elatericin A (BioDeep_00000861747)

Main id: BioDeep_00000000567

 

PANOMIX_OTCML-2023


代谢物信息卡片


(2S,8S,9R,10R,13R,14S,16R,17R)-17-[(E,1R)-1,5-dihydroxy-2-keto-1,5-dimethyl-hex-3-enyl]-2,16-dihydroxy-4,4,9,13,14-pentamethyl-2,7,8,10,12,15,16,17-octahydro-1H-cyclopenta[a]phenanthrene-3,11-quinone

化学式: C30H44O7 (516.3087)
中文名称: 葫芦素D
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: CC1(C2=CCC3C4(CC(C(C4(CC(=O)C3(C2CC(C1=O)O)C)C)C(C)(C(=O)C=CC(C)(C)O)O)O)C)C
InChI: InChI=1S/C30H44O7/c1-25(2,36)12-11-21(33)30(8,37)23-19(32)14-27(5)20-10-9-16-17(13-18(31)24(35)26(16,3)4)29(20,7)22(34)15-28(23,27)6/h9,11-12,17-20,23,31-32,36-37H,10,13-15H2,1-8H3/b12-11+/t17-,18+,19-,20+,23+,27+,28-,29+,30+/m1/s1

描述信息

Cucurbitacin D is an active component in Trichosanthes kirilowii, disrupts interactions between Hsp90 and two co-chaperones, Cdc37 and p23. Cucurbitacin D prevents Hsp90 client (Her2, Raf, Cdk6, pAkt) maturation without induction of the heat shock response. Anti-cancer activity[1].
Cucurbitacin D is an active component in Trichosanthes kirilowii, disrupts interactions between Hsp90 and two co-chaperones, Cdc37 and p23. Cucurbitacin D prevents Hsp90 client (Her2, Raf, Cdk6, pAkt) maturation without induction of the heat shock response. Anti-cancer activity[1].

同义名列表

27 个代谢物同义名

(2S,8S,9R,10R,13R,14S,16R,17R)-17-[(E,1R)-1,5-dihydroxy-2-keto-1,5-dimethyl-hex-3-enyl]-2,16-dihydroxy-4,4,9,13,14-pentamethyl-2,7,8,10,12,15,16,17-octahydro-1H-cyclopenta[a]phenanthrene-3,11-quinone; (2S,8S,9R,10R,13R,14S,16R,17R)-17-[(1R)-1,5-dihydroxy-2-keto-1,5-dimethyl-hex-3-enyl]-2,16-dihydroxy-4,4,9,13,14-pentamethyl-2,7,8,10,12,15,16,17-octahydro-1H-cyclopenta[a]phenanthrene-3,11-quinone; (2S,8S,9R,10R,13R,14S,16R,17R)-17-[(E,1R)-1,5-dihydroxy-1,5-dimethyl-2-oxo-hex-3-enyl]-2,16-dihydroxy-4,4,9,13,14-pentamethyl-2,7,8,10,12,15,16,17-octahydro-1H-cyclopenta[a]phenanthrene-3,11-dione; (2S,8S,9R,10R,13R,14S,16R,17R)-17-[(E,2R)-2,6-dihydroxy-6-methyl-3-oxo-hept-4-en-2-yl]-2,16-dihydroxy-4,4,9,13,14-pentamethyl-2,7,8,10,12,15,16,17-octahydro-1H-cyclopenta[a]phenanthrene-3,11-dione; (2S,8S,9R,10R,13R,14S,16R,17R)-17-[(E,1R)-1,5-dihydroxy-1,5-dimethyl-2-oxohex-3-enyl]-2,16-dihydroxy-4,4,9,13,14-pentamethyl-2,7,8,10,12,15,16,17-octahydro-1H-cyclopenta[a]phenanthrene-3,11-dione; (2S,8S,9R,10R,13R,14S,16R,17R)-17-[(E,2R)-2,6-dihydroxy-6-methyl-3-oxohept-4-en-2-yl]-2,16-dihydroxy-4,4,9,13,14-pentamethyl-2,7,8,10,12,15,16,17-octahydro-1H-cyclopenta[a]phenanthrene-3,11-dione; (2S,8S,9R,10R,13R,14S,16R,17R)-17-[(1R)-1,5-dihydroxy-1,5-dimethyl-2-oxo-hex-3-enyl]-2,16-dihydroxy-4,4,9,13,14-pentamethyl-2,7,8,10,12,15,16,17-octahydro-1H-cyclopenta[a]phenanthrene-3,11-dione; (2S,8S,9R,10R,13R,14S,16R,17R)-17-[(2R)-2,6-dihydroxy-6-methyl-3-oxo-hept-4-en-2-yl]-2,16-dihydroxy-4,4,9,13,14-pentamethyl-2,7,8,10,12,15,16,17-octahydro-1H-cyclopenta[a]phenanthrene-3,11-dione; (2S,8S,9R,10R,13R,14S,16R,17R)-17-[(2R)-2,6-dihydroxy-6-methyl-3-oxohept-4-en-2-yl]-2,16-dihydroxy-4,4,9,13,14-pentamethyl-2,7,8,10,12,15,16,17-octahydro-1H-cyclopenta[a]phenanthrene-3,11-dione; (2S,8S,9R,10R,13R,14S,16R,17R)-17-[(1R)-1,5-dihydroxy-1,5-dimethyl-2-oxohex-3-enyl]-2,16-dihydroxy-4,4,9,13,14-pentamethyl-2,7,8,10,12,15,16,17-octahydro-1H-cyclopenta[a]phenanthrene-3,11-dione; 19-Norlanosta-5,23-diene-3,11,22-trione, 2,16,20,25-tetrahydroxy-9-methyl-, (2.beta.,9.beta.,10.alpha.,16.alpha.,23E)-; 19-Norlanosta-5,23-diene-3,11,22-trione, 2,16,20,25-tetrahydroxy-9-methyl-, (2beta,9beta,10alpha,16alpha,23E)- (9CI); 19-nor-9.beta.,10.alpha.-Lanosta-5,23-diene-3,11,22-trione, 9-methyl-2.beta.,16.alpha.,20,25-tetrahydroxy-; 19-Nor-9-beta,10-alpha-lanosta-5,23-diene-3,11,22-trione, 9-methyl-2-beta,16-alpha,20,25-tetrahydroxy-; Cucurbitacine (D); Cucurbitacin D; Elatericine A; LMST01010106; elatericin A; NCI60_002636; NSC 521776; NSC 308606; NSC521776; NSC308606; 3877-86-9; C08796; Cucurbitacin D



数据库引用编号

12 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

36 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 18 AIMP2, AKT1, ANG, ANXA5, BCL2, BCL2L1, CASP1, CASP3, CASP9, EGFR, IL18, JAK2, MAPK8, MTOR, MYC, PIK3CA, STAT3, VEGFA
Peripheral membrane protein 3 ANXA5, JAK2, MTOR
Endosome membrane 1 EGFR
Endoplasmic reticulum membrane 4 BCL2, CD4, EGFR, MTOR
Mitochondrion membrane 1 BCL2L1
Nucleus 13 AIMP2, AKT1, ANG, BCL2, CASP3, CASP9, EGFR, JAK2, MAPK8, MTOR, MYC, STAT3, VEGFA
cytosol 15 AIMP2, AKT1, ANG, ANXA5, BCL2, BCL2L1, CASP1, CASP3, CASP9, IL18, JAK2, MAPK8, MTOR, PIK3CA, STAT3
dendrite 1 MTOR
phagocytic vesicle 1 MTOR
centrosome 1 BCL2L1
nucleoplasm 7 AKT1, CASP3, JAK2, MAPK8, MTOR, MYC, STAT3
RNA polymerase II transcription regulator complex 1 STAT3
Cell membrane 4 AKT1, CASP1, CD4, EGFR
Cytoplasmic side 2 BCL2L1, MTOR
lamellipodium 2 AKT1, PIK3CA
ruffle membrane 1 EGFR
Early endosome membrane 1 EGFR
Golgi apparatus membrane 1 MTOR
Synapse 1 MAPK8
cell cortex 1 AKT1
cell junction 1 EGFR
cell surface 2 EGFR, VEGFA
glutamatergic synapse 4 AKT1, CASP3, EGFR, JAK2
Golgi apparatus 1 VEGFA
Golgi membrane 2 EGFR, MTOR
growth cone 1 ANG
lysosomal membrane 1 MTOR
mitochondrial inner membrane 1 BCL2L1
neuronal cell body 2 ANG, CASP3
postsynapse 2 AKT1, JAK2
sarcolemma 1 ANXA5
Cytoplasm, cytosol 3 AIMP2, BCL2L1, IL18
Lysosome 1 MTOR
endosome 1 EGFR
plasma membrane 7 AKT1, CASP1, CD4, EGFR, JAK2, PIK3CA, STAT3
synaptic vesicle membrane 1 BCL2L1
Membrane 9 AIMP2, AKT1, ANXA5, BCL2, EGFR, JAK2, MTOR, MYC, VEGFA
apical plasma membrane 1 EGFR
axon 1 MAPK8
basolateral plasma membrane 1 EGFR
caveola 1 JAK2
extracellular exosome 1 ANXA5
Lysosome membrane 1 MTOR
endoplasmic reticulum 3 BCL2, BCL2L1, VEGFA
extracellular space 4 ANG, EGFR, IL18, VEGFA
perinuclear region of cytoplasm 2 EGFR, PIK3CA
adherens junction 1 VEGFA
intercalated disc 1 PIK3CA
mitochondrion 3 BCL2, BCL2L1, CASP9
protein-containing complex 6 AKT1, BCL2, CASP1, CASP9, EGFR, MYC
Microsome membrane 1 MTOR
postsynaptic density 1 CASP3
TORC1 complex 1 MTOR
TORC2 complex 1 MTOR
Single-pass type I membrane protein 2 CD4, EGFR
Secreted 3 ANG, IL18, VEGFA
extracellular region 4 ANG, ANXA5, IL18, VEGFA
cytoplasmic side of plasma membrane 1 JAK2
Mitochondrion outer membrane 3 BCL2, BCL2L1, MTOR
Single-pass membrane protein 2 BCL2, BCL2L1
mitochondrial outer membrane 3 BCL2, BCL2L1, MTOR
Mitochondrion matrix 1 BCL2L1
mitochondrial matrix 1 BCL2L1
transcription regulator complex 1 STAT3
Cytoplasm, cytoskeleton, microtubule organizing center, centrosome 1 BCL2L1
Cytoplasmic vesicle, secretory vesicle, synaptic vesicle membrane 1 BCL2L1
Nucleus membrane 2 BCL2, BCL2L1
Bcl-2 family protein complex 2 BCL2, BCL2L1
nuclear membrane 3 BCL2, BCL2L1, EGFR
external side of plasma membrane 2 ANXA5, CD4
Secreted, extracellular space, extracellular matrix 1 VEGFA
actin cytoskeleton 1 ANG
microtubule cytoskeleton 1 AKT1
nucleolus 3 ANG, CASP1, MYC
Early endosome 1 CD4
cell-cell junction 1 AKT1
vesicle 1 AKT1
Membrane raft 3 CD4, EGFR, JAK2
pore complex 1 BCL2
focal adhesion 3 ANXA5, EGFR, JAK2
microtubule 1 CASP1
spindle 1 AKT1
extracellular matrix 1 VEGFA
basement membrane 1 ANG
intracellular vesicle 1 EGFR
Nucleus, PML body 1 MTOR
PML body 1 MTOR
Mitochondrion intermembrane space 1 AKT1
mitochondrial intermembrane space 1 AKT1
collagen-containing extracellular matrix 1 ANXA5
secretory granule 1 VEGFA
NLRP3 inflammasome complex 1 CASP1
receptor complex 1 EGFR
Zymogen granule membrane 1 ANXA5
ciliary basal body 1 AKT1
chromatin 2 MYC, STAT3
Chromosome 1 ANG
cytoskeleton 1 JAK2
Nucleus, nucleolus 2 ANG, MYC
nuclear envelope 2 MTOR, MYC
Endomembrane system 2 JAK2, MTOR
endosome lumen 1 JAK2
Nucleus, nucleoplasm 1 MYC
Cytoplasm, Stress granule 1 ANG
cytoplasmic stress granule 1 ANG
euchromatin 1 JAK2
myelin sheath 1 BCL2
basal plasma membrane 1 EGFR
synaptic membrane 1 EGFR
endoplasmic reticulum lumen 1 CD4
platelet alpha granule lumen 1 VEGFA
phosphatidylinositol 3-kinase complex 1 PIK3CA
phosphatidylinositol 3-kinase complex, class IA 1 PIK3CA
endocytic vesicle 1 ANG
RNA polymerase II transcription repressor complex 1 MYC
apoptosome 1 CASP9
AIM2 inflammasome complex 1 CASP1
vesicle membrane 1 ANXA5
clathrin-coated endocytic vesicle membrane 2 CD4, EGFR
extrinsic component of cytoplasmic side of plasma membrane 1 JAK2
basal dendrite 1 MAPK8
death-inducing signaling complex 1 CASP3
canonical inflammasome complex 1 CASP1
aminoacyl-tRNA synthetase multienzyme complex 1 AIMP2
Rough endoplasmic reticulum 1 MYC
Cytoplasmic vesicle, phagosome 1 MTOR
extrinsic component of plasma membrane 1 JAK2
granulocyte macrophage colony-stimulating factor receptor complex 1 JAK2
interleukin-12 receptor complex 1 JAK2
interleukin-23 receptor complex 1 JAK2
multivesicular body, internal vesicle lumen 1 EGFR
Shc-EGFR complex 1 EGFR
Myc-Max complex 1 MYC
T cell receptor complex 1 CD4
angiogenin-PRI complex 1 ANG
endothelial microparticle 1 ANXA5
BAD-BCL-2 complex 1 BCL2
[N-VEGF]: Cytoplasm 1 VEGFA
[VEGFA]: Secreted 1 VEGFA
[Isoform L-VEGF189]: Endoplasmic reticulum 1 VEGFA
[Isoform VEGF121]: Secreted 1 VEGFA
[Isoform VEGF165]: Secreted 1 VEGFA
VEGF-A complex 1 VEGFA
IPAF inflammasome complex 1 CASP1
NLRP1 inflammasome complex 1 CASP1
protease inhibitor complex 1 CASP1
phosphatidylinositol 3-kinase complex, class IB 1 PIK3CA
caspase complex 1 CASP9
[Isoform Bcl-X(L)]: Mitochondrion inner membrane 1 BCL2L1
nucleoplasmic reticulum 1 MYC


文献列表

  • Xinke Zhang, Guoshuai Zhang, Qi Yan, Bashir Ahmad, Jin Pei, Linfang Huang. Quality variation and salt-alkali-tolerance mechanism of Cynomorium songaricum: Interacting from microbiome-transcriptome-metabolome. The Science of the total environment. 2024 Apr; 919(?):170801. doi: 10.1016/j.scitotenv.2024.170801. [PMID: 38340858]
  • Muhammed Mehdi Üremiş, Yusuf Türköz, Nuray Üremiş. Investigation of apoptotic effects of Cucurbitacin D, I, and E mediated by Bax/Bcl-xL, caspase-3/9, and oxidative stress modulators in HepG2 cell line. Drug development research. 2024 Apr; 85(2):e22174. doi: 10.1002/ddr.22174. [PMID: 38494997]
  • Muhammed Mehdi Üremiş, Nuray Üremiş, Emir Tosun, Merve Durhan, Yılmaz Çiğremiş, Ahmet Baysar, Yusuf Türköz. Cucurbitacin D Inhibits the Proliferation of HepG2 Cells and Induces Apoptosis by Modulating JAK/STAT3, PI3K/Akt/mTOR and MAPK Signaling Pathways. Current cancer drug targets. 2022; 22(11):931-944. doi: 10.2174/1568009622666220623141158. [PMID: 35786188]
  • Duo Wang, Mengyue Shen, Noriaki Kitamura, Yusuke Sennari, Kentaro Morita, Junichi Tsukada, Tamotsu Kanazawa, Yasuhiro Yoshida. Mitogen-activated protein kinases are involved in cucurbitacin D-induced antitumor effects on adult T-cell leukemia cells. Investigational new drugs. 2021 02; 39(1):122-130. doi: 10.1007/s10637-020-00997-0. [PMID: 32914311]
  • Jin Mo Ku, Se Hyang Hong, Hyo In Kim, Min Jeong Kim, Su-Kyoung Kim, Minkyu Kim, Seok Young Choi, Jeongkoo Park, Hyun Koo Kim, Ji Hye Kim, Hye Sook Seo, Yong Cheol Shin, Seong-Gyu Ko. Synergistic anticancer effect of combined use of Trichosanthes kirilowii with cisplatin and pemetrexed enhances apoptosis of H1299 non-small-cell lung cancer cells via modulation of ErbB3. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2020 Jan; 66(?):153109. doi: 10.1016/j.phymed.2019.153109. [PMID: 31790894]
  • Catherine Jacquot, Benedicte Rousseau, Delphine Carbonnelle, Ioanna Chinou, Marine Malleter, Christophe Tomasoni, Christos Roussakis. Cucurbitacin-D-induced CDK1 mRNA up-regulation causes proliferation arrest of a non-small cell lung carcinoma cell line (NSCLC-N6). Anticancer research. 2014 Sep; 34(9):4797-806. doi: . [PMID: 25202060]
  • Samuel A Spear, Sarah S Burns, Janet L Oblinger, Yulin Ren, Li Pan, A Douglas Kinghorn, D Bradley Welling, Long-Sheng Chang. Natural compounds as potential treatments of NF2-deficient schwannoma and meningioma: cucurbitacin D and goyazensolide. Otology & neurotology : official publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology. 2013 Oct; 34(8):1519-27. doi: 10.1097/mao.0b013e3182956169. [PMID: 23928514]
  • Li Pan, Yeonjoong Yong, Ye Deng, Daniel D Lantvit, Tran Ngoc Ninh, Heebyung Chai, Esperanza J Carcache de Blanco, Djaja D Soejarto, Steven M Swanson, A Douglas Kinghorn. Isolation, structure elucidation, and biological evaluation of 16,23-epoxycucurbitacin constituents from Eleaocarpus chinensis. Journal of natural products. 2012 Mar; 75(3):444-52. doi: 10.1021/np200879p. [PMID: 22239601]
  • Yingrou Wei, Guocai Wang, Xiaoqi Zhang, Ying Wang, Wencai Ye. [Studies on chemical constituents in roots of Helicteres angustifolia]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2011 May; 36(9):1193-7. doi: . [PMID: 21842648]
  • Shamim Sahranavard, Farzaneh Naghibi, Karsten Siems, Kristina Jenett-Siems. New cucurbitane-type triterpenoids from Bryonia aspera. Planta medica. 2010 Jul; 76(10):1014-7. doi: 10.1055/s-0029-1240840. [PMID: 20108178]
  • Rony Abou-Khalil, Alia Jraij, Jacques Magdalou, Naïm Ouaini, Daniel Tome, Hélène Greige-Gerges. Interaction of cucurbitacins with human serum albumin: Thermodynamic characteristics and influence on the binding of site specific ligands. Journal of photochemistry and photobiology. B, Biology. 2009 Jun; 95(3):189-95. doi: 10.1016/j.jphotobiol.2009.03.005. [PMID: 19380237]
  • Norito Takahashi, Yasuhiro Yoshida, Tsutomu Sugiura, Koji Matsuno, Akihiro Fujino, Uki Yamashita. Cucurbitacin D isolated from Trichosanthes kirilowii induces apoptosis in human hepatocellular carcinoma cells in vitro. International immunopharmacology. 2009 Apr; 9(4):508-13. doi: 10.1016/j.intimp.2009.01.006. [PMID: 19185617]
  • Jean Théophile Banzouzi, Patrice Njomnang Soh, Bernard Mbatchi, Adrien Cavé, Suzanne Ramos, Pascal Retailleau, Olga Rakotonandrasana, Antoine Berry, Françoise Benoit-Vical. Cogniauxia podolaena: bioassay-guided fractionation of defoliated stems, isolation of active compounds, antiplasmodial activity and cytotoxicity. Planta medica. 2008 Oct; 74(12):1453-6. doi: 10.1055/s-2008-1081341. [PMID: 18704883]
  • H Greige-Gerges, R Abou Khalil, R Chahine, C Haddad, W Harb, N Ouaini. Effect of cucurbitacins on bilirubin-albumin binding in human plasma. Life sciences. 2007 Jan; 80(6):579-85. doi: 10.1016/j.lfs.2006.10.005. [PMID: 17097690]
  • Hamta Madari, Robert S Jacobs. An analysis of cytotoxic botanical formulations used in the traditional medicine of ancient Persia as abortifacients. Journal of natural products. 2004 Aug; 67(8):1204-10. doi: 10.1021/np049953r. [PMID: 15332833]
  • Nelson Rodriguez, Yelkaira Vasquez, Ahmed A Hussein, Phyllis D Coley, Pablo N Solis, Mahabir P Gupta. Cytotoxic cucurbitacin constituents from Sloanea zuliaensis. Journal of natural products. 2003 Nov; 66(11):1515-6. doi: 10.1021/np0303106. [PMID: 14640532]
  • Hyuncheol Oh, Yeun-Ja Mun, Sook-Jung Im, Seung Yon Lee, Ho Joon Song, Ho-Sub Lee, Won-Hong Woo. Cucurbitacins from Trichosanthes kirilowii as the inhibitory components on tyrosinase activity and melanin synthesis of B16/F10 melanoma cells. Planta medica. 2002 Sep; 68(9):832-3. doi: 10.1055/s-2002-34418. [PMID: 12357397]
  • Aiko Ito, Hee-Byung Chai, Dongho Lee, Leonardus B S Kardono, Soedarsono Riswan, Norman R Farnsworth, Geoffrey A Cordell, John M Pezzuto, A Douglas Kinghorn. Ellagic acid derivatives and cytotoxic cucurbitacins from Elaeocarpus mastersii. Phytochemistry. 2002 Sep; 61(2):171-4. doi: 10.1016/s0031-9422(02)00232-7. [PMID: 12169311]
  • L Dinan, P Whiting, J P Girault, R Lafont, T S Dhadialla, D E Cress, B Mugat, C Antoniewski, J A Lepesant. Cucurbitacins are insect steroid hormone antagonists acting at the ecdysteroid receptor. The Biochemical journal. 1997 Nov; 327 ( Pt 3)(?):643-50. doi: 10.1042/bj3270643. [PMID: 9581538]
  • M E Barbercheck, J Wang. Effect of cucurbitacin D on in vitro growth of Xenorhabdus and Photorhabdus spp., symbiotic bacteria of entomopathogenic nematodes. Journal of invertebrate pathology. 1996 Sep; 68(2):141-5. doi: 10.1006/jipa.1996.0071. [PMID: 8858910]
  • L L Musza, P Speight, S McElhiney, C J Barrow, A M Gillum, R Cooper, L M Killar. Cucurbitacins, cell adhesion inhibitors from Conobea scoparioides. Journal of natural products. 1994 Nov; 57(11):1498-502. doi: 10.1021/np50113a004. [PMID: 7852999]