3-Hydroxy-3-methylglutaryl-CoA (BioDeep_00000004418)
Secondary id: BioDeep_00001868804
human metabolite PANOMIX_OTCML-2023 Endogenous BioNovoGene_Lab2019
代谢物信息卡片
化学式: C27H44N7O20P3S (911.1575)
中文名称: 三羟基三甲基戊二酸单酰辅酶A
谱图信息:
最多检出来源 Rattus norvegicus(otcml) 8.65%
分子结构信息
SMILES: CC(C)(COP(=O)(O)OP(=O)(O)OCC1C(C(C(O1)N2C=NC3=C(N=CN=C32)N)O)OP(=O)(O)O)C(C(=O)NCCC(=O)NCCSC(=O)CC(C)(CC(=O)O)O)O
InChI: InChI=1S/C27H44N7O20P3S/c1-26(2,21(40)24(41)30-5-4-15(35)29-6-7-58-17(38)9-27(3,42)8-16(36)37)11-51-57(48,49)54-56(46,47)50-10-14-20(53-55(43,44)45)19(39)25(52-14)34-13-33-18-22(28)31-12-32-23(18)34/h12-14,19-21,25,39-40,42H,4-11H2,1-3H3,(H,29,35)(H,30,41)(H,36,37)(H,46,47)(H,48,49)(H2,28,31,32)(H2,43,44,45)
描述信息
3-Hydroxy-3-methylglutaryl-CoA (HMG-CoA) (CAS: 1553-55-5) is formed when acetyl-CoA condenses with acetoacetyl-CoA in a reaction that is catalyzed by the enzyme HMG-CoA synthase in the mevalonate pathway or mevalonate-dependent (MAD) route, an important cellular metabolic pathway present in virtually all organisms. HMG-CoA reductase (EC 1.1.1.34) inhibitors, more commonly known as statins, are cholesterol-lowering drugs that have been widely used for many years to reduce the incidence of adverse cardiovascular events. HMG-CoA reductase catalyzes the rate-limiting step in the mevalonate pathway and these agents lower cholesterol by inhibiting its synthesis in the liver and in peripheral tissues. Androgen also stimulates lipogenesis in human prostate cancer cells directly by increasing transcription of the fatty acid synthase and HMG-CoA-reductase genes (PMID: 14689582).
(s)-3-hydroxy-3-methylglutaryl-coa, also known as hmg-coa or hydroxymethylglutaroyl coenzyme a, is a member of the class of compounds known as (s)-3-hydroxy-3-alkylglutaryl coas (s)-3-hydroxy-3-alkylglutaryl coas are 3-hydroxy-3-alkylglutaryl-CoAs where the 3-hydroxy-3-alkylglutaryl component has (S)-configuration. Thus, (s)-3-hydroxy-3-methylglutaryl-coa is considered to be a fatty ester lipid molecule (s)-3-hydroxy-3-methylglutaryl-coa is slightly soluble (in water) and an extremely strong acidic compound (based on its pKa). (s)-3-hydroxy-3-methylglutaryl-coa can be found in a number of food items such as watercress, burdock, spirulina, and chicory, which makes (s)-3-hydroxy-3-methylglutaryl-coa a potential biomarker for the consumption of these food products (s)-3-hydroxy-3-methylglutaryl-coa may be a unique S.cerevisiae (yeast) metabolite.
同义名列表
26 个代谢物同义名
(3S)-5-[(2-{3-[(2R)-3-[({[({[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)methyl]-2-hydroxy-3-methylbutanamido]propanamido}ethyl)sulfanyl]-3-hydroxy-3-methyl-5-oxopentanoic acid; S-(Hydrogen 3-hydroxy-3-methylglutaryl)coenzyme A; beta-Hydroxy-beta-methylglutaryl-coenzyme A; (3S)-3-Hydroxy-3-methylglutaryl-coenzyme A; (S)-3-Hydroxy-3-methylglutaryl-coenzyme A; (S)-3-Hydroxy-3-methylglutaryl coenzyme A; Β-hydroxy-β-methylglutaryl-coenzyme A; 3-Hydroxy-3-methylglutaryl coenzyme A; beta-Hydroxy-beta-methylglutaryl CoA; beta-Hydroxy-beta-methylglutaryl-CoA; (3S)-3-hydroxy-3-methylglutaryl-CoA; (S)-3-Hydroxy-3-methylglutaryl-CoA; Hydroxymethylglutaroyl coenzyme A; Hydroxymethylglutaryl coenzyme A; 3 Hydroxy-3-methylglutaryl CoA; Β-hydroxy-β-methylglutaryl CoA; 3-hydroxy-3-methylglutaryl-CoA; 3-Hydroxy-3-methylglutaryl CoA; b-Hydroxy-b-methylglutaryl CoA; Β-hydroxy-β-methylglutaryl-CoA; Hydroxymethylglutaryl CoA; Hydroxymethylglutaryl-CoA; HMG-coenzyme A; HMG-CoA; 3-Hydroxy-3-methyl-Glutaryl-CoA; (S)-3-Hydroxy-3-methylglutaryl-CoA
数据库引用编号
22 个数据库交叉引用编号
- ChEBI: CHEBI:15467
- KEGG: C00356
- PubChem: 445127
- PubChem: 84
- HMDB: HMDB0001375
- Metlin: METLIN349
- ChEMBL: CHEMBL1794644
- MetaCyc: 3-HYDROXY-3-METHYL-GLUTARYL-COA
- KNApSAcK: C00007270
- foodb: FDB030158
- chemspider: 392859
- CAS: 26926-09-0
- CAS: 1553-55-5
- PMhub: MS000016857
- PubChem: 3649
- LipidMAPS: LMFA07050116
- PDB-CCD: HMG
- 3DMET: B04674
- RefMet: 3-Hydroxy-3-methylglutaryl-CoA
- RefMet: Hydroxymethylglutaryl-CoA
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-131
- KNApSAcK: 15467
分类词条
相关代谢途径
PlantCyc(0)
代谢反应
337 个相关的代谢反应过程信息。
Reactome(80)
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of lipids:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Metabolism of steroids:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Cholesterol biosynthesis:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Ketone body metabolism:
ACA + ATP + CoA-SH ⟶ ACA-CoA + AMP + PPi
- Synthesis of Ketone Bodies:
ACA + ATP + CoA-SH ⟶ ACA-CoA + AMP + PPi
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of lipids:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Metabolism of steroids:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Cholesterol biosynthesis:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Ketone body metabolism:
ACA + ATP + CoA-SH ⟶ ACA-CoA + AMP + PPi
- Synthesis of Ketone Bodies:
ACA + ATP + CoA-SH ⟶ ACA-CoA + AMP + PPi
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of steroids:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Cholesterol biosynthesis:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Ketone body metabolism:
ACA + H+ + NADH ⟶ NAD + bHBA
- Synthesis of Ketone Bodies:
ACA + H+ + NADH ⟶ NAD + bHBA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Branched-chain amino acid catabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of lipids:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Ketone body metabolism:
ACA + H+ + NADH ⟶ NAD + bHBA
- Synthesis of Ketone Bodies:
ACA + H+ + NADH ⟶ NAD + bHBA
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Ketone body metabolism:
HMG CoA ⟶ ACA + Ac-CoA
- Synthesis of Ketone Bodies:
HMG CoA ⟶ ACA + Ac-CoA
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Ketone body metabolism:
ACA + H+ + NADH ⟶ NAD + bHBA
- Synthesis of Ketone Bodies:
ACA + H+ + NADH ⟶ NAD + bHBA
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Ketone body metabolism:
ACA + H+ + NADH ⟶ NAD + bHBA
- Synthesis of Ketone Bodies:
ACA + H+ + NADH ⟶ NAD + bHBA
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Metabolism of lipids:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Ketone body metabolism:
HMG CoA ⟶ ACA + Ac-CoA
- Synthesis of Ketone Bodies:
HMG CoA ⟶ ACA + Ac-CoA
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
3-oxopristanoyl-CoA + CoA-SH ⟶ 4,8,12-trimethyltridecanoyl-CoA + propionyl CoA
- Ketone body metabolism:
ACA + H+ + NADH ⟶ NAD + bHBA
- Synthesis of Ketone Bodies:
ACA + H+ + NADH ⟶ NAD + bHBA
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Ketone body metabolism:
ACA + H+ + NADH ⟶ NAD + bHBA
- Synthesis of Ketone Bodies:
ACA + H+ + NADH ⟶ NAD + bHBA
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Ketone body metabolism:
ACA + H+ + NADH ⟶ NAD + bHBA
- Synthesis of Ketone Bodies:
ACA + H+ + NADH ⟶ NAD + bHBA
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Ketone body metabolism:
ACA + H+ + NADH ⟶ NAD + bHBA
- Synthesis of Ketone Bodies:
ACA + H+ + NADH ⟶ NAD + bHBA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Branched-chain amino acid catabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Ketone body metabolism:
ACA + H+ + NADH ⟶ NAD + bHBA
- Synthesis of Ketone Bodies:
ACA + H+ + NADH ⟶ NAD + bHBA
- Metabolism:
CAR + propionyl CoA ⟶ CoA-SH + Propionylcarnitine
- Metabolism of lipids:
CAR + propionyl CoA ⟶ CoA-SH + Propionylcarnitine
- Ketone body metabolism:
ACA-CoA + Ac-CoA ⟶ CoA + HMG CoA
- Synthesis of Ketone Bodies:
ACA-CoA + Ac-CoA ⟶ CoA + HMG CoA
- Metabolism:
GAA + SAM ⟶ CRET + H+ + SAH
- Metabolism of lipids:
ACA + H+ + NADH ⟶ NAD + bHBA
- Ketone body metabolism:
ACA + H+ + NADH ⟶ NAD + bHBA
- Synthesis of Ketone Bodies:
ACA + H+ + NADH ⟶ NAD + bHBA
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Metabolism of lipids:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Ketone body metabolism:
ACA + H+ + NADH ⟶ NAD + bHBA
- Synthesis of Ketone Bodies:
ACA + H+ + NADH ⟶ NAD + bHBA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Branched-chain amino acid catabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Ketone body metabolism:
ACA + H+ + NADH ⟶ NAD + bHBA
- Synthesis of Ketone Bodies:
ACA + H+ + NADH ⟶ NAD + bHBA
BioCyc(5)
- leucine degradation I:
2-oxoglutarate + leu ⟶ 4-methyl-2-oxopentanoate + glt
- mevalonate pathway I:
ATP + mevalonate-diphosphate ⟶ ADP + CO2 + H+ + isopentenyl diphosphate + phosphate
- superpathway of sterol biosynthesis:
4-methyl-2-oxopentanoate + NAD+ + coenzyme A ⟶ CO2 + NADH + isovaleryl-CoA
- mevalonate pathway I:
ATP + mevalonate-diphosphate ⟶ ADP + CO2 + H+ + isopentenyl diphosphate + phosphate
- leucine degradation I:
4-methyl-2-oxopentanoate + NAD+ + coenzyme A ⟶ CO2 + NADH + isovaleryl-CoA
WikiPathways(12)
- Cholesterol metabolism:
Dehydrocholesterol ⟶ Cholesterol
- Cholesterol metabolism with Bloch and Kandutsch-Russell pathways:
7-dehydodesmosterol ⟶ 7-dehdrocholesterol
- Cholesterol synthesis disorders:
squalene ⟶ (S)-2,3-epoxysqualene
- Metabolic reprogramming in pancreatic cancer:
lactate ⟶ pyruvate
- Ergosterol biosynthesis:
PreSqualene-PP ⟶ Squalene
- Cholesterol biosynthesis pathway:
(S)-2,3-Epoxysqualene ⟶ Lanosterin
- Metabolism overview:
NH3 ⟶ Glutamic acid
- Statin inhibition of cholesterol production:
HMG-CoA ⟶ Mevalonate
- Cerebral organic acidurias, including diseases:
L-2-Aminoadipic acid ⟶ 2-Oxoadipic acid
- Cholesterol metabolism with Bloch and Kandutsch-Russell pathways:
7-dehydodesmosterol ⟶ 7-dehdrocholesterol
- Disorders in Ketolysis:
Acetyl-CoA ⟶ Acetoacetyl-CoA
- Cholesterol metabolism:
lanosterol ⟶ 24,25-dihydrolanosterol
Plant Reactome(234)
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
HMG-CoA + TPNH ⟶ (R)-mevalonate + CoA-SH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
HMG-CoA + TPNH ⟶ (R)-mevalonate + CoA-SH + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
HMG-CoA + TPNH ⟶ (R)-mevalonate + CoA-SH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
HMG-CoA + TPNH ⟶ (R)-mevalonate + CoA-SH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
(R)-mevalonate + ATP ⟶ ADP + MVA5P
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
HMG-CoA + TPNH ⟶ (R)-mevalonate + CoA-SH + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
HMG-CoA + TPNH ⟶ (R)-mevalonate + CoA-SH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
HMG-CoA + TPNH ⟶ (R)-mevalonate + CoA-SH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
HMG-CoA + TPNH ⟶ (R)-mevalonate + CoA-SH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
HMG-CoA + TPNH ⟶ (R)-mevalonate + CoA-SH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
(R)-mevalonate + ATP ⟶ ADP + MVA5P
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
HMG-CoA + TPNH ⟶ (R)-mevalonate + CoA-SH + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
HMG-CoA + TPNH ⟶ (R)-mevalonate + CoA-SH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
HMG-CoA + TPNH ⟶ (R)-mevalonate + CoA-SH + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
HMG-CoA + TPNH ⟶ (R)-mevalonate + CoA-SH + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
(R)-mevalonate + ATP ⟶ ADP + MVA5P
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Secondary metabolism:
DMAPP + genistein ⟶ PPi + lupiwighteone
- MVA pathway:
IPPP ⟶ DMAPP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
HMG-CoA + TPNH ⟶ (R)-mevalonate + CoA-SH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
HMG-CoA + TPNH ⟶ (R)-mevalonate + CoA-SH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
HMG-CoA + TPNH ⟶ (R)-mevalonate + CoA-SH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
HMG-CoA + TPNH ⟶ (R)-mevalonate + CoA-SH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
HMG-CoA + TPNH ⟶ (R)-mevalonate + CoA-SH + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
(R)-mevalonate + ATP ⟶ ADP + MVA5P
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
DMAPP + genistein ⟶ PPi + lupiwighteone
- MVA pathway:
HMG-CoA + TPNH ⟶ (R)-mevalonate + CoA-SH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
HMG-CoA + TPNH ⟶ (R)-mevalonate + CoA-SH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
HMG-CoA + TPNH ⟶ (R)-mevalonate + CoA-SH + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
HMG-CoA + TPNH ⟶ (R)-mevalonate + CoA-SH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
HMG-CoA + TPNH ⟶ (R)-mevalonate + CoA-SH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
HMG-CoA + TPNH ⟶ (R)-mevalonate + CoA-SH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
HMG-CoA + TPNH ⟶ (R)-mevalonate + CoA-SH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
HMG-CoA + TPNH ⟶ (R)-mevalonate + CoA-SH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
HMG-CoA + TPNH ⟶ (R)-mevalonate + CoA-SH + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
HMG-CoA + TPNH ⟶ (R)-mevalonate + CoA-SH + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
HMG-CoA + TPNH ⟶ (R)-mevalonate + CoA-SH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
HMG-CoA + TPNH ⟶ (R)-mevalonate + CoA-SH + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
HMG-CoA + TPNH ⟶ (R)-mevalonate + CoA-SH + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
HMG-CoA + TPNH ⟶ (R)-mevalonate + CoA-SH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
HMG-CoA + TPNH ⟶ (R)-mevalonate + CoA-SH + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
HMG-CoA + TPNH ⟶ (R)-mevalonate + CoA-SH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
HMG-CoA + TPNH ⟶ (R)-mevalonate + CoA-SH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
HMG-CoA + TPNH ⟶ (R)-mevalonate + CoA-SH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
HMG-CoA + TPNH ⟶ (R)-mevalonate + CoA-SH + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
HMG-CoA + TPNH ⟶ (R)-mevalonate + CoA-SH + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
HMG-CoA + TPNH ⟶ (R)-mevalonate + CoA-SH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
HMG-CoA + TPNH ⟶ (R)-mevalonate + CoA-SH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
HMG-CoA + TPNH ⟶ (R)-mevalonate + CoA-SH + TPN
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Secondary metabolism:
DMAPP + genistein ⟶ PPi + lupiwighteone
- MVA pathway:
IPPP ⟶ DMAPP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
HMG-CoA + TPNH ⟶ (R)-mevalonate + CoA-SH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
HMG-CoA + TPNH ⟶ (R)-mevalonate + CoA-SH + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
HMG-CoA + TPNH ⟶ (R)-mevalonate + CoA-SH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
HMG-CoA + TPNH ⟶ (R)-mevalonate + CoA-SH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
HMG-CoA + TPNH ⟶ (R)-mevalonate + CoA-SH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
HMG-CoA + TPNH ⟶ (R)-mevalonate + CoA-SH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
L-Phe ⟶ ammonia + trans-cinnamate
- MVA pathway:
HMG-CoA + TPNH ⟶ (R)-mevalonate + CoA-SH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
HMG-CoA + TPNH ⟶ (R)-mevalonate + CoA-SH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
HMG-CoA + TPNH ⟶ (R)-mevalonate + CoA-SH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
HMG-CoA + TPNH ⟶ (R)-mevalonate + CoA-SH + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
(R)-mevalonate + ATP ⟶ ADP + MVA5P
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
HMG-CoA + TPNH ⟶ (R)-mevalonate + CoA-SH + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
HMG-CoA + TPNH ⟶ (R)-mevalonate + CoA-SH + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
HMG-CoA + TPNH ⟶ (R)-mevalonate + CoA-SH + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
HMG-CoA + TPNH ⟶ (R)-mevalonate + CoA-SH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
(R)-mevalonate + ATP ⟶ ADP + MVA5P
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
HMG-CoA + TPNH ⟶ (R)-mevalonate + CoA-SH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
HMG-CoA + TPNH ⟶ (R)-mevalonate + CoA-SH + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
HMG-CoA + TPNH ⟶ (R)-mevalonate + CoA-SH + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
(R)-mevalonate + ATP ⟶ ADP + MVA5P
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
HMG-CoA + TPNH ⟶ (R)-mevalonate + CoA-SH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
HMG-CoA + TPNH ⟶ (R)-mevalonate + CoA-SH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
HMG-CoA + TPNH ⟶ (R)-mevalonate + CoA-SH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
HMG-CoA + TPNH ⟶ (R)-mevalonate + CoA-SH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
HMG-CoA + TPNH ⟶ (R)-mevalonate + CoA-SH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
HMG-CoA + TPNH ⟶ (R)-mevalonate + CoA-SH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
HMG-CoA + TPNH ⟶ (R)-mevalonate + CoA-SH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
HMG-CoA + TPNH ⟶ (R)-mevalonate + CoA-SH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
HMG-CoA + TPNH ⟶ (R)-mevalonate + CoA-SH + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
HMG-CoA + TPNH ⟶ (R)-mevalonate + CoA-SH + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
HMG-CoA + TPNH ⟶ (R)-mevalonate + CoA-SH + TPN
INOH(5)
- Butanoate metabolism ( Butanoate metabolism ):
Acetoacetic acid + NADH ⟶ (R)-3-Hydroxy-butanoic acid + NAD+
- (S)-3-Hydroxy-3-methyl-glutaryl-CoA = Acetyl-CoA + Acetoacetic acid ( Valine,Leucine and Isoleucine degradation ):
(S)-3-Hydroxy-3-methyl-glutaryl-CoA ⟶ Acetoacetic acid + Acetyl-CoA
- Valine,Leucine and Isoleucine degradation ( Valine,Leucine and Isoleucine degradation ):
2-Methyl-3-acetoacetyl-CoA + CoA ⟶ Acetyl-CoA + Propanoyl-CoA
- Steroids metabolism ( Steroids metabolism ):
7-Dehydro-cholesterol + NADP+ ⟶ Cholesterol + NADPH
- (S)-3-Hydroxy-3-methyl-glutaryl-CoA = 3-Methyl-glutaconyl-CoA + H2O ( Valine,Leucine and Isoleucine degradation ):
3-Methyl-glutaconyl-CoA + H2O ⟶ (S)-3-Hydroxy-3-methyl-glutaryl-CoA
PlantCyc(0)
COVID-19 Disease Map(1)
- @COVID-19 Disease
Map["name"]:
2-Methyl-3-acetoacetyl-CoA + Coenzyme A ⟶ Acetyl-CoA + Propanoyl-CoA
PathBank(0)
PharmGKB(0)
4 个相关的物种来源信息
- 3702 - Arabidopsis thaliana: 10.1074/JBC.M314195200
- 9606 - Homo sapiens: -
- 9606 - Homo sapiens: 10.1007/S11306-016-1051-4
- 4896 - Schizosaccharomyces pombe: 10.1039/C4MB00346B
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Jianqiu Wang, Markus Kunze, Andrea Villoria-González, Isabelle Weinhofer, Johannes Berger. Peroxisomal Localization of a Truncated HMG-CoA Reductase under Low Cholesterol Conditions.
Biomolecules.
2024 Feb; 14(2):. doi:
10.3390/biom14020244
. [PMID: 38397481] - Xiao-Zheng Su, Lin-Fei Zhang, Kun Hu, Yang An, Qiao-Peng Zhang, Jian-Wei Tang, Bing-Chao Yan, Xing-Ren Li, Jie Cai, Xiao-Nian Li, Han-Dong Sun, Shi-You Jiang, Pema-Tenzin Puno. Discovery of Natural Potent HMG-CoA Reductase Degraders for Lowering Cholesterol.
Angewandte Chemie (International ed. in English).
2024 Feb; 63(6):e202313859. doi:
10.1002/anie.202313859
. [PMID: 38055195] - You Bin Cho, Hyunbeom Lee, Hui-Jeon Jeon, Jae Yeol Lee, Hyoung Ja Kim. Antioxidant and Inhibitory Activities of Filipendula glaberrima Leaf Constituents against HMG-CoA Reductase and Macrophage Foam Cell Formation.
Molecules (Basel, Switzerland).
2024 Jan; 29(2):. doi:
10.3390/molecules29020354
. [PMID: 38257267] - Dan Xie, Lijun Song, Dongyang Xiang, Xiangyu Gao, Wenchang Zhao. Salvianolic acid A alleviates atherosclerosis by inhibiting inflammation through Trc8-mediated 3-hydroxy-3-methylglutaryl-coenzyme A reductase degradation.
Phytomedicine : international journal of phytotherapy and phytopharmacology.
2023 Feb; 112(?):154694. doi:
10.1016/j.phymed.2023.154694
. [PMID: 36804757] - Janani Balraj, Thandeeswaran Murugesan, Anand Raj Dhanapal, Vidhya Kalieswaran, Karunyadevi Jairaman, Govindaraju Archunan, Angayarkanni Jayaraman. Bioconversion of lovastatin to simvastatin by Streptomyces carpaticus toward the inhibition of HMG-CoA activity.
Biotechnology and applied biochemistry.
2022 Dec; ?(?):. doi:
10.1002/bab.2429
. [PMID: 36524308] - Michalina Zaborowska, Dorota Matyszewska, Renata Bilewicz. Model Lipid Raft Membranes for Embedding Integral Membrane Proteins: Reconstitution of HMG-CoA Reductase and Its Inhibition by Statins.
Langmuir : the ACS journal of surfaces and colloids.
2022 11; 38(45):13888-13897. doi:
10.1021/acs.langmuir.2c02115
. [PMID: 36335466] - Joel Haywood, Karen J Breese, Jingjing Zhang, Mark T Waters, Charles S Bond, Keith A Stubbs, Joshua S Mylne. A fungal tolerance trait and selective inhibitors proffer HMG-CoA reductase as a herbicide mode-of-action.
Nature communications.
2022 09; 13(1):5563. doi:
10.1038/s41467-022-33185-0
. [PMID: 36137996] - Daniel B Rosoff, Andrew S Bell, Jeesun Jung, Josephin Wagner, Lucas A Mavromatis, Falk W Lohoff. Mendelian Randomization Study of PCSK9 and HMG-CoA Reductase Inhibition and Cognitive Function.
Journal of the American College of Cardiology.
2022 08; 80(7):653-662. doi:
10.1016/j.jacc.2022.05.041
. [PMID: 35953131] - Małgorzata Majewska, Piotr Szymczyk, Jan Gomulski, Agnieszka Jeleń, Renata Grąbkowska, Ewa Balcerczak, Łukasz Kuźma. The Expression Profiles of the Salvia miltiorrhiza 3-Hydroxy-3-methylglutaryl-coenzyme A Reductase 4 Gene and Its Influence on the Biosynthesis of Tanshinones.
Molecules (Basel, Switzerland).
2022 Jul; 27(14):. doi:
10.3390/molecules27144354
. [PMID: 35889227] - Alexandria M Doerfler, Jun Han, Kelsey E Jarrett, Li Tang, Antrix Jain, Alexander Saltzman, Marco De Giorgi, Marcel Chuecos, Ayrea E Hurley, Ang Li, Pauline Morand, Claudia Ayala, David R Goodlett, Anna Malovannaya, James F Martin, Thomas Q de Aguiar Vallim, Noah Shroyer, William R Lagor. Intestinal Deletion of 3-Hydroxy-3-Methylglutaryl-Coenzyme A Reductase Promotes Expansion of the Resident Stem Cell Compartment.
Arteriosclerosis, thrombosis, and vascular biology.
2022 04; 42(4):381-394. doi:
10.1161/atvbaha.122.317320
. [PMID: 35172604] - Jaykaran Charan, Priyanka Riyad, Heera Ram, Ashok Purohit, Sneha Ambwani, Priya Kashyap, Garima Singh, Abeer Hashem, Elsayed Fathi Abd Allah, Vijai Kumar Gupta, Ashok Kumar, Anil Panwar. Ameliorations in dyslipidemia and atherosclerotic plaque by the inhibition of HMG-CoA reductase and antioxidant potential of phytoconstituents of an aqueous seed extract of Acacia senegal (L.) Willd in rabbits.
PloS one.
2022; 17(3):e0264646. doi:
10.1371/journal.pone.0264646
. [PMID: 35239727] - Ching-Pei Chen, Kuei-Chuan Chan, Hsieh-Hsun Ho, Hui-Pei Huang, Li-Sung Hsu, Chau-Jong Wang. Mulberry polyphenol extracts attenuated senescence through inhibition of Ras/ERK via promoting Ras degradation in VSMC.
International journal of medical sciences.
2022; 19(1):89-97. doi:
10.7150/ijms.64763
. [PMID: 34975302] - Damilohun Samuel Metibemu, Oluseyi Adeboye Akinloye, Adio Jamiu Akamo, Jude Ogechukwu Okoye, Idowu Olaposi Omotuyi. In-silico HMG-CoA reductase-inhibitory and in-vivo anti-lipidaemic/anticancer effects of carotenoids from Spondias mombin.
The Journal of pharmacy and pharmacology.
2021 Sep; 73(10):1377-1386. doi:
10.1093/jpp/rgab103
. [PMID: 34343336] - Shanshan Zhong, Luxiao Li, Ningning Liang, Lili Zhang, Xiaodong Xu, Shiting Chen, Huiyong Yin. Acetaldehyde Dehydrogenase 2 regulates HMG-CoA reductase stability and cholesterol synthesis in the liver.
Redox biology.
2021 05; 41(?):101919. doi:
10.1016/j.redox.2021.101919
. [PMID: 33740503] - Jingbo Ma, Yang Gu, Monireh Marsafari, Peng Xu. Synthetic biology, systems biology, and metabolic engineering of Yarrowia lipolytica toward a sustainable biorefinery platform.
Journal of industrial microbiology & biotechnology.
2020 Oct; 47(9-10):845-862. doi:
10.1007/s10295-020-02290-8
. [PMID: 32623653] - Liwen Wu, Yunxiao Zhao, Qiyan Zhang, Yicun Chen, Ming Gao, Yangdong Wang. Overexpression of the 3-hydroxy-3-methylglutaryl-CoA synthase gene LcHMGS effectively increases the yield of monoterpenes and sesquiterpenes.
Tree physiology.
2020 07; 40(8):1095-1107. doi:
10.1093/treephys/tpaa045
. [PMID: 32325486] - Marwa M Abd-Rabo, Lobna F Wahman, Rania El Hosary, Iman S Ahmed. High-fat diet induced alteration in lipid enzymes and inflammation in cardiac and brain tissues: Assessment of the effects of Atorvastatin-loaded nanoparticles.
Journal of biochemical and molecular toxicology.
2020 May; 34(5):e22465. doi:
10.1002/jbt.22465
. [PMID: 32048413] - Maria Giovanna Lupo, Noemi Biancorosso, Elisa Brilli, Germano Tarantino, Maria Pia Adorni, Greta Vivian, Marika Salvalaio, Stefano Dall'Acqua, Stefania Sut, Cédric Neutel, Haixia Chen, Alessandro Bressan, Elisabetta Faggin, Marcello Rattazzi, Nicola Ferri. Cholesterol-Lowering Action of a Novel Nutraceutical Combination in Uremic Rats: Insights into the Molecular Mechanism in a Hepatoma Cell Line.
Nutrients.
2020 Feb; 12(2):. doi:
10.3390/nu12020436
. [PMID: 32050453] - Muthukumaran Jayachandran, Tongze Zhang, Ziyuan Wu, Yinhua Liu, Baojun Xu. Isoquercetin regulates SREBP-1C via AMPK pathway in skeletal muscle to exert antihyperlipidemic and anti-inflammatory effects in STZ induced diabetic rats.
Molecular biology reports.
2020 Jan; 47(1):593-602. doi:
10.1007/s11033-019-05166-y
. [PMID: 31677037] - Min Zhang, Heng Liu, Qing Wang, Shaohua Liu, Yuanhu Zhang. The 3-hydroxy-3-methylglutaryl-coenzyme A reductase 5 gene from Malus domestica enhances oxidative stress tolerance in Arabidopsis thaliana.
Plant physiology and biochemistry : PPB.
2020 Jan; 146(?):269-277. doi:
10.1016/j.plaphy.2019.11.031
. [PMID: 31783202] - Baskaran Gunasekaran, Mohd Yunus Shukor. HMG-CoA Reductase as Target for Drug Development.
Methods in molecular biology (Clifton, N.J.).
2020; 2089(?):245-250. doi:
10.1007/978-1-0716-0163-1_16
. [PMID: 31773659] - Andréa Hemmerlin, Alexandre Huchelmann, Denis Tritsch, Hubert Schaller, Thomas J Bach. The specific molecular architecture of plant 3-hydroxy-3-methylglutaryl-CoA lyase.
The Journal of biological chemistry.
2019 11; 294(44):16186-16197. doi:
10.1074/jbc.ra119.008839
. [PMID: 31515272] - Hao Liu, Jing-Kun Miao, Chao-Wen Yu, Ke-Xing Wan, Juan Zhang, Zhao-Jian Yuan, Jing Yang, Dong-Juan Wang, Yan Zeng, Lin Zou. Severe clinical manifestation of mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase deficiency associated with two novel mutations: a case report.
BMC pediatrics.
2019 10; 19(1):344. doi:
10.1186/s12887-019-1747-5
. [PMID: 31597564] - Shen Rao, Xiangxiang Meng, Yongling Liao, Tian Yu, Jie Cao, Junping Tan, Feng Xu, Shuiyuan Cheng. Characterization and functional analysis of two novel 3-hydroxy-3-methylglutaryl-coenzyme A reductase genes (GbHMGR2 and GbHMGR3) from Ginkgo biloba.
Scientific reports.
2019 Oct; 9(1):14109. doi:
10.1038/s41598-019-50629-8
. [PMID: 31575936] - Hudson W Coates, Andrew J Brown. A wolf in sheep's clothing: unmasking the lanosterol-induced degradation of HMG-CoA reductase.
Journal of lipid research.
2019 10; 60(10):1643-1645. doi:
10.1194/jlr.c119000358
. [PMID: 31462514] - Zhenzhou Zhu, Yuqi Huang, Xiao Luo, Qian Wu, Jingren He, Shuyi Li, Francisco J Barba. Modulation of lipid metabolism and colonic microbial diversity of high-fat-diet C57BL/6 mice by inulin with different chain lengths.
Food research international (Ottawa, Ont.).
2019 09; 123(?):355-363. doi:
10.1016/j.foodres.2019.05.003
. [PMID: 31284986] - Ying Lu, Yingjie He, Shihao Zhu, Xiaohong Zhong, Dong Chen, Zhonghua Liu. New Acylglycosides Flavones from Fuzhuan Brick Tea and Simulation Analysis of Their Bioactive Effects.
International journal of molecular sciences.
2019 Jan; 20(3):. doi:
10.3390/ijms20030494
. [PMID: 30678336] - Hangjun Zhang, Jianbo He, Ning Li, Nana Gao, Qiongxia Du, Bin Chen, Feifei Chen, Xiaodong Shan, Ying Ding, Weiqin Zhu, Yingzhu Wu, Juan Tang, Xiuying Jia. Lipid accumulation responses in the liver of Rana nigromaculata induced by perfluorooctanoic acid (PFOA).
Ecotoxicology and environmental safety.
2019 Jan; 167(?):29-35. doi:
10.1016/j.ecoenv.2018.09.120
. [PMID: 30292973] - Pragya Bhardwaj, Navendu Goswami, Pankhuri Narula, Chakresh Kumar Jain, Ashwani Mathur. Zinc oxide nanoparticles (ZnO NP) mediated regulation of bacosides biosynthesis and transcriptional correlation of HMG-CoA reductase gene in suspension culture of Bacopa monnieri.
Plant physiology and biochemistry : PPB.
2018 Sep; 130(?):148-156. doi:
10.1016/j.plaphy.2018.07.001
. [PMID: 29982171] - Vasanth Sathiyakumar, Karan Kapoor, Steven R Jones, Maciej Banach, Seth S Martin, Peter P Toth. Novel Therapeutic Targets for Managing Dyslipidemia.
Trends in pharmacological sciences.
2018 08; 39(8):733-747. doi:
10.1016/j.tips.2018.06.001
. [PMID: 29970260] - Aslaug Drotningsvik, Linn Anja Vikøren, Svein Are Mjøs, Åge Oterhals, Daniela Pampanin, Ola Flesland, Oddrun Anita Gudbrandsen. Water-Soluble Fish Protein Intake Led to Lower Serum and Liver Cholesterol Concentrations in Obese Zucker fa/fa Rats.
Marine drugs.
2018 May; 16(5):. doi:
10.3390/md16050149
. [PMID: 29724010] - Shilpi Bansal, Lokesh Kumar Narnoliya, Bhawana Mishra, Muktesh Chandra, Ritesh Kumar Yadav, Neelam Singh Sangwan. HMG-CoA reductase from Camphor Tulsi (Ocimum kilimandscharicum) regulated MVA dependent biosynthesis of diverse terpenoids in homologous and heterologous plant systems.
Scientific reports.
2018 02; 8(1):3547. doi:
10.1038/s41598-017-17153-z
. [PMID: 29476116] - Elena V Efimova, Natalia Ricco, Edwardine Labay, Helena J Mauceri, Amy C Flor, Aishwarya Ramamurthy, Harold G Sutton, Ralph R Weichselbaum, Stephen J Kron. HMG-CoA Reductase Inhibition Delays DNA Repair and Promotes Senescence After Tumor Irradiation.
Molecular cancer therapeutics.
2018 02; 17(2):407-418. doi:
10.1158/1535-7163.mct-17-0288
. [PMID: 29030460] - Sabrina Angelini, Martina Rosticci, Gianmichele Massimo, Muriel Musti, Gloria Ravegnini, Nicola Consolini, Giulia Sammarini, Sergio D'Addato, Elisabetta Rizzoli, Dauren Botbayev, Claudio Borghi, Giorgio Cantelli-Forti, Arrigo F Cicero, Patrizia Hrelia. Relationship between Lipid Phenotypes, Overweight, Lipid Lowering Drug Response and KIF6 and HMG-CoA Genotypes in a Subset of the Brisighella Heart Study Population.
International journal of molecular sciences.
2017 Dec; 19(1):. doi:
10.3390/ijms19010049
. [PMID: 29295555] - Asma Ressaissi, Nebil Attia, Pedro Luis Falé, Rita Pacheco, Bruno L Victor, Miguel Machuqueiro, Maria Luísa M Serralheiro. Isorhamnetin derivatives and piscidic acid for hypercholesterolemia: cholesterol permeability, HMG-CoA reductase inhibition, and docking studies.
Archives of pharmacal research.
2017 Nov; 40(11):1278-1286. doi:
10.1007/s12272-017-0959-1
. [PMID: 28936788] - Ja-Jen Chang, Dai-Jung Chung, Yi-Ju Lee, Bo-Han Wen, Hsing-Yu Jao, Chau-Jong Wang. Solanum nigrum Polyphenol Extracts Inhibit Hepatic Inflammation, Oxidative Stress, and Lipogenesis in High-Fat-Diet-Treated Mice.
Journal of agricultural and food chemistry.
2017 Oct; 65(42):9255-9265. doi:
10.1021/acs.jafc.7b03578
. [PMID: 28982243] - Xiangxiang Meng, Qiling Song, Jiabao Ye, Lanlan Wang, Feng Xu. Characterization, Function, and Transcriptional Profiling Analysis of 3-Hydroxy-3-methylglutaryl-CoA Synthase Gene (GbHMGS1) towards Stresses and Exogenous Hormone Treatments in Ginkgo biloba.
Molecules (Basel, Switzerland).
2017 Oct; 22(10):. doi:
10.3390/molecules22101706
. [PMID: 29023415] - Troy D Jaskowski, Sonia L La'ulu, Michael Mahler, Anne E Tebo. Detection of autoantibodies to 3-hydroxy-3-methylglutaryl-coenzyme a reductase by ELISA in a reference laboratory setting.
Clinica chimica acta; international journal of clinical chemistry.
2017 Sep; 472(?):30-34. doi:
10.1016/j.cca.2017.07.011
. [PMID: 28709800] - Vijay Mani, Sivaranjani Arivalagan, Aktarul Islam Siddique, Nalini Namasivayam. Antihyperlipidemic and antiapoptotic potential of zingerone on alcohol induced hepatotoxicity in experimental rats.
Chemico-biological interactions.
2017 Jun; 272(?):197-206. doi:
10.1016/j.cbi.2017.04.019
. [PMID: 28442378] - Vishal Patel, Amit Joharapurkar, Samadhan Kshirsagar, Hiren M Patel, Dheerendra Pandey, Dipam Patel, Kiran Shah, Rajesh Bahekar, Gaurang B Shah, Mukul R Jain. Central and Peripheral Glucagon Reduces Hyperlipidemia in Rats and Hamsters.
Drug research.
2017 Jun; 67(6):318-326. doi:
10.1055/s-0043-102405
. [PMID: 28445900] - Mariana Leão de Lima Stein, Marcelo Yudi Icimoto, Erica Valadares de Castro Levatti, Vitor Oliveira, Anita Hilda Straus, Sergio Schenkman. Characterization and role of the 3-methylglutaconyl coenzyme A hidratase in Trypanosoma brucei.
Molecular and biochemical parasitology.
2017 06; 214(?):36-46. doi:
10.1016/j.molbiopara.2017.03.007
. [PMID: 28366667] - Rendong Ren, Junjie Gong, Yanyan Zhao, Xinyun Zhuang, Yin Ye, Wenting Lin. Sulfated polysaccharides from Enteromorpha prolifera suppress SREBP-2 and HMG-CoA reductase expression and attenuate non-alcoholic fatty liver disease induced by a high-fat diet.
Food & function.
2017 May; 8(5):1899-1904. doi:
10.1039/c7fo00103g
. [PMID: 28429814] - Cristina Perez-Ternero, Carmen Claro, Juan Parrado, Maria Dolores Herrera, Maria Alvarez de Sotomayor. Rice bran enzymatic extract reduces atherosclerotic plaque development and steatosis in high-fat fed ApoE-/- mice.
Nutrition (Burbank, Los Angeles County, Calif.).
2017 May; 37(?):22-29. doi:
10.1016/j.nut.2016.12.005
. [PMID: 28359358] - Nathalie Holic, Sophie Frin, Ababacar K Seye, Anne Galy, David Fenard. Improvement of De Novo Cholesterol Biosynthesis Efficiently Promotes the Production of Human Immunodeficiency Virus Type 1-Derived Lentiviral Vectors.
Human gene therapy methods.
2017 04; 28(2):67-77. doi:
10.1089/hgtb.2016.150
. [PMID: 28042946] - Y Shivani, Y Subhash, Ch Sasikala, Ch V Ramana. Description of 'Candidatus Marispirochaeta associata' and reclassification of Spirochaeta bajacaliforniensis, Spirochaeta smaragdinae and Spirochaeta sinaica to a new genus Sediminispirochaeta gen. nov. as Sediminispirochaeta bajacaliforniensis comb. nov., Sediminispirochaeta smaragdinae comb. nov. and Sediminispirochaeta sinaica comb. nov.
International journal of systematic and evolutionary microbiology.
2016 Dec; 66(12):5485-5492. doi:
10.1099/ijsem.0.001545
. [PMID: 27902269] - Victor Mukherjee, D Vijayalaksmi, Jagadeesh Gulipalli, R Premalatha, Shamim A Sufi, Athithan Velan, Kotteazeth Srikumar. A plant oxysterol, 28-homobrassinolide binds HMGCoA reductase catalytic cleft: stereoselective avidity affects enzyme function.
Molecular biology reports.
2016 Oct; 43(10):1049-58. doi:
10.1007/s11033-016-4052-5
. [PMID: 27585573] - Farhan Rizvi, Alessandra DeFranco, Ramail Siddiqui, Ulugbek Negmadjanov, Larisa Emelyanova, Alisher Holmuhamedov, Gracious Ross, Yang Shi, Ekhson Holmuhamedov, David Kress, A Jamil Tajik, Arshad Jahangir. Chamber-specific differences in human cardiac fibroblast proliferation and responsiveness toward simvastatin.
American journal of physiology. Cell physiology.
2016 08; 311(2):C330-9. doi:
10.1152/ajpcell.00056.2016
. [PMID: 27335167] - Tobias Bock, Janin Kasten, Rolf Müller, Wulf Blankenfeldt. Crystal Structure of the HMG-CoA Synthase MvaS from the Gram-Negative Bacterium Myxococcus xanthus.
Chembiochem : a European journal of chemical biology.
2016 07; 17(13):1257-62. doi:
10.1002/cbic.201600070
. [PMID: 27124816] - Thomas A Angelovich, Margaret D Y Shi, Jingling Zhou, Anna Maisa, Anna C Hearps, Anthony Jaworowski. Ex vivo foam cell formation is enhanced in monocytes from older individuals by both extrinsic and intrinsic mechanisms.
Experimental gerontology.
2016 07; 80(?):17-26. doi:
10.1016/j.exger.2016.04.006
. [PMID: 27073169] - Qian Chen, Yongwang Zhong, Yaorong Wu, Lijing Liu, Pengfei Wang, Ruijun Liu, Feng Cui, Qingliang Li, Xiaoyuan Yang, Shengyun Fang, Qi Xie. HRD1-mediated ERAD tuning of ER-bound E2 is conserved between plants and mammals.
Nature plants.
2016 06; 2(?):16094. doi:
10.1038/nplants.2016.94
. [PMID: 27322605] - Jihye Hong, Sera Kim, Hyun-Sook Kim. Hepatoprotective Effects of Soybean Embryo by Enhancing Adiponectin-Mediated AMP-Activated Protein Kinase α Pathway in High-Fat and High-Cholesterol Diet-Induced Nonalcoholic Fatty Liver Disease.
Journal of medicinal food.
2016 Jun; 19(6):549-59. doi:
10.1089/jmf.2015.3604
. [PMID: 27266339] - Thangarasu Silambarasan, Jeganathan Manivannan, Boobalan Raja, Suvro Chatterjee. Prevention of cardiac dysfunction, kidney fibrosis and lipid metabolic alterations in l-NAME hypertensive rats by sinapic acid--Role of HMG-CoA reductase.
European journal of pharmacology.
2016 Apr; 777(?):113-23. doi:
10.1016/j.ejphar.2016.03.004
. [PMID: 26945821] - Elian Khazneh, Petra Hřibová, Jan Hošek, Pavel Suchý, Peter Kollár, Gabriela Pražanová, Jan Muselík, Zuzana Hanaková, Jiří Václavík, Michał Miłek, Jaroslav Legáth, Karel Šmejkal. The Chemical Composition of Achillea wilhelmsii C. Koch and Its Desirable Effects on Hyperglycemia, Inflammatory Mediators and Hypercholesterolemia as Risk Factors for Cardiometabolic Disease.
Molecules (Basel, Switzerland).
2016 Mar; 21(4):404. doi:
10.3390/molecules21040404
. [PMID: 27023504] - San-Hu Gou, Hai-Feng Huang, Xin-Yue Chen, Jie Liu, Miao He, Yin-Yun Ma, Xiao-Ning Zhao, Yun Zhang, Jing-Man Ni. Lipid-lowering, hepatoprotective, and atheroprotective effects of the mixture Hong-Qu and gypenosides in hyperlipidemia with NAFLD rats.
Journal of the Chinese Medical Association : JCMA.
2016 Mar; 79(3):111-21. doi:
10.1016/j.jcma.2015.09.002
. [PMID: 26842974] - Elizabeth Motunrayo Kolawole, Jamie Josephine Avila McLeod, Victor Ndaw, Daniel Abebayehu, Brian O Barnstein, Travis Faber, Andrew J Spence, Marcela Taruselli, Anuya Paranjape, Tamara T Haque, Amina A Qayum, Qasim A Kazmi, Dayanjan S Wijesinghe, Jamie L Sturgill, Charles E Chalfant, David B Straus, Carole A Oskeritzian, John J Ryan. Fluvastatin Suppresses Mast Cell and Basophil IgE Responses: Genotype-Dependent Effects.
Journal of immunology (Baltimore, Md. : 1950).
2016 Feb; 196(4):1461-70. doi:
10.4049/jimmunol.1501932
. [PMID: 26773154] - Martin F Kemper, Shireesh Srivastava, M Todd King, Kieran Clarke, Richard L Veech, Robert J Pawlosky. An Ester of β-Hydroxybutyrate Regulates Cholesterol Biosynthesis in Rats and a Cholesterol Biomarker in Humans.
Lipids.
2015 Dec; 50(12):1185-93. doi:
10.1007/s11745-015-4085-x
. [PMID: 26498829] - Neeradi Dinesh, Neelagiri Soumya, Sushma Singh. Antileishmanial effect of mevastatin is due to interference with sterol metabolism.
Parasitology research.
2015 Oct; 114(10):3873-83. doi:
10.1007/s00436-015-4618-5
. [PMID: 26183607] - Li Wang, Fei Xu, Xue-Jun Zhang, Run-Ming Jin, Xin Li. Effect of high-fat diet on cholesterol metabolism in rats and its association with Na⁺/K⁺-ATPase/Src/pERK signaling pathway.
Journal of Huazhong University of Science and Technology. Medical sciences = Hua zhong ke ji da xue xue bao. Yi xue Ying De wen ban = Huazhong keji daxue xuebao. Yixue Yingdewen ban.
2015 Aug; 35(4):490-494. doi:
10.1007/s11596-015-1458-6
. [PMID: 26223915] - Tingting Wei, Liangcai Zhao, Jianmin Jia, Huanhuan Xia, Yao Du, Qiuting Lin, Xiaodong Lin, Xinjian Ye, Zhihan Yan, Hongchang Gao. Metabonomic analysis of potential biomarkers and drug targets involved in diabetic nephropathy mice.
Scientific reports.
2015 Jul; 5(?):11998. doi:
10.1038/srep11998
. [PMID: 26149603] - James J Pitt, Heidi Peters, Avihu Boneh, Joy Yaplito-Lee, Stefanie Wieser, Katrin Hinderhofer, David Johnson, Johannes Zschocke. Mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase deficiency: urinary organic acid profiles and expanded spectrum of mutations.
Journal of inherited metabolic disease.
2015 May; 38(3):459-66. doi:
10.1007/s10545-014-9801-9
. [PMID: 25511235] - Qi-jing Tang, Su-hong Chen, Dan-dan Pan, Bo Li, Gui-yan Lv. [Preliminary study on efficacy and mechanism of Atractylodes Macrocephelae Rhizoma extracts in metabolic hyperlipidemia rats].
Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica.
2015 May; 40(9):1803-7. doi:
. [PMID: 26323152]
- Solomon O Rotimi, David A Ojo, Olusola A Talabi, Regina N Ugbaja, Elizabeth A Balogun, Oladipo Ademuyiwa. Amoxillin- and pefloxacin-induced cholesterogenesis and phospholipidosis in rat tissues.
Lipids in health and disease.
2015 Feb; 14(?):13. doi:
10.1186/s12944-015-0011-8
. [PMID: 25879817] - Rekha Ravindran, Nitika Sharma, Sujata Roy, Ashoke R Thakur, Subhadra Ganesh, Sriram Kumar, Jamuna Devi, Johanna Rajkumar. Interaction Studies of Withania Somnifera's Key Metabolite Withaferin A with Different Receptors Assoociated with Cardiovascular Disease.
Current computer-aided drug design.
2015; 11(3):212-21. doi:
10.2174/1573409912666151106115848
. [PMID: 26548552] - Xiao-qian Huo, Yu-su He, Lian-sheng Qiao, Zhi-yi Sun, Yan-ling Zhang. [Study on lipid-lowering traditional Chinese medicines based on pharmacophore technology and patent retrieval].
Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica.
2014 Dec; 39(24):4839-43. doi:
"
. [PMID: 25898588] - Qiu Jun Wang, Li Ping Zheng, Pei Fei Zhao, Yi Lu Zhao, Jian Wen Wang. Cloning and characterization of an elicitor-responsive gene encoding 3-hydroxy-3-methylglutaryl coenzyme A reductase involved in 20-hydroxyecdysone production in cell cultures of Cyanotis arachnoidea.
Plant physiology and biochemistry : PPB.
2014 Nov; 84(?):1-9. doi:
10.1016/j.plaphy.2014.08.021
. [PMID: 25232679] - Vishvanath Tiwari, Manoj Khokhar. Mechanism of action of anti-hypercholesterolemia drugs and their resistance.
European journal of pharmacology.
2014 Oct; 741(?):156-70. doi:
10.1016/j.ejphar.2014.07.048
. [PMID: 25151024] - Yi-Syuan Lai, Wei-Cheng Chen, Chi-Tang Ho, Kuan-Hung Lu, Shih-Hang Lin, Hui-Chun Tseng, Shuw-Yuan Lin, Lee-Yan Sheen. Garlic essential oil protects against obesity-triggered nonalcoholic fatty liver disease through modulation of lipid metabolism and oxidative stress.
Journal of agricultural and food chemistry.
2014 Jun; 62(25):5897-906. doi:
10.1021/jf500803c
. [PMID: 24857364] - Shu Wang, Nirupa R Matthan, Dayong Wu, Debra B Reed, Priyanka Bapat, Xiangling Yin, Paula Grammas, Chwan-Li Shen, Alice H Lichtenstein. Lipid content in hepatic and gonadal adipose tissue parallel aortic cholesterol accumulation in mice fed diets with different omega-6 PUFA to EPA plus DHA ratios.
Clinical nutrition (Edinburgh, Scotland).
2014 Apr; 33(2):260-6. doi:
10.1016/j.clnu.2013.04.009
. [PMID: 23672804] - Vinayagam Ramachandran, Ramalingam Saravanan, Poomalai Senthilraja. Antidiabetic and antihyperlipidemic activity of asiatic acid in diabetic rats, role of HMG CoA: in vivo and in silico approaches.
Phytomedicine : international journal of phytotherapy and phytopharmacology.
2014 Feb; 21(3):225-32. doi:
10.1016/j.phymed.2013.08.027
. [PMID: 24075211] - P Ashok, D Singh, D N Poulose, B Suresh. Evaluation of antihyperlipidemic potency of a polyherbomineral formulation (AF-LIP) in experimental animal models.
Pakistan journal of biological sciences : PJBS.
2014 Feb; 17(3):346-55. doi:
10.3923/pjbs.2014.346.355
. [PMID: 24897788] - Cheng-Hsun Wu, Ting-Tsz Ou, Chun-Hua Chang, Xiao-Zong Chang, Mon-Yuan Yang, Chau-Jong Wang. The polyphenol extract from Sechium edule shoots inhibits lipogenesis and stimulates lipolysis via activation of AMPK signals in HepG2 cells.
Journal of agricultural and food chemistry.
2014 Jan; 62(3):750-9. doi:
10.1021/jf404611a
. [PMID: 24377368] - Danish Iqbal, M Salman Khan, Amir Khan, Mohd Sajid Khan, Saheem Ahmad, Ashwani K Srivastava, Paramdeep Bagga. In vitro screening for β-hydroxy-β-methylglutaryl-CoA reductase inhibitory and antioxidant activity of sequentially extracted fractions of Ficus palmata Forsk.
BioMed research international.
2014; 2014(?):762620. doi:
10.1155/2014/762620
. [PMID: 24883325] - Tae-Gue Ahn, Joo-Young Lee, Se-Yun Cheon, Hyo-Jin An, Yoon-Bum Kook. Protective effect of Sam-Hwang-Sa-Sim-Tang against hepatic steatosis in mice fed a high-cholesterol diet.
BMC complementary and alternative medicine.
2013 Dec; 13(?):366. doi:
10.1186/1472-6882-13-366
. [PMID: 24364887] - Tobias Hilbert, Jens Poth, Stilla Frede, Sven Klaschik, Andreas Hoeft, Georg Baumgarten, Pascal Knuefermann. Anti-atherogenic effects of statins: Impact on angiopoietin-2 release from endothelial cells.
Biochemical pharmacology.
2013 Nov; 86(10):1452-60. doi:
10.1016/j.bcp.2013.09.004
. [PMID: 24041741] - Isabelle Côté, Emilienne Tudor Ngo Sock, Émile Lévy, Jean-Marc Lavoie. An atherogenic diet decreases liver FXR gene expression and causes severe hepatic steatosis and hepatic cholesterol accumulation: effect of endurance training.
European journal of nutrition.
2013 Aug; 52(5):1523-32. doi:
10.1007/s00394-012-0459-5
. [PMID: 23117815] - Shinobu Watanabe, Takuya Katsube, Hideki Hattori, Hiromasa Sato, Tomoko Ishijima, Yuji Nakai, Keiko Abe, Kenji Sonomoto. Effect of Lactobacillus brevis 119-2 isolated from Tsuda kabu red turnips on cholesterol levels in cholesterol-administered rats.
Journal of bioscience and bioengineering.
2013 Jul; 116(1):45-51. doi:
10.1016/j.jbiosc.2013.01.009
. [PMID: 23415664] - Guangzhong Ma, Junyu Zhou, Chunxiu Tian, Dechen Jiang, Danjun Fang, Hongyuan Chen. Luminol electrochemiluminescence for the analysis of active cholesterol at the plasma membrane in single mammalian cells.
Analytical chemistry.
2013 Apr; 85(8):3912-7. doi:
10.1021/ac303304r
. [PMID: 23527944] - Rebecca A Faulkner, Andrew D Nguyen, Youngah Jo, Russell A DeBose-Boyd. Lipid-regulated degradation of HMG-CoA reductase and Insig-1 through distinct mechanisms in insect cells.
Journal of lipid research.
2013 Apr; 54(4):1011-22. doi:
10.1194/jlr.m033639
. [PMID: 23403031] - Masaru Iwai, Hisako Sone, Harumi Kanno, Tomozo Moritani, Masatsugu Horiuchi. Reciprocal regulation of cholesterol excretion in apolipoprotein E-null mice by angiotensin II type 1 and type 2 receptor deficiency.
Life sciences.
2013 Mar; 92(4-5):276-81. doi:
10.1016/j.lfs.2012.12.006
. [PMID: 23333824] - Yong-Kyoung Kim, Jae Kwang Kim, Yeon Bok Kim, Sanghyun Lee, Soo-Un Kim, Sang Un Park. Enhanced accumulation of phytosterol and triterpene in hairy root cultures of Platycodon grandiflorum by overexpression of Panax ginseng 3-hydroxy-3-methylglutaryl-coenzyme A reductase.
Journal of agricultural and food chemistry.
2013 Feb; 61(8):1928-34. doi:
10.1021/jf304911t
. [PMID: 23298228] - Youngki Park, Timothy P Carr. Unsaturated fatty acids and phytosterols regulate cholesterol transporter genes in Caco-2 and HepG2 cell lines.
Nutrition research (New York, N.Y.).
2013 Feb; 33(2):154-61. doi:
10.1016/j.nutres.2012.11.014
. [PMID: 23399666] - Avery Sengupta, Mahua Ghosh. Protective role of phytosterol esters in combating oxidative hepatocellular injury in hypercholesterolemic rats.
Pakistan journal of biological sciences : PJBS.
2013 Jan; 16(2):59-66. doi:
10.3923/pjbs.2013.59.66
. [PMID: 24199488] - Nicolas Gauthier, Jiang Wei Wu, Shu Pei Wang, Pierre Allard, Orval A Mamer, Lawrence Sweetman, Ann B Moser, Lisa Kratz, Fernando Alvarez, Yves Robitaille, François Lépine, Grant A Mitchell. A liver-specific defect of Acyl-CoA degradation produces hyperammonemia, hypoglycemia and a distinct hepatic Acyl-CoA pattern.
PloS one.
2013; 8(7):e60581. doi:
10.1371/journal.pone.0060581
. [PMID: 23861731] - Mohammad Faseleh Jahromi, Juan Boo Liang, Yin Wan Ho, Rosfarizan Mohamad, Yong Meng Goh, Parisa Shokryazdan, James Chin. Lovastatin in Aspergillus terreus: fermented rice straw extracts interferes with methane production and gene expression in Methanobrevibacter smithii.
BioMed research international.
2013; 2013(?):604721. doi:
10.1155/2013/604721
. [PMID: 23710454] - Long-Yan Zhao, Wei Huang, Qing-Xia Yuan, Jie Cheng, Zhen-Chi Huang, Le-Jun Ouyang, Fu-Hua Zeng. Hypolipidaemic effects and mechanisms of the main component of Opuntia dillenii Haw. polysaccharides in high-fat emulsion-induced hyperlipidaemic rats.
Food chemistry.
2012 Sep; 134(2):964-71. doi:
10.1016/j.foodchem.2012.03.001
. [PMID: 23107714] - Qiu-Ping Wang, Chun-Xiu Peng, Bin Gao, Jia-Shun Gong. Influence of large molecular polymeric pigments isolated from fermented Zijuan tea on the activity of key enzymes involved in lipid metabolism in rat.
Experimental gerontology.
2012 Sep; 47(9):672-9. doi:
10.1016/j.exger.2012.06.002
. [PMID: 22705313] - Hui Wang, Dinesh A Nagegowda, Reetika Rawat, Pierrette Bouvier-Navé, Dianjing Guo, Thomas J Bach, Mee-Len Chye. Overexpression of Brassica juncea wild-type and mutant HMG-CoA synthase 1 in Arabidopsis up-regulates genes in sterol biosynthesis and enhances sterol production and stress tolerance.
Plant biotechnology journal.
2012 Jan; 10(1):31-42. doi:
10.1111/j.1467-7652.2011.00631.x
. [PMID: 21645203] - Christopher M Masi, Louise C Hawkley, John T Cacioppo. Serum 2-methoxyestradiol, an estrogen metabolite, is positively associated with serum HDL-C in a population-based sample.
Lipids.
2012 Jan; 47(1):35-8. doi:
10.1007/s11745-011-3600-y
. [PMID: 21809102] - Jacek Owczarek, Magdalena Jasińska-Stroschein, Daria Orszulak-Michalak. Concomitant administration of different doses of simvastatin with ivabradine influence on PAI-1 and heart rate in normo- and hypercholesterolaemic rats.
TheScientificWorldJournal.
2012; 2012(?):976519. doi:
10.1100/2012/976519
. [PMID: 22645493] - Mari R Thomas, Vickie McDonald, Samuel J Machin, Marie A Scully. Thrombotic thrombocytopenic purpura associated with statin therapy.
Blood coagulation & fibrinolysis : an international journal in haemostasis and thrombosis.
2011 Dec; 22(8):762-3. doi:
10.1097/mbc.0b013e32834a6170
. [PMID: 22198366] - John S Burg, Peter J Espenshade. Regulation of HMG-CoA reductase in mammals and yeast.
Progress in lipid research.
2011 Oct; 50(4):403-10. doi:
10.1016/j.plipres.2011.07.002
. [PMID: 21801748] - Cheng-Hsun Wu, Ming-Cheng Lin, Hsueh-Chun Wang, Mon-Yuan Yang, Ming-Jia Jou, Chau-Jong Wang. Rutin inhibits oleic acid induced lipid accumulation via reducing lipogenesis and oxidative stress in hepatocarcinoma cells.
Journal of food science.
2011 Mar; 76(2):T65-72. doi:
10.1111/j.1750-3841.2010.02033.x
. [PMID: 21535797] - Zhubo Dai, Guanghong Cui, Shu-Feng Zhou, Xianan Zhang, Luqi Huang. Cloning and characterization of a novel 3-hydroxy-3-methylglutaryl coenzyme A reductase gene from Salvia miltiorrhiza involved in diterpenoid tanshinone accumulation.
Journal of plant physiology.
2011 Jan; 168(2):148-57. doi:
10.1016/j.jplph.2010.06.008
. [PMID: 20637524] - Mohan-Kumari H Puttananjaiah, Mohan Appasaheb Dhale, Vaishali Gaonkar, Shradha Keni. Statins: 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase inhibitors demonstrate anti-atherosclerotic character due to their antioxidant capacity.
Applied biochemistry and biotechnology.
2011 Jan; 163(2):215-22. doi:
10.1007/s12010-010-9031-z
. [PMID: 20640529] - Ioanna Vallianou, Nikolaos Peroulis, Panayotis Pantazis, Margarita Hadzopoulou-Cladaras. Camphene, a plant-derived monoterpene, reduces plasma cholesterol and triglycerides in hyperlipidemic rats independently of HMG-CoA reductase activity.
PloS one.
2011; 6(11):e20516. doi:
10.1371/journal.pone.0020516
. [PMID: 22073134] - Si-Hyung Yang, Jun-Shik Choi, Dong-Hyun Choi. Effects of HMG-CoA reductase inhibitors on the pharmacokinetics of losartan and its main metabolite EXP-3174 in rats: possible role of CYP3A4 and P-gp inhibition by HMG-CoA reductase inhibitors.
Pharmacology.
2011; 88(1-2):1-9. doi:
10.1159/000328773
. [PMID: 21709429] - Asaf A Qureshi, Julia C Reis, Christopher J Papasian, David C Morrison, Nilofer Qureshi. Tocotrienols inhibit lipopolysaccharide-induced pro-inflammatory cytokines in macrophages of female mice.
Lipids in health and disease.
2010 Dec; 9(?):143. doi:
10.1186/1476-511x-9-143
. [PMID: 21162750] - Jyh-Chang Hwang, Li-Chien Chang, Yuh-Feng Lin, Hao-Ai Shui, Jin-Shuen Chen. Effects of fungal statins on high-glucose-induced mouse mesangial cell hypocontractility may involve filamentous actin, t-complex polypeptide 1 subunit beta, and glucose regulated protein 78.
Translational research : the journal of laboratory and clinical medicine.
2010 Aug; 156(2):80-90. doi:
10.1016/j.trsl.2010.05.006
. [PMID: 20627192] - De-xiu Bu, Margarite Tarrio, Nir Grabie, Yuzhi Zhang, Hiroyuki Yamazaki, George Stavrakis, Elena Maganto-Garcia, Zachary Pepper-Cunningham, Petr Jarolim, Masanori Aikawa, Guillermo García-Cardeña, Andrew H Lichtman. Statin-induced Krüppel-like factor 2 expression in human and mouse T cells reduces inflammatory and pathogenic responses.
The Journal of clinical investigation.
2010 Jun; 120(6):1961-70. doi:
10.1172/jci41384
. [PMID: 20440076]