 24079 - Bignoniaceae: LTS0142397
- 6658 - Branchiopoda: LTS0142397
- 3705 - Brassica: LTS0142397
- 3708 - Brassica napus: 10.1007/BF02671339
- 3708 - Brassica napus: LTS0142397
- 3711 - Brassica rapa: 10.1007/BF02671339
- 3700 - Brassicaceae: LTS0142397
- 13420 - Chromolaena: LTS0142397
- 13428 - Cinnamomum: LTS0142397
- 119260 - Cinnamomum aromaticum: 10.1021/NP900031Q
- 119260 - Cinnamomum aromaticum: LTS0142397
- 1155220 - Cinnamomum iners: 10.1021/NP900031Q
- 128608 - Cinnamomum verum: 10.1021/NP900031Q
- 13442 - Coffea: LTS0142397
- 13443 - Coffea arabica: 10.1080/10826079708005561
- 49390 - Coffea canephora:
- 49390 - Coffea canephora: 10.1081/JLC-100101676
- 49390 - Coffea canephora: LTS0142397
- 4046 - Coriandrum: LTS0142397
- 4047 - Coriandrum sativum: 10.1016/J.ARABJC.2013.12.011
- 4047 - Coriandrum sativum: LTS0142397
- 23159 - Crataegus: LTS0142397
- 298643 - Crataegus laevigata: 10.1515/ZNC-2001-9-1012
- 298643 - Crataegus laevigata: LTS0142397
- 140997 - Crataegus monogyna: 10.1515/ZNC-2001-9-1012
- 140997 - Crataegus monogyna: LTS0142397
- 510738 - Crataegus rhipidophylla: 10.1515/ZNC-2001-9-1012
- 6668 - Daphnia: LTS0142397
- 6669 - Daphnia pulex: 10.1038/SREP25125
- 6669 - Daphnia pulex: LTS0142397
- 77658 - Daphniidae: LTS0142397
- 4039 - Daucus carota: 10.1021/JF020028P
- 13054 - Epilobium: LTS0142397
- 33136 - Epilobium dodonaei: 10.1016/S0021-9673(97)01259-4
- 4345 - Ericaceae: LTS0142397
- 33682 - Euglenozoa: LTS0142397
- 2759 - Eukaryota: LTS0142397
- 3803 - Fabaceae: LTS0142397
- 3746 - Fragaria: 10.1021/JF020028P
- 13538 - Gaultheria: LTS0142397
- 157519 - Gaultheria procumbens:
- 157519 - Gaultheria procumbens: 10.1016/S0031-9422(00)88025-5
- 157519 - Gaultheria procumbens: 10.1515/ZNB-1966-0509
- 157519 - Gaultheria procumbens: LTS0142397
- 3310 - Ginkgo: LTS0142397
- 3311 - Ginkgo biloba: 10.3389/FPLS.2019.00983
- 3311 - Ginkgo biloba: LTS0142397
- 3309 - Ginkgoaceae: LTS0142397
- 29811 - Ginkgoopsida: LTS0142397
- 167660 - Gliricidia: LTS0142397
- 167663 - Gliricidia sepium: 10.1007/BF00982301
- 167663 - Gliricidia sepium: LTS0142397
- 3846 - Glycine: LTS0142397
- 3847 - Glycine max: 10.1016/S0021-9673(01)87655-X
- 3847 - Glycine max: LTS0142397
- 9606 - Homo sapiens: -
- 3486 - Humulus lupulus: 10.3390/NU11061377
- 5653 - Kinetoplastea: LTS0142397
- 4136 - Lamiaceae: LTS0142397
- 3433 - Lauraceae: LTS0142397
- 39169 - Lavandula: LTS0142397
- 39329 - Lavandula angustifolia: LTS0142397
- 1211581 - Lavandula angustifolia subsp. angustifolia: 10.1081/JLC-100100510
- 1211581 - Lavandula angustifolia subsp. angustifolia: LTS0142397
- 4447 - Liliopsida: LTS0142397
- 32128 - Lindsaeaceae: LTS0142397
- 3928 - Lythraceae: LTS0142397
- 3398 - Magnoliopsida: LTS0142397
- 3749 - Malus: LTS0142397
- 3750 - Malus domestica:
- 3750 - Malus domestica: 10.1007/S002170100354
- 3750 - Malus domestica: 10.1111/J.1745-4557.2003.TB00243.X
- 3750 - Malus domestica: LTS0142397
- 283210 - Malus pumila:
- 283210 - Malus pumila: 10.1007/S002170100354
- 283210 - Malus pumila: 10.1111/J.1745-4557.2003.TB00243.X
- 283210 - Malus pumila: LTS0142397
- 47081 - Melilotus: LTS0142397
- 47082 - Melilotus albus: 10.1021/JF00112A034
- 47082 - Melilotus albus: LTS0142397
- 24579 - Menyanthaceae: LTS0142397
- 24581 - Menyanthes: LTS0142397
- 28525 - Menyanthes trifoliata: 10.1055/S-2007-969319
- 28525 - Menyanthes trifoliata: LTS0142397
- 33208 - Metazoa: LTS0142397
- 102786 - Mikania: LTS0142397
- 1073848 - Mikania glomerata: 10.1016/S0305-1978(98)00055-6
- 1073848 - Mikania glomerata: LTS0142397
- 3931 - Myrtaceae: LTS0142397
- 3939 - Oenothera: LTS0142397
- 3942 - Oenothera biennis: 10.5586/ASBP.1995.007
- 3942 - Oenothera biennis: LTS0142397
- 4145 - Olea: LTS0142397
- 4146 - Olea europaea:
- 4146 - Olea europaea: 10.1016/S0003-2670(01)01241-7
- 4146 - Olea europaea: 10.1016/S0963-9969(00)00072-7
- 4146 - Olea europaea: LTS0142397
- 4144 - Oleaceae: LTS0142397
- 3934 - Onagraceae: LTS0142397
- 867793 - Osmolindsaea: LTS0142397
- 866269 - Osmolindsaea japonica: 10.1248/CPB.31.3865
- 866269 - Osmolindsaea japonica: LTS0142397
- 3434 - Persea: LTS0142397
- 3435 - Persea americana: 10.1021/JF00078A018
- 3435 - Persea americana: LTS0142397
- 4719 - Phoenix: LTS0142397
- 42345 - Phoenix dactylifera:
- 42345 - Phoenix dactylifera: 10.1021/JF050579Q
- 42345 - Phoenix dactylifera: 10.1021/JF050579Q.S001
- 42345 - Phoenix dactylifera: LTS0142397
- 420628 - Plinia: LTS0142397
- 375264 - Plinia cauliflora: 10.1021/NP0600999
- 375264 - Plinia cauliflora: LTS0142397
- 4479 - Poaceae: LTS0142397
- 241806 - Polypodiopsida: LTS0142397
- 49647 - Primula: LTS0142397
- 175104 - Primula vulgaris: 10.1016/S0031-9422(00)88025-5
- 175104 - Primula vulgaris: LTS0142397
- 4335 - Primulaceae: LTS0142397
- 42229 - Prunus avium: 10.1515/ZNB-1972-0519
- 129217 - Prunus mahaleb: 10.1515/ZNB-1972-0519
- 22662 - Punica: LTS0142397
- 22663 - Punica granatum:
- 22663 - Punica granatum: 10.1006/JFCA.2002.1071
- 22663 - Punica granatum: LTS0142397
- 362626 - Rhaponticum: LTS0142397
- 362630 - Rhaponticum carthamoides: 10.1016/J.PHYTOCHEM.2009.04.008
- 4346 - Rhododendron: LTS0142397
- 880079 - Rhododendron dauricum: 10.1016/J.JCHROMB.2004.06.048
- 880079 - Rhododendron dauricum: LTS0142397
- 3745 - Rosaceae: LTS0142397
- 24966 - Rubiaceae: LTS0142397
- 32247 - Rubus idaeus: 10.1021/JF020028P
- 4139 - Scutellaria: LTS0142397
- 396367 - Scutellaria barbata: 10.1016/J.PHYTOCHEM.2004.02.005
- 396367 - Scutellaria barbata: LTS0142397
- 4549 - Secale: LTS0142397
- 4550 - Secale cereale: 10.1007/S002170050544
- 4550 - Secale cereale: LTS0142397
- 3727 - Sinapis: LTS0142397
- 3728 - Sinapis alba: 10.1007/BF02671339
- 3728 - Sinapis alba: LTS0142397
- 4081 - Solanum lycopersicum: 10.1021/JF020028P
- 35493 - Streptophyta: LTS0142397
- 69903 - Tecoma: LTS0142397
- 69904 - Tecoma stans: 10.5586/ASBP.1977.015
- 69904 - Tecoma stans: LTS0142397
- 58023 - Tracheophyta: LTS0142397
- 4564 - Triticum: LTS0142397
- 4565 - Triticum aestivum: 10.1007/S002170050544
- 4565 - Triticum aestivum: LTS0142397
- 5690 - Trypanosoma: LTS0142397
- 5691 - Trypanosoma brucei: 10.1371/JOURNAL.PNTD.0001618
- 5691 - Trypanosoma brucei: LTS0142397
- 5654 - Trypanosomatidae: LTS0142397
- 13749 - Vaccinium: LTS0142397
- 180763 - Vaccinium myrtillus: 10.1111/J.1365-2621.1987.TB14056.X
- 180763 - Vaccinium myrtillus: LTS0142397
- 33090 - Viridiplantae: LTS0142397
- 3602 - Vitaceae: LTS0142397
- 3603 - Vitis: LTS0142397
- 29760 - Vitis vinifera:
- 29760 - Vitis vinifera: 10.1016/S0308-8146(02)00590-3
- 29760 - Vitis vinifera: 10.1080/13102818.2006.10817302
- 29760 - Vitis vinifera: LTS0142397
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Vera L Petricevich, Mayra Cedillo-Cortezano, Rodolfo Abarca-Vargas. Chemical Composition, Antioxidant Activity, Cytoprotective and In Silico Study of Ethanolic Extracts of Bougainvillea × buttiana (Var. Orange and Rose).
Molecules (Basel, Switzerland).
2022 Oct; 27(19):. doi:
10.3390/molecules27196555
. [PMID: 36235092] - Sijia Hao, Xia Li, Ailing Han, Yayu Yang, Xiaoyu Luo, Guozhen Fang, Hao Wang, Jifeng Liu, Shuo Wang. Hydroxycinnamic Acid from Corncob and Its Structural Analogues Inhibit Aβ40 Fibrillation and Attenuate Aβ40-Induced Cytotoxicity.
Journal of agricultural and food chemistry.
2020 Aug; 68(33):8788-8796. doi:
10.1021/acs.jafc.0c01841
. [PMID: 32700906] - Takuya Hasegawa, Yusuke Kato, Atsushi Okabe, Chie Itoi, Atsushi Ooshiro, Hiroshi Kawaide, Masahiro Natsume. Effect of Secondary Metabolites of Tomato ( Solanum lycopersicum) on Chemotaxis of Ralstonia solanacearum, Pathogen of Bacterial Wilt Disease.
Journal of agricultural and food chemistry.
2019 Feb; 67(7):1807-1813. doi:
10.1021/acs.jafc.8b06245
. [PMID: 30734556] - Yan Song, Lan Pan, Wenjie Li, Yingying Si, Di Zhou, Chengjian Zheng, Xiaofang Hao, Xinyue Jia, Yuemei Jia, Minghui Shi, Xiaoguang Jia, Ning Li, Yue Hou. Natural neuro-inflammatory inhibitors from Caragana turfanensis.
Bioorganic & medicinal chemistry letters.
2017 10; 27(20):4765-4769. doi:
10.1016/j.bmcl.2017.08.047
. [PMID: 28911817] - Sonia Losada-Barreiro, Carlos Bravo-Díaz. Free radicals and polyphenols: The redox chemistry of neurodegenerative diseases.
European journal of medicinal chemistry.
2017 Jun; 133(?):379-402. doi:
10.1016/j.ejmech.2017.03.061
. [PMID: 28415050] - Kathleen Trautwein, Heinz Wilkes, Ralf Rabus. Proteogenomic evidence for β-oxidation of plant-derived 3-phenylpropanoids in "Aromatoleum aromaticum" EbN1.
Proteomics.
2012 May; 12(9):1402-13. doi:
10.1002/pmic.201100279
. [PMID: 22589189] - Walid Elfalleh, Nizar Tlili, Nizar Nasri, Yassine Yahia, Hédia Hannachi, Nizar Chaira, Ma Ying, Ali Ferchichi. Antioxidant capacities of phenolic compounds and tocopherols from Tunisian pomegranate (Punica granatum) fruits.
Journal of food science.
2011 Jun; 76(5):C707-13. doi:
10.1111/j.1750-3841.2011.02179.x
. [PMID: 22417416] - Damien P Belobrajdic, Yan Y Lam, Mark Mano, Gary A Wittert, Anthony R Bird. Cereal based diets modulate some markers of oxidative stress and inflammation in lean and obese Zucker rats.
Nutrition & metabolism.
2011 May; 8(?):27. doi:
10.1186/1743-7075-8-27
. [PMID: 21535898] - João C Gasparetto, Thais M Guimarães de Francisco, Francinete R Campos, Roberto Pontarolo. Development and validation of two methods based on high-performance liquid chromatography-tandem mass spectrometry for determining 1,2-benzopyrone, dihydrocoumarin, o-coumaric acid, syringaldehyde and kaurenoic acid in guaco extracts and pharmaceutical preparations.
Journal of separation science.
2011 Apr; 34(7):740-8. doi:
10.1002/jssc.201000792
. [PMID: 21374810] - A P Polycarpe Kayodé, M J Rob Nout, Anita R Linnemann, Joseph D Hounhouigan, Emmerich Berghofer, Susanne Siebenhandl-Ehn. Uncommonly high levels of 3-deoxyanthocyanidins and antioxidant capacity in the leaf sheaths of dye sorghum.
Journal of agricultural and food chemistry.
2011 Feb; 59(4):1178-84. doi:
10.1021/jf103963t
. [PMID: 21322653] - Gabriella Szalai, Szabina Horgosi, Vilmos Soós, Imre Majláth, Ervin Balázs, Tibor Janda. Salicylic acid treatment of pea seeds induces its de novo synthesis.
Journal of plant physiology.
2011 Feb; 168(3):213-9. doi:
10.1016/j.jplph.2010.07.029
. [PMID: 20933297] - Pablo Calzadilla, Daiana Sapochnik, Soledad Cosentino, Virginia Diz, Lelia Dicelio, Juan Carlos Calvo, Liliana N Guerra. N-acetylcysteine reduces markers of differentiation in 3T3-L1 adipocytes.
International journal of molecular sciences.
2011; 12(10):6936-51. doi:
10.3390/ijms12106936
. [PMID: 22072928] - Sunil K Panchal, Lindsay Brown. Rodent models for metabolic syndrome research.
Journal of biomedicine & biotechnology.
2011; 2011(?):351982. doi:
10.1155/2011/351982
. [PMID: 21253582] - Chaiyavat Chaiyasut, Winthana Kusirisin, Narissara Lailerd, Peerasak Lerttrakarnnon, Maitree Suttajit, Somdet Srichairatanakool. Effects of phenolic compounds of fermented thai indigenous plants on oxidative stress in streptozotocin-induced diabetic rats.
Evidence-based complementary and alternative medicine : eCAM.
2011; 2011(?):749307. doi:
10.1155/2011/749307
. [PMID: 21423638] - Syed Sultan Beevi, Mangamoori Lakshmi Narasu, Bandi Boje Gowda. Polyphenolics profile, antioxidant and radical scavenging activity of leaves and stem of Raphanus sativus L.
Plant foods for human nutrition (Dordrecht, Netherlands).
2010 Mar; 65(1):8-17. doi:
10.1007/s11130-009-0148-6
. [PMID: 20072818] - Min Zhang, Navam S Hettiarachchy, Ronny Horax, Pengyin Chen, Kenneth F Over. Effect of maturity stages and drying methods on the retention of selected nutrients and phytochemicals in bitter melon (Momordica charantia) leaf.
Journal of food science.
2009 Aug; 74(6):C441-8. doi:
10.1111/j.1750-3841.2009.01222.x
. [PMID: 19723180] - Tran Minh Ngoc, IkSoo Lee, Do Thi Ha, Hongjin Kim, ByungSun Min, KiHwan Bae. Tyrosinase-inhibitory constituents from the twigs of Cinnamomum cassia.
Journal of natural products.
2009 Jun; 72(6):1205-8. doi:
10.1021/np900031q
. [PMID: 19555125] - Amy O Charkowski. Decaying signals: will understanding bacterial-plant communications lead to control of soft rot?.
Current opinion in biotechnology.
2009 Apr; 20(2):178-84. doi:
10.1016/j.copbio.2009.01.005
. [PMID: 19249200] - Kiho Lee, Byoung-Mog Kwon, Kangjeon Kim, Jekyung Ryu, Soo Jin Oh, Kye Sook Lee, Mu-Gil Kwon, Song-Kyu Park, Jong Soon Kang, Chang Woo Lee, Hwan Mook Kim. Plasma pharmacokinetics and metabolism of the antitumour drug candidate 2'-benzoyloxycinnamaldehyde in rats.
Xenobiotica; the fate of foreign compounds in biological systems.
2009 Mar; 39(3):255-65. doi:
10.1080/00498250802650069
. [PMID: 19280524] - Chin-Lin Hsu, Chi-Hao Wu, Shih-Li Huang, Gow-Chin Yen. Phenolic compounds rutin and o-coumaric acid ameliorate obesity induced by high-fat diet in rats.
Journal of agricultural and food chemistry.
2009 Jan; 57(2):425-31. doi:
10.1021/jf802715t
. [PMID: 19119847] - Shihui Yang, Quan Peng, Michael San Francisco, Yongjun Wang, Quan Zeng, Ching-Hong Yang. Type III secretion system genes of Dickeya dadantii 3937 are induced by plant phenolic acids.
PloS one.
2008 Aug; 3(8):e2973. doi:
10.1371/journal.pone.0002973
. [PMID: 18698421] - Tibor Janda, Gabriella Szalai, Kornélia Leskó, Rusina Yordanova, Simona Apostol, Losanka Petrova Popova. Factors contributing to enhanced freezing tolerance in wheat during frost hardening in the light.
Phytochemistry.
2007 Jun; 68(12):1674-82. doi:
10.1016/j.phytochem.2007.04.012
. [PMID: 17537468] - I Medina, J M Gallardo, M J Gonzalez, S Lois, N Hedges. Effect of molecular structure of phenolic families as hydroxycinnamic acids and catechins on their antioxidant effectiveness in minced fish muscle.
Journal of agricultural and food chemistry.
2007 May; 55(10):3889-95. doi:
10.1021/jf063498i
. [PMID: 17451250] - Wende Li, Chunliang Victor Wei, Pamela J White, Trust Beta. High-amylose corn exhibits better antioxidant activity than typical and waxy genotypes.
Journal of agricultural and food chemistry.
2007 Jan; 55(2):291-8. doi:
10.1021/jf0622432
. [PMID: 17227056] - Xu Zou, Jian Liang, Li-Sheng Ding, Shu-Lin Peng. [Studies on chemical constituents of Paederia scandense].
Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica.
2006 Sep; 31(17):1436-41. doi:
. [PMID: 17087085]
- Sheila Cristina dos Santos, Cristhiane L Krueger, Ana Angélica Steil, Maria Regina Kreuger, Maique Weber Biavatti, Alberto Wisniewski Junior. LC characterisation of guaco medicinal extracts, Mikania laevigata and M. glomerata, and their effects on allergic pneumonitis.
Planta medica.
2006 Jun; 72(8):679-84. doi:
10.1055/s-2006-931577
. [PMID: 16755468] - Mohamed Al-Farsi, Cesarettin Alasalvar, Anne Morris, Mark Baron, Fereidoon Shahidi. Comparison of antioxidant activity, anthocyanins, carotenoids, and phenolics of three native fresh and sun-dried date (Phoenix dactylifera L.) varieties grown in Oman.
Journal of agricultural and food chemistry.
2005 Sep; 53(19):7592-9. doi:
10.1021/jf050579q
. [PMID: 16159191] - Ryszard Zadernowski, Marian Naczk, Jarosław Nesterowicz. Phenolic acid profiles in some small berries.
Journal of agricultural and food chemistry.
2005 Mar; 53(6):2118-24. doi:
10.1021/jf040411p
. [PMID: 15769144] - Seung-Cheol Lee, Seok-Moon Jeong, So-Young Kim, K C Nam, D U Ahn. Effect of far-infrared irradiation on the antioxidant activity of defatted sesame meal extracts.
Journal of agricultural and food chemistry.
2005 Mar; 53(5):1495-8. doi:
10.1021/jf048620x
. [PMID: 15740030] - Hisashi Matsuda, Toshio Morikawa, Hiromi Managi, Masayuki Yoshikawa. Antiallergic principles from Alpinia galanga: structural requirements of phenylpropanoids for inhibition of degranulation and release of TNF-alpha and IL-4 in RBL-2H3 cells.
Bioorganic & medicinal chemistry letters.
2003 Oct; 13(19):3197-202. doi:
10.1016/s0960-894x(03)00710-8
. [PMID: 12951092] - Fernando Calzada, Claudia Velázquez, Roberto Cedillo-Rivera, Baldomero Esquivel. Antiprotozoal activity of the constituents of Teloxys graveolens.
Phytotherapy research : PTR.
2003 Aug; 17(7):731-2. doi:
10.1002/ptr.1192
. [PMID: 12916068] - Travis S Walker, Harsh Pal Bais, Kathleen M Halligan, Frank R Stermitz, Jorge M Vivanco. Metabolic profiling of root exudates of Arabidopsis thaliana.
Journal of agricultural and food chemistry.
2003 Apr; 51(9):2548-54. doi:
10.1021/jf021166h
. [PMID: 12696935] - Pirjo Mattila, Jorma Kumpulainen. Determination of free and total phenolic acids in plant-derived foods by HPLC with diode-array detection.
Journal of agricultural and food chemistry.
2002 Jun; 50(13):3660-7. doi:
10.1021/jf020028p
. [PMID: 12059140] - Tsuneo Deguchi, Sumio Ohtsuki, Masaki Otagiri, Hitomi Takanaga, Hiroshi Asaba, Shinobu Mori, Tetsuya Terasaki. Major role of organic anion transporter 3 in the transport of indoxyl sulfate in the kidney.
Kidney international.
2002 May; 61(5):1760-8. doi:
10.1046/j.1523-1755.2002.00318.x
. [PMID: 11967025] - M Luczkiewicz, W Cisowski, P Kaiser, R Ochocka, A Piotrowski. Comparative analysis of phenolic acids in mistletoe plants from various hosts.
Acta poloniae pharmaceutica.
2001 Sep; 58(5):373-9. doi:
. [PMID: 11876445]
- C K Ding, K Chachin, Y Ueda, Y Imahori, C Y Wang. Metabolism of phenolic compounds during loquat fruit development.
Journal of agricultural and food chemistry.
2001 Jun; 49(6):2883-8. doi:
10.1021/jf0101253
. [PMID: 11409982] - P Meuwly, J P Métraux. Ortho-anisic acid as internal standard for the simultaneous quantitation of salicylic acid and its putative biosynthetic precursors in cucumber leaves.
Analytical biochemistry.
1993 Nov; 214(2):500-5. doi:
10.1006/abio.1993.1529
. [PMID: 8109740] - . .
.
. doi:
. [PMID: 19757094]