Glycine (BioDeep_00000002847)

 

Secondary id: BioDeep_00000400024

natural product human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite BioNovoGene_Lab2019


代谢物信息卡片


2-aminoacetic acid

化学式: C2H5NO2 (75.032)
中文名称: 甘氨酸
谱图信息: 最多检出来源 Homo sapiens(blood) 23.22%

Reviewed

Last reviewed on 2024-07-02.

Cite this Page

Glycine. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China. https://query.biodeep.cn/s/glycine (retrieved 2024-12-22) (BioDeep RN: BioDeep_00000002847). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

分子结构信息

SMILES: C(C(=O)O)N
InChI: InChI=1S/C2H5NO2/c3-1-2(4)5/h1,3H2,(H,4,5)

描述信息

Glycine (Gly), is an alpha-amino acid. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Amino acids are organic compounds that contain amino (–NH2) and carboxyl (–COOH) functional groups, along with a side chain (R group) specific to each amino acid. Glycine is one of 20 proteinogenic amino acids, i.e., the amino acids used in the biosynthesis of proteins. Glycine is found in all organisms ranging from bacteria to plants to animals. It is classified as an aliphatic, non-polar amino acid and is the simplest of all amino acids. In humans, glycine is a nonessential amino acid, although experimental animals show reduced growth on low-glycine diets. The average adult human ingests 3 to 5 grams of glycine daily. Glycine is a colorless, sweet-tasting crystalline solid. It is the only achiral proteinogenic amino acid. Glycine was discovered in 1820 by the French chemist Henri Braconnot when he hydrolyzed gelatin by boiling it with sulfuric acid. The name comes from the Greek word glucus or "sweet tasting". Glycine is biosynthesized in the body from the amino acid serine, which is in turn derived from 3-phosphoglycerate. In the liver of vertebrates, glycine synthesis is catalyzed by glycine synthase (also called glycine cleavage enzyme). In addition to being synthesized from serine, glycine can also be derived from threonine, choline or hydroxyproline via inter-organ metabolism of the liver and kidneys. Glycine is degraded via three pathways. The predominant pathway in animals and plants is the reverse of the glycine synthase pathway. In this context, the enzyme system involved glycine metabolism is called the glycine cleavage system. The glycine cleavage system catalyzes the oxidative conversion of glycine into carbon dioxide and ammonia, with the remaining one-carbon unit transferred to folate as methylenetetrahydrofolate. It is the main catabolic pathway for glycine and it also contributes to one-carbon metabolism. Patients with a deficiency of this enzyme system have increased glycine in plasma, urine, and cerebrospinal fluid (CSF) with an increased CSF:plasma glycine ratio (PMID: 16151895). Glycine levels are effectively measured in plasma in both normal patients and those with inborn errors of glycine metabolism (http://www.dcnutrition.com/AminoAcids/). Nonketotic hyperglycinaemia (OMIM: 606899) is an autosomal recessive condition caused by deficient enzyme activity of the glycine cleavage enzyme system (EC 2.1.1.10). The glycine cleavage enzyme system comprises four proteins: P-, T-, H- and L-proteins (EC 1.4.4.2, EC 2.1.2.10, and EC 1.8.1.4 for P-, T-, and L-proteins). Mutations have been described in the GLDC (OMIM: 238300), AMT (OMIM: 238310), and GCSH (OMIM: 238330) genes encoding the P-, T-, and H-proteins respectively. Glycine is involved in the bodys production of DNA, hemoglobin, and collagen, and in the release of energy. The principal function of glycine is as a precursor to proteins. Most proteins incorporate only small quantities of glycine, a notable exception being collagen, which contains about 35\\\\\\% glycine. In higher eukaryotes, delta-aminolevulinic acid, the key precursor to porphyrins (needed for hemoglobin and cytochromes), is biosynthesized from glycine and succinyl-CoA by the enzyme ALA synthase. Glycine provides the central C2N subunit of all purines, which are key constituents of DNA and RNA. Glycine is an inhibitory neurotransmitter in the central nervous system, especially in the spinal cord, brainstem, and retina. When glycine receptors are activated, chloride enters the neuron via ionotropic receptors, causing an inhibitory postsynaptic potential (IPSP).

Glycine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=56-40-6 (retrieved 2024-07-02) (CAS RN: 56-40-6). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Glycine is an inhibitory neurotransmitter in the CNS and also acts as a co-agonist along with glutamate, facilitating an excitatory potential at the glutaminergic N-methyl-D-aspartic acid (NMDA) receptors.
Glycine is an inhibitory neurotransmitter in the CNS and also acts as a co-agonist along with glutamate, facilitating an excitatory potential at the glutaminergic N-methyl-D-aspartic acid (NMDA) receptors. Glycine is orally active. Glycine can be used to study cell protection, cancer, neurological diseases, and angiogenesis[1][2][3][4][5][6].
Glycine is an inhibitory neurotransmitter in the CNS and also acts as a co-agonist along with glutamate, facilitating an excitatory potential at the glutaminergic N-methyl-D-aspartic acid (NMDA) receptors.

同义名列表

56 个代谢物同义名

Glycine carbonate (2:1), monopotassium salt; Glycine carbonate (2:1), monolithium salt; Glycine carbonate (1:1), monosodium salt; Glycine carbonate (2:1), monosodium salt; Glycine, sodium hydrogen carbonate; Glycine, monopotasssium salt; Glycine hydrochloride (2:1); Glycine, calcium salt (2:1); Monopotasssium salt glycine; Glycine, monoammonium salt; Salt glycine, monoammonium; Monoammonium salt glycine; Salt glycine, monosodium; Glycine, monosodium salt; Monosodium salt glycine; Glycine phosphate (1:1); Hydrochloride, glycine; Glycine hydrochloride; Glycine sulfate (3:1); Glycine, calcium salt; Glycine, cobalt salt; Calcium salt glycine; Glycine, copper salt; Copper salt glycine; Cobalt salt glycine; Aminoethanoic acid; Phosphate, glycine; 2-Aminoacetic acid; Amino-acetic acid; Acid, aminoacetic; Glycine phosphate; Aminoacetic acid; Aminoessigsaeure; 2-Aminoacetate; Aminoethanoate; Amino-acetate; H2N-CH2-COOH; Gyn-hydralin; Aminoacetate; Glycosthene; Leimzucker; Glycolixir; Glicoamin; Glykokoll; Glycocoll; Aciport; Glycine; Glyzin; Glycin; Padil; Hgly; Gly; G; Glycine; Glycine; Glycine



数据库引用编号

40 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(14)

PlantCyc(0)

代谢反应

208 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(26)

WikiPathways(4)

Plant Reactome(164)

  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
  • PCO cycle: glycolate ⟶ glyoxylate
  • Metabolism and regulation: L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide

INOH(13)

PlantCyc(0)

COVID-19 Disease Map(1)

PathBank(0)

PharmGKB(0)

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 6 DAO, GPHN, GRIN2B, PAM, SRR, TP53
Peripheral membrane protein 2 CYP1B1, DAO
Endosome membrane 2 ADRB2, CLCN5
Endoplasmic reticulum membrane 3 CYP1B1, GRIN2B, GRIN2C
Nucleus 3 ADRB2, PAM, TP53
cytosol 7 CLCN5, DAO, GPHN, GSS, PAM, SRR, TP53
dendrite 1 GPHN
centrosome 1 TP53
nucleoplasm 3 PAM, SLC3A2, TP53
Cell membrane 11 ADRB2, ADRB3, CLCN5, DAO, GLRA2, GPHN, GRID1, GRIN2B, GRIN2C, SLC3A2, SLC6A5
Lipid-anchor 1 GPHN
Cytoplasmic side 1 GPHN
Cell projection, axon 1 PAM
Multi-pass membrane protein 8 ADRB2, ADRB3, CLCN5, GLRA2, GRID1, GRIN2B, GRIN2C, SLC6A5
Golgi apparatus membrane 1 CLCN5
Synapse 2 GLRA2, SLC3A2
cell junction 1 SLC3A2
cell surface 3 GRIN2B, SLC3A2, SLC6A5
glutamatergic synapse 2 GRID1, GRIN2C
Golgi apparatus 2 ADRB2, CLCN5
Golgi membrane 1 CLCN5
lysosomal membrane 2 CLCN5, SLC3A2
neuronal cell body 1 SRR
presynaptic membrane 1 SLC6A5
synaptic vesicle 1 CLCN5
Cytoplasm, cytosol 2 DAO, GPHN
Lysosome 2 ADRB2, GRIN2B
endosome 2 ADRB2, SLC6A5
plasma membrane 12 ADRB2, ADRB3, CLCN5, DAO, GLRA2, GPHN, GRID1, GRIN2B, GRIN2C, PAM, SLC3A2, SLC6A5
presynaptic active zone 1 DAO
synaptic vesicle membrane 1 SLC6A5
Membrane 11 ADRB2, CLCN5, CYP1B1, GGTA1, GLRA2, GRIN2B, GRIN2C, PAM, SLC3A2, SLC6A5, TP53
apical plasma membrane 2 ADRB2, SLC3A2
axon 2 PAM, SLC6A5
basolateral plasma membrane 1 SLC3A2
extracellular exosome 6 COL1A2, DAO, GRID1, GSS, PAM, SLC3A2
Lysosome membrane 1 SLC3A2
endoplasmic reticulum 1 TP53
extracellular space 3 COL1A2, COL7A1, DAO
bicellular tight junction 1 DAO
mitochondrion 2 CYP1B1, TP53
protein-containing complex 1 TP53
intracellular membrane-bounded organelle 3 CYP1B1, GLRA2, PAM
Microsome membrane 1 CYP1B1
postsynaptic density 2 GPHN, GRIN2B
Secreted 2 COL1A2, DAO
extracellular region 5 COL1A2, COL7A1, DAO, ELN, PAM
Single-pass membrane protein 1 PAM
neuronal cell body membrane 1 SLC6A5
Mitochondrion matrix 1 TP53
mitochondrial matrix 1 TP53
Extracellular side 1 DAO
anchoring junction 1 SLC3A2
transcription regulator complex 1 TP53
Cytoplasm, cytoskeleton, microtubule organizing center, centrosome 1 TP53
Secreted, extracellular space, extracellular matrix 2 COL1A2, ELN
dendritic spine 1 GPHN
microtubule cytoskeleton 1 PAM
nucleolus 1 TP53
Early endosome 2 ADRB2, CLCN5
apical part of cell 2 CLCN5, SRR
COPII-coated ER to Golgi transport vesicle 1 COL7A1
Single-pass type II membrane protein 2 GGTA1, SLC3A2
postsynaptic membrane 4 GPHN, GRID1, GRIN2B, GRIN2C
Apical cell membrane 1 SLC3A2
Cytoplasm, cytoskeleton 4 GPHN, GRIN2B, PAM, TP53
GABA-ergic synapse 2 GLRA2, GRID1
extracellular matrix 1 ELN
Peroxisome 1 DAO
basement membrane 1 COL7A1
collagen trimer 2 COL1A2, COL7A1
Peroxisome matrix 1 DAO
peroxisomal matrix 1 DAO
Nucleus, PML body 1 TP53
PML body 1 TP53
collagen-containing extracellular matrix 3 COL1A2, COL7A1, ELN
Postsynaptic cell membrane 5 GLRA2, GPHN, GRID1, GRIN2B, GRIN2C
Late endosome 1 GRIN2B
receptor complex 2 ADRB2, ADRB3
neuron projection 2 GLRA2, GRIN2B
chromatin 1 TP53
cell projection 2 DAO, GLRA2
cytoskeleton 2 GPHN, GRIN2B
Secreted, extracellular space 1 DAO
transmembrane transporter complex 1 GLRA2
Basolateral cell membrane 1 SLC3A2
site of double-strand break 1 TP53
chloride channel complex 1 GLRA2
Cell projection, dendrite 2 GPHN, GRIN2B
Melanosome 1 SLC3A2
Golgi cisterna membrane 1 GGTA1
germ cell nucleus 1 TP53
replication fork 1 TP53
basal plasma membrane 1 SLC3A2
synaptic membrane 2 GPHN, GRIN2B
secretory granule membrane 1 PAM
endoplasmic reticulum lumen 2 COL1A2, COL7A1
nuclear matrix 1 TP53
transcription repressor complex 1 TP53
specific granule lumen 1 DAO
dense core granule 1 SLC6A5
Golgi apparatus, Golgi stack membrane 1 GGTA1
postsynaptic specialization 1 GPHN
Endoplasmic reticulum-Golgi intermediate compartment membrane 1 COL7A1
postsynaptic density membrane 3 GRID1, GRIN2B, GRIN2C
neuronal dense core vesicle 1 ADRB2
Golgi cisterna 1 GGTA1
clathrin-coated endocytic vesicle membrane 1 ADRB2
[Isoform 1]: Nucleus 1 TP53
NMDA selective glutamate receptor complex 2 GRIN2B, GRIN2C
postsynaptic specialization membrane 2 GLRA2, GPHN
Cytoplasmic vesicle, secretory vesicle membrane 1 PAM
elastic fiber 1 ELN
transport vesicle membrane 1 PAM
collagen type I trimer 1 COL1A2
glycinergic synapse 2 GLRA2, SLC6A5
amino acid transport complex 1 SLC3A2
apical pole of neuron 1 SLC3A2
collagen type VII trimer 1 COL7A1


文献列表

  • Xiaofan Yang, Xiaohui Pang, Long Sun, Wenze Li, Yi Wang, Rimao Hua, Meiqing Zhu. A novel 'Turn-Off-On' fluorescent probe for specific sequential detection of Cu2+ and glyphosate and its application in biological imaging. Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy. 2024 Sep; 317(?):124420. doi: 10.1016/j.saa.2024.124420. [PMID: 38728848]
  • Habiba Hashemy, Anthony Nguyen, Rana Khafagy, Delnaz Roshandel, Andrew D Paterson, Satya Dash. Analyses of potential causal contributors to increased waist/hip ratio-associated cardiometabolic disease: A combined and sex-stratified Mendelian randomization study. Diabetes, obesity & metabolism. 2024 Jun; 26(6):2284-2291. doi: 10.1111/dom.15542. [PMID: 38488265]
  • Kimberly N Karin, Mohammed A Mustafa, Justin L Poklis, Belle Buzzi, Joel E Schlosburg, Linda Parker, M Imad Damaj, Aron H Lichtman. N-oleoyl alanine attenuates nicotine reward and spontaneous nicotine withdrawal in mice. Drug and alcohol dependence. 2024 Jun; 259(?):111276. doi: 10.1016/j.drugalcdep.2024.111276. [PMID: 38676968]
  • Tyler M Guido, Samuel D Ratcliffe, Amanda Rahmlow, Matthew A Zambrello, Anthony A Provates, Robert B Clark, Michael B Smith, Frank C Nichols. Metabolism of serine/glycine lipids by human gingival cells in culture. Molecular oral microbiology. 2024 Jun; 39(3):103-112. doi: 10.1111/omi.12439. [PMID: 37850509]
  • Nia M Johnson, Regina S Baucom. The double life of trichomes: understanding their dual role in herbivory and herbicide resistance. Evolution; international journal of organic evolution. 2024 May; 78(6):1121-1132. doi: 10.1093/evolut/qpae048. [PMID: 38518120]
  • Mostafa El-Sheekh, Mohamed Bedaiwy, Heba Mansour, Rania A El-Shenody. Efficiency of the fatty acids extracted from the microalga Parachlorella kessleri in wound-healing. Burns : journal of the International Society for Burn Injuries. 2024 May; 50(4):924-935. doi: 10.1016/j.burns.2024.01.019. [PMID: 38378390]
  • Ricardo Dzul-Caamal, Armando Vega-López, Jaime Rendón-von Osten. Integrated evaluation of the biological response of the earthworm Eisenia fetida using two glyphosate exposure strategies: soil enriched and soils collected from crops in Southeastern Mexico. Environmental science and pollution research international. 2024 May; 31(22):32152-32167. doi: 10.1007/s11356-024-33348-0. [PMID: 38648003]
  • J Dayan, Z Uni, F Soglia, M Zampiga, M Bordini, M Petracci, F Sirri. Dietary guanidinoacetate reduces spaghetti meat myopathy risk in the breast muscle of broiler chickens. Animal : an international journal of animal bioscience. 2024 May; 18(5):101144. doi: 10.1016/j.animal.2024.101144. [PMID: 38642412]
  • Stefano Gomarasca, Fabrizio Stefani, Emanuele Fasola, Caterina Am La Porta, Stefano Bocchi. Regional evaluation of glyphosate pollution in the minor irrigation network. Chemosphere. 2024 May; 355(?):141679. doi: 10.1016/j.chemosphere.2024.141679. [PMID: 38527632]
  • Yifei Zhang, Jiayu Li, Song Yu, Weiqing Li, Yi Dou, Chunyu Zhang. Adenosine triphosphate alleviates high temperature-enhanced glyphosate toxicity in maize seedlings. Plant physiology and biochemistry : PPB. 2024 May; 210(?):108550. doi: 10.1016/j.plaphy.2024.108550. [PMID: 38555720]
  • Yuan Su, Xinrui Li, Jiamin Zhao, Bingzhen Ji, Xiaoyi Zhao, Jinxin Feng, Junxing Zhao. Guanidinoacetic acid ameliorates hepatic steatosis and inflammation and promotes white adipose tissue browning in middle-aged mice with high-fat-diet-induced obesity. Food & function. 2024 Apr; 15(8):4515-4526. doi: 10.1039/d3fo05201j. [PMID: 38567805]
  • Yingjie Zhang, Yujian Mo, Junyi Li, Li Liu, Yanhu Gao, Yueqin Zhang, Yongxiang Huang, Lei Ren, Hongbo Zhu, Xingyu Jiang, Yu Ling. Divergence in regulatory mechanisms of GR-RBP genes in different plants under abiotic stress. Scientific reports. 2024 04; 14(1):8743. doi: 10.1038/s41598-024-59341-8. [PMID: 38627506]
  • Ekaterina Solomonova, Natalia Shoman, Arkady Akimov. Physiological responses of the microalgae Thalassiosira weissflogii to the presence of the herbicide glyphosate in the medium. Functional plant biology : FPB. 2024 04; 51(?):. doi: 10.1071/fp23205. [PMID: 38669460]
  • Martin Lewinski, Alexander Steffen, Nitin Kachariya, Mareike Elgner, Christoph Schmal, Niki Messini, Tino Köster, Marlene Reichel, Michael Sattler, Kathi Zarnack, Dorothee Staiger. Arabidopsis thaliana GLYCINE RICH RNA-BINDING PROTEIN 7 interaction with its iCLIP target LHCB1.1 correlates with changes in RNA stability and circadian oscillation. The Plant journal : for cell and molecular biology. 2024 Apr; 118(1):203-224. doi: 10.1111/tpj.16601. [PMID: 38124335]
  • Chun Chu, Shengquan Liu, Liangui Nie, Hongming Hu, Yi Liu, Jun Yang. The interactions and biological pathways among metabolomics products of patients with coronary heart disease. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2024 Apr; 173(?):116305. doi: 10.1016/j.biopha.2024.116305. [PMID: 38422653]
  • Feng Li, Takashi Sayama, Yuko Yokota, Susumu Hiraga, Masatsugu Hashiguchi, Hidenori Tanaka, Ryo Akashi, Masao Ishimoto. Assessing genetic diversity and geographical differentiation in a global collection of wild soybean (Glycine soja Sieb. et Zucc.) and assigning a mini-core collection. DNA research : an international journal for rapid publication of reports on genes and genomes. 2024 Apr; 31(2):. doi: 10.1093/dnares/dsae009. [PMID: 38490815]
  • Shujuan Gao, Mingxia Li, Yunan Hu, Tao Zhang, Jixun Guo, Mingzhou Sun, Lianxuan Shi. Comparative differences in maintaining membrane fluidity and remodeling cell wall between Glycine soja and Glycine max leaves under drought. Plant physiology and biochemistry : PPB. 2024 Apr; 209(?):108545. doi: 10.1016/j.plaphy.2024.108545. [PMID: 38537381]
  • Jun Sun, Jiale Qu, Cai Zhao, Xinyao Zhang, Xinyu Liu, Jia Wang, Chao Wei, Xinyi Liu, Mulan Wang, Pengguihang Zeng, Xiuxiao Tang, Xiaoru Ling, Li Qing, Shaoshuai Jiang, Jiahao Chen, Tara S R Chen, Yalan Kuang, Jinhang Gao, Xiaoxi Zeng, Dongfeng Huang, Yong Yuan, Lili Fan, Haopeng Yu, Junjun Ding. Precise prediction of phase-separation key residues by machine learning. Nature communications. 2024 Mar; 15(1):2662. doi: 10.1038/s41467-024-46901-9. [PMID: 38531854]
  • Victor José Salomão Cesco, Fábio Henrique Krenchinski, Danilo Morilha Rodrigues, Ricardo Alcántara-de la Cruz, Stephen O Duke, Edivaldo D Velini, Caio A Carbonari. Glyphosate hormesis effects on the vegetative and reproductive development of glyphosate-susceptible and -resistant Conyza sumatrensis biotypes. Environmental pollution (Barking, Essex : 1987). 2024 Mar; 345(?):123504. doi: 10.1016/j.envpol.2024.123504. [PMID: 38325509]
  • Jinyu Wu, Yangyang Fang, Liankun Xu, Xiaoxia Jin, Anam Iqbal, Zaib Un Nisa, Naila Ali, Chao Chen, Anis Ali Shah, Mansour K Gatasheh. The Glycine soja cytochrome P450 gene GsCYP82C4 confers alkaline tolerance by promoting reactive oxygen species scavenging. Physiologia plantarum. 2024 Mar; 176(2):e14252. doi: 10.1111/ppl.14252. [PMID: 38509813]
  • S Triesch, A K Denton, J W Bouvier, J P Buchmann, V Reichel-Deland, R N F M Guerreiro, N Busch, U Schlüter, B Stich, S Kelly, A P M Weber. Transposable elements contribute to the establishment of the glycine shuttle in Brassicaceae species. Plant biology (Stuttgart, Germany). 2024 Mar; 26(2):270-281. doi: 10.1111/plb.13601. [PMID: 38168881]
  • Luhua Jiang, Ruoyu Jia, Zhifang Zheng, Xuejie Zhang, Yizhou Xu, Ashok Raj, Dong Sun. A clinical study on roxadustat for anemia in diabetic nephropathy: a 8-week study. International urology and nephrology. 2024 Mar; 56(3):1093-1101. doi: 10.1007/s11255-023-03757-0. [PMID: 37626163]
  • Daniel Palberg, Emma Kaszecki, Chetan Dhanjal, Anna Kisiała, Erin N Morrison, Naomi Stock, R J Neil Emery. Impact of glyphosate and glyphosate-based herbicides on phyllospheric Methylobacterium. BMC plant biology. 2024 Feb; 24(1):119. doi: 10.1186/s12870-024-04818-x. [PMID: 38369476]
  • Buqing Yao, Guoxi Shi, Huakun Zhou, Xinquan Zhao, Josep Peñuelas, Jordi Sardans, Fangping Wang, Zhiqiang Wang. Uneven distributions of unique species promoting N niche complementarity explain the stability of degraded alpine meadow. The Science of the total environment. 2024 Feb; 911(?):168487. doi: 10.1016/j.scitotenv.2023.168487. [PMID: 37977375]
  • Arne Janssens, Van Son Nguyen, Adam J Cecil, Sander E Van der Verren, Evy Timmerman, Michaël Deghelt, Alexander J Pak, Jean-François Collet, Francis Impens, Han Remaut. SlyB encapsulates outer membrane proteins in stress-induced lipid nanodomains. Nature. 2024 Feb; 626(7999):617-625. doi: 10.1038/s41586-023-06925-5. [PMID: 38081298]
  • Christos A Damalas, Spyridon D Koutroubas. Herbicide resistance evolution, fitness cost, and the fear of the superweeds. Plant science : an international journal of experimental plant biology. 2024 Feb; 339(?):111934. doi: 10.1016/j.plantsci.2023.111934. [PMID: 38036222]
  • Antônio Duarte Pagano, Natiéli Machado Gonçalves, William Borges Domingues, Tony Leandro Rezende da Silveira, Mateus Tavares Kütter, Antônio Sérgio Varela Junior, Carine Dahl Corcini, Mariana Cavalcanti Nascimento, Luana Ferreira Viana Dos Reis, Patrícia Gomes Costa, Adalto Bianchini, Matheus Vieira Volcan, Mariana Härter Remião, Vinicius Farias Campos. Assessment of oxidative stress biomarkers in the threatened annual killifish Austrolebias charrua exposed to Roundup. Comparative biochemistry and physiology. Toxicology & pharmacology : CBP. 2024 Feb; 276(?):109787. doi: 10.1016/j.cbpc.2023.109787. [PMID: 37977240]
  • Stefan F Hupperts, Kazi Samiul Islam, Michael J Gundale, Paul Kardol, Maja K Sundqvist. Warming influences carbon and nitrogen assimilation between a widespread Ericaceous shrub and root-associated fungi. The New phytologist. 2024 Feb; 241(3):1062-1073. doi: 10.1111/nph.19384. [PMID: 37950517]
  • Wenliang He, Erin A Posey, Chandler C Steele, Jeffrey W Savell, Fuller W Bazer, Guoyao Wu. Dietary glycine supplementation enhances glutathione availability in tissues of pigs with intrauterine growth restriction. Journal of animal science. 2024 Jan; ?(?):. doi: 10.1093/jas/skae025. [PMID: 38271555]
  • Fábio Henrique Krenchinski, Renato Nunes Costa, Vinícios Gabriel Canepelle Pereira, Natália Cunha Bevilaqua, Ricardo Alcántara-de la Cruz, Edivaldo D Velini, Caio A Carbonari. Glyphosate hormesis induced by treatment via seed stimulates the growth and biomass accumulation in soybean seedlings. The Science of the total environment. 2024 Jan; ?(?):170387. doi: 10.1016/j.scitotenv.2024.170387. [PMID: 38280604]
  • Mingwei Shao, Duo Chen, Qingzhu Wang, Feng Guo, Fangyi Wei, Wei Zhang, Tian Gan, Yuanyuan Luo, Xunjie Fan, Peijie Du, Yanxia Liu, Xiaojun Ma, Gaofei Ren, Yi Song, Yanyan Zhao, Guijun Qin. Canagliflozin regulates metabolic reprogramming in diabetic kidney disease by inducing fasting-like and aestivation-like metabolic patterns. Diabetologia. 2024 Jan; ?(?):. doi: 10.1007/s00125-023-06078-0. [PMID: 38236410]
  • Yuhao Ma, Ganxian Cai, Jianfei Chen, Xue Yang, Guoying Hua, Deping Han, Xinhai Li, Dengzhen Feng, Xuemei Deng. Combined transcriptome and metabolome analysis reveals breed-specific regulatory mechanisms in Dorper and Tan sheep. BMC genomics. 2024 Jan; 25(1):70. doi: 10.1186/s12864-023-09870-9. [PMID: 38233814]
  • Chuang Yang, Anni Luo, Hai-Ping Lu, Seth Jon Davis, Jian-Xiang Liu. Diurnal regulation of alternative splicing associated with thermotolerance in rice by two glycine-rich RNA-binding proteins. Science bulletin. 2024 Jan; 69(1):59-71. doi: 10.1016/j.scib.2023.11.046. [PMID: 38044192]
  • Zhongyuan Liu, Tengqian Zhang, Ruiting Xu, Baichao Liu, Yating Han, Wenfang Dong, Qingjun Xie, Zihao Tang, Xiaojin Lei, Chao Wang, Yujie Fu, Caiqiu Gao. BpGRP1 acts downstream of BpmiR396c/BpGRF3 to confer salt tolerance in Betula platyphylla. Plant biotechnology journal. 2024 Jan; 22(1):131-147. doi: 10.1111/pbi.14173. [PMID: 37703500]
  • Viswanada R Bysani, Ayesha S Alam, Arren Bar-Even, Fabian Machens. Engineering and evolution of the complete Reductive Glycine Pathway in Saccharomyces cerevisiae for formate and CO2 assimilation. Metabolic engineering. 2024 Jan; 81(?):167-181. doi: 10.1016/j.ymben.2023.11.007. [PMID: 38040111]
  • Fortunato De Bortoli Pagnoncelli Jr, Francisco Barro Losada, Maria Jose Gimenez Alvear, Jose L Gonzalez-Andujar, Michelangelo Muzell Trezzi, Henrique Von Hertwig Bittencourt, Helis Marina Salomão. Response characterization and target site mechanism study in glyphosate-resistant populations of Lolium multiflorum L. from Brazil. Pesticide biochemistry and physiology. 2024 Jan; 198(?):105737. doi: 10.1016/j.pestbp.2023.105737. [PMID: 38225083]
  • Kent E Williams, Yi Zou, Bin Qiu, Tatsuyoshi Kono, Changyong Guo, Dawn Garcia, Hanying Chen, Tamara Graves, Zhao Lai, Carmella Evans-Molina, Yao-Ying Ma, Suthat Liangpunsakul, Weidong Yong, Tiebing Liang. Sex-Specific Impact of Fkbp5 on Hippocampal Response to Acute Alcohol Injection: Involvement in Alterations of Metabolism-Related Pathways. Cells. 2023 12; 13(1):. doi: 10.3390/cells13010089. [PMID: 38201293]
  • Suvi E Laamanen, Aino-Maija Eloranta, Eero A Haapala, Taisa Sallinen, Ursula Schwab, Timo A Lakka. Associations of diet quality and food consumption with serum biomarkers for lipid and amino acid metabolism in Finnish children: the PANIC study. European journal of nutrition. 2023 Dec; ?(?):. doi: 10.1007/s00394-023-03293-8. [PMID: 38127151]
  • Wanlop Weecharangsan, Nuttapon Apiratikul, Jantana Yahuafai. N'-(3-Aminopropyl)-N-(3'-(carbamoyl cholesteryl) propyl)-glycine amide liposomes for delivery of pTRAIL-EGFP. Journal of liposome research. 2023 Dec; 33(4):368-377. doi: 10.1080/08982104.2023.2193638. [PMID: 36974908]
  • Asif Hameed, Duc Hai Nguyen, Shih-Yao Lin, Paul Stothard, Poovarasan Neelakandan, Li-Sen Young, Chiu-Chung Young. Hormesis of glyphosate on ferulic acid metabolism and antifungal volatile production in rice root biocontrol endophyte Burkholderia cepacia LS-044. Chemosphere. 2023 Dec; 345(?):140511. doi: 10.1016/j.chemosphere.2023.140511. [PMID: 37871874]
  • Waqas Mohy-Ud-Din, Safdar Bashir, Muhammad Javed Akhtar, Hafiz Muhammad Naeem Asghar, Umber Ghafoor, Muhammad Mahroz Hussain, Nabeel Khan Niazi, Feng Chen, Qasim Ali. Glyphosate in the environment: interactions and fate in complex soil and water settings, and (phyto) remediation strategies. International journal of phytoremediation. 2023 Nov; ?(?):1-22. doi: 10.1080/15226514.2023.2282720. [PMID: 37994831]
  • Urte Schlüter, Jacques W Bouvier, Ricardo Guerreiro, Milena Malisic, Carina Kontny, Philipp Westhoff, Benjamin Stich, Andreas P M Weber. Brassicaceae display variation in efficiency of photorespiratory carbon-recapturing mechanisms. Journal of experimental botany. 2023 11; 74(21):6631-6649. doi: 10.1093/jxb/erad250. [PMID: 37392176]
  • Huitong Zhou, Wenhao Li, Lingrong Bai, Jiqing Wang, Yuzhu Luo, Shaobin Li, Jonathan G H Hickford. Ovine KRTAP36-2: A New Keratin-Associated Protein Gene Related to Variation in Wool Yield. Genes. 2023 Nov; 14(11):. doi: 10.3390/genes14112045. [PMID: 38002988]
  • Yang Liu, Shan Yang, Xiaomin Chen, Min Ke. Comparison of different lipid staining methods in human meibomian gland epithelial cells. Experimental eye research. 2023 11; 236(?):109658. doi: 10.1016/j.exer.2023.109658. [PMID: 37741430]
  • Nilantana C Bandyopadhyay, Satyendra Gautam. Programmed cell death in Xanthomonas axonopodis pv. glycines is associated with modulation of gene expression resulting in altered states of motility, biofilm and virulence. Research in microbiology. 2023 Nov; 174(8):104137. doi: 10.1016/j.resmic.2023.104137. [PMID: 37716444]
  • Andrea Bleckmann, Nicole Spitzlberger, Philipp Denninger, Hans F Ehrnsberger, Lele Wang, Astrid Bruckmann, Stefan Reich, Philipp Holzinger, Jan Medenbach, Klaus D Grasser, Thomas Dresselhaus. Cytosolic RGG RNA-binding proteins are temperature sensitive flowering time regulators in Arabidopsis. Biological chemistry. 2023 10; 404(11-12):1069-1084. doi: 10.1515/hsz-2023-0171. [PMID: 37674329]
  • Nicola A Gillies, Amber M Milan, David Cameron-Smith, Karen D Mumme, Cathryn A Conlon, Pamela R von Hurst, Crystal F Haskell-Ramsay, Beatrix Jones, Nicole C Roy, Jane Coad, Clare R Wall, Kathryn L Beck. Vitamin B and One-Carbon Metabolite Profiles Show Divergent Associations with Cardiometabolic Risk Markers but not Cognitive Function in Older New Zealand Adults: A Secondary Analysis of the REACH Study. The Journal of nutrition. 2023 Oct; ?(?):. doi: 10.1016/j.tjnut.2023.10.012. [PMID: 37863266]
  • Khadega Khamis Moh Alazoumi, Pradakshina Sharma, Asimul Islam, Humaira Farooqi. Mitigation of the Deleterious Effect of Heavy Metals on the Conformational Stability of Ubiquitin through Osmoprotectants. Cell biochemistry and biophysics. 2023 Oct; ?(?):. doi: 10.1007/s12013-023-01188-3. [PMID: 37843791]
  • Inge Schwedt, Kerstin Schöne, Maike Eckert, Manon Pizzinato, Laura Winkler, Barbora Knotkova, Björn Richts, Jann-Louis Hau, Julia Steuber, Raul Mireles, Lianet Noda-Garcia, Günter Fritz, Carolin Mittelstädt, Robert Hertel, Fabian M Commichau. The low mutational flexibility of the EPSP synthase in Bacillus subtilis is due to a higher demand for shikimate pathway intermediates. Environmental microbiology. 2023 Oct; ?(?):. doi: 10.1111/1462-2920.16518. [PMID: 37822042]
  • Xinyu Li, Wenliang He, Guoyao Wu. Dietary glycine supplementation enhances the growth performance of hybrid striped bass (Morone saxatilis ♀× Morone chrysops ♂) fed soybean meal-based diets. Journal of animal science. 2023 Oct; ?(?):. doi: 10.1093/jas/skad345. [PMID: 37801645]
  • Sara Rosa-Téllez, Andrea Alcántara-Enguídanos, Federico Martínez-Seidel, Ruben Casatejada-Anchel, Sompop Saeheng, Clayton L Bailes, Alexander Erban, David Barbosa-Medeiros, Paula Alepúz, José Tomás Matus, Joachim Kopka, Jesús Muñoz-Bertomeu, Stephan Krueger, Sanja Roje, Alisdair R Fernie, Roc Ros. The serine-glycine-one carbon metabolic network orchestrates changes in nitrogen and sulfur metabolism and shapes plant development. The Plant cell. 2023 Oct; ?(?):. doi: 10.1093/plcell/koad256. [PMID: 37804096]
  • João Antonio Siqueira, Youjun Zhang, Adriano Nunes-Nesi, Alisdair R Fernie, Wagner L Araújo. Beyond photorespiration: the significance of glycine and serine in leaf metabolism. Trends in plant science. 2023 10; 28(10):1092-1094. doi: 10.1016/j.tplants.2023.06.012. [PMID: 37407411]
  • Spencer R Moller, Adam F Wallace, Rumana Zahir, Abrar Quadery, Deb P Jaisi. Effect of temperature on the degradation of glyphosate by Mn-oxide: Products and pathways of degradation. Journal of hazardous materials. 2023 Sep; 461(?):132467. doi: 10.1016/j.jhazmat.2023.132467. [PMID: 37716266]
  • Xi Meng, Guoqi Yu, Tingyu Luo, Ruiyuan Zhang, Jun Zhang, Yongjie Liu. Transcriptomics integrated with metabolomics reveals perfluorobutane sulfonate (PFBS) exposure effect during pregnancy and lactation on lipid metabolism in rat offspring. Chemosphere. 2023 Sep; 341(?):140120. doi: 10.1016/j.chemosphere.2023.140120. [PMID: 37696479]
  • Domenico Lapenna. Glutathione and Glutathione-dependent Enzymes: From Biochemistry to Gerontology and Successful Aging. Ageing research reviews. 2023 Sep; ?(?):102066. doi: 10.1016/j.arr.2023.102066. [PMID: 37683986]
  • HaiVin Kim, YoungSu Jang, JaeSang Ryu, DaHye Seo, Sak Lee, SungSoo Choi, DongHyun Kim, SangHyun Moh, JungU Shin. The Dipeptide Gly-Pro (GP), Derived from Hibiscus sabdariffa, Exhibits Potent Antifibrotic Effects by Regulating the TGF-β1-ATF4-Serine/Glycine Biosynthesis Pathway. International journal of molecular sciences. 2023 Sep; 24(17):. doi: 10.3390/ijms241713616. [PMID: 37686422]
  • Yongxing Zhang, Wei Guo, Dong Cao, Limiao Chen, Hongli Yang, Haifeng Chen, Shuilian Chen, Qingnan Hao, Dezhen Qiu, Zhihui Shan, Zhonglu Yang, Songli Yuan, Chanjuan Zhang, Xinjie Shen, Xinan Zhou. Heterologous expression of the Glycine soja Kunitz-type protease inhibitor GsKTI improves resistance to drought stress and Helicoverpa armigera in transgenic Arabidopsis lines. Plant physiology and biochemistry : PPB. 2023 Sep; 202(?):107915. doi: 10.1016/j.plaphy.2023.107915. [PMID: 37536218]
  • Pinghui Wei, Guoge Han, Meiqin He, Yan Wang. Retinal Neurotransmitter Alteration in Response to Dopamine D2 Receptor Antagonist from Myopic Guinea Pigs. ACS chemical neuroscience. 2023 Aug; ?(?):. doi: 10.1021/acschemneuro.3c00099. [PMID: 37647579]
  • Deqiang Ding, Xue Mi, Jingyu Wu, Zaib-Un Nisa, Hosam O Elansary, Xiaoxia Jin, Lijie Yu, Chao Chen. GsPKS24, a calcineurin B-like protein-interacting protein kinase gene from Glycine soja, positively regulates tolerance to pH stress and ABA signal transduction. Functional & integrative genomics. 2023 Aug; 23(3):276. doi: 10.1007/s10142-023-01213-x. [PMID: 37596462]
  • Hao Ren, Guoqiang Gao, Yaoyuan Ma, Zuwang Li, Siyuan Wang, Jiacun Gu. Shift of root nitrogen-acquisition strategy with tree age is mediated by root functional traits along the collaboration gradient of the root economics space. Tree physiology. 2023 08; 43(8):1341-1353. doi: 10.1093/treephys/tpad047. [PMID: 37073458]
  • Qianqian Chen, Jinhe Zhang, Mutu Huang, Peiqi Wang, Xiao Zhang, Mingjun Ma. Construction of 131I-RGDyC-PEG-PAMAM-DTX targeted drug delivery system and study of its physicochemical properties and biological activity. Hellenic journal of nuclear medicine. 2023 Aug; ?(?):. doi: 10.1967/s002449912574. [PMID: 37527047]
  • Xiaoe You, Baochun Guo, Zhen Wang, Hualin Ma, Lixia Liu, Ru Zhou, Yaxuan Zheng, Xinzhou Zhang. Integrated proteomic and metabolomic profiling of urine of renal anemia patients uncovers the molecular mechanisms of roxadustat. Molecular omics. 2023 07; 19(6):473-483. doi: 10.1039/d3mo00015j. [PMID: 37039271]
  • Anna Maria Engel, Ahmed H El-Khatib, Fenja Klevenhusen, Michael Weiss, Sabine Aboling, Benjamin Sachse, Bernd Schäfer, Stefan Weigel, Robert Pieper, Carola Fischer-Tenhagen. Detection of Hypoglycin A and MCPrG Metabolites in the Milk and Urine of Pasture Dairy Cows after Intake of Sycamore Seedlings. Journal of agricultural and food chemistry. 2023 Jul; ?(?):. doi: 10.1021/acs.jafc.3c01248. [PMID: 37419492]
  • Chunliu Wang, Jie Zhou, Shixiang Wang, Yang Liu, Kaihua Long, Tingting Sun, Wenbing Zhi, Yang Yang, Hong Zhang, Ye Zhao, Xiaopu Zheng, Xiaohui Zheng, Ye Li, Pu Jia. Guanxining injection alleviates fibrosis in heart failure mice and regulates SLC7A11/GPX4 axis. Journal of ethnopharmacology. 2023 Jun; 310(?):116367. doi: 10.1016/j.jep.2023.116367. [PMID: 36914037]
  • Ping Xu, Haiyuan Li, Ke Xu, Xiaoyu Cui, Zhenning Liu, Xiaohua Wang. Genetic variation in the glycine-rich protein gene BnGRP1 contributes to low phosphorus tolerance in Brassica napus. Journal of experimental botany. 2023 06; 74(12):3531-3543. doi: 10.1093/jxb/erad114. [PMID: 36964902]
  • Yong-Hui Jiang, Ting Liu, Xin-Chi Shi, Daniela D Herrera-Balandrano, Mei-Ting Xu, Su-Yan Wang, Pedro Laborda. p-Aminobenzoic acid inhibits the growth of soybean pathogen Xanthomonas axonopodis pv. glycines by altering outer membrane integrity. Pest management science. 2023 Jun; ?(?):. doi: 10.1002/ps.7608. [PMID: 37291956]
  • Dionysios Patriarcheas, Taizina Momtareen, Jennifer E G Gallagher. Yeast of Eden: microbial resistance to glyphosate from a yeast perspective. Current genetics. 2023 Jun; ?(?):. doi: 10.1007/s00294-023-01272-4. [PMID: 37269314]
  • Fiorella Masotti, Betiana S Garavaglia, Natalia Gottig, Jorgelina Ottado. Bioremediation of the herbicide glyphosate in polluted soils by plant-associated microbes. Current opinion in microbiology. 2023 06; 73(?):102290. doi: 10.1016/j.mib.2023.102290. [PMID: 36893683]
  • Karina C Pougy, Gilberto Sachetto-Martins, Fabio C L Almeida, Anderson S Pinheiro. 1 H, 15 N, and 13 C backbone and side chain resonance assignments of the cold shock domain of the Arabidopsis thaliana glycine-rich protein AtGRP2. Biomolecular NMR assignments. 2023 06; 17(1):143-149. doi: 10.1007/s12104-023-10133-7. [PMID: 37145295]
  • Daniel Gabriel Pons, Cayetano Herrera, Margalida Torrens-Mas, Mar Leza, Jorge Sastre-Serra. Sublethal doses of glyphosate modulates mitochondria and oxidative stress in honeybees by direct feeding. Archives of insect biochemistry and physiology. 2023 May; ?(?):e22028. doi: 10.1002/arch.22028. [PMID: 37259187]
  • Yuan Cheng, Qiong Xiang, Tao Cao, Fei Tang, Jia Chen, Dongli Qi, Haofei Hu, Haiying Song, Zheyi Chang, Ming Ku, Xinglin Chen, Chi Chen, Qijun Wan. Suppression of thyroid profile during roxadustat treatment in chronic kidney disease patients. Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association. 2023 05; 38(6):1567-1570. doi: 10.1093/ndt/gfad017. [PMID: 36662034]
  • Mohamed Ahmed Fathi, Shen Dan, Adel Mohamed Abdelsalam, Li Chunmei. Involvement of glyphosate in disruption of biotransformation P450 enzymes and hepatic lipid metabolism in chicken. Animal biotechnology. 2023 May; ?(?):1-11. doi: 10.1080/10495398.2023.2214601. [PMID: 37210632]
  • Wenping Zhang, Wen-Juan Chen, Shao-Fang Chen, Qiqi Lei, Jiayi Li, Pankaj Bhatt, Sandhya Mishra, Shaohua Chen. Cellular Response and Molecular Mechanism of Glyphosate Degradation by Chryseobacterium sp. Y16C. Journal of agricultural and food chemistry. 2023 May; 71(17):6650-6661. doi: 10.1021/acs.jafc.2c07301. [PMID: 37084257]
  • Isabela Sousa Prado, Agda Alves da Rocha, Lais Alves Silva, Vinícius Cunha Gonzalez. Glyphosate-based formulation affects Tetragonisca angustula worker's locomotion, behavior and biology. Ecotoxicology (London, England). 2023 May; 32(4):513-524. doi: 10.1007/s10646-023-02658-3. [PMID: 37119428]
  • Emil Bein, Millaray Sierra Olea, Sophie Petersen, Jörg E Drewes, Uwe Hübner. Ozonation of Gabapentin in Water─Investigating Reaction Kinetics and Transformation Mechanisms of a Primary Amine Using Isotopically Labeled Ozone. Environmental science & technology. 2023 Apr; ?(?):. doi: 10.1021/acs.est.2c06709. [PMID: 37099017]
  • Shota Suzuki, Daimu Tanaka, Atsuko Miyagi, Kentaro Takahara, Masaru Kono, Chaomurilege, Ko Noguchi, Toshiki Ishikawa, Minoru Nagano, Masatoshi Yamaguchi, Maki Kawai-Yamada. Loss of peroxisomal NAD kinase 3 (NADK3) affects photorespiration metabolism in Arabidopsis. Journal of plant physiology. 2023 Apr; 283(?):153950. doi: 10.1016/j.jplph.2023.153950. [PMID: 36889102]
  • Natália Alves Leite, Luiza Rodrigues Redaelli, Larissa Souza de Assis, Simone Martins Mendes, Alexandre Ferreira da Silva. The role of glyphosate-resistant weeds and starvation on biological, reproductive, and preference parameters of Chrysodeixis includens (Lepidoptera: Noctuidae). Bulletin of entomological research. 2023 Apr; 113(2):220-229. doi: 10.1017/s0007485322000487. [PMID: 36258270]
  • Sooyeon Kim, Sun Mi Huh, Hay Ju Han, Gang Seob Lee, Yong-Sic Hwang, Mi Hyun Cho, Beom-Gi Kim, Ji Sun Song, Joo Hee Chung, Myung Hee Nam, Hyeonso Ji, Kyung-Hwan Kim, In Sun Yoon. A rice seed-specific glycine-rich protein OsDOR1 interacts with GID1 to repress GA signaling and regulates seed dormancy. Plant molecular biology. 2023 Apr; 111(6):523-539. doi: 10.1007/s11103-023-01343-7. [PMID: 36973492]
  • Zachary J Frangos, Katie A Wilson, Heather M Aitken, Ryan Cantwell Chater, Robert J Vandenberg, Megan L O'Mara. Membrane cholesterol regulates inhibition and substrate transport by the glycine transporter, GlyT2. Life science alliance. 2023 Apr; 6(4):. doi: 10.26508/lsa.202201708. [PMID: 36690444]
  • Courtney R Green, Roberto Bonelli, Brendan R E Ansell, Simone Tzaridis, Michal K Handzlik, Grace H McGregor, Barbara Hart, Jennifer Trombley, Mary M Reilly, Paul S Bernstein, Catherine Egan, Marcus Fruttiger, Martina Wallace, Melanie Bahlo, Martin Friedlander, Christian M Metallo, Marin L Gantner. Divergent amino acid and sphingolipid metabolism in patients with inherited neuro-retinal disease. Molecular metabolism. 2023 Mar; ?(?):101716. doi: 10.1016/j.molmet.2023.101716. [PMID: 36997154]
  • María Florencia Ferreira, Carolina Torres, Enzo Bracamonte, Leonardo Galetto. Glyphosate affects the susceptibility of non-target native plant species according to their stage of development and degree of exposure in the landscape. The Science of the total environment. 2023 Mar; 865(?):161091. doi: 10.1016/j.scitotenv.2022.161091. [PMID: 36566866]
  • Ahmed H El-Khatib, Julika Lamp, Stefan Weigel. A sensitive LC-MS/MS method for the quantification of the plant toxins hypoglycin A and methylenecyclopropylglycine and their metabolites in cow's milk and urine and application to farm milk samples from Germany. Analytical and bioanalytical chemistry. 2023 Mar; ?(?):. doi: 10.1007/s00216-023-04607-9. [PMID: 36877265]
  • Dawei Chen, Yating Liang, Jiaojiao Liang, Feifei Shen, Yue Cheng, Hengxian Qu, Yunchao Wa, Congcong Guo, Ruixia Gu, Jianya Qian, Xia Chen, Chenchen Zhang, Chengran Guan. Beneficial effects of Lactobacillus rhamnosus hsryfm 1301 fermented milk on rats with nonalcoholic fatty liver disease. Journal of dairy science. 2023 Mar; 106(3):1533-1548. doi: 10.3168/jds.2022-22383. [PMID: 36710180]
  • Jinhui Wang, Haojie Feng, Xiaoke Jia, Shengnan Ma, Chao Ma, Yue Wang, Siyang Pan, Qingshan Chen, Dawei Xin, Chunyan Liu. Identifications of QTLs and Candidate Genes Associated with Pseudomonas syringae Responses in Cultivated Soybean (Glycine max) and Wild Soybean (Glycine soja). International journal of molecular sciences. 2023 Feb; 24(5):. doi: 10.3390/ijms24054618. [PMID: 36902050]
  • Guoqi Yu, Jinguo Wang, Yongjie Liu, Tingyu Luo, Xi Meng, Ruiyuan Zhang, Bo Huang, Yan Sun, Jun Zhang. Metabolic perturbations in pregnant rats exposed to low-dose perfluorooctanesulfonic acid: An integrated multi-omics analysis. Environment international. 2023 Feb; 173(?):107851. doi: 10.1016/j.envint.2023.107851. [PMID: 36863164]
  • Xinya Hemu, Ning-Yu Chan, Heng Tai Liew, Side Hu, Xiaohong Zhang, Aida Serra, Julien Lescar, Chuan-Fa Liu, James P Tam. Substrate-binding Glycine Residues are Major Determinants for Hydrolase and Ligase Activity of Plant Legumains. The New phytologist. 2023 Feb; ?(?):. doi: 10.1111/nph.18841. [PMID: 36843268]
  • Neeraj Kumar Verma, Rikeshwer Prasad Dewangan, Munesh Kumar Harioudh, Jimut Kanti Ghosh. Introduction of a β-leucine residue instead of leucine9 and glycine10 residues in Temporin L for improved cell selectivity, stability and activity against planktonic and biofilm of methicillin resistant S. aureus. Bioorganic chemistry. 2023 Feb; 134(?):106440. doi: 10.1016/j.bioorg.2023.106440. [PMID: 36870201]
  • Woon Ji Kim, Byeong Hee Kang, Chang Yeok Moon, Sehee Kang, Seoyoung Shin, Sreeparna Chowdhury, Man-Soo Choi, Soo-Kwon Park, Jung-Kyung Moon, Bo-Keun Ha. Quantitative Trait Loci (QTL) Analysis of Seed Protein and Oil Content in Wild Soybean (Glycine soja). International journal of molecular sciences. 2023 Feb; 24(4):. doi: 10.3390/ijms24044077. [PMID: 36835486]
  • Lyon Bruinsma, Sebastian Wenk, Nico J Claassens, Vitor A P Martins Dos Santos. Paving the way for synthetic C1 - Metabolism in Pseudomonas putida through the reductive glycine pathway. Metabolic engineering. 2023 Feb; ?(?):. doi: 10.1016/j.ymben.2023.02.004. [PMID: 36804222]
  • Horațiu Moldovan, Silvia Imre, Radu Corneliu Duca, Lénárd Farczádi. Methods and Strategies for Biomonitoring in Occupational Exposure to Plant Protection Products Containing Glyphosate. International journal of environmental research and public health. 2023 02; 20(4):. doi: 10.3390/ijerph20043314. [PMID: 36834010]
  • Xinyu Lu, Zitong Yang, Wen Song, Jinlu Miao, Hanqing Zhao, Peiyun Ji, Tianli Li, Jierui Si, Zhiyuan Yin, Maofeng Jing, Danyu Shen, Daolong Dou. The Phytophthora sojae effector PsFYVE1 modulates immunity-related gene expression by targeting host RZ-1A protein. Plant physiology. 2023 02; 191(2):925-945. doi: 10.1093/plphys/kiac552. [PMID: 36461945]
  • Yueping Zhu, Qilai Xie, Jinshao Ye, Ruzhen Wang, Xudong Yin, Wenyu Xie, Dehao Li. Metabolic Mechanism of Bacillus sp. LM24 under Abamectin Stress. International journal of environmental research and public health. 2023 02; 20(4):. doi: 10.3390/ijerph20043068. [PMID: 36833759]
  • Catherine A Walsh, Andrea Bräutigam, Michael R Roberts, Marjorie R Lundgren. Evolutionary implications of C2 photosynthesis: how complex biochemical trade-offs may limit C4 evolution. Journal of experimental botany. 2023 02; 74(3):707-722. doi: 10.1093/jxb/erac465. [PMID: 36437625]
  • Min Gao, Chong Zhang, William Angel, Owen Kwak, Jessica Allison, Linda Wiratan, Amelia Hallworth, Julie Wolf, Hua Lu. Circadian regulation of the GLYCINE-RICH RNA-BINDING PROTEIN gene by the master clock protein CIRCADIAN CLOCK-ASSOCIATED 1 is important for plant innate immunity. Journal of experimental botany. 2023 02; 74(3):991-1003. doi: 10.1093/jxb/erac445. [PMID: 36367575]
  • Michal K Handzlik, Jivani M Gengatharan, Katie E Frizzi, Grace H McGregor, Cameron Martino, Gibraan Rahman, Antonio Gonzalez, Ana M Moreno, Courtney R Green, Lucie S Guernsey, Terry Lin, Patrick Tseng, Yoichiro Ideguchi, Regis J Fallon, Amandine Chaix, Satchidananda Panda, Prashant Mali, Martina Wallace, Rob Knight, Marin L Gantner, Nigel A Calcutt, Christian M Metallo. Insulin-regulated serine and lipid metabolism drive peripheral neuropathy. Nature. 2023 Feb; 614(7946):118-124. doi: 10.1038/s41586-022-05637-6. [PMID: 36697822]
  • Ekrem Sulukan, Alper Baran, Meryem Kankaynar, Tuğba Kızıltan, İsmail Bolat, Serkan Yıldırım, Hacer Akgül Ceyhun, Saltuk Buğrahan Ceyhun. Global warming and glyphosate toxicity (II): Offspring zebrafish modelling with behavioral, morphological and immunohistochemical approaches. The Science of the total environment. 2023 Jan; 856(Pt 1):158903. doi: 10.1016/j.scitotenv.2022.158903. [PMID: 36419276]
  • Adriana Olejniczak, Witold Stachowiak, Tomasz Rzemieniecki, Michał Niemczak. Adjustment of the Structure of the Simplest Amino Acid Present in Nature-Glycine, toward More Environmentally Friendly Ionic Forms of Phenoxypropionate-Based Herbicides. International journal of molecular sciences. 2023 Jan; 24(2):. doi: 10.3390/ijms24021360. [PMID: 36674875]
  • Lepeng Gao, Chang Zhang, Yingying Zheng, Deyi Wu, Xinyuan Chen, Hainan Lan, Xin Zheng, Hao Wu, Suo Li. Glycine regulates lipid peroxidation promoting porcine oocyte maturation and early embryonic development. Journal of animal science. 2023 Jan; 101(?):. doi: 10.1093/jas/skac425. [PMID: 36573588]
  • Wenliang He, Xinyu Li, Guoyao Wu. Dietary glycine supplementation improves the growth performance of 110- to 240-g (phase II) hybrid striped bass (Morone saxatilis ♀× Morone chrysops ♂) fed soybean meal-based diets. Journal of animal science. 2023 Jan; 101(?):. doi: 10.1093/jas/skad400. [PMID: 38038705]