Clothianidin (BioDeep_00000397781)

Main id: BioDeep_00000002161

 

natural product


代谢物信息卡片


Pesticide5_Clothianidin_C6H8ClN5O2S_[C(E)]-N-[(2-Chloro-5-thiazolyl)methyl]-N?-methyl-N?-nitroguanidine

化学式: C6H8ClN5O2S (249.0087)
中文名称: 1-(2-氯-5-噻唑基甲基)-3-甲基-2-硝基胍, 噻虫胺
谱图信息: 最多检出来源 Viridiplantae(plant) 16.79%

分子结构信息

SMILES: Clc1ncc(s1)CN/C(=N/C)N[N+]([O-])=O
InChI: InChI=1S/C6H8ClN5O2S/c1-8-6(11-12(13)14)10-3-4-2-9-5(7)15-4/h2H,3H2,1H3,(H2,8,10,11)

描述信息

An N-nitro compound consisting of 2-nitroguanidine having a (2-chloro-1,3-thiazol-5-yl)methyl group at position 1 and a methyl group at position 3.
D010575 - Pesticides > D007306 - Insecticides > D000073943 - Neonicotinoids
D016573 - Agrochemicals
CONFIDENCE standard compound; EAWAG_UCHEM_ID 2933

同义名列表

6 个代谢物同义名

Clothianidin; (E)-1-(2-Chloro-5-thiazolylmethyl)-3-methyl-2-nitroguanidine; (E)-clothianidin; N-(2-chloro-5-thiazolylmethyl)-N-methyl-N-nitroguanidine; Pesticide5_Clothianidin_C6H8ClN5O2S_[C(E)]-N-[(2-Chloro-5-thiazolyl)methyl]-N?-methyl-N?-nitroguanidine; Clothianidin



数据库引用编号

50 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

13 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 8 ANXA5, ARHGAP45, CAT, CYP3A4, GAP43, GRIN1, HPGDS, MAPK3
Peripheral membrane protein 4 ACHE, ANXA5, CYP1B1, GAP43
Endosome membrane 1 CD68
Endoplasmic reticulum membrane 5 CYP19A1, CYP1B1, CYP3A4, GRIN1, TMX1
Mitochondrion membrane 1 TMX1
Nucleus 6 ACHE, FOS, GPX4, H2AX, KDR, MAPK3
cytosol 7 ANXA5, ARHGAP45, CAT, FOS, GPX4, HPGDS, MAPK3
dendrite 2 GAP43, GRIN1
mitochondrial membrane 1 TMX1
centrosome 1 H2AX
nucleoplasm 4 FOS, H2AX, HPGDS, MAPK3
RNA polymerase II transcription regulator complex 1 FOS
Cell membrane 5 ACHE, GAP43, GRIN1, KDR, KIAA0319
Cytoplasmic side 1 GAP43
ruffle membrane 1 ARHGAP45
Cell projection, axon 1 GAP43
Early endosome membrane 1 KIAA0319
Multi-pass membrane protein 2 CYP19A1, GRIN1
Synapse 3 ACHE, GAP43, GRIN1
cell junction 1 KDR
cell surface 2 ACHE, GRIN1
glutamatergic synapse 1 MAPK3
Golgi apparatus 3 ACHE, KDR, MAPK3
lysosomal membrane 1 CD68
neuromuscular junction 1 ACHE
sarcolemma 1 ANXA5
synaptic vesicle 1 GRIN1
Lysosome 1 CD68
Presynapse 1 GAP43
endosome 1 KDR
plasma membrane 9 ACHE, ARHGAP45, CD68, GAP43, GRIN1, ITGAE, KDR, KIAA0319, MAPK3
terminal bouton 1 GRIN1
Membrane 12 ACHE, ANXA5, ARHGAP45, CAT, CD68, CYP19A1, CYP1B1, CYP3A4, GRIN1, ITGAE, KIAA0319, TMX1
caveola 1 MAPK3
extracellular exosome 4 ANXA5, CAT, GPX4, H2AX
Lysosome membrane 1 CD68
endoplasmic reticulum 4 CYP19A1, FOS, KDR, TMX1
extracellular space 1 ACHE
perinuclear region of cytoplasm 1 ACHE
mitochondrion 4 CAT, CYP1B1, GPX4, MAPK3
protein-containing complex 2 CAT, GPX4
intracellular membrane-bounded organelle 5 CAT, CYP1B1, CYP3A4, HPGDS, KIAA0319
Microsome membrane 3 CYP19A1, CYP1B1, CYP3A4
postsynaptic density 2 GAP43, GRIN1
Single-pass type I membrane protein 4 CD68, ITGAE, KIAA0319, TMX1
Secreted 2 ACHE, TMX1
extracellular region 6 ACHE, ANXA5, ARHGAP45, CAT, KDR, TMX1
excitatory synapse 1 GRIN1
[Isoform 2]: Secreted 1 KDR
mitochondrial matrix 1 CAT
Extracellular side 1 ACHE
anchoring junction 1 KDR
external side of plasma membrane 3 ANXA5, ITGAE, KDR
dendritic spine 1 GRIN1
perikaryon 1 GAP43
cytoplasmic vesicle 1 KIAA0319
Early endosome 3 KDR, KIAA0319, MAPK3
postsynaptic membrane 1 GRIN1
Cell projection, ruffle membrane 1 ARHGAP45
Membrane raft 1 KDR
Cell junction, focal adhesion 1 MAPK3
focal adhesion 3 ANXA5, CAT, MAPK3
GABA-ergic synapse 1 GAP43
Peroxisome 1 CAT
basement membrane 1 ACHE
Peroxisome matrix 1 CAT
peroxisomal matrix 1 CAT
peroxisomal membrane 1 CAT
collagen-containing extracellular matrix 1 ANXA5
nuclear speck 1 H2AX
Postsynaptic cell membrane 1 GRIN1
Late endosome 1 MAPK3
receptor complex 1 KDR
Zymogen granule membrane 1 ANXA5
neuron projection 1 GRIN1
chromatin 1 FOS
Late endosome membrane 1 CD68
Chromosome 1 H2AX
cytoskeleton 1 MAPK3
Lipid-anchor, GPI-anchor 1 ACHE
site of double-strand break 1 H2AX
nuclear envelope 2 GPX4, MAPK3
Endomembrane system 1 TMX1
sorting endosome 1 KDR
Membrane, caveola 1 MAPK3
mitochondria-associated endoplasmic reticulum membrane contact site 1 TMX1
Cell projection, dendrite 1 GAP43
side of membrane 1 ACHE
replication fork 1 H2AX
pseudopodium 1 MAPK3
filopodium membrane 1 GAP43
Synaptic cell membrane 1 GRIN1
synaptic membrane 1 GRIN1
ficolin-1-rich granule lumen 1 CAT
secretory granule lumen 2 ARHGAP45, CAT
endoplasmic reticulum lumen 1 MAPK3
nuclear matrix 1 FOS
male germ cell nucleus 1 H2AX
XY body 1 H2AX
azurophil granule membrane 1 CD68
azurophil granule lumen 1 ARHGAP45
postsynaptic density membrane 1 GRIN1
condensed nuclear chromosome 1 H2AX
vesicle membrane 1 ANXA5
clathrin-coated endocytic vesicle membrane 1 KIAA0319
synaptic cleft 2 ACHE, GRIN1
protein-DNA complex 1 FOS
NMDA selective glutamate receptor complex 1 GRIN1
nucleosome 1 H2AX
site of DNA damage 1 H2AX
integrin complex 1 ITGAE
Cell projection, filopodium membrane 1 GAP43
transcription factor AP-1 complex 1 FOS
catalase complex 1 CAT
[Isoform Mitochondrial]: Mitochondrion 1 GPX4
endothelial microparticle 1 ANXA5
Cell projection, growth cone membrane 1 GAP43
growth cone membrane 1 GAP43
[Isoform H]: Cell membrane 1 ACHE
[Isoform Cytoplasmic]: Cytoplasm 1 GPX4


文献列表

  • Sayantani Nanda, Abhratanu Ganguly, Moutushi Mandi, Kanchana Das, Siddhartha Ghanty, Gopal Biswas, Prem Rajak. Chronic sub-lethal exposure to clothianidin triggers organismal and sub-organismal-level health hazards in a non-target organism, Drosophila melanogaster. The Science of the total environment. 2024 Jul; 932(?):172783. doi: 10.1016/j.scitotenv.2024.172783. [PMID: 38679102]
  • Zengxin Li, Wenhong Li, Qing Mu, Yicheng Zhu, Weiwei Qin, Xiaobin Shi, Yueping He. Rifampicin synergizes the toxicity of insecticides against the green peach aphid, Myzus persicae. Ecotoxicology and environmental safety. 2024 May; 276(?):116291. doi: 10.1016/j.ecoenv.2024.116291. [PMID: 38581910]
  • Jing Zhang, Yunyun Wang, Shanbaga Wurjihu, Haonan Ruan, Ying Huang, Mengyue Guo, Dandan Kong, Jiaoyang Luo, Meihua Yang. Comprehensive analysis of neonicotinoids in Chinese commercial honey and pollen: A corresponding health risk assessment for non-targeted organisms. The Science of the total environment. 2024 Apr; 919(?):170937. doi: 10.1016/j.scitotenv.2024.170937. [PMID: 38360305]
  • Xuezhu Xiang, Yue Xie, Di Tian, Zhenguo Chen, Xiaohui Yi, Ziyan Chen, Minzhi Huang. Microbial degradation mechanism and pathway of the insecticide thiamethoxam by isolated Bacillus Cereus from activated sludge. Environmental research. 2024 Apr; 246(?):117929. doi: 10.1016/j.envres.2023.117929. [PMID: 38157972]
  • Aizhen Wang, Yanjian Wan, Wei Qi, Gaga Mahai, Xi Qian, Tongzhang Zheng, Yuanyuan Li, Shunqing Xu, Han Xiao, Wei Xia. Urinary biomarkers of exposure to organophosphate, pyrethroid, neonicotinoid insecticides and oxidative stress: A repeated measurement analysis among pregnant women. The Science of the total environment. 2024 Feb; 912(?):169565. doi: 10.1016/j.scitotenv.2023.169565. [PMID: 38145670]
  • Björn K Klatt, Annemarie Wurz, Lina Herbertsson, Maj Rundlöf, Glenn P Svensson, Jürgen Kuhn, Sofie Vessling, Bernardo de La Vega, Teja Tscharntke, Yann Clough, Henrik G Smith. Seed treatment with clothianidin induces changes in plant metabolism and alters pollinator foraging preferences. Ecotoxicology (London, England). 2023 Dec; 32(10):1247-1256. doi: 10.1007/s10646-023-02720-0. [PMID: 38062283]
  • Edmund J Norris, Jeffrey R Bloomquist. Fir (Abies balsamea) (Pinales: Pinaceae) needle essential oil enhances the knockdown activity of select insecticides. Journal of medical entomology. 2023 Nov; 60(6):1350-1356. doi: 10.1093/jme/tjad101. [PMID: 37963276]
  • Fred A Ashu, Caroline Fouet, Marilene M Ambadiang, Véronique Penlap-Beng, Colince Kamdem. Vegetable oil-based surfactants are adjuvants that enhance the efficacy of neonicotinoid insecticides and can bias susceptibility testing in adult mosquitoes. PLoS neglected tropical diseases. 2023 Nov; 17(11):e0011737. doi: 10.1371/journal.pntd.0011737. [PMID: 37976311]
  • Jinyu Hu, Buli Fu, Jinjin Liang, Rong Zhang, Xuegao Wei, Jing Yang, Qimei Tan, Hu Xue, Peipan Gong, Shaonan Liu, Mingjiao Huang, Tianhua Du, Cheng Yin, Chao He, Yao Ji, Chao Wang, Chengjia Zhang, He Du, Qi Su, Xin Yang, Youjun Zhang. CYP4CS5-mediated thiamethoxam and clothianidin resistance is accompanied by fitness cost in the whitefly Bemisia tabaci. Pest management science. 2023 Oct; ?(?):. doi: 10.1002/ps.7826. [PMID: 37822143]
  • Gaga Mahai, Yanjian Wan, Aizhen Wang, Xi Qian, Juxiao Li, Ying Li, Wenxin Zhang, Zhenyu He, Yuanyuan Li, Wei Xia, Shunqing Xu. Exposure to multiple neonicotinoid insecticides, oxidative stress, and gestational diabetes mellitus: Association and potential mediation analyses. Environment international. 2023 09; 179(?):108173. doi: 10.1016/j.envint.2023.108173. [PMID: 37651928]
  • Hongqin Yang, Lian Xia, Jia Zheng, Zhengmin Xie, Jianli Zhou, Yuangen Wu. Screening and identification of a DNA aptamer to construct the label-free fluorescent aptasensor for ultrasensitive and selective detection of clothianidin residue in agricultural products. Talanta. 2023 Sep; 262(?):124712. doi: 10.1016/j.talanta.2023.124712. [PMID: 37244242]
  • Li Li, Hongwu Liang, Wei Pan, Shijie Yin, Junli Cao, Jindong Li. Translocation and dissipation of thiamethoxam applied by root irrigation in tomato plant-soil system. Environmental science and pollution research international. 2023 Jul; ?(?):. doi: 10.1007/s11356-023-28817-x. [PMID: 37505385]
  • Sadaya Kumar Gajula, Sampath Kumar Kanthala, Madhusudan Reddy Narra, Vanita Das Vanamala. Individual and interactive biochemical profile damages in Labeo rohita (Cyprinidae) by imidacloprid and clothianidin. Comparative biochemistry and physiology. Toxicology & pharmacology : CBP. 2023 Jun; 271(?):109689. doi: 10.1016/j.cbpc.2023.109689. [PMID: 37356513]
  • Benjamin A Morrison, Kang Xia, Ryan D Stewart. Evaluating neonicotinoid insecticide uptake by plants used as buffers and cover crops. Chemosphere. 2023 May; 322(?):138154. doi: 10.1016/j.chemosphere.2023.138154. [PMID: 36796521]
  • Junxue Wu, Ming Zhuang, Ziyu Zou, Jianing Xin, Fang Wang, Chunhong Jia, Hongyan Zhang. Efficient degradation of clothianidin and thiamethoxam in contaminated soil by peroxymonosulfate process. Environmental science and pollution research international. 2023 Apr; 30(16):48211-48219. doi: 10.1007/s11356-023-25738-7. [PMID: 36750516]
  • Chunni Zhang, Taoling Zhou, Yao Li, Wu Dai, Shaokai Du. Activation of CncC pathway is involved in the regulation of P450 genes responsible for clothianidin resistance in Bradysia odoriphaga. Pest management science. 2023 Mar; ?(?):. doi: 10.1002/ps.7482. [PMID: 36974603]
  • Richard Odemer, Elsa Friedrich, Ingrid Illies, Stefan Berg, Jens Pistorius, Gabriela Bischoff. Potential risk of residues from neonicotinoid-treated sugar beet in flowering weeds to honey bees (Apis mellifera L.). Environmental toxicology and chemistry. 2023 Mar; ?(?):. doi: 10.1002/etc.5602. [PMID: 36861216]
  • Vincenzo Girolami, Edoardo Petrucco Toffolo, Luca Mazzon, Francesca Zampieri, Andrea Lentola, Chiara Giorio, Andrea Tapparo. Effect of repeated intakes of a neonicotinoid insecticide on the foraging behaviours of Apis mellifera in field trials. Environmental science and pollution research international. 2023 Jan; 30(5):12257-12268. doi: 10.1007/s11356-022-22977-y. [PMID: 36109478]
  • Benjamin A Morrison, Kang Xia, Ryan D Stewart. Soil organic matter can delay-but not eliminate-leaching of neonicotinoid insecticides. Journal of environmental quality. 2022 Nov; 51(6):1270-1281. doi: 10.1002/jeq2.20402. [PMID: 35989664]
  • Fajun Tian, Chengkui Qiao, Caixia Wang, Tao Pang, Linlin Guo, Jun Li, Rongli Pang, Hui Liu, Hanzhong Xie. Comparison of the effectiveness of thiamethoxam and its main metabolite clothianidin after foliar spraying and root irrigation to control Myzus persicae on peach. Scientific reports. 2022 10; 12(1):16883. doi: 10.1038/s41598-022-20659-w. [PMID: 36207356]
  • Li Li, Hongwu Liang, Tingting Zhao, Yu Liu, Sen Yan, Wentao Zhu. Differential effects of thiamethoxam and clothianidin exposure on their tissue distribution and chronic toxicity in mice. Chemico-biological interactions. 2022 Oct; 366(?):110149. doi: 10.1016/j.cbi.2022.110149. [PMID: 36084723]
  • Zhao Li, Kaikai Mao, Ruoheng Jin, Tingwei Cai, Yao Qin, Yunhua Zhang, Shun He, Kangsheng Ma, Hu Wan, Xuexiang Ren, Jianhong Li. miRNA novel_268 targeting NlABCG3 is involved in nitenpyram and clothianidin resistance in Nilaparvata lugens. International journal of biological macromolecules. 2022 Sep; 217(?):615-623. doi: 10.1016/j.ijbiomac.2022.07.096. [PMID: 35853504]
  • Demet Dogan, Gokhan Nur, Haci Ahmet Deveci. Tissue-specific toxicity of clothianidin on rainbow trout (Oncorhynchus mykiss). Drug and chemical toxicology. 2022 Jul; 45(4):1851-1861. doi: 10.1080/01480545.2021.1892128. [PMID: 33641563]
  • Chunni Zhang, Shaokai Du, Ruifang Liu, Wu Dai. Overexpression of Multiple Cytochrome P450 Genes Conferring Clothianidin Resistance in Bradysia odoriphaga. Journal of agricultural and food chemistry. 2022 Jun; 70(25):7636-7643. doi: 10.1021/acs.jafc.2c01315. [PMID: 35709533]
  • Yanmei Yang, Shu Qin, Xia Wang, Junli Cao, Jindong Li. Dissipation Behavior and Acute Dietary Risk Assessment of Thiamethoxam and Its Metabolite Clothianidin on Spinach. Molecules (Basel, Switzerland). 2022 Mar; 27(7):. doi: 10.3390/molecules27072209. [PMID: 35408608]
  • Tianyang You, Yuan Ding, He Chen, Guangyue Song, Lianrun Huang, Minghua Wang, Xiude Hua. Development of competitive and noncompetitive immunoassays for clothianidin with high sensitivity and specificity using phage-displayed peptides. Journal of hazardous materials. 2022 03; 425(?):128011. doi: 10.1016/j.jhazmat.2021.128011. [PMID: 34896720]
  • Kai-Long Li, Wu-Ying Chen, Min Zhang, Xiang-Wen Luo, Yong Liu, De-Yong Zhang, Ang Chen. Monitoring residue levels and dietary risk assessment of thiamethoxam and its metabolite clothianidin for Chinese consumption of Chinese kale. Journal of the science of food and agriculture. 2022 Jan; 102(1):417-424. doi: 10.1002/jsfa.11371. [PMID: 34143904]
  • Lina Herbertsson, Björn K Klatt, Maria Blasi, Maj Rundlöf, Henrik G Smith. Seed-coating of rapeseed (Brassica napus) with the neonicotinoid clothianidin affects behaviour of red mason bees (Osmia bicornis) and pollination of strawberry flowers (Fragaria × ananassa). PloS one. 2022; 17(9):e0273851. doi: 10.1371/journal.pone.0273851. [PMID: 36074788]
  • Kumiko Taira, Tomonori Kawakami, Sujithra Kaushaliya Weragoda, H M Ayala S Herath, Yoshinori Ikenaka, Kazutoshi Fujioka, Madhubhani Hemachandra, Nirmalie Pallewatta, Yoshiko Aoyama, Mayumi Ishizuka, Jean-Marc Bonmatin, Makiko Komori. Urinary concentrations of neonicotinoid insecticides were related to renal tubular dysfunction and neuropsychological complaints in Dry-zone of Sri Lanka. Scientific reports. 2021 11; 11(1):22484. doi: 10.1038/s41598-021-01732-2. [PMID: 34795341]
  • Yongfei Guo, Lirui Ren, Xiaolong Li, Zhao Wang, Yanning Zhang, Shuai Zhang, Tao Tang, Fuliang Chen, Fengpei Du. Bio-based clothianidin-loaded solid dispersion using composite carriers to improve efficacy and reduce environmental toxicity. Pest management science. 2021 Nov; 77(11):5246-5254. doi: 10.1002/ps.6567. [PMID: 34310012]
  • Yanhua Wang, Yu-Cheng Zhu, Wenhong Li, Jianxiu Yao, Gadi V P Reddy, Lu Lv. Binary and ternary toxicological interactions of clothianidin and eight commonly used pesticides on honey bees (Apis mellifera). Ecotoxicology and environmental safety. 2021 Oct; 223(?):112563. doi: 10.1016/j.ecoenv.2021.112563. [PMID: 34343900]
  • Ruoheng Jin, Yue Wang, Biyan He, Yunhua Zhang, Tingwei Cai, Hu Wan, Byung Rae Jin, Jianhong Li. Activator protein-1 mediated CYP6ER1 overexpression in the clothianidin resistance of Nilaparvata lugens (Stål). Pest management science. 2021 Oct; 77(10):4476-4482. doi: 10.1002/ps.6482. [PMID: 34010497]
  • Malin Røyset Aarønes, Julie Sørlie Paus-Knudsen, Anders Nielsen, Jan Thomas Rundberget, Katrine Borgå. Within-Body Distributions and Feeding Effects of the Neonicotinoid Insecticide Clothianidin in Bumblebees (Bombus terrestris). Environmental toxicology and chemistry. 2021 10; 40(10):2781-2790. doi: 10.1002/etc.5154. [PMID: 34236107]
  • Yunhua Zhang, Chaoya Liu, Ruoheng Jin, Yue Wang, Tingwei Cai, Zhijie Ren, Kangsheng Ma, Shun He, Kwang S Lee, Byung R Jin, Jianhong Li, Hu Wan. Dual oxidase-dependent reactive oxygen species are involved in the regulation of UGT overexpression-mediated clothianidin resistance in the brown planthopper, Nilaparvata lugens. Pest management science. 2021 Sep; 77(9):4159-4167. doi: 10.1002/ps.6453. [PMID: 33934482]
  • Tingting Liu, Jian Luo, Shangke Liu, Tongtong Li, Haolin Li, Lingyan Zhang, Wei Mu, Nan Zou. Clothianidin loaded TA/Fe (III) controlled-release granules: improve pesticide bioavailability and alleviate oxidative stress. Journal of hazardous materials. 2021 08; 416(?):125861. doi: 10.1016/j.jhazmat.2021.125861. [PMID: 34492809]
  • Hina Gul, Farman Ullah, Muhammad Hafeez, Kaleem Tariq, Nicolas Desneux, Xiwu Gao, Dunlun Song. Sublethal concentrations of clothianidin affect fecundity and key demographic parameters of the chive maggot, Bradysia odoriphaga. Ecotoxicology (London, England). 2021 Aug; 30(6):1150-1160. doi: 10.1007/s10646-021-02446-x. [PMID: 34165677]
  • Shenhang Cheng, Ronghua Lin, Yong You, Tao Lin, Zhaohua Zeng, Caihong Yu. Comparative sensitivity of Neoseiulus cucumeris and its prey Tetranychus cinnabarinus, after exposed to nineteen pesticides. Ecotoxicology and environmental safety. 2021 Jul; 217(?):112234. doi: 10.1016/j.ecoenv.2021.112234. [PMID: 33864981]
  • Tetsushi Hirano, Yuka Miyata, Shizuka Kubo, Shuji Ohno, Kanoko Onaru, Mizuki Maeda, Sayaka Kitauchi, Misaki Nishi, Yoshiaki Tabuchi, Yoshinori Ikenaka, Takahiro Ichise, Shouta M M Nakayama, Mayumi Ishizuka, Koji Arizono, Keisuke Takahashi, Keisuke Kato, Youhei Mantani, Toshifumi Yokoyama, Nobuhiko Hoshi. Aging-related changes in the sensitivity of behavioral effects of the neonicotinoid pesticide clothianidin in male mice. Toxicology letters. 2021 May; 342(?):95-103. doi: 10.1016/j.toxlet.2021.02.010. [PMID: 33609686]
  • Yingying Song, Lili Li, Chao Li, Zengbin Lu, Fang Ouyang, Li Liu, Yi Yu, Xingyuan Men. Comparative ecotoxicity of insecticides with different modes of action to Osmia excavata (Hymenoptera: Megachilidae). Ecotoxicology and environmental safety. 2021 Apr; 212(?):112015. doi: 10.1016/j.ecoenv.2021.112015. [PMID: 33561775]
  • Li Chen, Fugen Li, Chunhong Jia, Pingzhong Yu, Ercheng Zhao, Min He, Junjie Jing. Determination of thiamethoxam and its metabolite clothianidin residue and dissipation in cowpea by QuEChERS combining with ultrahigh-performance liquid chromatography-tandem mass spectrometry. Environmental science and pollution research international. 2021 Feb; 28(7):8844-8852. doi: 10.1007/s11356-020-11164-6. [PMID: 33074433]
  • Xun Liao, Peng-Fei Xu, Pei-Pan Gong, Hu Wan, Jian-Hong Li. Current susceptibilities of brown planthopper Nilaparvata lugens to triflumezopyrim and other frequently used insecticides in China. Insect science. 2021 Feb; 28(1):115-126. doi: 10.1111/1744-7917.12764. [PMID: 32043703]
  • Fenali Parekh, Katie F Daughenbaugh, Michelle L Flenniken. Chemical Stimulants and Stressors Impact the Outcome of Virus Infection and Immune Gene Expression in Honey Bees (Apis mellifera). Frontiers in immunology. 2021; 12(?):747848. doi: 10.3389/fimmu.2021.747848. [PMID: 34804032]
  • Rosie J Lennon, Richard F Shore, M Glória Pereira, Will J Peach, Jenny C Dunn, Kathryn E Arnold, Colin D Brown. High prevalence of the neonicotinoid clothianidin in liver and plasma samples collected from gamebirds during autumn sowing. The Science of the total environment. 2020 Nov; 742(?):140493. doi: 10.1016/j.scitotenv.2020.140493. [PMID: 32629254]
  • E Fotopoulou, M Lykogianni, E Papadimitriou, S Mavrikou, K Machera, S Kintzios, D Thomaidou, Κ Α Aliferis. Mining the effect of the neonicotinoids imidacloprid and clothianidin on the chemical homeostasis and energy equilibrium of primary mouse neural stem/progenitor cells using metabolomics. Pesticide biochemistry and physiology. 2020 Sep; 168(?):104617. doi: 10.1016/j.pestbp.2020.104617. [PMID: 32711778]
  • Shanping Li, Hao Chen, Xiaoping Wang, Xiaochun Dong, Yixuan Huang, Dan Guo. Catalytic degradation of clothianidin with graphene/TiO2 using a dielectric barrier discharge (DBD) plasma system. Environmental science and pollution research international. 2020 Aug; 27(23):29599-29611. doi: 10.1007/s11356-020-09303-0. [PMID: 32445149]
  • Tingting Liu, Chunhao Yuan, Yue Gao, Jian Luo, Song Yang, Shangke Liu, Ruchang Zhang, Nan Zou. Exogenous salicylic acid mitigates the accumulation of some pesticides in cucumber seedlings under different cultivation methods. Ecotoxicology and environmental safety. 2020 Jul; 198(?):110680. doi: 10.1016/j.ecoenv.2020.110680. [PMID: 32361497]
  • Zülal Atlı Şekeroğlu, Vedat Şekeroğlu, Birsen Aydın, Seval Kontaş Yedier, Emre İlkun. Clothianidin induces DNA damage and oxidative stress in bronchial epithelial cells. Environmental and molecular mutagenesis. 2020 07; 61(6):647-655. doi: 10.1002/em.22376. [PMID: 32285515]
  • Rosie J Lennon, Will J Peach, Jenny C Dunn, Richard F Shore, M Glória Pereira, Darren Sleep, Steve Dodd, Christopher J Wheatley, Kathryn E Arnold, Colin D Brown. From seeds to plasma: Confirmed exposure of multiple farmland bird species to clothianidin during sowing of winter cereals. The Science of the total environment. 2020 Jun; 723(?):138056. doi: 10.1016/j.scitotenv.2020.138056. [PMID: 32224397]
  • Jimmy Alarcan, Julia Waizenegger, Marize de Lourdes Marzo Solano, Dajana Lichtenstein, Claudia Luckert, Ad Peijnenburg, Geert Stoopen, Raju Prasad Sharma, Vikas Kumar, Philip Marx-Stoelting, Alfonso Lampen, Albert Braeuning. Hepatotoxicity of the pesticides imazalil, thiacloprid and clothianidin - Individual and mixture effects in a 28-day study in female Wistar rats. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association. 2020 Jun; 140(?):111306. doi: 10.1016/j.fct.2020.111306. [PMID: 32229153]
  • Zhao Li, Tingwei Cai, Yao Qin, Yunhua Zhang, Ruoheng Jin, Kaikai Mao, Xun Liao, Hu Wan, Jianhong Li. Transcriptional Response of ATP-Binding Cassette (ABC) Transporters to Insecticide in the Brown Planthopper, Nilaparvata lugens (Stål). Insects. 2020 May; 11(5):. doi: 10.3390/insects11050280. [PMID: 32370222]
  • Dajana Lichtenstein, Claudia Luckert, Jimmy Alarcan, Georges de Sousa, Michail Gioutlakis, Efrosini S Katsanou, Parthena Konstantinidou, Kyriaki Machera, Emanuela S Milani, Ad Peijnenburg, Roger Rahmani, Deborah Rijkers, Anastasia Spyropoulou, Marianna Stamou, Geert Stoopen, Shana J Sturla, Bernd Wollscheid, Nathalie Zucchini-Pascal, Albert Braeuning, Alfonso Lampen. An adverse outcome pathway-based approach to assess steatotic mixture effects of hepatotoxic pesticides in vitro. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association. 2020 May; 139(?):111283. doi: 10.1016/j.fct.2020.111283. [PMID: 32201337]
  • Wenwen Gong, Mengyun Jiang, Tingting Zhang, Wei Zhang, Gang Liang, Bingru Li, Bin Hu, Ping Han. Uptake and dissipation of metalaxyl-M, fludioxonil, cyantraniliprole and thiamethoxam in greenhouse chrysanthemum. Environmental pollution (Barking, Essex : 1987). 2020 Feb; 257(?):113499. doi: 10.1016/j.envpol.2019.113499. [PMID: 31706771]
  • Jun Ueyama, Arisa Aoi, Yuko Ueda, Naoko Oya, Yuka Sugiura, Yuki Ito, Takeshi Ebara, Michihiro Kamijima. Biomonitoring method for neonicotinoid insecticides in urine of non-toilet-trained children using LC-MS/MS. Food additives & contaminants. Part A, Chemistry, analysis, control, exposure & risk assessment. 2020 Feb; 37(2):304-315. doi: 10.1080/19440049.2019.1696020. [PMID: 31825743]
  • C Scott Clem, Taylor M Sparbanie, Alec B Luro, Alexandra N Harmon-Threatt. Can anthophilous hover flies (Diptera: Syrphidae) discriminate neonicotinoid insecticides in sucrose solution?. PloS one. 2020; 15(6):e0234820. doi: 10.1371/journal.pone.0234820. [PMID: 32559247]
  • Adam Michael Alford, Christian H Krupke. Movement of the Neonicotinoid Seed Treatment Clothianidin into Groundwater, Aquatic Plants, and Insect Herbivores. Environmental science & technology. 2019 12; 53(24):14368-14376. doi: 10.1021/acs.est.9b05025. [PMID: 31710225]
  • Bowen Tang, Wu Dai, Lijun Qi, Qi Zhang, Chunni Zhang. Identification and Functional Analysis of a Delta Class Glutathione S-Transferase Gene Associated with Insecticide Detoxification in Bradysia odoriphaga. Journal of agricultural and food chemistry. 2019 Sep; 67(36):9979-9988. doi: 10.1021/acs.jafc.9b02874. [PMID: 31411878]
  • Chouaïbou Seïdou Mouhamadou, Sarah Souline de Souza, Behi Kouadio Fodjo, Marius Gonse Zoh, Nestor Kesse Bli, Benjamin Guibehi Koudou. Evidence of insecticide resistance selection in wild Anopheles coluzzii mosquitoes due to agricultural pesticide use. Infectious diseases of poverty. 2019 Jul; 8(1):64. doi: 10.1186/s40249-019-0572-2. [PMID: 31307509]
  • Kaikai Mao, Xiaolei Zhang, Ehsan Ali, Xun Liao, Ruoheng Jin, Zhijie Ren, Hu Wan, Jianhong Li. Characterization of nitenpyram resistance in Nilaparvata lugens (Stål). Pesticide biochemistry and physiology. 2019 Jun; 157(?):26-32. doi: 10.1016/j.pestbp.2019.03.001. [PMID: 31153474]
  • Wei Hu, Fan Kuang, Jiong Chun, Zhanjun Lu, Xingtao Li, Qiyang Zhao, Balian Zhong, Huanan Su, Zhixiang Zhang, Ning Zhang. Uptake of soil-applied thiamethoxam in orange and its effect against Asian citrus psyllid in different seasons. Pest management science. 2019 May; 75(5):1339-1345. doi: 10.1002/ps.5248. [PMID: 30367747]
  • Verena Christen, Maren Susanne Vogel, Timm Hettich, Karl Fent. A Vitellogenin Antibody in Honey Bees (Apis mellifera): Characterization and Application as Potential Biomarker for Insecticide Exposure. Environmental toxicology and chemistry. 2019 05; 38(5):1074-1083. doi: 10.1002/etc.4383. [PMID: 30714192]
  • Kimberly A Stoner, Richard S Cowles, Andrea Nurse, Brian D Eitzer. Tracking Pesticide Residues to a Plant Genus Using Palynology in Pollen Trapped from Honey Bees (Hymenoptera: Apidae) at Ornamental Plant Nurseries. Environmental entomology. 2019 04; 48(2):351-362. doi: 10.1093/ee/nvz007. [PMID: 30753426]
  • Heather H Disque, Kelly A Hamby, Aditi Dubey, Christopher Taylor, Galen P Dively. Effects of clothianidin-treated seed on the arthropod community in a mid-Atlantic no-till corn agroecosystem. Pest management science. 2019 Apr; 75(4):969-978. doi: 10.1002/ps.5201. [PMID: 30192045]
  • Michael M Bredeson, Jonathan G Lundgren. Neonicotinoid insecticidal seed-treatment on corn contaminates interseeded cover crops intended as habitat for beneficial insects. Ecotoxicology (London, England). 2019 Mar; 28(2):222-228. doi: 10.1007/s10646-018-02015-9. [PMID: 30666494]
  • Julia Osterman, Dimitry Wintermantel, Barbara Locke, Ove Jonsson, Emilia Semberg, Piero Onorati, Eva Forsgren, Peter Rosenkranz, Thorsten Rahbek-Pedersen, Riccardo Bommarco, Henrik G Smith, Maj Rundlöf, Joachim R de Miranda. Clothianidin seed-treatment has no detectable negative impact on honeybee colonies and their pathogens. Nature communications. 2019 02; 10(1):692. doi: 10.1038/s41467-019-08523-4. [PMID: 30741934]
  • Ruoheng Jin, Kaikai Mao, Xun Liao, Pengfei Xu, Zhao Li, Ehsan Ali, Hu Wan, Jianhong Li. Overexpression of CYP6ER1 associated with clothianidin resistance in Nilaparvata lugens (Stål). Pesticide biochemistry and physiology. 2019 Feb; 154(?):39-45. doi: 10.1016/j.pestbp.2018.12.008. [PMID: 30765055]
  • Mária Mörtl, Béla Darvas, Ágnes Vehovszky, János Győri, András Székács. Contamination of the guttation liquid of two common weeds with neonicotinoids from coated maize seeds planted in close proximity. The Science of the total environment. 2019 Feb; 649(?):1137-1143. doi: 10.1016/j.scitotenv.2018.08.271. [PMID: 30308885]
  • Amelie Schmolke, Farah Abi-Akar, Silvia Hinarejos. Honey bee colony-level exposure and effects in realistic landscapes: An application of BEEHAVE simulating clothianidin residues in corn pollen. Environmental toxicology and chemistry. 2019 02; 38(2):423-435. doi: 10.1002/etc.4314. [PMID: 30575066]
  • Arthur W Schaafsma, Victor Limay-Rios, Tracey S Baute, Jocelyn L Smith. Neonicotinoid insecticide residues in subsurface drainage and open ditch water around maize fields in southwestern Ontario. PloS one. 2019; 14(4):e0214787. doi: 10.1371/journal.pone.0214787. [PMID: 30947236]
  • Jinfeng Ding, Yunhe Zhao, Zhengqun Zhang, Chunmei Xu, Wei Mu. Sublethal and Hormesis Effects of Clothianidin on the Black Cutworm (Lepidoptera: Noctuidae). Journal of economic entomology. 2018 12; 111(6):2809-2816. doi: 10.1093/jee/toy254. [PMID: 30551214]
  • Chunyan Hao, Margaret L Eng, Fengrong Sun, Christy A Morrissey. Part-per-trillion LC-MS/MS determination of neonicotinoids in small volumes of songbird plasma. The Science of the total environment. 2018 Dec; 644(?):1080-1087. doi: 10.1016/j.scitotenv.2018.06.317. [PMID: 30743821]
  • Annika Agatz, Mario M Schumann, Bryan W French, Colin D Brown, Stefan Vidal. Assessment of acute toxicity tests and rhizotron experiments to characterize lethal and sublethal control of soil-based pests. Pest management science. 2018 Nov; 74(11):2450-2459. doi: 10.1002/ps.4922. [PMID: 29575759]
  • Jinfeng Ding, Hong Li, Zhengqun Zhang, Jin Lin, Feng Liu, Wei Mu. Thiamethoxam, Clothianidin, and Imidacloprid Seed Treatments Effectively Control Thrips on Corn Under Field Conditions. Journal of insect science (Online). 2018 Nov; 18(6):. doi: 10.1093/jisesa/iey128. [PMID: 30566643]
  • Na Liu, Xinglu Pan, Qingxi Yang, Mingshan Ji, Zhihong Zhang. The dissipation of thiamethoxam and its main metabolite clothianidin during strawberry growth and jam-making process. Scientific reports. 2018 10; 8(1):15242. doi: 10.1038/s41598-018-33334-w. [PMID: 30323350]
  • Jiangong Jiang, Zhengqun Zhang, Xin Yu, Dicheng Ma, Caihong Yu, Feng Liu, Wei Mu. Influence of lethal and sublethal exposure to clothianidin on the seven-spotted lady beetle, Coccinella septempunctata L. (Coleoptera: Coccinellidae). Ecotoxicology and environmental safety. 2018 10; 161(?):208-213. doi: 10.1016/j.ecoenv.2018.05.076. [PMID: 29885616]
  • Reinhold Siede, Marina D Meixner, Maria T Almanza, Ralf Schöning, Christian Maus, Ralph Büchler. A long-term field study on the effects of dietary exposure of clothianidin to varroosis-weakened honey bee colonies. Ecotoxicology (London, England). 2018 Sep; 27(7):772-783. doi: 10.1007/s10646-018-1937-1. [PMID: 29725884]
  • Quan Zhang, Ximing Wang, Zhe Li, Hangbiao Jin, Zhengbiao Lu, Chang Yu, Yu-Fang Huang, Meirong Zhao. Simultaneous determination of nine neonicotinoids in human urine using isotope-dilution ultra-performance liquid chromatography-tandem mass spectrometry. Environmental pollution (Barking, Essex : 1987). 2018 Sep; 240(?):647-652. doi: 10.1016/j.envpol.2018.04.144. [PMID: 29772515]
  • Yang Li, Peidong Su, Yadong Li, Kejun Wen, Guihong Bi, Michael Cox. Adsorption-desorption and degradation of insecticides clothianidin and thiamethoxam in agricultural soils. Chemosphere. 2018 Sep; 207(?):708-714. doi: 10.1016/j.chemosphere.2018.05.139. [PMID: 29857203]
  • Guiling Yang, Chen Chen, Yijun Yu, Huiyu Zhao, Wen Wang, Yanhua Wang, Leiming Cai, Yueping He, Xinquan Wang. Combined effects of four pesticides and heavy metal chromium (Ⅵ) on the earthworm using avoidance behavior as an endpoint. Ecotoxicology and environmental safety. 2018 Aug; 157(?):191-200. doi: 10.1016/j.ecoenv.2018.03.067. [PMID: 29621711]
  • Verena Christen, Melanie Schirrmann, Juerg E Frey, Karl Fent. Global Transcriptomic Effects of Environmentally Relevant Concentrations of the Neonicotinoids Clothianidin, Imidacloprid, and Thiamethoxam in the Brain of Honey Bees ( Apis mellifera). Environmental science & technology. 2018 07; 52(13):7534-7544. doi: 10.1021/acs.est.8b01801. [PMID: 29851480]
  • Banghua Meng, Yurong Yu, Qingtao Zhang, Shouyi Wang, Deyu Hu, Kankan Zhang. Simultaneous determination of residues of thiamethoxam and its metabolite clothianidin in tobacco leaf and soil using liquid chromatography-tandem mass spectrometry. Biomedical chromatography : BMC. 2018 Jul; 32(7):e4225. doi: 10.1002/bmc.4225. [PMID: 29498755]
  • Alison Cartereau, Carine Martin, Steeve H Thany. Neonicotinoid insecticides differently modulate acetycholine-induced currents on mammalian α7 nicotinic acetylcholine receptors. British journal of pharmacology. 2018 06; 175(11):1987-1998. doi: 10.1111/bph.14018. [PMID: 28853147]
  • Yong Fang, Jinda Wang, Chen Luo, Ran Wang. Lethal and Sublethal Effects of Clothianidin on the Development and Reproduction of Bemisia tabaci (Hemiptera: Aleyrodidae) MED and MEAM1. Journal of insect science (Online). 2018 Mar; 18(2):. doi: 10.1093/jisesa/iey025. [PMID: 29718499]
  • Yuki Hirakawa, Tomomi Yamasaki, Ayako Harada, Seiji Iwasa, Hiroshi Narita, Shiro Miyake. Development of an Immunosensor Based on Surface Plasmon Resonance for Simultaneous Residue Analysis of Three Pesticides -Boscalid, Clothianidin, and Nitenpyram- in Vegetables. Analytical sciences : the international journal of the Japan Society for Analytical Chemistry. 2018; 34(5):533-539. doi: 10.2116/analsci.17p487. [PMID: 29743423]
  • Haoliang Chen, Lulu Lin, Farman Ali, Minghui Xie, Guangling Zhang, Weihua Su. Using Next-Generation Sequencing to Detect Differential Expression Genes in Bradysia odoriphaga after Exposure to Insecticides. International journal of molecular sciences. 2017 Nov; 18(11):. doi: 10.3390/ijms18112445. [PMID: 29149030]
  • Yanmei Liu, Sihong Liu, Hui Zhang, Yanping Gu, Xuesheng Li, Mingyuan He, Huihua Tan. Application of the combination index (CI)-isobologram equation to research the toxicological interactions of clothianidin, thiamethoxam, and dinotefuran in honeybee, Apis mellifera. Chemosphere. 2017 Oct; 184(?):806-811. doi: 10.1016/j.chemosphere.2017.06.045. [PMID: 28645084]
  • Zhengqun Zhang, Yunhe Zhao, Yao Wang, Beixing Li, Jin Lin, Xuefeng Zhang, Wei Mu. Seed Treatment Combined with a Spot Application of Clothianidin Granules Prolongs the Efficacy of Controlling Piercing-Sucking Insect Pests in Cotton Fields. Journal of agricultural and food chemistry. 2017 Sep; 65(36):8083-8092. doi: 10.1021/acs.jafc.7b03120. [PMID: 28837321]
  • A Lentola, A David, A Abdul-Sada, A Tapparo, D Goulson, E M Hill. Ornamental plants on sale to the public are a significant source of pesticide residues with implications for the health of pollinating insects. Environmental pollution (Barking, Essex : 1987). 2017 Sep; 228(?):297-304. doi: 10.1016/j.envpol.2017.03.084. [PMID: 28551560]
  • JingXia Ren, ChuanJiang Tao, LiYing Zhang, Jun Ning, XiangDong Mei, DongMei She. Potential exposure to clothianidin and risk assessment of manual users of treated soil. Pest management science. 2017 Sep; 73(9):1798-1803. doi: 10.1002/ps.4535. [PMID: 28127852]
  • Yinjun Fan, Xueyan Shi. Characterization of the metabolic transformation of thiamethoxam to clothianidin in Helicoverpa armigera larvae by SPE combined UPLC-MS/MS and its relationship with the toxicity of thiamethoxam to Helicoverpa armigera larvae. Journal of chromatography. B, Analytical technologies in the biomedical and life sciences. 2017 Sep; 1061-1062(?):349-355. doi: 10.1016/j.jchromb.2017.07.054. [PMID: 28800538]
  • Jing Ge, Kai Cui, Huangqian Yan, Yong Li, Yangyang Chai, Xianjin Liu, Jiangfeng Cheng, Xiangyang Yu. Uptake and translocation of imidacloprid, thiamethoxam and difenoconazole in rice plants. Environmental pollution (Barking, Essex : 1987). 2017 Jul; 226(?):479-485. doi: 10.1016/j.envpol.2017.04.043. [PMID: 28454637]
  • Xiang Wei, Yiou Pan, Xuecheng Xin, Chao Zheng, Xiwu Gao, Jinghui Xi, Qingli Shang. Cross-resistance pattern and basis of resistance in a thiamethoxam-resistant strain of Aphis gossypii Glover. Pesticide biochemistry and physiology. 2017 May; 138(?):91-96. doi: 10.1016/j.pestbp.2017.03.007. [PMID: 28456311]
  • Tomasz Kiljanek, Alicja Niewiadowska, Marta Gaweł, Stanisław Semeniuk, Milena Borzęcka, Andrzej Posyniak, Krystyna Pohorecka. Multiple pesticide residues in live and poisoned honeybees - Preliminary exposure assessment. Chemosphere. 2017 May; 175(?):36-44. doi: 10.1016/j.chemosphere.2017.02.028. [PMID: 28211333]
  • Adam Alford, Christian H Krupke. Translocation of the neonicotinoid seed treatment clothianidin in maize. PloS one. 2017; 12(3):e0173836. doi: 10.1371/journal.pone.0173836. [PMID: 28282441]
  • Verena Christen, Sara Bachofer, Karl Fent. Binary mixtures of neonicotinoids show different transcriptional changes than single neonicotinoids in honeybees (Apis mellifera). Environmental pollution (Barking, Essex : 1987). 2017 Jan; 220(Pt B):1264-1270. doi: 10.1016/j.envpol.2016.10.105. [PMID: 27839993]
  • Richard Schmuck, Gavin Lewis. Review of field and monitoring studies investigating the role of nitro-substituted neonicotinoid insecticides in the reported losses of honey bee colonies (Apis mellifera). Ecotoxicology (London, England). 2016 Nov; 25(9):1617-1629. doi: 10.1007/s10646-016-1734-7. [PMID: 27709399]
  • Weiting Jiao, Yu Xiao, Xiaosan Qian, Mengmeng Tong, Yizheng Hu, Ruyan Hou, Rimao Hua. Optimized combination of dilution and refined QuEChERS to overcome matrix effects of six types of tea for determination eight neonicotinoid insecticides by ultra performance liquid chromatography-electrospray tandem mass spectrometry. Food chemistry. 2016 Nov; 210(?):26-34. doi: 10.1016/j.foodchem.2016.04.097. [PMID: 27211616]
  • Daniel Rolke, Markus Persigehl, Britta Peters, Guido Sterk, Wolfgang Blenau. Large-scale monitoring of effects of clothianidin-dressed oilseed rape seeds on pollinating insects in northern Germany: residues of clothianidin in pollen, nectar and honey. Ecotoxicology (London, England). 2016 Nov; 25(9):1691-1701. doi: 10.1007/s10646-016-1723-x. [PMID: 27650369]
  • Fred Heimbach, Anja Russ, Maren Schimmer, Katrin Born. Large-scale monitoring of effects of clothianidin dressed oilseed rape seeds on pollinating insects in Northern Germany: implementation of the monitoring project and its representativeness. Ecotoxicology (London, England). 2016 Nov; 25(9):1630-1647. doi: 10.1007/s10646-016-1724-9. [PMID: 27678527]
  • Xiaolei Zhang, Xun Liao, Kaikai Mao, Kaixiong Zhang, Hu Wan, Jianhong Li. Insecticide resistance monitoring and correlation analysis of insecticides in field populations of the brown planthopper Nilaparvata lugens (stål) in China 2012-2014. Pesticide biochemistry and physiology. 2016 Sep; 132(?):13-20. doi: 10.1016/j.pestbp.2015.10.003. [PMID: 27521908]