lapachol (BioDeep_00000180390)

Main id: BioDeep_00000002481

 

human metabolite PANOMIX_OTCML-2023 blood metabolite natural product


代谢物信息卡片


4-hydroxy-3-(3-methylbut-2-en-1-yl)-1,2-dihydronaphthalene-1,2-dione

化学式: C15H14O3 (242.0943)
中文名称: 拉帕醇
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: CC(=CCC1=C(C2=CC=CC=C2C(=O)C1=O)O)C
InChI: InChI=1S/C15H14O3/c1-9(2)7-8-12-13(16)10-5-3-4-6-11(10)14(17)15(12)18/h3-7,16H,8H2,1-2H3

描述信息

D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents
D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics
D000890 - Anti-Infective Agents > D000935 - Antifungal Agents
D000890 - Anti-Infective Agents > D000998 - Antiviral Agents
D000970 - Antineoplastic Agents
Lapachol is a naphthoquinone that was first isolated from Tabebuia avellanedae (Bignoniaceae)[1]. Lapachol shows anti-abscess, anti-ulcer, antileishmanial, anticarcinomic, antiedemic, anti-inflammatory, antimalarial, antiseptic, antitumor, antiviral, antibacterial, antifungal and pesticidal activities[2].
Lapachol is a naphthoquinone that was first isolated from Tabebuia avellanedae (Bignoniaceae)[1]. Lapachol shows anti-abscess, anti-ulcer, antileishmanial, anticarcinomic, antiedemic, anti-inflammatory, antimalarial, antiseptic, antitumor, antiviral, antibacterial, antifungal and pesticidal activities[2].

同义名列表

6 个代谢物同义名

4-hydroxy-3-(3-methylbut-2-en-1-yl)-1,2-dihydronaphthalene-1,2-dione; 2-hydroxy-3-(3-methyl-2-butenyl)-1,4-naphtho-quinone; lapachol, sodium salt; Lapachol; Lapachol; Lapachol



数据库引用编号

14 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

84 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 14 ANXA5, CASP3, CAT, GAPDH, MSMP, NQO1, PAK1, PKM, PTGS1, RAC1, SIRT1, SOD1, TLR2, VEGFA
Peripheral membrane protein 4 ANXA5, CYP1B1, PAK1, PTGS1
Endoplasmic reticulum membrane 3 CYP1B1, PTGS1, RAC1
Nucleus 11 AURKB, CASP3, GAPDH, NQO1, PAK1, PARP1, PKM, RAC1, SIRT1, SOD1, VEGFA
cytosol 13 ANXA5, AURKB, CASP3, CAT, DHODH, GAPDH, NQO1, PAK1, PARP1, PKM, RAC1, SIRT1, SOD1
dendrite 3 NQO1, PAK1, RAC1
nuclear body 1 PARP1
trans-Golgi network 1 RAC1
centrosome 1 PAK1
nucleoplasm 7 AURKB, CASP3, DHODH, PAK1, PARP1, SIRT1, SOD1
Cell membrane 4 HTR3A, PAK1, RAC1, TNF
Lipid-anchor 1 RAC1
Cytoplasmic side 1 RAC1
Cleavage furrow 2 HTR3A, PAK1
lamellipodium 2 PAK1, RAC1
ruffle membrane 2 PAK1, RAC1
Multi-pass membrane protein 1 HTR3A
Synapse 3 HTR3A, NQO1, RAC1
cell cortex 1 RAC1
cell surface 3 TLR2, TNF, VEGFA
glutamatergic synapse 2 CASP3, RAC1
Golgi apparatus 3 PTGS1, TLR2, VEGFA
mitochondrial inner membrane 1 DHODH
neuronal cell body 4 CASP3, NQO1, SOD1, TNF
postsynapse 2 HTR3A, RAC1
sarcolemma 1 ANXA5
Cytoplasm, cytosol 3 GAPDH, NQO1, PARP1
endosome 1 PAK1
plasma membrane 6 GAPDH, HTR3A, PAK1, RAC1, TLR2, TNF
Membrane 11 ANXA5, CAT, CYP1B1, DHODH, GAPDH, HTR3A, NQO1, PARP1, RAC1, TLR2, VEGFA
axon 1 PAK1
extracellular exosome 7 ANXA5, CAT, GAPDH, PKM, PTGS1, RAC1, SOD1
endoplasmic reticulum 1 VEGFA
extracellular space 4 MSMP, SOD1, TNF, VEGFA
perinuclear region of cytoplasm 1 GAPDH
adherens junction 1 VEGFA
intercalated disc 1 PAK1
mitochondrion 7 CAT, CYP1B1, DHODH, PARP1, PKM, SIRT1, SOD1
protein-containing complex 4 CAT, PAK1, PARP1, SOD1
intracellular membrane-bounded organelle 4 CAT, CYP1B1, GAPDH, PTGS1
Microsome membrane 2 CYP1B1, PTGS1
postsynaptic density 1 CASP3
chromatin silencing complex 1 SIRT1
Single-pass type I membrane protein 1 TLR2
Secreted 3 MSMP, RAC1, VEGFA
extracellular region 7 ANXA5, CAT, PKM, RAC1, SOD1, TNF, VEGFA
Single-pass membrane protein 1 DHODH
mitochondrial matrix 2 CAT, SOD1
transcription regulator complex 1 PARP1
photoreceptor outer segment 1 PTGS1
Cytoplasm, cytoskeleton, microtubule organizing center, centrosome 1 PAK1
nuclear membrane 2 GAPDH, PAK1
external side of plasma membrane 2 ANXA5, TNF
Extracellular vesicle 1 PKM
Secreted, extracellular space, extracellular matrix 1 VEGFA
dendritic spine 1 RAC1
Z disc 1 PAK1
cytoplasmic vesicle 2 RAC1, SOD1
microtubule cytoskeleton 2 AURKB, GAPDH
nucleolus 2 PARP1, SIRT1
axon cytoplasm 1 SOD1
midbody 2 AURKB, PAK1
cell-cell junction 1 PAK1
recycling endosome 1 TNF
spindle midzone 1 AURKB
Single-pass type II membrane protein 1 TNF
vesicle 2 GAPDH, PKM
postsynaptic membrane 1 HTR3A
Cell projection, lamellipodium 2 PAK1, RAC1
Cell projection, ruffle membrane 1 PAK1
Cytoplasm, perinuclear region 1 GAPDH
Mitochondrion inner membrane 1 DHODH
heterochromatin 1 SIRT1
Membrane raft 2 TLR2, TNF
Cell junction, focal adhesion 1 PAK1
Cytoplasm, cytoskeleton 1 GAPDH
Cytoplasm, cytoskeleton, spindle 1 AURKB
focal adhesion 4 ANXA5, CAT, PAK1, RAC1
spindle 1 AURKB
extracellular matrix 1 VEGFA
Peroxisome 2 CAT, SOD1
Peroxisome matrix 1 CAT
peroxisomal matrix 1 CAT
peroxisomal membrane 1 CAT
Nucleus, PML body 1 SIRT1
PML body 1 SIRT1
mitochondrial intermembrane space 1 SOD1
collagen-containing extracellular matrix 2 ANXA5, PKM
secretory granule 1 VEGFA
nuclear inner membrane 1 SIRT1
Postsynaptic cell membrane 1 HTR3A
dendrite cytoplasm 1 SOD1
ruffle 1 PAK1
receptor complex 1 TLR2
Zymogen granule membrane 1 ANXA5
neuron projection 2 HTR3A, PTGS1
cilium 1 PKM
chromatin 2 PARP1, SIRT1
Cytoplasmic vesicle, phagosome membrane 1 TLR2
cell projection 1 TLR2
phagocytic cup 1 TNF
phagocytic vesicle membrane 1 TLR2
Chromosome 3 AURKB, PAK1, PARP1
cytoskeleton 2 GAPDH, RAC1
cytoplasmic ribonucleoprotein granule 1 RAC1
Nucleus, nucleolus 1 PARP1
nuclear replication fork 1 PARP1
chromosome, telomeric region 1 PARP1
condensed chromosome, centromeric region 1 AURKB
actin filament 1 PAK1
serotonin-activated cation-selective channel complex 1 HTR3A
transmembrane transporter complex 1 HTR3A
site of double-strand break 1 PARP1
fibrillar center 1 SIRT1
nuclear envelope 2 PARP1, SIRT1
Recycling endosome membrane 1 RAC1
Endomembrane system 1 PTGS1
Lipid droplet 1 GAPDH
Chromosome, centromere 1 AURKB
Chromosome, centromere, kinetochore 1 AURKB
Nucleus, nucleoplasm 1 PAK1
Cell projection, dendrite 1 RAC1
Melanosome 1 RAC1
euchromatin 1 SIRT1
cell body 1 TLR2
ficolin-1-rich granule lumen 2 CAT, PKM
secretory granule lumen 2 CAT, PKM
secretory granule membrane 2 RAC1, TLR2
platelet alpha granule lumen 1 VEGFA
kinetochore 1 AURKB
mitotic spindle midzone 1 AURKB
mitotic spindle pole 1 AURKB
chromosome, centromeric region 1 AURKB
vesicle membrane 1 ANXA5
chromosome passenger complex 1 AURKB
spindle pole centrosome 1 AURKB
ribonucleoprotein complex 1 GAPDH
protein-DNA complex 1 PARP1
ficolin-1-rich granule membrane 1 RAC1
spindle microtubule 1 AURKB
death-inducing signaling complex 1 CASP3
eNoSc complex 1 SIRT1
rDNA heterochromatin 1 SIRT1
chromocenter 1 AURKB
Rough endoplasmic reticulum 1 PKM
GAIT complex 1 GAPDH
Toll-like receptor 1-Toll-like receptor 2 protein complex 1 TLR2
Toll-like receptor 2-Toll-like receptor 6 protein complex 1 TLR2
site of DNA damage 1 PARP1
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
catalase complex 1 CAT
NADPH oxidase complex 1 RAC1
endothelial microparticle 1 ANXA5
[Poly [ADP-ribose] polymerase 1, processed N-terminus]: Chromosome 1 PARP1
[Poly [ADP-ribose] polymerase 1, processed C-terminus]: Cytoplasm 1 PARP1
[Isoform M2]: Cytoplasm 1 PKM
[Isoform M1]: Cytoplasm 1 PKM
[N-VEGF]: Cytoplasm 1 VEGFA
[VEGFA]: Secreted 1 VEGFA
[Isoform L-VEGF189]: Endoplasmic reticulum 1 VEGFA
[Isoform VEGF121]: Secreted 1 VEGFA
[Isoform VEGF165]: Secreted 1 VEGFA
VEGF-A complex 1 VEGFA
Cell projection, invadopodium 1 PAK1
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF
[SirtT1 75 kDa fragment]: Cytoplasm 1 SIRT1


文献列表

  • Yujing Zhao, Jingjie An, Zhihong Dang, Jianglong Guo, Zhanlin Gao, Shujie Ma, Yaofa Li. Identification of highly active compounds from insecticidal plant Oroxylum indicum L. (Vent.) and the induction of apoptosis by lapachol on Sf9 cells. In vitro cellular & developmental biology. Animal. 2023 Nov; ?(?):. doi: 10.1007/s11626-023-00821-y. [PMID: 37966689]
  • Yi Yang, Jian Sheng, Yongjia Sheng, Jin Wang, Xiaohong Zhou, Wenyan Li, Yun Kong. Lapachol treats non-alcoholic fatty liver disease by modulating the M1 polarization of Kupffer cells via PKM2. International immunopharmacology. 2023 May; 120(?):110380. doi: 10.1016/j.intimp.2023.110380. [PMID: 37244116]
  • Nilson Nicolau Junior, Igor Andrade Santos, Bruno Amaral Meireles, Mariana Sant'Anna Pereira Nicolau, Igor Rodrigues Lapa, Renato Santana Aguiar, Ana Carolina Gomes Jardim, Diego Pandeló José. In silico evaluation of lapachol derivatives binding to the Nsp9 of SARS-CoV-2. Journal of biomolecular structure & dynamics. 2022 08; 40(13):5917-5931. doi: 10.1080/07391102.2021.1875050. [PMID: 33478342]
  • Mark J Henderson, Kathleen A Trychta, Shyh-Ming Yang, Susanne Bäck, Adam Yasgar, Emily S Wires, Carina Danchik, Xiaokang Yan, Hideaki Yano, Lei Shi, Kuo-Jen Wu, Amy Q Wang, Dingyin Tao, Gergely Zahoránszky-Kőhalmi, Xin Hu, Xin Xu, David Maloney, Alexey V Zakharov, Ganesha Rai, Fumihiko Urano, Mikko Airavaara, Oksana Gavrilova, Ajit Jadhav, Yun Wang, Anton Simeonov, Brandon K Harvey. A target-agnostic screen identifies approved drugs to stabilize the endoplasmic reticulum-resident proteome. Cell reports. 2021 04; 35(4):109040. doi: 10.1016/j.celrep.2021.109040. [PMID: 33910017]
  • Nico Linzner, Verena Nadin Fritsch, Tobias Busche, Quach Ngoc Tung, Vu Van Loi, Jörg Bernhardt, Jörn Kalinowski, Haike Antelmann. The plant-derived naphthoquinone lapachol causes an oxidative stress response in Staphylococcus aureus. Free radical biology & medicine. 2020 10; 158(?):126-136. doi: 10.1016/j.freeradbiomed.2020.07.025. [PMID: 32712193]
  • Maria Fernanda Alves do Nascimento, Tatiane Freitas Borgati, Larissa Camila Ribeiro de Souza, Carlos Alberto Tagliati, Alaíde Braga de Oliveira. In silico, in vitro and in vivo evaluation of natural Bignoniaceous naphthoquinones in comparison with atovaquone targeting the selection of potential antimalarial candidates. Toxicology and applied pharmacology. 2020 08; 401(?):115074. doi: 10.1016/j.taap.2020.115074. [PMID: 32464218]
  • Lucas Bonfim Marques, Flaviano Melo Ottoni, Mauro Cunha Xavier Pinto, Juliana Martins Ribeiro, Fernanda S de Sousa, Ricardo Weinlich, Nathalia Cruz de Victo, Jaffar Kisitu, Anna-Katharina Holzer, Marcel Leist, Ricardo José Alves, Elaine Maria Souza-Fagundes. Lapachol acetylglycosylation enhances its cytotoxic and pro-apoptotic activities in HL60 cells. Toxicology in vitro : an international journal published in association with BIBRA. 2020 Jun; 65(?):104772. doi: 10.1016/j.tiv.2020.104772. [PMID: 31935485]
  • Frederico A V Castro, Gabriel F M de Souza, Marcos D Pereira. Characterization of lapachol cytotoxicity: contribution of glutathione depletion for oxidative stress in Saccharomyces cerevisiae. Folia microbiologica. 2020 Feb; 65(1):197-204. doi: 10.1007/s12223-019-00722-2. [PMID: 31183610]
  • Pooja Vyas, Dinesh Kumar Yadav, Poonam Khandelwal. Tectona grandis (teak) - A review on its phytochemical and therapeutic potential. Natural product research. 2019 Aug; 33(16):2338-2354. doi: 10.1080/14786419.2018.1440217. [PMID: 29506390]
  • S E Miranda, J A Lemos, R S Fernandes, F M Ottoni, R J Alves, A Ferretti, D Rubello, V N Cardoso, A L Branco de Barros. Technetium-99m-labeled lapachol as an imaging probe for breast tumor identification. Revista espanola de medicina nuclear e imagen molecular. 2019 May; 38(3):167-172. doi: 10.1016/j.remn.2018.10.006. [PMID: 30679039]
  • Iasmin Aparecida Cunha Araújo, Renata Cristina de Paula, Ceres Luciana Alves, Karen Ferraz Faria, Marco Miguel de Oliveira, Gabriela Gonçalves Mendes, Eliane Martins Ferreira Abdias Dias, Raul Rio Ribeiro, Alaíde Braga de Oliveira, Sydnei Magno da Silva. Efficacy of lapachol on treatment of cutaneous and visceral leishmaniasis. Experimental parasitology. 2019 Apr; 199(?):67-73. doi: 10.1016/j.exppara.2019.02.013. [PMID: 30797783]
  • Hauke Löcken, Cinzia Clamor, Klaus Müller. Napabucasin and Related Heterocycle-Fused Naphthoquinones as STAT3 Inhibitors with Antiproliferative Activity against Cancer Cells. Journal of natural products. 2018 07; 81(7):1636-1644. doi: 10.1021/acs.jnatprod.8b00247. [PMID: 30003778]
  • Luciana Romão, Vanessa P do Canto, Paulo A Netz, Vivaldo Moura-Neto, Ângelo C Pinto, Cristian Follmer. Conjugation with polyamines enhances the antitumor activity of naphthoquinones against human glioblastoma cells. Anti-cancer drugs. 2018 07; 29(6):520-529. doi: 10.1097/cad.0000000000000619. [PMID: 29561308]
  • Therese Ellendorff, Reto Brun, Marcel Kaiser, Jandirk Sendker, Thomas J Schmidt. PLS-Prediction and Confirmation of Hydrojuglone Glucoside as the Antitrypanosomal Constituent of Juglans Spp. Molecules (Basel, Switzerland). 2015 May; 20(6):10082-94. doi: 10.3390/molecules200610082. [PMID: 26035104]
  • Serena Fiorito, Francesco Epifano, Céline Bruyère, Véronique Mathieu, Robert Kiss, Salvatore Genovese. Growth inhibitory activity for cancer cell lines of lapachol and its natural and semi-synthetic derivatives. Bioorganic & medicinal chemistry letters. 2014 Jan; 24(2):454-7. doi: 10.1016/j.bmcl.2013.12.049. [PMID: 24374273]
  • Giselle Tamayo-Castillo, Víctor Vásquez, María Isabel Ríos, María Victoria Rodríguez, Godofredo Solano, Susana Zacchino, Mahabir P Gupta. Isolation of major components from the roots of Godmania aesculifolia and determination of their antifungal activities. Planta medica. 2013 Dec; 79(18):1749-55. doi: 10.1055/s-0033-1351025. [PMID: 24356871]
  • Jin-Jian Lu, Jiao-Lin Bao, Guo-Sheng Wu, Wen-Shan Xu, Ming-Qing Huang, Xiu-Ping Chen, Yi-Tao Wang. Quinones derived from plant secondary metabolites as anti-cancer agents. Anti-cancer agents in medicinal chemistry. 2013 Mar; 13(3):456-63. doi: . [PMID: 22931417]
  • Ricardo Q Aucélio, Ana I Peréz-Cordovés, Juliano L Xavier Lima, Aurélio Baird B Ferreira, Ana M Esteva Guas, Andrea R da Silva. Determination of lapachol in the presence of other naphthoquinones using 3MPA-CdTe quantum dots fluorescent probe. Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy. 2013 Jan; 100(?):155-60. doi: 10.1016/j.saa.2012.04.020. [PMID: 22591798]
  • Beatrice Nyanchama Kiage-Mokua, Nils Roos, Jürgen Schrezenmeir. Lapacho tea (Tabebuia impetiginosa) extract inhibits pancreatic lipase and delays postprandial triglyceride increase in rats. Phytotherapy research : PTR. 2012 Dec; 26(12):1878-83. doi: 10.1002/ptr.4659. [PMID: 22431070]
  • Cristina Theoduloz, Ivanna Bravo Carrión, Mariano Walter Pertino, Daniela Valenzuela, Guillermo Schmeda-Hirschmann. Potential gastroprotective effect of novel cyperenoic acid/quinone derivatives in human cell cultures. Planta medica. 2012 Nov; 78(17):1807-12. doi: 10.1055/s-0032-1315389. [PMID: 23047252]
  • Michael Niehues, Valéria Priscila Barros, Flávio da Silva Emery, Marcelo Dias-Baruffi, Marilda das Dores Assis, Norberto Peporine Lopes. Biomimetic in vitro oxidation of lapachol: a model to predict and analyse the in vivo phase I metabolism of bioactive compounds. European journal of medicinal chemistry. 2012 Aug; 54(?):804-12. doi: 10.1016/j.ejmech.2012.06.042. [PMID: 22796040]
  • W F Costa, A B Oliveira, J C Nepomuceno. Lapachol as an epithelial tumor inhibitor agent in Drosophila melanogaster heterozygote for tumor suppressor gene wts. Genetics and molecular research : GMR. 2011 Dec; 10(4):3236-45. doi: 10.4238/2011.december.22.1. [PMID: 22194187]
  • S Vargas, K Ndjoko Ioset, A-E Hay, J-R Ioset, S Wittlin, K Hostettmann. Screening medicinal plants for the detection of novel antimalarial products applying the inhibition of β-hematin formation. Journal of pharmaceutical and biomedical analysis. 2011 Dec; 56(5):880-6. doi: 10.1016/j.jpba.2011.06.026. [PMID: 21872416]
  • Takuya Matsui, Chihiro Ito, Makiko Oda, Masataka Itoigawa, Kazuhisa Yokoo, Tadashi Okada, Hiroshi Furukawa. Lapachol suppresses cell proliferation and secretion of interleukin-6 and plasminogen activator inhibitor-1 of fibroblasts derived from hypertrophic scars. The Journal of pharmacy and pharmacology. 2011 Jul; 63(7):960-6. doi: 10.1111/j.2042-7158.2011.01292.x. [PMID: 21635262]
  • Ingrid L Cockburn, Eva-Rachele Pesce, Jude M Pryzborski, Michael T Davies-Coleman, Peter G K Clark, Robert A Keyzers, Linda L Stephens, Gregory L Blatch. Screening for small molecule modulators of Hsp70 chaperone activity using protein aggregation suppression assays: inhibition of the plasmodial chaperone PfHsp70-1. Biological chemistry. 2011 May; 392(5):431-8. doi: 10.1515/bc.2011.040. [PMID: 21426241]
  • Carmen M Martín-Navarro, Atteneri López-Arencibia, Jacob Lorenzo-Morales, Sandra Oramas-Royo, Rita Hernández-Molina, Ana Estévez-Braun, Angel G Ravelo, Basilio Valladares, José E Piñero. Acanthamoeba castellanii Neff: In vitro activity against the trophozoite stage of a natural sesquiterpene and a synthetic cobalt(II)-lapachol complex. Experimental parasitology. 2010 Sep; 126(1):106-8. doi: 10.1016/j.exppara.2009.12.015. [PMID: 20045692]
  • Edson Luis Maistro, Diego Mota Fernandes, Fernanda Maria Pereira, Sergio Faloni Andrade. Lapachol induces clastogenic effects in rats. Planta medica. 2010 Jun; 76(9):858-62. doi: 10.1055/s-0029-1240816. [PMID: 20112181]
  • Sanjay Gurule, Dipanjan Goswami, Arshad H Khuroo, Tausif Monif. LC-APCI mass spectrometric method development and validation for the determination of atovaquone in human plasma. Biomedical chromatography : BMC. 2010 May; 24(5):497-505. doi: 10.1002/bmc.1317. [PMID: 19711297]
  • Mitsuaki Yamashita, Masafumi Kaneko, Harukuni Tokuda, Katsumi Nishimura, Yuko Kumeda, Akira Iida. Synthesis and evaluation of bioactive naphthoquinones from the Brazilian medicinal plant, Tabebuia avellanedae. Bioorganic & medicinal chemistry. 2009 Sep; 17(17):6286-91. doi: 10.1016/j.bmc.2009.07.039. [PMID: 19674905]
  • Kenneth O Eyong, Ponminor S Kumar, Victor Kuete, Gabriel N Folefoc, Ephriam A Nkengfack, Sundarababu Baskaran. Semisynthesis and antitumoral activity of 2-acetylfuranonaphthoquinone and other naphthoquinone derivatives from lapachol. Bioorganic & medicinal chemistry letters. 2008 Oct; 18(20):5387-90. doi: 10.1016/j.bmcl.2008.09.053. [PMID: 18829316]
  • Mitsuaki Yamashita, Masafumi Kaneko, Akira Iida, Harukuni Tokuda, Katsumi Nishimura. Stereoselective synthesis and cytotoxicity of a cancer chemopreventive naphthoquinone from Tabebuia avellanedae. Bioorganic & medicinal chemistry letters. 2007 Dec; 17(23):6417-20. doi: 10.1016/j.bmcl.2007.10.005. [PMID: 17950604]
  • Rita de Cássia da Silveira E Sá, Martha de Oliveira Guerra. Reproductive toxicity of lapachol in adult male Wistar rats submitted to short-term treatment. Phytotherapy research : PTR. 2007 Jul; 21(7):658-62. doi: 10.1002/ptr.2141. [PMID: 17421057]
  • A M S Rodrigues, J E de Paula, F Roblot, A Fournet, L S Espíndola. Larvicidal activity of Cybistax antisyphilitica against Aedes aegypti larvae. Fitoterapia. 2005 Dec; 76(7-8):755-7. doi: 10.1016/j.fitote.2005.08.015. [PMID: 16229968]
  • Cláudia S De Andrade Lima, Elba L C De Amorim, Silene C Nascimento, Christiane F De Araújo, Maria F Agra, José M Barbosa-Filho, Marcelo S Silva, Emídio V L Da-Cunha, Ivo J Curcino Vieira, Raimundo Braz-Filho. Cytotoxic pyranonaphthoquinones from Melloa quadrival vis (Bignoniaceae). Natural product research. 2005 Apr; 19(3):217-22. doi: 10.1080/1478641042000223808. [PMID: 15702634]
  • Byeoung-Soo Park, Jun-Ran Kim, Sung-Eun Lee, Kyoung Soon Kim, Gary R Takeoka, Young-Joon Ahn, Jeong-Han Kim. Selective growth-inhibiting effects of compounds identified in Tabebuia impetiginosa inner bark on human intestinal bacteria. Journal of agricultural and food chemistry. 2005 Feb; 53(4):1152-7. doi: 10.1021/jf0486038. [PMID: 15713033]
  • Ranjana Bhuyan, C N Saikia. Isolation of colour components from native dye-bearing plants in northeastern India. Bioresource technology. 2005 Feb; 96(3):363-72. doi: 10.1016/j.biortech.2004.02.032. [PMID: 15474939]
  • Wendy I Colangelo, Byron B Lamont, Anthea S Jones, David J Ward, Sandro Bombardieri. The anatomy and chemistry of the colour bands of grasstree stems (Xanthorrhoea preissii) used for plant age and fire history determination. Annals of botany. 2002 May; 89(5):605-12. doi: 10.1093/aob/mcf073. [PMID: 12099535]
  • N P Shetgiri, S V Kokitkar, S N Sawant. Radermachera xylocarpa: the highly efficient source of lapachol and synthesis of its derivatives. Acta poloniae pharmaceutica. 2001 Mar; 58(2):133-5. doi: ". [PMID: 11501791]
  • M J Teixeira, Y M de Almeida, J R Viana, J G Holanda Filha, T P Rodrigues, J R Prata, I C Coêlho, V S Rao, M M Pompeu. In vitro and in vivo Leishmanicidal activity of 2-hydroxy-3-(3-methyl-2-butenyl)-1,4-naphthoquinone (lapachol). Phytotherapy research : PTR. 2001 Feb; 15(1):44-8. doi: 10.1002/1099-1573(200102)15:1<44::aid-ptr685>3.0.co;2-1. [PMID: 11180522]
  • C Ito, S Katsuno, Y Kondo, H T Tan, H Furukawa. Chemical constituents of Avicennia alba. Isolation and structural elucidation of new naphthoquinones and their analogues. Chemical & pharmaceutical bulletin. 2000 Mar; 48(3):339-43. doi: 10.1248/cpb.48.339. [PMID: 10726853]
  • K Müller, A Sellmer, W Wiegrebe. Potential antipsoriatic agents: lapacho compounds as potent inhibitors of HaCaT cell growth. Journal of natural products. 1999 Aug; 62(8):1134-6. doi: 10.1021/np990139r. [PMID: 10479319]
  • O A Binutu, K E Adesogan, J I Okogun. Antibacterial and antifungal compounds from Kigelia pinnata. Planta medica. 1996 Aug; 62(4):352-3. doi: 10.1055/s-2006-957900. [PMID: 8792668]
  • P J Houghton, A Photiou, S Uddin, P Shah, M Browning, S J Jackson, S Retsas. Activity of extracts of Kigelia pinnata against melanoma and renal carcinoma cell lines. Planta medica. 1994 Oct; 60(5):430-3. doi: 10.1055/s-2006-959525. [PMID: 7997471]
  • J D Grazziotin, E E Schapoval, C G Chaves, J Gleye, A T Henriques. Phytochemical and analgesic investigation of Tabebuia chrysotricha. Journal of ethnopharmacology. 1992 Jun; 36(3):249-51. doi: 10.1016/0378-8741(92)90051-r. [PMID: 1434684]
  • L H Carvalho, E M Rocha, D S Raslan, A B Oliveira, A U Krettli. In vitro activity of natural and synthetic naphthoquinones against erythrocytic stages of Plasmodium falciparum. Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas. 1988; 21(3):485-7. doi: . [PMID: 3067810]
  • M M Rao, D G Kingston. Plant anticancer agents. XII. Isolation and structure elucidation of new cytotoxic quinones from Tabebuia cassinoides. Journal of natural products. 1982 Sep; 45(5):600-4. doi: 10.1021/np50023a014. [PMID: 7153777]
  • R E Perdue. KB cell culture I. Role in discovery of antitumor agents from higher plants. Journal of natural products. 1982 Jul; 45(4):418-26. doi: 10.1021/np50022a010. [PMID: 7130986]
  • R P Wilson, P L Fowlkes. Activity of glutamine synthetase in channel catfish tissues determined by an improved tissue assay method. Comparative biochemistry and physiology. B, Comparative biochemistry. 1976; 54(3):365-8. doi: 10.1016/0305-0491(76)90258-3. [PMID: 6197]