Loganic acid (BioDeep_00000397188)

Main id: BioDeep_00000000162

Secondary id: BioDeep_00000264980

natural product PANOMIX_OTCML-2023


代谢物信息卡片


(1S,4aS,6S,7R,7aS)-6-hydroxy-7-methyl-1-[[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-2-tetrahydropyranyl]oxy]-1,4a,5,6,7,7a-hexahydrocyclopenta[d]pyran-4-carboxylic acid

化学式: C16H24O10 (376.1369)
中文名称: 8-表番木鳖酸, 落干酸, 马钱苷酸
谱图信息: 最多检出来源 Chinese Herbal Medicine(otcml) 32.89%

分子结构信息

SMILES: CC1C(CC2C1C(OC=C2C(=O)O)OC3C(C(C(C(O3)CO)O)O)O)O
InChI: InChI=1S/C16H24O10/c1-5-8(18)2-6-7(14(22)23)4-24-15(10(5)6)26-16-13(21)12(20)11(19)9(3-17)25-16/h4-6,8-13,15-21H,2-3H2,1H3,(H,22,23)/t5-,6+,8-,9+,10+,11+,12-,13+,15-,16-/m0/s1

描述信息

8-Epiloganic acid is a natural product found in Plantago atrata, Lonicera japonica, and other organisms with data available.
8-Epiloganic acid, an iridoid glucoside, can be found in Linaria cymbalaria (Scrophulariaceae)[1].
8-Epiloganic acid, an iridoid glucoside, can be found in Linaria cymbalaria (Scrophulariaceae)[1].
Loganic acid is an iridoid isolated from cornelian cherry fruits. Loganic acid can modulate diet-induced atherosclerosis and redox status. Loganic acid has strong free radical scavenging activity and remarkable cyto-protective effect against heavy metal mediated toxicity[1][2].
Loganic acid is an iridoid isolated from cornelian cherry fruits. Loganic acid can modulate diet-induced atherosclerosis and redox status. Loganic acid has strong free radical scavenging activity and remarkable cyto-protective effect against heavy metal mediated toxicity[1][2].

同义名列表

35 个代谢物同义名

(1S,4aS,6S,7R,7aS)-6-hydroxy-7-methyl-1-[[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-2-tetrahydropyranyl]oxy]-1,4a,5,6,7,7a-hexahydrocyclopenta[d]pyran-4-carboxylic acid; (1S,4aS,6S,7R,7aS)-6-hydroxy-7-methyl-1-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydropyran-2-yl]oxy-1,4a,5,6,7,7a-hexahydrocyclopenta[d]pyran-4-carboxylic acid; (1S,4aS,6S,7R,7aS)-6-hydroxy-7-methyl-1-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-methylol-tetrahydropyran-2-yl]oxy-1,4a,5,6,7,7a-hexahydrocyclopenta[d]pyran-4-carboxylic acid; (1S,4aS,6S,7R,7aS)-6-hydroxy-7-methyl-1-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-1,4a,5,6,7,7a-hexahydrocyclopenta[d]pyran-4-carboxylic acid; (1S-(1alpha,4aalpha,6alpha,7alpha,7aalpha))-1-(beta-D-Glucopyranosyloxy)-1,4a,5,6,7,7a-hexahydro-6-hydroxy-7-methylcyclopenta(c)pyran-4-carboxylic acid; (1S,4aS,6S,7R,7aS)-1-(beta-D-glucopyranosyloxy)-6-hydroxy-7-methyl-1,4a,5,6,7,7a-hexahydrocyclopenta[c]pyran-4-carboxylic acid; SDCCGMLS-0066805.P001; Spectrum5_000340; Spectrum4_001690; Spectrum2_001971; EINECS 244-875-9; Spectrum3_001930; Spectrum_001509; SPECTRUM1504071; SpecPlus_000543; BSPBio_003530; KBioSS_001989; KBioGR_001960; DivK1c_006639; Loganic acid; KBio3_002760; KBio2_001989; KBio2_004557; KBio1_001583; SPBio_002121; KBio2_007125; CHEBI:30632; 22255-40-9; C01512; (1S,4aS,6S,7S,7aS)-6-hydroxy-7-methyl-1-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-1,4a,5,6,7,7a-hexahydrocyclopenta[c]pyran-4-carboxylic acid; Cyclopenta(c)pyran-4-carboxylic acid, 1-(beta-D-glucopyranosyloxy)-1,4a,5,6,7,7a-hexahydro-6-hydroxy-7-methyl-, (1S-(1alpha,4aalpha,6alpha,7beta,7aalpha))-; Cyclopenta(c)pyran-4-carboxylic acid, 1-(beta-D-glucopyranosyloxy)-1,4a,5,6,7,7a-hexahydro-6-hydroxy-7-methyl-, (1S,4aS,6S,7S,7aS)-; 8-epi-Loganic acid; 8-epiloganic acid; Loganate



数据库引用编号

37 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

203 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 10 AKT1, BGLAP, CAT, DDAH2, EGFR, FABP4, NOS3, PPARG, PTGS2, SP7
Peripheral membrane protein 2 CYP1B1, PTGS2
Endosome membrane 1 EGFR
Endoplasmic reticulum membrane 3 CYP1B1, EGFR, PTGS2
Mitochondrion membrane 1 ALPL
Nucleus 8 AKT1, CEBPA, EGFR, FABP4, NOS3, PPARA, PPARG, SP7
cytosol 7 AKT1, CAT, FABP4, GSR, NOS3, PPARG, SLC2A4
dendrite 1 BGLAP
mitochondrial membrane 1 ALPL
trans-Golgi network 1 SLC2A4
nucleoplasm 5 AKT1, CEBPA, NOS3, PPARA, PPARG
RNA polymerase II transcription regulator complex 2 CEBPA, PPARG
Cell membrane 5 AKT1, ALPL, EGFR, SLC2A4, TNF
lamellipodium 1 AKT1
ruffle membrane 1 EGFR
Early endosome membrane 1 EGFR
Multi-pass membrane protein 1 SLC2A4
cell cortex 1 AKT1
cell junction 1 EGFR
cell surface 3 ADIPOQ, EGFR, TNF
glutamatergic synapse 2 AKT1, EGFR
Golgi apparatus 1 NOS3
Golgi membrane 2 EGFR, NOS3
neuronal cell body 1 TNF
postsynapse 1 AKT1
sarcolemma 1 SLC2A4
Presynapse 1 SLC2A4
endosome 1 EGFR
plasma membrane 6 AKT1, ALPL, EGFR, NOS3, SLC2A4, TNF
Membrane 6 AKT1, ALPL, CAT, CYP1B1, EGFR, SLC2A4
apical plasma membrane 1 EGFR
basolateral plasma membrane 1 EGFR
caveola 2 NOS3, PTGS2
extracellular exosome 6 ALPL, CAT, DDAH2, FABP4, GSR, SLC2A4
endoplasmic reticulum 2 ADIPOQ, PTGS2
extracellular space 6 ADIPOQ, BGLAP, CXCL8, EGFR, IL6, TNF
perinuclear region of cytoplasm 4 EGFR, NOS3, PPARG, SLC2A4
mitochondrion 4 CAT, CYP1B1, DDAH2, GSR
protein-containing complex 4 AKT1, CAT, EGFR, PTGS2
intracellular membrane-bounded organelle 4 CAT, CEBPA, CYP1B1, PPARG
Microsome membrane 2 CYP1B1, PTGS2
Single-pass type I membrane protein 1 EGFR
Secreted 4 ADIPOQ, BGLAP, CXCL8, IL6
extracellular region 7 ADIPOQ, ALPL, BGLAP, CAT, CXCL8, IL6, TNF
mitochondrial matrix 2 CAT, GSR
transcription regulator complex 1 CEBPA
nuclear membrane 1 EGFR
external side of plasma membrane 3 GSR, SLC2A4, TNF
multivesicular body 1 SLC2A4
T-tubule 1 SLC2A4
perikaryon 1 BGLAP
microtubule cytoskeleton 1 AKT1
nucleolus 1 CEBPA
Cytoplasm, P-body 1 NOS3
P-body 1 NOS3
cell-cell junction 1 AKT1
clathrin-coated pit 1 SLC2A4
recycling endosome 1 TNF
Single-pass type II membrane protein 1 TNF
vesicle 2 AKT1, BGLAP
Cytoplasm, perinuclear region 1 SLC2A4
Membrane raft 3 EGFR, SLC2A4, TNF
focal adhesion 2 CAT, EGFR
spindle 1 AKT1
extracellular matrix 1 ALPL
Peroxisome 1 CAT
collagen trimer 1 ADIPOQ
intracellular vesicle 1 EGFR
sarcoplasmic reticulum 1 SLC2A4
Peroxisome matrix 1 CAT
peroxisomal matrix 1 CAT
peroxisomal membrane 1 CAT
Mitochondrion intermembrane space 2 AKT1, ALPL
mitochondrial intermembrane space 2 AKT1, ALPL
collagen-containing extracellular matrix 1 ADIPOQ
Nucleus inner membrane 1 PTGS2
Nucleus outer membrane 1 PTGS2
nuclear inner membrane 1 PTGS2
nuclear outer membrane 1 PTGS2
receptor complex 2 EGFR, PPARG
neuron projection 1 PTGS2
ciliary basal body 1 AKT1
chromatin 4 CEBPA, PPARA, PPARG, SP7
phagocytic cup 1 TNF
cytoskeleton 1 NOS3
Lipid-anchor, GPI-anchor 1 ALPL
Endomembrane system 1 SLC2A4
Lipid droplet 1 FABP4
Cytoplasmic vesicle membrane 1 SLC2A4
Cytoplasm, Stress granule 1 NOS3
cytoplasmic stress granule 1 NOS3
side of membrane 1 ALPL
basal plasma membrane 1 EGFR
clathrin-coated vesicle 1 SLC2A4
synaptic membrane 1 EGFR
trans-Golgi network transport vesicle 1 SLC2A4
ficolin-1-rich granule lumen 1 CAT
secretory granule lumen 1 CAT
Golgi lumen 1 BGLAP
endoplasmic reticulum lumen 3 BGLAP, IL6, PTGS2
endocytic vesicle membrane 1 NOS3
vesicle membrane 1 SLC2A4
clathrin-coated endocytic vesicle membrane 1 EGFR
multivesicular body, internal vesicle lumen 1 EGFR
Shc-EGFR complex 1 EGFR
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
catalase complex 1 CAT
Extracellular vesicle membrane 1 ALPL
interleukin-6 receptor complex 1 IL6
insulin-responsive compartment 1 SLC2A4
C/EBP complex 1 CEBPA
CHOP-C/EBP complex 1 CEBPA
[Isoform 4]: Nucleus, nucleolus 1 CEBPA
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF


文献列表

  • Yangyang Yin, Huanhuan Fu, Fakai Mi, Ye Yang, Yaomin Wang, Zhe Li, Yihan He, Zhenggang Yue. Genomic characterization of WRKY transcription factors related to secoiridoid biosynthesis in Gentiana macrophylla. BMC plant biology. 2024 Jan; 24(1):66. doi: 10.1186/s12870-024-04727-z. [PMID: 38262919]
  • Priya Rao, Mark A Yaroslavsky, Justin C Miller, Mary A Schuler. Catalytic Site Constraints in the P450s Mediating Loganic Acid (7DLH) and Secologanic Acid Synthesis (SLAS) in Camptotheca. Biochemistry. 2023 Sep; 62(18):2763-2774. doi: 10.1021/acs.biochem.3c00126. [PMID: 37656055]
  • Naonobu Tanaka, Ikko Shibata, Yusuke Tasaki, Yuki Yoshino, Daisuke Tsuji, Feng-Lai Lu, Xiao-Jie Yan, Xue-Rong Yang, Kohji Itoh, Reiko Akagi, Dian-Peng Li, Yoshiki Kashiwada. Acylated iridoid glucoside and xanthones from Canscora lucidissima: Their structures and ferroptosis inhibitory activity. Fitoterapia. 2023 May; 168(?):105539. doi: 10.1016/j.fitote.2023.105539. [PMID: 37178810]
  • Zhiyong Zhang, Nan Hao, Long Wang, Shunan Li, Xinhao Yan, Xuting Guo, Yunlan Lian, Wenlong Li. Rapid quality assessment of Gentianae Macrophyllae Radix based on near infrared spectroscopy and capillary electrophoresis. Electrophoresis. 2023 Apr; ?(?):. doi: 10.1002/elps.202300029. [PMID: 37029336]
  • Wenqing Li, Zhengming Qian, Qinggui Lei, Yunlan Lian, Yuansheng Zou, Yonghua Wang, Dongming Lan. An ultra-rapid and eco-friendly method for determination of loganic acid and gentiopicroside from Gentianae Macrophyllae Radix by vortex-assisted matrix solid-phase dispersion extraction and LC-MS. Journal of pharmaceutical and biomedical analysis. 2023 Jan; 222(?):115085. doi: 10.1016/j.jpba.2022.115085. [PMID: 36194911]
  • Xiaolong Hao, Can Wang, Wei Zhou, Qingyan Ruan, Chenhong Xie, Yinkai Yang, Chengyu Xiao, Yan Cai, Jingyi Wang, Yao Wang, Xuebin Zhang, Itay Maoz, Guoyin Kai. OpNAC1 transcription factor regulates the biosynthesis of the anticancer drug camptothecin by targeting loganic acid O-methyltransferase in Ophiorrhiza pumila. Journal of integrative plant biology. 2023 Jan; 65(1):133-149. doi: 10.1111/jipb.13377. [PMID: 36194508]
  • Ting Zhang, Miaomiao Wang, Zhaoju Li, Xien Wu, Xiaoli Liu. Transcriptome analysis and exploration of genes involved in the biosynthesis of secoiridoids in Gentiana rhodantha. PeerJ. 2023; 11(?):e14968. doi: 10.7717/peerj.14968. [PMID: 36915654]
  • Magdalena Wójciak, Martyna Zagórska-Dziok, Zofia Nizioł-Łukaszewska, Aleksandra Ziemlewska, Dominika Furman-Toczek, Dariusz Szczepanek, Ireneusz Sowa. In Vitro Evaluation of Anti-Inflammatory and Protective Potential of an Extract from Cornus mas L. Fruit against H2O2-Induced Oxidative Stress in Human Skin Keratinocytes and Fibroblasts. International journal of molecular sciences. 2022 Nov; 23(22):. doi: 10.3390/ijms232213755. [PMID: 36430233]
  • Alagarsamy Abirami, Simran Sinsinwar, Perumal Rajalakshmi, Pemaiah Brindha, Yamajala B R D Rajesh, Vellingiri Vadivel. Antioxidant and cytoprotective properties of loganic acid isolated from seeds of Strychnos potatorum L. against heavy metal induced toxicity in PBMC model. Drug and chemical toxicology. 2022 Jan; 45(1):239-249. doi: 10.1080/01480545.2019.1681445. [PMID: 31645139]
  • Radosław Spychaj, Alicja Z Kucharska, Antoni Szumny, Dominika Przybylska, Ewa Pejcz, Narcyz Piórecki. Potential valorization of Cornelian cherry (Cornus mas L.) stones: Roasting and extraction of bioactive and volatile compounds. Food chemistry. 2021 Oct; 358(?):129802. doi: 10.1016/j.foodchem.2021.129802. [PMID: 33933979]
  • Minghui Kang, Rao Fu, Pingyu Zhang, Shangling Lou, Xuchen Yang, Yang Chen, Tao Ma, Yang Zhang, Zhenxiang Xi, Jianquan Liu. A chromosome-level Camptotheca acuminata genome assembly provides insights into the evolutionary origin of camptothecin biosynthesis. Nature communications. 2021 06; 12(1):3531. doi: 10.1038/s41467-021-23872-9. [PMID: 34112794]
  • Eunkuk Park, Chang Gun Lee, Eunguk Lim, Seokjin Hwang, Seung Hee Yun, Jeonghyun Kim, Hyesoo Jeong, Yoonjoong Yong, Seong-Hoon Yun, Chun Whan Choi, Hyun-Seok Jin, Seon-Yong Jeong. Osteoprotective Effects of Loganic Acid on Osteoblastic and Osteoclastic Cells and Osteoporosis-Induced Mice. International journal of molecular sciences. 2020 Dec; 22(1):. doi: 10.3390/ijms22010233. [PMID: 33379387]
  • Joanna Kawa-Rygielska, Kinga Adamenko, Alicja Z Kucharska, Paula Prorok, Narcyz Piórecki. Physicochemical and antioxidative properties of Cornelian cherry beer. Food chemistry. 2019 May; 281(?):147-153. doi: 10.1016/j.foodchem.2018.12.093. [PMID: 30658741]
  • Tomasz Sozański, Alicja Z Kucharska, Jerzy Wiśniewski, Mariusz G Fleszar, Andrzej Rapak, Agnieszka Gomułkiewicz, Piotr Dzięgiel, Jan Magdalan, Beata Nowak, Dorota Szumny, Agnieszka Matuszewska, Narcyz Piórecki, Adam Szeląg, Małgorzata Trocha. The iridoid loganic acid and anthocyanins from the cornelian cherry (Cornus mas L.) fruit increase the plasma l-arginine/ADMA ratio and decrease levels of ADMA in rabbits fed a high-cholesterol diet. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2019 Jan; 52(?):1-11. doi: 10.1016/j.phymed.2018.09.175. [PMID: 30599888]
  • Tomasz Sozański, Alicja Z Kucharska, Stanisław Dzimira, Jan Magdalan, Dorota Szumny, Agnieszka Matuszewska, Beata Nowak, Narcyz Piórecki, Adam Szeląg, Małgorzata Trocha. Loganic acid and anthocyanins from cornelian cherry (Cornus mas L.) fruits modulate diet-induced atherosclerosis and redox status in rabbits. Advances in clinical and experimental medicine : official organ Wroclaw Medical University. 2018 Nov; 27(11):1505-1513. doi: 10.17219/acem/74638. [PMID: 29790688]
  • Jie Li, Ji Zhang, Zhitian Zuo, Hengyu Huang, Yuanzhong Wang. Quantification and Discrimination of in Vitro Regeneration Swertia nervosa at Different Growth Periods using the UPLC/UV Coupled with Chemometric Method. Journal of AOAC International. 2018 Sep; 101(5):1473-1481. doi: 10.5740/jaoacint.17-0488. [PMID: 29743131]
  • Eunkuk Park, Jeonghyun Kim, Subin Yeo, Gijeong Kim, Eun-Hee Ko, Sang Woo Lee, Wan Yi Li, Chun Whan Choi, Seon-Yong Jeong. Antiadipogenic Effects of Loganic Acid in 3T3-L1 Preadipocytes and Ovariectomized Mice. Molecules (Basel, Switzerland). 2018 Jul; 23(7):. doi: 10.3390/molecules23071663. [PMID: 29987205]
  • Nektaria Petronikolou, Allison J Hollatz, Mary A Schuler, Satish K Nair. Loganic Acid Methyltransferase: Insights into the Specificity of Methylation on an Iridoid Glycoside. Chembiochem : a European journal of chemical biology. 2018 04; 19(8):784-788. doi: 10.1002/cbic.201700679. [PMID: 29399933]
  • Joanna Kawa-Rygielska, Kinga Adamenko, Alicja Z Kucharska, Narcyz Piórecki. Bioactive Compounds in Cornelian Cherry Vinegars. Molecules (Basel, Switzerland). 2018 Feb; 23(2):. doi: 10.3390/molecules23020379. [PMID: 29439411]
  • Yi Tao, Yingshan Du, Weidong Li, Baochang Cai, Liuqing Di, Liyun Shi, Lihong Hu. Integrating UHPLC-MS/MS quantification and DAS analysis to investigate the effects of wine-processing on the tissue distributions of bioactive constituents of herbs in rats: Exemplarily shown for Dipsacus asper. Journal of chromatography. B, Analytical technologies in the biomedical and life sciences. 2017 Jun; 1055-1056(?):135-143. doi: 10.1016/j.jchromb.2017.04.035. [PMID: 28467948]
  • Yi Tao, Yuchao Ren, Weidong Li, Baochang Cai, Liuqing Di, Liyun Shi, Lihong Hu. Comparative pharmacokinetic analysis of extracts of crude and wine-processed Dipsacus asper in rats by a sensitive ultra performance liquid chromatography-tandem mass spectrometry approach. Journal of chromatography. B, Analytical technologies in the biomedical and life sciences. 2016 Nov; 1036-1037(?):33-41. doi: 10.1016/j.jchromb.2016.09.024. [PMID: 27710888]
  • Tomasz Sozański, Alicja Z Kucharska, Andrzej Rapak, Dorota Szumny, Małgorzata Trocha, Anna Merwid-Ląd, Stanisław Dzimira, Tomasz Piasecki, Narcyz Piórecki, Jan Magdalan, Adam Szeląg. Iridoid-loganic acid versus anthocyanins from the Cornus mas fruits (cornelian cherry): Common and different effects on diet-induced atherosclerosis, PPARs expression and inflammation. Atherosclerosis. 2016 11; 254(?):151-160. doi: 10.1016/j.atherosclerosis.2016.10.001. [PMID: 27744131]
  • Na Jia, Wei Chu, Yuwen Li, Likun Ding, Jialin Duan, Jia Cui, Shanshan Cao, Chao Zhao, Yin Wu, Aidong Wen. Iridoid glycosides from the flowers of Gentiana macrophylla Pall. ameliorate collagen-induced arthritis in rats. Journal of ethnopharmacology. 2016 Aug; 189(?):1-9. doi: 10.1016/j.jep.2016.05.027. [PMID: 27180880]
  • Yaping Wang, Bashir Ahmad, Baozhong Duan, Rui Zeng, Linfang Huang. Chemical and Genetic Comparative Analysis of Gentiana crassicaulis and Gentiana macrophylla. Chemistry & biodiversity. 2016 Jun; 13(6):776-81. doi: 10.1002/cbdv.201500247. [PMID: 27144464]
  • Alessandro Venditti, Claudio Frezza, Mauro Serafini, Armandodoriano Bianco. Iridoids and phenylethanoid from Pedicularis kerneri Dalla Torre growing in Dolomites, Italy. Natural product research. 2016; 30(3):327-31. doi: 10.1080/14786419.2015.1060230. [PMID: 26207992]
  • Ahmed M Mustafa, Giovanni Caprioli, Massimo Ricciutelli, Filippo Maggi, Rosa Marín, Sauro Vittori, Gianni Sagratini. Comparative HPLC/ESI-MS and HPLC/DAD study of different populations of cultivated, wild and commercial Gentiana lutea L. Food chemistry. 2015 May; 174(?):426-33. doi: 10.1016/j.foodchem.2014.11.089. [PMID: 25529701]
  • Gang Fan, Wei-Zao Luo, Shang-Hua Luo, Yan Li, Xian-Li Meng, Xiang-Dong Zhou, Yi Zhang. Metabolic discrimination of Swertia mussotii and Swertia chirayita known as "Zangyinchen" in traditional Tibetan medicine by (1)H NMR-based metabolomics. Journal of pharmaceutical and biomedical analysis. 2014 Sep; 98(?):364-70. doi: 10.1016/j.jpba.2014.06.014. [PMID: 24992216]
  • Huiling Yang, Jianquan Liu, Shilong Chen, Fengzu Hu, Dangwei Zhou. Spatial variation profiling of four phytochemical constituents in Gentiana straminea (Gentianaceae). Journal of natural medicines. 2014 Jan; 68(1):38-45. doi: 10.1007/s11418-013-0763-2. [PMID: 23604973]
  • A Venditti, A M Serrilli, M Di Cecco, G Ciaschetti, T Andrisano, A Bianco. Phytochemical analysis of Plantago sempervirens from Majella National Park. Natural product research. 2012 Nov; 26(21):2035-9. doi: 10.1080/14786419.2011.633520. [PMID: 22081901]
  • Tao Zhang, Bin Li, Li Chen, Jing-Jing Li, Shi-Jun Liu, Jun-Xing Dong. A novel lactone from Tripterospermum chinense. Yao xue xue bao = Acta pharmaceutica Sinica. 2012 Nov; 47(11):1517-20. doi: ". [PMID: 23387086]
  • Anita Aberham, Valerio Pieri, Edward M Croom, Ernst Ellmerer, Hermann Stuppner. Analysis of iridoids, secoiridoids and xanthones in Centaurium erythraea, Frasera caroliniensis and Gentiana lutea using LC-MS and RP-HPLC. Journal of pharmaceutical and biomedical analysis. 2011 Feb; 54(3):517-25. doi: 10.1016/j.jpba.2010.09.030. [PMID: 21050691]
  • Meng-ying Sun, Xu Feng, Xing-hun Lin, Min Yin, Xing-zeng Zhao, Yu Chen, Yu Shan. [Studies on the chemical constituents from stems and leaves of Lonicera macranthoides]. Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials. 2011 Feb; 34(2):218-20. doi: . [PMID: 21823476]
  • Grégory Guirimand, Vincent Courdavault, Arnaud Lanoue, Samira Mahroug, Anthony Guihur, Nathalie Blanc, Nathalie Giglioli-Guivarc'h, Benoit St-Pierre, Vincent Burlat. Strictosidine activation in Apocynaceae: towards a "nuclear time bomb"?. BMC plant biology. 2010 Aug; 10(?):182. doi: 10.1186/1471-2229-10-182. [PMID: 20723215]
  • Dangwei Zhou, Qinzheng Hou, Qinwen Si, Jianquan Liu, Huiling Yang. Concentrations of the active constituents of the Tibetan folk medicine Qinjiao (Gentiana sect. Cruciata) within and between taxonomic species across the Qinghai-Tibetan Plateau. Chemistry & biodiversity. 2010 Aug; 7(8):2088-94. doi: 10.1002/cbdv.200900420. [PMID: 20730972]
  • Yingjie Nie, Pengcheng Lin. [Determination of five active constituents in aerial part of Tibetan medicine Gentiana straminea by HPLC]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2010 May; 35(10):1276-9. doi: 10.4268/cjcmm20101012. [PMID: 20707196]
  • Min Wu, Ping Wu, Meifang Liu, Haihui Xie, Yueming Jiang, Xiaoyi Wei. Iridoids from Gentiana loureirii. Phytochemistry. 2009 Apr; 70(6):746-50. doi: 10.1016/j.phytochem.2009.03.018. [PMID: 19409581]
  • Hong-Peng Yang, Sheng Que, Xi-Dong Wu, Yan-Ping Shi. [Studies on glycosides from Gentiana veitchiorum]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2008 Nov; 33(21):2505-7. doi: ". [PMID: 19149260]
  • Min Xu, Dong Wang, Ying-Jun Zhang, Chong-Ren Yang. Iridoidal glucosides from Gentiana rhodantha. Journal of Asian natural products research. 2008 May; 10(5-6):491-8. doi: 10.1080/10286020801966815. [PMID: 18470799]
  • Jun Murata, Jonathon Roepke, Heather Gordon, Vincenzo De Luca. The leaf epidermome of Catharanthus roseus reveals its biochemical specialization. The Plant cell. 2008 Mar; 20(3):524-42. doi: 10.1105/tpc.107.056630. [PMID: 18326827]
  • Anita Aberham, Stefan Schwaiger, Hermann Stuppner, Markus Ganzera. Quantitative analysis of iridoids, secoiridoids, xanthones and xanthone glycosides in Gentiana lutea L. roots by RP-HPLC and LC-MS. Journal of pharmaceutical and biomedical analysis. 2007 Nov; 45(3):437-42. doi: 10.1016/j.jpba.2007.07.001. [PMID: 17697760]
  • Wen-Long Li, Jun-Hui Chen, Yue-Fen Yin, Feng-Qi Wu, Bai-Juan Yang, Huang-Hao Yang, Xiao-Ru Wang. [Content of gentiopicroside and loganic acid in Radix gentianae and their fingerprints]. Yao xue xue bao = Acta pharmaceutica Sinica. 2007 May; 42(5):566-70. doi: . [PMID: 17703785]
  • Song Zhang, Shou-Lang Geshang, Zuo-Ma Dawa, Yan Zhou, Shu-Lin Peng. [Studies on chemical constituents of Eriophyton wallichii]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2007 May; 32(9):824-6. doi: . [PMID: 17639985]
  • Armandodoriano Bianco, Marcella Guiso, Marcello Nicoletti, Sebastiano Foddai, Antonella Piccin, Mauro Serafini, Mauro Ballero, Ferruccio Poli. A comparative chemotaxonomic study on Vinca sardoa steam and Vinca difformis pourret. Natural product research. 2005 Sep; 19(6):615-7. doi: 10.1080/14786410512331330602. [PMID: 16010829]
  • Pengeheng Lin, Zhaohui Ye, Yongchan Lu, Suqin Zhao, Fengzu Hu, Lanju Ji. [Content determination of loganic acid and gentiopicroside in Tebitan herbal medicines Gentiana macrophylla and G. straminea by HPLC]. Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials. 2004 Nov; 27(11):819-21. doi: . [PMID: 15810586]
  • Young Hae Choi, Elisabet Casas Tapias, Hye Kyong Kim, Alfons W M Lefeber, Cornelis Erkelens, Jacobus Th J Verhoeven, Jernej Brzin, Jana Zel, Robert Verpoorte. Metabolic discrimination of Catharanthus roseus leaves infected by phytoplasma using 1H-NMR spectroscopy and multivariate data analysis. Plant physiology. 2004 Aug; 135(4):2398-410. doi: 10.1104/pp.104.041012. [PMID: 15286294]
  • Konstantia Graikou, Nektarios Aligiannis, Ioanna B Chinou, Catherine Harvala. Cantleyoside-dimethyl-acetal and other iridoid glucosides from Pterocephalus perennis--antimicrobial activities. Zeitschrift fur Naturforschung. C, Journal of biosciences. 2002 Jan; 57(1-2):95-9. doi: 10.1515/znc-2002-1-217. [PMID: 11926551]
  • J Suomi, S K Wiedmer, M Jussila, M L Riekkola. Determination of iridoid glycosides by micellar electrokinetic capillary chromatography-mass spectrometry with use of the partial filling technique. Electrophoresis. 2001 Aug; 22(12):2580-7. doi: 10.1002/1522-2683(200107)22:12<2580::aid-elps2580>3.0.co;2-7. [PMID: 11519962]
  • A Ashford. [Effects of adrenergic blockade on adipose tissue lipolysis provoked in cats and humans by intravenous perfusion of isoprenaline]. La Nouvelle presse medicale. 1975 Dec; 4(46 Suppl):3265-7. doi: . [PMID: 3767]
  • K M Madyastha, R Guarnaccia, C Baxter, C J Coscia. S-Adenosyl-L-methionine: loganic acid methyltransferase. A carboxyl-alkylating enzyme from Vinca rosea. The Journal of biological chemistry. 1973 Apr; 248(7):2497-501. doi: 10.1016/s0021-9258(19)44136-7. [PMID: 4698228]