Nicotinamide mononucleotide (BioDeep_00000408270)

Main id: BioDeep_00000003534

Secondary id: BioDeep_00000400273

natural product PANOMIX_OTCML-2023 BioNovoGene_Lab2019 Volatile Flavor Compounds


代谢物信息卡片


β-Nicotinamide mononucleotide

化学式: C11H15N2O8P (334.0566)
中文名称: 烟酰胺核苷酸 (NMN), Β-烟酰胺单核苷酸, 烟酰胺单核苷酸
谱图信息: 最多检出来源 Homo sapiens(urine) 1.56%

分子结构信息

SMILES: C1=CC(=C[N+](=C1)C2C(C(C(O2)COP(=O)(O)[O-])O)O)C(=O)N
InChI: InChI=1S/C11H15N2O8P/c12-10(16)6-2-1-3-13(4-6)11-9(15)8(14)7(21-11)5-20-22(17,18)19/h1-4,7-9,11,14-15H,5H2,(H3-,12,16,17,18,19)/t7-,8-,9-,11-/m1/s1

描述信息

COVID info from COVID-19 Disease Map
Corona-virus
Coronavirus
SARS-CoV-2
COVID-19
SARS-CoV
COVID19
SARS2
SARS
β-nicotinamide mononucleotide (β-NM) is a product of the nicotinamide phosphoribosyltransferase (NAMPT) reaction and a key NAD+ intermediate. The pharmacological activities of β-nicotinamide mononucleotide include its role in cellular biochemical functions, cardioprotection, diabetes, Alzheimer's disease, and complications associated with obesity[1].

同义名列表

5 个代谢物同义名

β-Nicotinamide mononucleotide; Nicotinamide mononucleotide; β-NM; NMN; Nicotinamide D-ribonucleotide



数据库引用编号

38 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(2)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

3 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • Simeng He, Xianhong Jiang, Jing Yang, Ya Wu, Jia Shi, Xiaoyang Wu, Shihan Du, Yuan Zhang, Lirong Gong, Shuan Dong, Jianbo Yu. Nicotinamide mononucleotide alleviates endotoxin-induced acute lung injury by modulating macrophage polarization via the SIRT1/NF-κB pathway. Pharmaceutical biology. 2024 Dec; 62(1):22-32. doi: 10.1080/13880209.2023.2292256. [PMID: 38100537]
  • Shujin Wang, Yinying Han, Ruimin Liu, Mengqian Hou, Dietbert Neumann, Jun Zhang, Fang Wang, Yumeng Li, Xueya Zhao, Francesco Schianchi, Chao Dai, Lizhong Liu, Miranda Nabben, Jan F C Glatz, Xin Wu, Xifeng Lu, Xi Li, Joost J F P Luiken. Glycolysis-Mediated Activation of v-ATPase by Nicotinamide Mononucleotide Ameliorates Lipid-Induced Cardiomyopathy by Repressing the CD36-TLR4 Axis. Circulation research. 2024 03; 134(5):505-525. doi: 10.1161/circresaha.123.322910. [PMID: 38422177]
  • Josephine Yu, Neil A Youngson, D Ross Laybutt, Margaret J Morris, Sarah-Jane Leigh. Complementary yet divergent effects of exercise and an exercise mimetic on microbiome in high-fat diet-induced obesity. Physiological genomics. 2024 Feb; 56(2):136-144. doi: 10.1152/physiolgenomics.00066.2023. [PMID: 38009223]
  • Ding-Hua Xiang, Wei-Hong Feng, Hong Yi, Chun Li, Qi-Ping Cui, Xiao-Qian Liu, Zhi-Min Wang, Pei-Gen Xiao. [Degradation kinetics of β-nicotinamide mononucleotide based on reliable HPLC quantitative method]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2023 Dec; 48(24):6635-6644. doi: 10.19540/j.cnki.cjcmm.20230905.301. [PMID: 38212023]
  • Mikako Yagi, Yura Do, Haruka Hirai, Kenji Miki, Takahiro Toshima, Yukina Fukahori, Daiki Setoyama, Chiaki Abe, Yo-Ichi Nabeshima, Dongchon Kang, Takeshi Uchiumi. Improving lysosomal ferroptosis with NMN administration protects against heart failure. Life science alliance. 2023 Dec; 6(12):. doi: 10.26508/lsa.202302116. [PMID: 37793777]
  • Rui Zhang, Shen Chen, Ziwei Wang, Lizhu Ye, Yue Jiang, Miao Li, Xinhang Jiang, Hui Peng, Zhanyu Guo, Liping Chen, Rong Zhang, Yujie Niu, Michael Aschner, Daochuan Li, Wen Chen. Assessing the Effects of Nicotinamide Mononucleotide Supplementation on Pulmonary Inflammation in Male Mice Subchronically Exposed to Ambient Particulate Matter. Environmental health perspectives. 2023 07; 131(7):77006. doi: 10.1289/ehp12259. [PMID: 37458712]
  • Yan Zhang, Wenjuan Zhu, Meng Wang, Pengjiao Xi, Haomin Wang, Derun Tian. Nicotinamide mononucleotide alters body composition and ameliorates metabolic disorders induced by a high-fat diet. IUBMB life. 2023 Feb; ?(?):. doi: 10.1002/iub.2707. [PMID: 36785893]
  • Keke Wu, Biao Li, Yingxu Ma, Tao Tu, Qiuzhen Lin, Jiayi Zhu, Yong Zhou, Na Liu, Qiming Liu. Nicotinamide mononucleotide attenuates HIF-1α activation and fibrosis in hypoxic adipose tissue via NAD+/SIRT1 axis. Frontiers in endocrinology. 2023; 14(?):1099134. doi: 10.3389/fendo.2023.1099134. [PMID: 36777361]
  • Chuanyuan Ji, Cong Wei, Mengnan Li, Shuang Shen, Shixiong Zhang, Yunlong Hou, Yiling Wu. Bazi Bushen capsule attenuates cognitive deficits by inhibiting microglia activation and cellular senescence. Pharmaceutical biology. 2022 Dec; 60(1):2025-2039. doi: 10.1080/13880209.2022.2131839. [PMID: 36263579]
  • Ali Aflatounian, Valentina Rodriguez Paris, Dulama Richani, Melissa C Edwards, Blake J Cochran, William L Ledger, Robert B Gilchrist, Michael J Bertoldo, Lindsay E Wu, Kirsty A Walters. Declining muscle NAD+ in a hyperandrogenism PCOS mouse model: Possible role in metabolic dysregulation. Molecular metabolism. 2022 11; 65(?):101583. doi: 10.1016/j.molmet.2022.101583. [PMID: 36096453]
  • Luyao Wang, Yurong Chen, Jiarui Wei, Fucheng Guo, Leyi Li, Zhen Han, Zhengzhu Wang, Haibo Zhu, Xiaoling Zhang, Ziyi Li, Xiangpeng Dai. Administration of nicotinamide mononucleotide improves oocyte quality of obese mice. Cell proliferation. 2022 Nov; 55(11):e13303. doi: 10.1111/cpr.13303. [PMID: 35811338]
  • Jing Yan, Takumi Sakamoto, Ariful Islam, Yashuang Ping, Soho Oyama, Hiroyuki Fuchino, Hitomi Kawakami, Kayo Yoshimatsu, Tomoaki Kahyo, Mitsutoshi Setou. Cinnamomum verum J. Presl Bark Contains High Contents of Nicotinamide Mononucleotide. Molecules (Basel, Switzerland). 2022 Oct; 27(20):. doi: 10.3390/molecules27207054. [PMID: 36296647]
  • Sofia Brito, Jin-Myoung Baek, Byungsun Cha, Hyojin Heo, Su-Hyun Lee, Lei Lei, So Young Jung, So Min Lee, Sang Hun Lee, Byeong-Mun Kwak, Sehyun Chae, Mi-Gi Lee, Bum-Ho Bin. Nicotinamide mononucleotide reduces melanin production in aged melanocytes by inhibiting cAMP/Wnt signaling. Journal of dermatological science. 2022 Jun; 106(3):159-169. doi: 10.1016/j.jdermsci.2022.05.002. [PMID: 35610161]
  • Zhuan Feng, Yifei Qin, Fei Huo, Zhe Jian, Xiaomin Li, Jiejie Geng, Yong Li, Jiao Wu. NMN recruits GSH to enhance GPX4-mediated ferroptosis defense in UV irradiation induced skin injury. Biochimica et biophysica acta. Molecular basis of disease. 2022 01; 1868(1):166287. doi: 10.1016/j.bbadis.2021.166287. [PMID: 34626772]
  • Ashraf Nahle, Yemisi Deborah Joseph, Sandra Pereira, Yusaku Mori, Frankie Poon, Hilda E Ghadieh, Aleksandar Ivovic, Tejas Desai, Simona S Ghanem, Suman Asalla, Harrison T Muturi, Emelien M Jentz, Jamie W Joseph, Sonia M Najjar, Adria Giacca. Nicotinamide Mononucleotide Prevents Free Fatty Acid-Induced Reduction in Glucose Tolerance by Decreasing Insulin Clearance. International journal of molecular sciences. 2021 Dec; 22(24):. doi: 10.3390/ijms222413224. [PMID: 34948019]
  • Qi-Hai Wang, Yan Li, De-Yu Dou, Rui Wang, Tian-Tian Jiang, Lin Wang, Ming-Qiang Li, Opeyemi Joshua Olatunji, Jian Zuo. Nicotinamide mononucleotide-elicited NAMPT signaling activation aggravated adjuvant-induced arthritis in rats by affecting peripheral immune cells differentiation. International immunopharmacology. 2021 Sep; 98(?):107856. doi: 10.1016/j.intimp.2021.107856. [PMID: 34130151]
  • Charles Brenner. Comment on 'Nicotinamide mononucleotide increases muscle insulin sensitivity in prediabetic women'. Science (New York, N.Y.). 2021 07; 373(6554):. doi: 10.1126/science.abj1696. [PMID: 34326206]
  • Itaru Yasuda, Kazuhiro Hasegawa, Yusuke Sakamaki, Hirokazu Muraoka, Takahisa Kawaguchi, Ei Kusahana, Takashi Ono, Takeshi Kanda, Hirobumi Tokuyama, Shu Wakino, Hiroshi Itoh. Pre-emptive Short-term Nicotinamide Mononucleotide Treatment in a Mouse Model of Diabetic Nephropathy. Journal of the American Society of Nephrology : JASN. 2021 06; 32(6):1355-1370. doi: 10.1681/asn.2020081188. [PMID: 33795425]
  • Yasser Majeed, Najeeb Halabi, Aisha Y Madani, Rudolf Engelke, Aditya M Bhagwat, Houari Abdesselem, Maha V Agha, Muneera Vakayil, Raphael Courjaret, Neha Goswami, Hisham Ben Hamidane, Mohamed A Elrayess, Arash Rafii, Johannes Graumann, Frank Schmidt, Nayef A Mazloum. SIRT1 promotes lipid metabolism and mitochondrial biogenesis in adipocytes and coordinates adipogenesis by targeting key enzymatic pathways. Scientific reports. 2021 04; 11(1):8177. doi: 10.1038/s41598-021-87759-x. [PMID: 33854178]
  • Rubén Zapata-Pérez, Alessandra Tammaro, Bauke V Schomakers, Angelique M L Scantlebery, Simone Denis, Hyung L Elfrink, Judith Giroud-Gerbetant, Carles Cantó, Carmen López-Leonardo, Rebecca L McIntyre, Michel van Weeghel, Álvaro Sánchez-Ferrer, Riekelt H Houtkooper. Reduced nicotinamide mononucleotide is a new and potent NAD+ precursor in mammalian cells and mice. FASEB journal : official publication of the Federation of American Societies for Experimental Biology. 2021 04; 35(4):e21456. doi: 10.1096/fj.202001826r. [PMID: 33724555]
  • Kana Ueda, Yuichi Nakajima, Hiroshi Inoue, Kappei Kobayashi, Takumi Nishiuchi, Makoto Kimura, Takashi Yaeno. Nicotinamide Mononucleotide Potentiates Resistance to Biotrophic Invasion of Fungal Pathogens in Barley. International journal of molecular sciences. 2021 Mar; 22(5):. doi: 10.3390/ijms22052696. [PMID: 33800043]
  • Michael J Bertoldo, Valentina Rodriguez Paris, Debra A Gook, Melissa C Edwards, Katherine Wu, Cai Jun Jean Liang, Maria B Marinova, Lindsay E Wu, Kirsty A Walters, Robert B Gilchrist. Impact of nicotinamide mononucleotide on transplanted mouse ovarian tissue. Reproduction (Cambridge, England). 2021 02; 161(2):215-226. doi: 10.1530/rep-20-0539. [PMID: 33320829]
  • Meiqi Yi, Yingying Ma, Songbiao Zhu, Chengting Luo, Yuling Chen, Qingtao Wang, Haiteng Deng. Comparative proteomic analysis identifies biomarkers for renal aging. Aging. 2020 11; 12(21):21890-21903. doi: 10.18632/aging.104007. [PMID: 33159023]
  • Golam M Uddin, Neil A Youngson, Sabiha S Chowdhury, Christopher Hagan, David A Sinclair, Margaret J Morris. Administration of Nicotinamide Mononucleotide (NMN) Reduces Metabolic Impairment in Male Mouse Offspring from Obese Mothers. Cells. 2020 03; 9(4):. doi: 10.3390/cells9040791. [PMID: 32218167]
  • Junichiro Irie, Emi Inagaki, Masataka Fujita, Hideaki Nakaya, Masanori Mitsuishi, Shintaro Yamaguchi, Kazuya Yamashita, Shuhei Shigaki, Takashi Ono, Hideo Yukioka, Hideyuki Okano, Yo-Ichi Nabeshima, Shin-Ichiro Imai, Masato Yasui, Kazuo Tsubota, Hiroshi Itoh. Effect of oral administration of nicotinamide mononucleotide on clinical parameters and nicotinamide metabolite levels in healthy Japanese men. Endocrine journal. 2020 Feb; 67(2):153-160. doi: 10.1507/endocrj.ej19-0313. [PMID: 31685720]
  • Mohammed A Assiri, Hadi R Ali, John O Marentette, Youngho Yun, Juan Liu, Matthew D Hirschey, Laura M Saba, Peter S Harris, Kristofer S Fritz. Investigating RNA expression profiles altered by nicotinamide mononucleotide therapy in a chronic model of alcoholic liver disease. Human genomics. 2019 12; 13(1):65. doi: 10.1186/s40246-019-0251-1. [PMID: 31823815]
  • Kazuhiro Hasegawa. Novel tubular-glomerular interplay in diabetic kidney disease mediated by sirtuin 1, nicotinamide mononucleotide, and nicotinamide adenine dinucleotide Oshima Award Address 2017. Clinical and experimental nephrology. 2019 Aug; 23(8):987-994. doi: 10.1007/s10157-019-01719-4. [PMID: 30859351]
  • Carrie A Sims, Yuxia Guan, Sarmistha Mukherjee, Khushboo Singh, Paul Botolin, Antonio Davila, Joseph A Baur. Nicotinamide mononucleotide preserves mitochondrial function and increases survival in hemorrhagic shock. JCI insight. 2018 09; 3(17):. doi: 10.1172/jci.insight.120182. [PMID: 30185676]
  • Dahyun Hwang, HyunA Jo, Seong-Ho Ma, Young-Hee Lim. Oxyresveratrol stimulates mucin production in an NAD+-dependent manner in human intestinal goblet cells. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association. 2018 Aug; 118(?):880-888. doi: 10.1016/j.fct.2018.06.039. [PMID: 29935245]
  • Melanie Penke, Susanne Schuster, Theresa Gorski, Rolf Gebhardt, Wieland Kiess, Antje Garten. Oleate ameliorates palmitate-induced reduction of NAMPT activity and NAD levels in primary human hepatocytes and hepatocarcinoma cells. Lipids in health and disease. 2017 Oct; 16(1):191. doi: 10.1186/s12944-017-0583-6. [PMID: 28974242]
  • Yi Guan, Su-Rong Wang, Xin-Zhong Huang, Qiong-Hong Xie, Yun-Yu Xu, Da Shang, Chuan-Ming Hao. Nicotinamide Mononucleotide, an NAD+ Precursor, Rescues Age-Associated Susceptibility to AKI in a Sirtuin 1-Dependent Manner. Journal of the American Society of Nephrology : JASN. 2017 Aug; 28(8):2337-2352. doi: 10.1681/asn.2016040385. [PMID: 28246130]
  • Akihiro Miwa, Yuji Sawada, Daisuke Tamaoki, Masami Yokota Hirai, Makoto Kimura, Kazuhiro Sato, Takumi Nishiuchi. Nicotinamide mononucleotide and related metabolites induce disease resistance against fungal phytopathogens in Arabidopsis and barley. Scientific reports. 2017 07; 7(1):6389. doi: 10.1038/s41598-017-06048-8. [PMID: 28743869]
  • Ling-Fang Wang, Xiao-Nv Wang, Cong-Cong Huang, Long Hu, Yun-Fei Xiao, Xiao-Hui Guan, Yi-Song Qian, Ke-Yu Deng, Hong-Bo Xin. Inhibition of NAMPT aggravates high fat diet-induced hepatic steatosis in mice through regulating Sirt1/AMPKα/SREBP1 signaling pathway. Lipids in health and disease. 2017 Apr; 16(1):82. doi: 10.1186/s12944-017-0464-z. [PMID: 28449683]
  • Junichiro Irie, Hiroshi Itoh. [Aging and homeostasis. Age-associated diseases and clinical application of NMN(Nicotinamide Mononucleotide).]. Clinical calcium. 2017 ; 27(7):983-990. doi: clica1707983990. [PMID: 28649105]
  • Kathryn F Mills, Shohei Yoshida, Liana R Stein, Alessia Grozio, Shunsuke Kubota, Yo Sasaki, Philip Redpath, Marie E Migaud, Rajendra S Apte, Koji Uchida, Jun Yoshino, Shin-Ichiro Imai. Long-Term Administration of Nicotinamide Mononucleotide Mitigates Age-Associated Physiological Decline in Mice. Cell metabolism. 2016 12; 24(6):795-806. doi: 10.1016/j.cmet.2016.09.013. [PMID: 28068222]
  • Kelly L Stromsdorfer, Shintaro Yamaguchi, Myeong Jin Yoon, Anna C Moseley, Michael P Franczyk, Shannon C Kelly, Nathan Qi, Shin-Ichiro Imai, Jun Yoshino. NAMPT-Mediated NAD(+) Biosynthesis in Adipocytes Regulates Adipose Tissue Function and Multi-organ Insulin Sensitivity in Mice. Cell reports. 2016 08; 16(7):1851-60. doi: 10.1016/j.celrep.2016.07.027. [PMID: 27498863]
  • Xiao-Dong Zou, Shao-Qing Guo, Zhi-Wei Hu, Wei-Lang Li. NAMPT protects against 6-hydroxydopamine-induced neurotoxicity in PC12 cells through modulating SIRT1 activity. Molecular medicine reports. 2016 May; 13(5):4058-64. doi: 10.3892/mmr.2016.5034. [PMID: 27035562]
  • Tomoyo Kawamura, Noriyuki Mori, Katsumi Shibata. β-Nicotinamide Mononucleotide, an Anti-Aging Candidate Compound, Is Retained in the Body for Longer than Nicotinamide in Rats. Journal of nutritional science and vitaminology. 2016; 62(4):272-276. doi: 10.3177/jnsv.62.272. [PMID: 27725413]
  • Kazuhiro Hasegawa, Shu Wakino, Yusuke Sakamaki, Hirokazu Muraoka, Hiroyuki Umino, Hitoshi Minakuchi, Ayumi Yoshifuji, Makiko Naitoh, Keisuke Shinozuka, Koji Futatsugi, Hidenori Urai, Takeshi Kanda, Hirobumi Tokuyama, Koichi Hayashi, Hiroshi Itoh. Communication from Tubular Epithelial Cells to Podocytes through Sirt1 and Nicotinic Acid Metabolism. Current hypertension reviews. 2016; 12(2):95-104. doi: 10.2174/1573402112666160302102217. [PMID: 26931474]
  • Jennifer M Hughes-Large, Dominic K T Pang, Debra L Robson, Pak Chan, Jelena Toma, Nica M Borradaile. Niacin receptor activation improves human microvascular endothelial cell angiogenic function during lipotoxicity. Atherosclerosis. 2014 Dec; 237(2):696-704. doi: 10.1016/j.atherosclerosis.2014.10.090. [PMID: 25463108]
  • Federica Zamporlini, Silverio Ruggieri, Francesca Mazzola, Adolfo Amici, Giuseppe Orsomando, Nadia Raffaelli. Novel assay for simultaneous measurement of pyridine mononucleotides synthesizing activities allows dissection of the NAD(+) biosynthetic machinery in mammalian cells. The FEBS journal. 2014 Nov; 281(22):5104-19. doi: 10.1111/febs.13050. [PMID: 25223558]
  • Kazuhiro Hasegawa, Shu Wakino, Petra Simic, Yusuke Sakamaki, Hitoshi Minakuchi, Keiko Fujimura, Kozi Hosoya, Motoaki Komatsu, Yuka Kaneko, Takeshi Kanda, Eiji Kubota, Hirobumi Tokuyama, Koichi Hayashi, Leonard Guarente, Hiroshi Itoh. Renal tubular Sirt1 attenuates diabetic albuminuria by epigenetically suppressing Claudin-1 overexpression in podocytes. Nature medicine. 2013 Nov; 19(11):1496-504. doi: 10.1038/nm.3363. [PMID: 24141423]
  • Xiaoyan Gao, Mingxing Guo, Baosheng Zhao, Long Peng, Jiankun Su, Xu Bai, Jun Li, Yanjiang Qiao. A urinary metabonomics study on biochemical changes in yeast-induced pyrexia rats: a new approach to elucidating the biochemical basis of the febrile response. Chemico-biological interactions. 2013 Jun; 204(1):39-48. doi: 10.1016/j.cbi.2013.04.001. [PMID: 23583517]
  • Sathisha Upparahalli Venkateshaiah, Sharmin Khan, Wen Ling, Rakesh Bam, Xin Li, Frits van Rhee, Saad Usmani, Bart Barlogie, Joshua Epstein, Shmuel Yaccoby. NAMPT/PBEF1 enzymatic activity is indispensable for myeloma cell growth and osteoclast activity. Experimental hematology. 2013 Jun; 41(6):547-557.e2. doi: 10.1016/j.exphem.2013.02.008. [PMID: 23435312]
  • Hyung-Seop Youn, Mun-Kyoung Kim, Gil Bu Kang, Tae Gyun Kim, Jung-Gyu Lee, Jun Yop An, Kyoung Ryoung Park, Youngjin Lee, Jung Youn Kang, Hye-Eun Song, Inju Park, Chunghee Cho, Shin-Ichi Fukuoka, Soo Hyun Eom. Crystal structure of Sus scrofa quinolinate phosphoribosyltransferase in complex with nicotinate mononucleotide. PloS one. 2013; 8(4):e62027. doi: 10.1371/journal.pone.0062027. [PMID: 23626766]
  • Hyung-Seop Youn, Mun-Kyoung Kim, Gil Bu Kang, Tae Gyun Kim, Jun Yop An, Jung-Gyu Lee, Kyoung Ryoung Park, Youngjin Lee, Shin-Ichi Fukuoka, Soo Hyun Eom. Crystallization and preliminary X-ray crystallographic analysis of quinolinate phosphoribosyltransferase from porcine kidney in complex with nicotinate mononucleotide. Acta crystallographica. Section F, Structural biology and crystallization communications. 2012 Dec; 68(Pt 12):1488-90. doi: 10.1107/s1744309112040638. [PMID: 23192029]
  • Hiroshi Ashihara, Yuling Yin, Riko Katahira, Shin Watanabe, Tetsuro Mimura, Hamako Sasamoto. Comparison of the formation of nicotinic acid conjugates in leaves of different plant species. Plant physiology and biochemistry : PPB. 2012 Nov; 60(?):190-5. doi: 10.1016/j.plaphy.2012.08.007. [PMID: 22983143]
  • Jun Yoshino, Kathryn F Mills, Myeong Jin Yoon, Shin-ichiro Imai. Nicotinamide mononucleotide, a key NAD(+) intermediate, treats the pathophysiology of diet- and age-induced diabetes in mice. Cell metabolism. 2011 Oct; 14(4):528-36. doi: 10.1016/j.cmet.2011.08.014. [PMID: 21982712]
  • Catello Di Martino, Maria Luigia Pallotta. Mitochondria-localized NAD biosynthesis by nicotinamide mononucleotide adenylyltransferase in Jerusalem artichoke (Helianthus tuberosus L.) heterotrophic tissues. Planta. 2011 Oct; 234(4):657-70. doi: 10.1007/s00425-011-1428-6. [PMID: 21598001]
  • Nobumasa Hara, Kazuo Yamada, Tomoko Shibata, Harumi Osago, Mikako Tsuchiya. Nicotinamide phosphoribosyltransferase/visfatin does not catalyze nicotinamide mononucleotide formation in blood plasma. PloS one. 2011; 6(8):e22781. doi: 10.1371/journal.pone.0022781. [PMID: 21826208]
  • Shin-Ichiro Imai. A possibility of nutriceuticals as an anti-aging intervention: activation of sirtuins by promoting mammalian NAD biosynthesis. Pharmacological research. 2010 Jul; 62(1):42-7. doi: 10.1016/j.phrs.2010.01.006. [PMID: 20085812]
  • Yankun Li, Yuan Zhang, Bernhard Dorweiler, Dongying Cui, Tao Wang, Connie W Woo, Cynthia S Brunkan, Cynthia Wolberger, Shin-ichiro Imai, Ira Tabas. Extracellular Nampt promotes macrophage survival via a nonenzymatic interleukin-6/STAT3 signaling mechanism. The Journal of biological chemistry. 2008 Dec; 283(50):34833-43. doi: 10.1074/jbc.m805866200. [PMID: 18945671]
  • Hye Kyoung Song, Mi Hwa Lee, Bo Kyung Kim, Yun Gyu Park, Gang Jee Ko, Young Sun Kang, Jee Young Han, Sang Youb Han, Kum Hyun Han, Hyoung Kyu Kim, Dae Ryong Cha. Visfatin: a new player in mesangial cell physiology and diabetic nephropathy. American journal of physiology. Renal physiology. 2008 Nov; 295(5):F1485-94. doi: 10.1152/ajprenal.90231.2008. [PMID: 18768589]
  • Kathryn Moynihan Ramsey, Kathryn F Mills, Akiko Satoh, Shin-Ichiro Imai. Age-associated loss of Sirt1-mediated enhancement of glucose-stimulated insulin secretion in beta cell-specific Sirt1-overexpressing (BESTO) mice. Aging cell. 2008 Jan; 7(1):78-88. doi: 10.1111/j.1474-9726.2007.00355.x. [PMID: 18005249]
  • Javier R Revollo, Antje Körner, Kathryn F Mills, Akiko Satoh, Tao Wang, Antje Garten, Biplab Dasgupta, Yo Sasaki, Cynthia Wolberger, R Reid Townsend, Jeffrey Milbrandt, Wieland Kiess, Shin-Ichiro Imai. Nampt/PBEF/Visfatin regulates insulin secretion in beta cells as a systemic NAD biosynthetic enzyme. Cell metabolism. 2007 Nov; 6(5):363-75. doi: 10.1016/j.cmet.2007.09.003. [PMID: 17983582]
  • Guodong Wang, Eran Pichersky. Nicotinamidase participates in the salvage pathway of NAD biosynthesis in Arabidopsis. The Plant journal : for cell and molecular biology. 2007 Mar; 49(6):1020-9. doi: 10.1111/j.1365-313x.2006.03013.x. [PMID: 17335512]
  • Shin-nosuke Hashida, Hideyuki Takahashi, Maki Kawai-Yamada, Hirofumi Uchimiya. Arabidopsis thaliana nicotinate/nicotinamide mononucleotide adenyltransferase (AtNMNAT) is required for pollen tube growth. The Plant journal : for cell and molecular biology. 2007 Feb; 49(4):694-703. doi: 10.1111/j.1365-313x.2006.02989.x. [PMID: 17270012]
  • Keri Wang, Kenneth Conn, George Lazarovits. Involvement of quinolinate phosphoribosyl transferase in promotion of potato growth by a Burkholderia strain. Applied and environmental microbiology. 2006 Jan; 72(1):760-8. doi: 10.1128/aem.72.1.760-768.2006. [PMID: 16391116]
  • Graham Noctor, Guillaume Queval, Bertrand Gakière. NAD(P) synthesis and pyridine nucleotide cycling in plants and their potential importance in stress conditions. Journal of experimental botany. 2006; 57(8):1603-20. doi: 10.1093/jxb/erj202. [PMID: 16714307]
  • Christian Andersen, Elke Maier, Gabrielle Kemmer, Julia Blass, Anna-Karina Hilpert, Roland Benz, Joachim Reidl. Porin OmpP2 of Haemophilus influenzae shows specificity for nicotinamide-derived nucleotide substrates. The Journal of biological chemistry. 2003 Jul; 278(27):24269-76. doi: 10.1074/jbc.m213087200. [PMID: 12695515]
  • K Shibata, T Fukuwatari, E Sugimoto. Reversed-phase high-performance liquid chromatography of nicotinic acid mononucleotide for measurement of quinolinate phosphoribosyltransferase. Journal of chromatography. B, Biomedical sciences and applications. 2000 Dec; 749(2):281-5. doi: 10.1016/s0378-4347(00)00406-0. [PMID: 11145065]
  • T Hagen, M Ziegler. Detection and identification of NAD-catabolizing activities in rat tissue homogenates. Biochimica et biophysica acta. 1997 Jun; 1340(1):7-12. doi: 10.1016/s0167-4838(97)00021-6. [PMID: 9217009]
  • E H Jansen, R H van den Berg, A B Boink, C Hegger, J Meulenbelt. A new physiological biomarker for nitrate exposure in humans. Toxicology letters. 1995 May; 77(1-3):265-9. doi: 10.1016/0378-4274(95)03306-8. [PMID: 7618150]
  • A B Patel, A A Pandya. Effects of chronic manganese toxicity on tissue levels and urinary excretion of nicotinamide nucleotides in rats. Human & experimental toxicology. 1994 May; 13(5):307-9. doi: 10.1177/096032719401300503. [PMID: 8043310]
  • A C Foster, E Okuno, D S Brougher, R Schwarcz. A radioenzymatic assay for quinolinic acid. Analytical biochemistry. 1986 Oct; 158(1):98-103. doi: 10.1016/0003-2697(86)90595-6. [PMID: 2948416]
  • A C Foster, R Schwarcz. Characterization of quinolinic acid phosphoribosyltransferase in human blood and observations in Huntington's disease. Journal of neurochemistry. 1985 Jul; 45(1):199-205. doi: 10.1111/j.1471-4159.1985.tb05493.x. [PMID: 2582090]
  • W S Davidson, T G Flynn. A functional arginine residue in NADPH-dependent aldehyde reductase from pig kidney. The Journal of biological chemistry. 1979 May; 254(10):3724-9. doi: . [PMID: 35531]
  • K Nakaya, H Manabe, A Ushiwata, T Shibayama, Y Nakamura. Isolation and some biochemical characteristics of nuclei from AH-66 hepatoma cells. Cancer research. 1977 Oct; 37(10):3701-6. doi: NULL. [PMID: 198119]
  • W Cantarow, B D Stollar. Nicotinamide mononucleotide adenylyltransferase, a nonhistone chromatin protein. Immunochemical comparative studies. Archives of biochemistry and biophysics. 1977 Apr; 180(1):34-40. doi: 10.1016/0003-9861(77)90005-4. [PMID: 856044]
  • F D Shaw. The effect of mercuric chloride intoxication on urinary psi-glutamyl transpeptidase excretion in the sheep. Research in veterinary science. 1976 Mar; 20(2):226-8. doi: . [PMID: 4865]
  • L Kuehl. Isolation of skeletal muscle nuclei. Experimental cell research. 1975 Mar; 91(2):441-8. doi: 10.1016/0014-4827(75)90125-1. [PMID: 165091]
  • J T MacGregor, A Burkhalter. Biliary excretion of nicotinamide riboside. A possible role in the regulation of hepatic pyridine nucleotide dynamics. Biochemical pharmacology. 1973 Nov; 22(21):2645-58. doi: 10.1016/0006-2952(73)90126-3. [PMID: 4357893]
  • B Belavady, P U Rao, L Khan. Effects of leucine and isoleucine on nicotinamide nucleotides of erythrocytes. International journal for vitamin and nutrition research. Internationale Zeitschrift fur Vitamin- und Ernahrungsforschung. Journal international de vitaminologie et de nutrition. 1973 Apr; 43(4):442-53. doi: NULL. [PMID: 4149066]
  • L F Lin, L M Henderson. Pyridinium precursors of pyridine nucleotides in perfused rat kidney and in the testis. The Journal of biological chemistry. 1972 Dec; 247(24):8023-30. doi: NULL. [PMID: 4344988]