3-Dehydroquinic acid (BioDeep_00000004525)

 

Secondary id: BioDeep_00001868966

human metabolite PANOMIX_OTCML-2023 Endogenous natural product


代谢物信息卡片


(1R,3R,4S)-1,3,4-trihydroxy-5-oxocyclohexane-1-carboxylic acid

化学式: C7H10O6 (190.0477)
中文名称: 3-脱氢喹啉酸
谱图信息: 最多检出来源 Homo sapiens(plant) 17.01%

分子结构信息

SMILES: C1(=O)[C@H]([C@@H](C[C@@](C1)(C(=O)O)O)O)O
InChI: InChI=1S/C7H10O6/c8-3-1-7(13,6(11)12)2-4(9)5(3)10/h3,5,8,10,13H,1-2H2,(H,11,12)/t3-,5+,7-/m1/s1

描述信息

3-Dehydroquinic acid belongs to the class of organic compounds known as alpha-hydroxy acids and derivatives. These are organic compounds containing a carboxylic acid substituted with a hydroxyl group on the adjacent carbon. 3-Dehydroquinic acid is an extremely weak basic (essentially neutral) compound (based on its pKa). In most organisms, 3-dehydroquinic acid is synthesized from D-erythrose-4-phosphate in two steps. However, archaea genomes contain no orthologs for the genes that encode these first two steps. Instead, archaeabacteria appear to utilize an alternative pathway in which 3-dehydroquinic acid is synthesized from 6-deoxy-5-ketofructose-1-phosphate and L-aspartate-semialdehyde. These two compounds are first condensed to form 2-amino-3,7-dideoxy-D-threo-hept-6-ulosonate, which cyclizes to 3-dehydroquinic acid. From 3-dehydroquinic acid and on to chorismate, the archaeal pathway appears to be identical to the bacterial pathway.
In most organisms, 3-dehydroquinate is synthesized from D-erythrose-4-phosphate in two steps . However, the genomes of the archaea contain no orthologs for the genes that encode these first two steps. Instead, archaeabacteria appear to utilize an alternative pathway in which 3-dehydroquinate is synthesized from 6-deoxy-5-ketofructose-1-phosphate and L-aspartate-semialdehyde . These two compounds are first condensed to form 2-amino-3,7-dideoxy-D-threo-hept-6-ulosonate , which cyclizes to 3-dehydroquinate . From 3-dehydroquinate and on to chorismate , the archaeal pathway appears to be identical to the bacterial pathway [HMDB]. 3-Dehydroquinate is found in many foods, some of which are allium (onion), cashew nut, american cranberry, and common wheat.

同义名列表

9 个代谢物同义名

(1R,3R,4S)-1,3,4-trihydroxy-5-oxocyclohexane-1-carboxylic acid; (1R,3R,4S)-1,3,4-Trihydroxy-5-oxocyclohexanecarboxylic acid; 1,3,4-Trihydroxy-5-oxocyclohexanecarboxylic acid; Cyclohexan-1,4,5-triol-3-one-1-carboxylic acid; 3-Dehydroquinic acid; 5-Dehydroquinic acid; 3-Dehydroquinate; 5-Dehydroquinate; 3-Dehydroquinic acid



数据库引用编号

19 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

5 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(5)

PharmGKB(0)

6 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 7 BLVRB, DLK1, GCK, HPGDS, MRE11, PNPT1, SCYL1
Peripheral membrane protein 4 GCK, HSD17B6, PNPT1, SORD
Endoplasmic reticulum membrane 2 PNPT1, TKT
Mitochondrion membrane 1 SORD
Nucleus 6 GCK, MRE11, NCL, PSMD1, RAD50, SCYL1
cytosol 9 BLVRB, GCK, HPGDS, MRE11, PNPT1, PSMD1, SCYL1, SORD, TKT
mitochondrial membrane 1 SORD
nuclear body 1 TKT
centrosome 1 SCYL1
nucleoplasm 8 BLVRB, GCK, HPGDS, MRE11, NCL, PSMD1, RAD50, TKT
Cell membrane 1 TKT
Early endosome membrane 1 HSD17B6
Golgi apparatus membrane 1 GCK
cell cortex 1 NCL
Golgi apparatus 1 SCYL1
Golgi membrane 1 GCK
neuronal cell body 1 SERPINI1
plasma membrane 3 BLVRB, NCL, TKT
Membrane 6 DLK1, NCL, PSMD1, RAD50, SCYL1, SORD
apical plasma membrane 1 TKT
basolateral plasma membrane 1 GCK
extracellular exosome 6 BLVRB, NCL, SERPINI1, SORD, SPINK1, TKT
Lumenal side 1 HSD17B6
endoplasmic reticulum 1 HSD17B6
extracellular space 3 DLK1, SERPINI1, SORD
mitochondrion 3 GATC, GCK, PNPT1
protein-containing complex 1 RAD50
intracellular membrane-bounded organelle 3 BLVRB, HPGDS, HSD17B6
Microsome membrane 1 HSD17B6
Single-pass type I membrane protein 1 TKT
Secreted 2 SERPINI1, SPINK1
extracellular region 2 GALP, PSMD1
Single-pass membrane protein 1 DLK1
Mitochondrion matrix 1 PNPT1
mitochondrial matrix 1 PNPT1
Cytoplasmic vesicle lumen 1 SERPINI1
motile cilium 1 SORD
Cytoplasm, cytoskeleton, microtubule organizing center, centrosome 1 SCYL1
actin cytoskeleton 1 TKT
perikaryon 1 SERPINI1
nucleolus 1 NCL
vesicle 1 TKT
focal adhesion 1 TKT
cis-Golgi network 1 SCYL1
Peroxisome 1 TKT
PML body 1 MRE11
Mitochondrion intermembrane space 1 PNPT1
mitochondrial intermembrane space 1 PNPT1
receptor complex 1 TKT
Chromosome 3 MRE11, NCL, RAD50
cytoplasmic ribonucleoprotein granule 1 NCL
Nucleus, nucleolus 1 NCL
Chromosome, telomere 2 MRE11, RAD50
chromosome, telomeric region 2 MRE11, RAD50
Cell projection, cilium, flagellum 1 SORD
Basolateral cell membrane 1 GCK
spliceosomal complex 1 NCL
site of double-strand break 2 MRE11, RAD50
Cornified envelope 1 NCL
replication fork 1 MRE11
proteasome accessory complex 1 PSMD1
proteasome complex 1 PSMD1
secretory granule lumen 1 SERPINI1
proteasome regulatory particle 1 PSMD1
azurophil granule lumen 1 PSMD1
COPI vesicle coat 1 SCYL1
condensed nuclear chromosome 1 RAD50
ribonucleoprotein complex 1 NCL
endoplasmic reticulum-Golgi intermediate compartment 1 SCYL1
Golgi apparatus, cis-Golgi network 1 SCYL1
glutamyl-tRNA(Gln) amidotransferase complex 1 GATC
BRCA1-C complex 2 MRE11, RAD50
chromosomal region 2 MRE11, RAD50
Mre11 complex 2 MRE11, RAD50
ribosome 1 PNPT1
Cytoplasmic vesicle, secretory vesicle lumen 1 SERPINI1
catalytic complex 1 PNPT1
proteasome regulatory particle, base subcomplex 1 PSMD1
macropinosome membrane 1 NCL
[Isoform 6]: Nucleus 1 SCYL1
proteasome storage granule 1 PSMD1
mitochondrial degradosome 1 PNPT1


文献列表

  • Stephanus J Ferreira, Uwe Sonnewald. The mode of sucrose degradation in potato tubers determines the fate of assimilate utilization. Frontiers in plant science. 2012; 3(?):23. doi: 10.3389/fpls.2012.00023. [PMID: 22639642]
  • Hendrik Führs, André Specht, Alexander Erban, Joachim Kopka, Walter J Horst. Functional associations between the metabolome and manganese tolerance in Vigna unguiculata. Journal of experimental botany. 2012 Jan; 63(1):329-40. doi: 10.1093/jxb/err276. [PMID: 21934118]
  • Phuong-Thuy Ho Ngo, Sampath Natarajan, Hyesoon Kim, Huynh Kim Hung, Jeong-Gu Kim, Byoung-Moo Lee, Yeh-Jin Ahn, Lin-Woo Kang. Cloning, expression, crystallization and preliminary X-ray crystallographic analysis of 3-dehydroquinate synthase, Xoo1243, from Xanthomonas oryzae pv. oryzae. Acta crystallographica. Section F, Structural biology and crystallization communications. 2008 Dec; 64(Pt 12):1128-31. doi: 10.1107/s1744309108033575. [PMID: 19052366]
  • . . . . doi: . [PMID: 21279669]