Chebulagic acid (BioDeep_00000003754)

 

Secondary id: BioDeep_00000177221, BioDeep_00000230706

PANOMIX_OTCML-2023


代谢物信息卡片


chebulagic acid

化学式: C41H30O27 (954.0974)
中文名称: 诃子鞣酸
谱图信息: 最多检出来源 Escherichia coli(natural_products) 60%

Reviewed

Last reviewed on 2024-09-27.

Cite this Page

Chebulagic acid. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China. https://query.biodeep.cn/s/chebulagic_acid (retrieved 2024-12-22) (BioDeep RN: BioDeep_00000003754). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

分子结构信息

SMILES: C1C2C3C(C(C(O2)OC(=O)C4=CC(=C(C(=C4)O)O)O)OC(=O)C5=CC(=C(C6=C5C(C(C(=O)O3)CC(=O)O)C(C(=O)O6)O)O)O)OC(=O)C7=CC(=C(C(=C7C8=C(C(=C(C=C8C(=O)O1)O)O)O)O)O)O
InChI: InChI=1S/C41H30O27/c42-13-1-8(2-14(43)24(13)49)35(56)68-41-34-33-31(64-39(60)12(6-19(47)48)22-23-11(38(59)67-34)5-17(46)27(52)32(23)65-40(61)30(22)55)18(63-41)7-62-36(57)9-3-15(44)25(50)28(53)20(9)21-10(37(58)66-33)4-16(45)26(51)29(21)54/h1-5,12,18,22,30-31,33-34,41-46,49-55H,6-7H2,(H,47,48)

描述信息

D000970 - Antineoplastic Agents > D059003 - Topoisomerase Inhibitors > D059004 - Topoisomerase I Inhibitors
D004791 - Enzyme Inhibitors > D016859 - Lipoxygenase Inhibitors
Chebulagic acid is a COX-LOX dual inhibitor isolated from the fruits of Terminalia chebula Retz, on angiogenesis. Chebulagic acid is a M2 serine to asparagine 31 mutation (S31N) inhibitor and influenza antiviral. Chebulagic acid also against SARS-CoV-2 viral replication with an EC50 of 9.76 μM.
Chebulagic acid is a COX-LOX dual inhibitor isolated from the fruits of Terminalia chebula Retz, on angiogenesis. Chebulagic acid is a M2 serine to asparagine 31 mutation (S31N) inhibitor and influenza antiviral. Chebulagic acid also against SARS-CoV-2 viral replication with an EC50 of 9.76 μM.

Chebulagic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=23094-71-5 (retrieved 2024-09-27) (CAS RN: 23094-71-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

同义名列表

4 个代谢物同义名

chebulagic acid; CID 442674; CID 250397; Chebulagic acid



数据库引用编号

15 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 12 AIMP2, ALOX5, ANG, BCL2, CASP3, CDH5, CTNNB1, MAPK8, MTOR, PTGS2, TLR4, VEGFA
Peripheral membrane protein 3 ALOX5, MTOR, PTGS2
Endosome membrane 1 TLR4
Endoplasmic reticulum membrane 3 BCL2, MTOR, PTGS2
Nucleus 9 AIMP2, ANG, BCL2, CASP3, CTNNB1, KDR, MAPK8, MTOR, VEGFA
cytosol 9 AIMP2, ALOX5, ANG, BCL2, CASP3, CTNNB1, MAPK8, MTOR, SLC2A4
dendrite 1 MTOR
phagocytic vesicle 1 MTOR
trans-Golgi network 1 SLC2A4
centrosome 1 CTNNB1
nucleoplasm 6 ALOX5, CASP3, CDH5, CTNNB1, MAPK8, MTOR
Cell membrane 7 CDH5, CTNNB1, KDR, PECAM1, SLC2A4, TLR4, TNF
Cytoplasmic side 1 MTOR
lamellipodium 1 CTNNB1
Multi-pass membrane protein 1 SLC2A4
Golgi apparatus membrane 1 MTOR
Synapse 2 CTNNB1, MAPK8
cell cortex 1 CTNNB1
cell junction 4 CDH5, CTNNB1, KDR, PECAM1
cell surface 4 CDH5, TLR4, TNF, VEGFA
glutamatergic synapse 2 CASP3, CTNNB1
Golgi apparatus 2 KDR, VEGFA
Golgi membrane 2 INS, MTOR
growth cone 1 ANG
lysosomal membrane 2 GAA, MTOR
neuronal cell body 3 ANG, CASP3, TNF
presynaptic membrane 1 CTNNB1
sarcolemma 1 SLC2A4
Cytoplasm, cytosol 2 AIMP2, ALOX5
Lysosome 2 GAA, MTOR
Presynapse 1 SLC2A4
endosome 1 KDR
plasma membrane 8 CDH5, CTNNB1, GAA, KDR, PECAM1, SLC2A4, TLR4, TNF
Membrane 9 AIMP2, BCL2, CDH5, CTNNB1, GAA, MTOR, SLC2A4, TLR4, VEGFA
axon 1 MAPK8
basolateral plasma membrane 1 CTNNB1
caveola 1 PTGS2
extracellular exosome 4 CTNNB1, GAA, PECAM1, SLC2A4
Lysosome membrane 2 GAA, MTOR
endoplasmic reticulum 4 BCL2, KDR, PTGS2, VEGFA
extracellular space 8 ALOX5, ANG, CXCL8, IL6, INS, PECAM1, TNF, VEGFA
lysosomal lumen 1 GAA
perinuclear region of cytoplasm 4 ALOX5, CTNNB1, SLC2A4, TLR4
Schaffer collateral - CA1 synapse 1 CTNNB1
adherens junction 3 CDH5, CTNNB1, VEGFA
apicolateral plasma membrane 1 CTNNB1
bicellular tight junction 2 CDH5, CTNNB1
mitochondrion 1 BCL2
protein-containing complex 4 BCL2, CTNNB1, PECAM1, PTGS2
intracellular membrane-bounded organelle 1 GAA
Microsome membrane 2 MTOR, PTGS2
postsynaptic density 1 CASP3
TORC1 complex 1 MTOR
TORC2 complex 1 MTOR
Single-pass type I membrane protein 3 CDH5, PECAM1, TLR4
Secreted 6 ANG, CXCL8, GAA, IL6, INS, VEGFA
extracellular region 9 ALOX5, ANG, CXCL8, GAA, IL6, INS, KDR, TNF, VEGFA
Mitochondrion outer membrane 2 BCL2, MTOR
Single-pass membrane protein 1 BCL2
mitochondrial outer membrane 2 BCL2, MTOR
[Isoform 2]: Secreted 1 KDR
anchoring junction 1 KDR
transcription regulator complex 1 CTNNB1
Nucleus membrane 2 ALOX5, BCL2
Bcl-2 family protein complex 1 BCL2
nuclear membrane 3 ALOX5, BCL2, CDH5
external side of plasma membrane 6 CDH5, KDR, PECAM1, SLC2A4, TLR4, TNF
Secreted, extracellular space, extracellular matrix 1 VEGFA
multivesicular body 1 SLC2A4
actin cytoskeleton 1 ANG
T-tubule 1 SLC2A4
Z disc 1 CTNNB1
beta-catenin destruction complex 1 CTNNB1
nucleolus 1 ANG
Wnt signalosome 1 CTNNB1
Early endosome 2 KDR, TLR4
apical part of cell 1 CTNNB1
cell-cell junction 3 CDH5, CTNNB1, PECAM1
clathrin-coated pit 1 SLC2A4
recycling endosome 1 TNF
Single-pass type II membrane protein 1 TNF
postsynaptic membrane 1 CTNNB1
Cytoplasm, perinuclear region 2 ALOX5, SLC2A4
Membrane raft 4 KDR, PECAM1, SLC2A4, TNF
pore complex 1 BCL2
Cytoplasm, cytoskeleton 1 CTNNB1
focal adhesion 1 CTNNB1
Cell junction, adherens junction 2 CDH5, CTNNB1
flotillin complex 1 CTNNB1
extracellular matrix 1 VEGFA
basement membrane 1 ANG
sarcoplasmic reticulum 1 SLC2A4
Nucleus, PML body 1 MTOR
PML body 1 MTOR
secretory granule 1 VEGFA
fascia adherens 1 CTNNB1
lateral plasma membrane 1 CTNNB1
Nucleus inner membrane 1 PTGS2
Nucleus outer membrane 1 PTGS2
nuclear inner membrane 1 PTGS2
nuclear outer membrane 1 PTGS2
Cell projection, ruffle 1 TLR4
ruffle 1 TLR4
receptor complex 2 KDR, TLR4
neuron projection 1 PTGS2
phagocytic cup 2 TLR4, TNF
cell periphery 1 CTNNB1
Chromosome 1 ANG
Cytoplasm, cytoskeleton, cilium basal body 1 CTNNB1
Nucleus, nucleolus 1 ANG
spindle pole 1 CTNNB1
postsynaptic density, intracellular component 1 CTNNB1
microvillus membrane 1 CTNNB1
nuclear envelope 2 ALOX5, MTOR
Nucleus envelope 1 ALOX5
Endomembrane system 3 CTNNB1, MTOR, SLC2A4
endosome lumen 1 INS
sorting endosome 1 KDR
Cytoplasmic vesicle membrane 1 SLC2A4
tertiary granule membrane 1 GAA
Cytoplasm, Stress granule 1 ANG
cytoplasmic stress granule 1 ANG
euchromatin 1 CTNNB1
myelin sheath 1 BCL2
clathrin-coated vesicle 1 SLC2A4
trans-Golgi network transport vesicle 1 SLC2A4
lipopolysaccharide receptor complex 1 TLR4
ficolin-1-rich granule lumen 1 ALOX5
secretory granule lumen 2 ALOX5, INS
secretory granule membrane 1 PECAM1
Golgi lumen 1 INS
endoplasmic reticulum lumen 3 IL6, INS, PTGS2
nuclear matrix 1 ALOX5
platelet alpha granule lumen 1 VEGFA
endocytic vesicle 1 ANG
transport vesicle 1 INS
azurophil granule membrane 1 GAA
beta-catenin-TCF complex 1 CTNNB1
Endoplasmic reticulum-Golgi intermediate compartment membrane 1 INS
Nucleus matrix 1 ALOX5
nuclear envelope lumen 1 ALOX5
presynaptic active zone cytoplasmic component 1 CTNNB1
vesicle membrane 1 SLC2A4
protein-DNA complex 1 CTNNB1
ficolin-1-rich granule membrane 1 GAA
basal dendrite 1 MAPK8
death-inducing signaling complex 1 CASP3
aminoacyl-tRNA synthetase multienzyme complex 1 AIMP2
[Isoform Long]: Cell membrane 1 PECAM1
Cytoplasmic vesicle, phagosome 1 MTOR
catenin complex 2 CDH5, CTNNB1
platelet alpha granule membrane 1 PECAM1
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
angiogenin-PRI complex 1 ANG
interleukin-6 receptor complex 1 IL6
Nucleus intermembrane space 1 ALOX5
autolysosome lumen 1 GAA
BAD-BCL-2 complex 1 BCL2
insulin-responsive compartment 1 SLC2A4
[N-VEGF]: Cytoplasm 1 VEGFA
[VEGFA]: Secreted 1 VEGFA
[Isoform L-VEGF189]: Endoplasmic reticulum 1 VEGFA
[Isoform VEGF121]: Secreted 1 VEGFA
[Isoform VEGF165]: Secreted 1 VEGFA
VEGF-A complex 1 VEGFA
beta-catenin-TCF7L2 complex 1 CTNNB1
[Isoform Delta15]: Cell junction 1 PECAM1
beta-catenin-ICAT complex 1 CTNNB1
Scrib-APC-beta-catenin complex 1 CTNNB1
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF


文献列表

  • Daniel Pushparaju Yeggoni, Manjunath Meti, Rajagopal Subramanyam. Chebulinic and chebulagic acid binding with serum proteins: biophysical and molecular docking approach. Journal of biomolecular structure & dynamics. 2022 Apr; ?(?):1-16. doi: 10.1080/07391102.2022.2060862. [PMID: 35403561]
  • Ganesh Vasu, Ramalingam Sundaram, Karuppiah Muthu. Chebulagic acid attenuates HFD/streptozotocin induced impaired glucose metabolism and insulin resistance via up regulations of PPAR γ and GLUT 4 in type 2 diabetic rats. Toxicology mechanisms and methods. 2022 Mar; 32(3):159-170. doi: 10.1080/15376516.2021.1976333. [PMID: 34470562]
  • Vishal S Patil, Darasaguppe R Harish, Umashankar Vetrivel, Subarna Roy, Sanjay H Deshpande, Harsha V Hegde. Hepatitis C Virus NS3/4A Inhibition and Host Immunomodulation by Tannins from Terminalia chebula: A Structural Perspective. Molecules (Basel, Switzerland). 2022 Feb; 27(3):. doi: 10.3390/molecules27031076. [PMID: 35164341]
  • Ruikun Du, Laura Cooper, Zinuo Chen, Hyun Lee, Lijun Rong, Qinghua Cui. Discovery of chebulagic acid and punicalagin as novel allosteric inhibitors of SARS-CoV-2 3CLpro. Antiviral research. 2021 06; 190(?):105075. doi: 10.1016/j.antiviral.2021.105075. [PMID: 33872675]
  • Maggie C Duncan, Pascal Amoa Onguéné, Ibuki Kihara, Derrick N Nebangwa, Maya E Naidu, David E Williams, Aruna D Balgi, Kerstin Andrae-Marobela, Michel Roberge, Raymond J Andersen, Masahiro Niikura, Fidele Ntie-Kang, Ian Tietjen. Virtual Screening Identifies Chebulagic Acid as an Inhibitor of the M2(S31N) Viral Ion Channel and Influenza A Virus. Molecules (Basel, Switzerland). 2020 Jun; 25(12):. doi: 10.3390/molecules25122903. [PMID: 32599753]
  • Chandran S Abhinand, Prabhakaran A Athira, Sasikumar J Soumya, Perumana R Sudhakaran. Multiple Targets Directed Multiple Ligands: An In Silico and In Vitro Approach to Evaluating the Effect of Triphala on Angiogenesis. Biomolecules. 2020 01; 10(2):. doi: 10.3390/biom10020177. [PMID: 31979409]
  • Palika Wetchakul, Jo Aan Goon, Ademola Ezekiel Adekoya, Opeyemi Joshua Olatunji, Sutticha Ruangchuay, Patcharawalai Jaisamut, Acharaporn Issuriya, Nongluk Kunworarath, Surasak Limsuwan, Sasitorn Chusri. Traditional tonifying polyherbal infusion, Jatu-Phala-Tiga, exerts antioxidant activities and extends lifespan of Caenorhabditis elegans. BMC complementary and alternative medicine. 2019 Aug; 19(1):209. doi: 10.1186/s12906-019-2626-1. [PMID: 31409340]
  • Ying Lu, Huiyu Yan, Shiyong Teng, Xige Yang. A liquid chromatography-tandem mass spectrometry method for preclinical pharmacokinetics and tissue distribution of hydrolyzable tannins chebulinic acid and chebulagic acid in rats. Biomedical chromatography : BMC. 2019 Mar; 33(3):e4425. doi: 10.1002/bmc.4425. [PMID: 30397912]
  • Sivasankar Shanmuganathan, Narayanasamy Angayarkanni. Chebulagic acid and Chebulinic acid inhibit TGF-β1 induced fibrotic changes in the chorio-retinal endothelial cells by inhibiting ERK phosphorylation. Microvascular research. 2019 01; 121(?):14-23. doi: 10.1016/j.mvr.2018.09.001. [PMID: 30189210]
  • Sivasankar Shanmuganathan, Narayanasamy Angayarkanni. Chebulagic acid Chebulinic acid and Gallic acid, the active principles of Triphala, inhibit TNFα induced pro-angiogenic and pro-inflammatory activities in retinal capillary endothelial cells by inhibiting p38, ERK and NFkB phosphorylation. Vascular pharmacology. 2018 09; 108(?):23-35. doi: 10.1016/j.vph.2018.04.005. [PMID: 29678603]
  • Ajay Kesharwani, Suja Kizhiyedath Polachira, Reshmi Nair, Aakanksha Agarwal, Nripendra Nath Mishra, Satish Kumar Gupta. Anti-HSV-2 activity of Terminalia chebula Retz extract and its constituents, chebulagic and chebulinic acids. BMC complementary and alternative medicine. 2017 Feb; 17(1):110. doi: 10.1186/s12906-017-1620-8. [PMID: 28196487]
  • Kai Lu, Sujit Basu. The natural compound chebulagic acid inhibits vascular endothelial growth factor A mediated regulation of endothelial cell functions. Scientific reports. 2015 Apr; 5(?):9642. doi: 10.1038/srep09642. [PMID: 25859636]
  • Shanmuganathan Sivasankar, Ramu Lavanya, Pemaiah Brindha, Narayanasamy Angayarkanni. Aqueous and alcoholic extracts of Triphala and their active compounds chebulagic acid and chebulinic acid prevented epithelial to mesenchymal transition in retinal pigment epithelial cells, by inhibiting SMAD-3 phosphorylation. PloS one. 2015; 10(3):e0120512. doi: 10.1371/journal.pone.0120512. [PMID: 25793924]
  • Gangadharan Leela Shyni, Sasidharan Kavitha, Sasidharan Indu, Anil Das Arya, Sasidharan Suseela Anusree, Vadavanath Prabhakaran Vineetha, Sankar Vandana, Andikannu Sundaresan, Kozhiparambil Gopalan Raghu. Chebulagic acid from Terminalia chebula enhances insulin mediated glucose uptake in 3T3-L1 adipocytes via PPARγ signaling pathway. BioFactors (Oxford, England). 2014 Nov; 40(6):646-57. doi: 10.1002/biof.1193. [PMID: 25529897]
  • Won Jeong Lee, Jae Sun Moon, Sung In Kim, Young Tae Kim, Oyekanmi Nash, Yong-Sun Bahn, Sung Uk Kim. Inhibition of the calcineurin pathway by two tannins, chebulagic acid and chebulanin, isolated from Harrisonia abyssinica Oliv. Journal of microbiology and biotechnology. 2014 Oct; 24(10):1377-81. doi: 10.4014/jmb.1405.05030. [PMID: 25001554]
  • Naresh Kumar, D Gangappa, Geetika Gupta, Roy Karnati. Chebulagic acid from Terminalia chebula causes G1 arrest, inhibits NFκB and induces apoptosis in retinoblastoma cells. BMC complementary and alternative medicine. 2014 Aug; 14(?):319. doi: 10.1186/1472-6882-14-319. [PMID: 25169718]
  • Kenneth T Kongstad, Sileshi G Wubshet, Ane Johannesen, Lasse Kjellerup, Anne-Marie Lund Winther, Anna Katharina Jäger, Dan Staerk. High-resolution screening combined with HPLC-HRMS-SPE-NMR for identification of fungal plasma membrane H(+)-ATPase inhibitors from plants. Journal of agricultural and food chemistry. 2014 Jun; 62(24):5595-602. doi: 10.1021/jf501605z. [PMID: 24830509]
  • Yoko Miyasaki, John D Rabenstein, Joshua Rhea, Marie-Laure Crouch, Ulla M Mocek, Patricia Emmett Kittell, Margie A Morgan, Wesley Stephen Nichols, M M Van Benschoten, William David Hardy, George Y Liu. Isolation and characterization of antimicrobial compounds in plant extracts against multidrug-resistant Acinetobacter baumannii. PloS one. 2013; 8(4):e61594. doi: 10.1371/journal.pone.0061594. [PMID: 23630600]
  • Baoru Yang, Maaria Kortesniemi, Pengzhan Liu, Maarit Karonen, Juha-Pekka Salminen. Analysis of hydrolyzable tannins and other phenolic compounds in emblic leafflower (Phyllanthus emblica L.) fruits by high performance liquid chromatography-electrospray ionization mass spectrometry. Journal of agricultural and food chemistry. 2012 Sep; 60(35):8672-83. doi: 10.1021/jf302925v. [PMID: 22889097]
  • Indu Sasidharan, A Sundaresan, V M Nisha, Mahesh S Kirishna, K G Raghu, P Jayamurthy. Inhibitory effect of Terminalia chebula Retz. fruit extracts on digestive enzyme related to diabetes and oxidative stress. Journal of enzyme inhibition and medicinal chemistry. 2012 Aug; 27(4):578-86. doi: 10.3109/14756366.2011.603130. [PMID: 22512724]
  • V Patil, A Bandivadekar, D Debjani. Inhibition of Propionibacterium acnes lipase by extracts of Indian medicinal plants. International journal of cosmetic science. 2012 Jun; 34(3):234-9. doi: 10.1111/j.1468-2494.2012.00706.x. [PMID: 22268921]
  • Yuttana Sudjaroen, William E Hull, Gerhard Erben, Gerd Würtele, Supranee Changbumrung, Cornelia M Ulrich, Robert W Owen. Isolation and characterization of ellagitannins as the major polyphenolic components of Longan (Dimocarpus longan Lour) seeds. Phytochemistry. 2012 May; 77(?):226-37. doi: 10.1016/j.phytochem.2011.12.008. [PMID: 22277734]
  • Yongxin Li, Shanjiang Yu, Dong Liu, Peter Proksch, Wenhan Lin. Inhibitory effects of polyphenols toward HCV from the mangrove plant Excoecaria agallocha L. Bioorganic & medicinal chemistry letters. 2012 Jan; 22(2):1099-102. doi: 10.1016/j.bmcl.2011.11.109. [PMID: 22196120]
  • Vijaya Ravinayagam, Ravindran Jaganathan, Sachdanandam Panchanadham, Shanthi Palanivelu. Potential Antioxidant Role of Tridham in Managing Oxidative Stress against Aflatoxin-B(1)-Induced Experimental Hepatocellular Carcinoma. International journal of hepatology. 2012; 2012(?):428373. doi: 10.1155/2012/428373. [PMID: 22518320]
  • Yi-Na Huang, Dong-Dong Zhao, Bo Gao, Kai Zhong, Rui-Xue Zhu, Yan Zhang, Wang-Jun Xie, Li-Rong Jia, Hong Gao. Anti-hyperglycemic effect of chebulagic acid from the fruits of Terminalia chebula Retz. International journal of molecular sciences. 2012; 13(5):6320-6333. doi: 10.3390/ijms13056320. [PMID: 22754367]
  • Hsin-Ying Chuang, Lean-Teik Ng, Liang-Tzung Lin, Jung-San Chang, Jen-Yang Chen, Ta-Chen Lin, Chun-Ching Lin. Hydrolysable tannins of tropical almond show antifibrotic effects in TGF-β1-induced hepatic stellate cells. Journal of the science of food and agriculture. 2011 Dec; 91(15):2777-84. doi: 10.1002/jsfa.4521. [PMID: 21725979]
  • Joon Ha Park, Han Seung Joo, Ki-Yeon Yoo, Bich Na Shin, In Hye Kim, Choong Hyun Lee, Jung Hoon Choi, Kyunghee Byun, Bonghee Lee, Soon Sung Lim, Myong Jo Kim, Moo-Ho Won. Extract from Terminalia chebula seeds protect against experimental ischemic neuronal damage via maintaining SODs and BDNF levels. Neurochemical research. 2011 Nov; 36(11):2043-50. doi: 10.1007/s11064-011-0528-9. [PMID: 21667226]
  • Surender Singh, Vinod Nair, Y K Gupta. Antiarthritic activity of majoon suranjan (a polyherbal Unani formulation) in rat. The Indian journal of medical research. 2011 Sep; 134(?):384-8. doi: ". [PMID: 21985823]
  • Anh Thu Pham, Karl Egil Malterud, Berit Smestad Paulsen, Drissa Diallo, Helle Wangensteen. DPPH radical scavenging and xanthine oxidase inhibitory activity of Terminalia macroptera leaves. Natural product communications. 2011 Aug; 6(8):1125-8. doi: . [PMID: 21922915]
  • Xiuping Chen, Fangyun Sun, Lifeng Ma, Jinhua Wang, Hailin Qin, Guanhua Du. In vitro evaluation on the antioxidant capacity of triethylchebulate, an aglycone from Terminalia chebula Retz fruit. Indian journal of pharmacology. 2011 May; 43(3):320-3. doi: 10.4103/0253-7613.81508. [PMID: 21713099]
  • Sunil Kumar, Smita Narwal, Vipin Kumar, Om Prakash. α-glucosidase inhibitors from plants: A natural approach to treat diabetes. Pharmacognosy reviews. 2011 Jan; 5(9):19-29. doi: 10.4103/0973-7847.79096. [PMID: 22096315]
  • Aranya Manosroi, Pensak Jantrawut, Hiroyuki Akazawa, Toshihiro Akihisa, Jiradej Manosroi. Biological activities of phenolic compounds isolated from galls of Terminalia chebula Retz. (Combretaceae). Natural product research. 2010 Dec; 24(20):1915-26. doi: 10.1080/14786419.2010.488631. [PMID: 21108118]
  • Uma Ranjan Lal, Shailendra Mani Tripathi, Sanjay M Jachak, Kamlesh Kumar Bhutani, Inder Pal Singh. Chemical changes during fermentation of Abhayarishta and its standardization by HPLC-DAD. Natural product communications. 2010 Apr; 5(4):575-9. doi: . [PMID: 20433076]
  • Takashi Yoshida, Yoshiaki Amakura, Morio Yoshimura. Structural features and biological properties of ellagitannins in some plant families of the order Myrtales. International journal of molecular sciences. 2010 Jan; 11(1):79-106. doi: 10.3390/ijms11010079. [PMID: 20162003]
  • S Kinoshita, Y Inoue, S Nakama, T Ichiba, Y Aniya. Antioxidant and hepatoprotective actions of medicinal herb, Terminalia catappa L. from Okinawa Island and its tannin corilagin. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2007 Nov; 14(11):755-62. doi: 10.1016/j.phymed.2006.12.012. [PMID: 17293097]
  • Quanbin Han, Jingzheng Song, Chunfeng Qiao, Lina Wong, Hongxi Xu. Preparative isolation of hydrolysable tannins chebulagic acid and chebulinic acid from Terminalia chebula by high-speed counter-current chromatography. Journal of separation science. 2006 Jul; 29(11):1653-7. doi: 10.1002/jssc.200600089. [PMID: 16922284]
  • Akira Murakami, Hisashi Ishida, Kimie Kobo, Ikuyo Furukawa, Yasutaka Ikeda, Megumi Yonaha, Yohko Aniya, Hajime Ohigashi. Suppressive effects of Okinawan food items on free radical generation from stimulated leukocytes and identification of some active constituents: implications for the prevention of inflammation-associated carcinogenesis. Asian Pacific journal of cancer prevention : APJCP. 2005 Oct; 6(4):437-48. doi: . [PMID: 16435988]
  • Sang-Ik Lee, Pung-Mi Hyun, Seung-Hyung Kim, Kyoung-Shin Kim, Sang-Keun Lee, Byoung-Soo Kim, Pil Jae Maeng, Jong-Soon Lim. Suppression of the onset and progression of collagen-induced arthritis by chebulagic acid screened from a natural product library. Arthritis and rheumatism. 2005 Jan; 52(1):345-53. doi: 10.1002/art.20715. [PMID: 15641090]
  • Bruno Fogliani, Phila Raharivelomanana, Jean-Pierre Bianchini, Saliou Bouraïma-Madjèbi, Edouard Hnawia. Bioactive ellagitannins from Cunonia macrophylla, an endemic Cunoniaceae from New Caledonia. Phytochemistry. 2005 Jan; 66(2):241-7. doi: 10.1016/j.phytochem.2004.11.016. [PMID: 15652581]
  • Lih-Jeng Juang, Shuenn-Jyi Sheu, Ta-Chen Lin. Determination of hydrolyzable tannins in the fruit of Terminalia chebula Retz. by high-performance liquid chromatography and capillary electrophoresis. Journal of separation science. 2004 Jun; 27(9):718-24. doi: 10.1002/jssc.200401741. [PMID: 15387468]
  • Lan-zhen Zhang, Wen-hua Zhao, Ya-jian Guo, Guang-zhong Tu, Shu Lin, Lin-guang Xin. [Studies on chemical constituents in fruits of Tibetan medicine Phyllanthus emblica]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2003 Oct; 28(10):940-3. doi: . [PMID: 15620182]
  • Olga Silva, Eugénia Ferreira, M Vaz Pato, Manuela Caniça, Elsa T Gomes. In vitro anti-Neisseria gonorrhoeae activity of Terminalia macroptera leaves. FEMS microbiology letters. 2002 Jun; 211(2):203-6. doi: 10.1111/j.1574-6968.2002.tb11225.x. [PMID: 12076813]
  • Mi-Jeong Ahn, Chul Young Kim, Ji Suk Lee, Tae Gyun Kim, Seung Hee Kim, Chong-Kyo Lee, Bo-Bin Lee, Cha-Gyun Shin, Hoon Huh, Jinwoong Kim. Inhibition of HIV-1 integrase by galloyl glucoses from Terminalia chebula and flavonol glycoside gallates from Euphorbia pekinensis. Planta medica. 2002 May; 68(5):457-9. doi: 10.1055/s-2002-32070. [PMID: 12058327]
  • Y J Zhang, T Abe, T Tanaka, C R Yang, I Kouno. Phyllanemblinins A-F, new ellagitannins from Phyllanthus emblica. Journal of natural products. 2001 Dec; 64(12):1527-32. doi: 10.1021/np010370g. [PMID: 11754604]
  • I Abe, Y Kashiwagi, H Noguchi, T Tanaka, Y Ikeshiro, Y Kashiwada. Ellagitannins and hexahydroxydiphenoyl esters as inhibitors of vertebrate squalene epoxidase. Journal of natural products. 2001 Aug; 64(8):1010-4. doi: 10.1021/np010100y. [PMID: 11520216]
  • G Ding, Y R Lu, C R Ji, Y Z Liu. [Analysis of tannins in Fructus Chebulae and its confusion varieties by HPCE]. Yao xue xue bao = Acta pharmaceutica Sinica. 2001 Apr; 36(4):292-5. doi: ". [PMID: 12580059]
  • G Ding, Y Liu, W Wang. [Assay of three hydrolyzable tannins in Fructus Chebulae from different habitats by RP-HPLC]. Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials. 2000 Jun; 23(6):328-30. doi: ". [PMID: 12575084]
  • S Hamada, T Kataoka, J T Woo, A Yamada, T Yoshida, T Nishimura, N Otake, K Nagai. Immunosuppressive effects of gallic acid and chebulagic acid on CTL-mediated cytotoxicity. Biological & pharmaceutical bulletin. 1997 Sep; 20(9):1017-9. doi: 10.1248/bpb.20.1017. [PMID: 9331989]
  • S M Hecht, D E Berry, L J MacKenzie, R W Busby, C A Nasuti. A strategy for identifying novel, mechanistically unique inhibitors of topoisomerase I. Journal of natural products. 1992 Apr; 55(4):401-13. doi: 10.1021/np50082a001. [PMID: 1324981]