Apigenin 7-O-beta-D-rutinoside (BioDeep_00000002498)
Secondary id: BioDeep_00000017245, BioDeep_00000018139, BioDeep_00000398508, BioDeep_00001891602
natural product human metabolite PANOMIX_OTCML-2023
代谢物信息卡片
化学式: C27H30O14 (578.1635)
中文名称: 野漆树苷
谱图信息:
最多检出来源 Viridiplantae(plant) 51.31%
分子结构信息
SMILES: CC1C(C(C(C(O1)OC2C(C(C(OC2OC3=CC(=C4C(=C3)OC(=CC4=O)C5=CC=C(C=C5)O)O)CO)O)O)O)O)O
InChI: InChI=1/C27H30O14/c1-10-20(32)22(34)24(36)26(37-10)41-25-23(35)21(33)18(9-28)40-27(25)38-13-6-14(30)19-15(31)8-16(39-17(19)7-13)11-2-4-12(29)5-3-11/h2-8,10,18,20-30,32-36H,9H2,1H3/t10-,18+,20-,21+,22+,23-,24+,25+,26-,27+/m0/s1
描述信息
Apigenin 7-o-beta-d-rutinoside, also known as rhoifolin or apigenin-7-O-rhamnoglucoside, is a member of the class of compounds known as flavonoid-7-o-glycosides. Flavonoid-7-o-glycosides are phenolic compounds containing a flavonoid moiety which is O-glycosidically linked to carbohydrate moiety at the C7-position. Apigenin 7-o-beta-d-rutinoside is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Apigenin 7-o-beta-d-rutinoside can be found in carrot, orange mint, and wild carrot, which makes apigenin 7-o-beta-d-rutinoside a potential biomarker for the consumption of these food products.
Acquisition and generation of the data is financially supported in part by CREST/JST.
[Raw Data] CB080_Rhoifolin_pos_30eV_CB000032.txt
[Raw Data] CB080_Rhoifolin_pos_10eV_CB000032.txt
[Raw Data] CB080_Rhoifolin_pos_20eV_CB000032.txt
[Raw Data] CB080_Rhoifolin_pos_50eV_CB000032.txt
[Raw Data] CB080_Rhoifolin_pos_40eV_CB000032.txt
[Raw Data] CB080_Rhoifolin_neg_50eV_000023.txt
[Raw Data] CB080_Rhoifolin_neg_10eV_000023.txt
[Raw Data] CB080_Rhoifolin_neg_20eV_000023.txt
[Raw Data] CB080_Rhoifolin_neg_40eV_000023.txt
[Raw Data] CB080_Rhoifolin_neg_30eV_000023.txt
Rhoifolin is a flavone glycoside can be isolated from Rhus succedanea. Rhoifolin has anti-diabetic effect acting through enhanced adiponectin secretion, tyrosine phosphorylation of insulin receptor-β and glucose transporter 4 (GLUT 4) translocation. Rhoifolin has an anti-inflammatory action via multi-level regulation of inflammatory mediators. Rhoifolin ameliorates titanium particle-stimulated osteolysis and attenuates osteoclastogenesis via RANKL-induced NF-κB and MAPK pathways. Rhoifolin also has cytotoxic activity against different cancer cell lines[1][2][3].
Rhoifolin is a flavone glycoside can be isolated from Rhus succedanea. Rhoifolin has anti-diabetic effect acting through enhanced adiponectin secretion, tyrosine phosphorylation of insulin receptor-β and glucose transporter 4 (GLUT 4) translocation. Rhoifolin has an anti-inflammatory action via multi-level regulation of inflammatory mediators. Rhoifolin ameliorates titanium particle-stimulated osteolysis and attenuates osteoclastogenesis via RANKL-induced NF-κB and MAPK pathways. Rhoifolin also has cytotoxic activity against different cancer cell lines[1][2][3].
Rhoifolin is a flavone glycoside can be isolated from Rhus succedanea. Rhoifolin has anti-diabetic effect acting through enhanced adiponectin secretion, tyrosine phosphorylation of insulin receptor-β and glucose transporter 4 (GLUT 4) translocation. Rhoifolin has an anti-inflammatory action via multi-level regulation of inflammatory mediators. Rhoifolin ameliorates titanium particle-stimulated osteolysis and attenuates osteoclastogenesis via RANKL-induced NF-κB and MAPK pathways. Rhoifolin also has cytotoxic activity against different cancer cell lines[1][2][3].
同义名列表
13 个代谢物同义名
7-{[(2S,3R,4S,5S,6R)-4,5-dihydroxy-6-(hydroxymethyl)-3-{[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-5-hydroxy-2-(4-hydroxyphenyl)-4H-chromen-4-one; 7-((2-O-(6-deoxy-alpha-L-mannopyranosyl)-beta-D-glucopyranosyl)oxy)-5-hydroxy-2-(4-hydroxyphenyl)-4H-benzopyran-4-one; 7-((2-O-(6-Deoxy-α-L-mannopyranosyl)-β-D-glucopyranosyl)oxy)-5-hydroxy-2-(4-hydroxyphenyl)-4H-benzopyran-4-one; 7-((2-O-(6-Deoxy-a-L-mannopyranosyl)-b-D-glucopyranosyl)oxy)-5-hydroxy-2-(4-hydroxyphenyl)-4H-benzopyran-4-one; Apigenin 7-O-beta-D-rutinoside; apigenin-7-O-neohesperidoside; apigenin-7-O-rhamnoglucoside; Apigenin 7-O-β-D-rutinoside; Apigenin 7-neohesperidoside; Apigenin 7-O-b-D-rutinoside; Rhoifoloside; Rhoifolin; Apigenin 7-O-neohesperidoside
数据库引用编号
48 个数据库交叉引用编号
- ChEBI: CHEBI:31227
- KEGG: C12627
- PubChem: 5282150
- PubChem: 583017
- HMDB: HMDB0303149
- Metlin: METLIN48787
- ChEMBL: CHEMBL395990
- Wikipedia: Rhoifolin
- MetaCyc: APIGENIN-7-O-NEOHESPERIDOSIDE
- KNApSAcK: C00004157
- foodb: FDB007976
- chemspider: 4445347
- CAS: 17306-46-6
- MoNA: PR040071
- MoNA: PS041405
- MoNA: PS041410
- MoNA: PR100236
- MoNA: FIO00220
- MoNA: PR020032
- MoNA: FIO00229
- MoNA: PR040070
- MoNA: FIO00222
- MoNA: FIO00221
- MoNA: FIO00227
- MoNA: PS041403
- MoNA: FIO00225
- MoNA: PS041407
- MoNA: FIO00223
- MoNA: PS041406
- MoNA: PS041404
- MoNA: PS041409
- MoNA: PS041412
- MoNA: FIO00226
- MoNA: PR100650
- MoNA: FIO00224
- MoNA: FIO00228
- MoNA: PR040069
- MoNA: PS041401
- MoNA: PS041402
- MoNA: PR040072
- MoNA: PS041408
- MoNA: PR100651
- MoNA: PS041411
- LipidMAPS: LMPK12110356
- NIKKAJI: J13.923H
- medchemexpress: HY-N0755
- KNApSAcK: 31227
- LOTUS: LTS0029806
分类词条
相关代谢途径
Reactome(0)
BioCyc(0)
PlantCyc(0)
代谢反应
0 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(0)
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
124 个相关的物种来源信息
- 469459 - Acmella oleracea: 10.1002/ARDP.19833160916
- 42228 - Acoraceae: LTS0029806
- 4464 - Acorus: LTS0029806
- 4465 - Acorus calamus: LTS0029806
- 325552 - Acorus calamus var. angustatus: 10.1002/BMC.3371
- 325552 - Acorus calamus var. angustatus: LTS0029806
- 4011 - Anacardiaceae: LTS0029806
- 4056 - Apocynaceae: LTS0029806
- 4710 - Arecaceae: LTS0029806
- 4210 - Asteraceae: LTS0029806
- 20400 - Astragalus: LTS0029806
- 2014710 - Astragalus peregrinus: 10.1023/B:CONC.0000018105.23722.7D
- 2014710 - Astragalus peregrinus: LTS0029806
- 141292 - Asystasia gangetica: 10.1007/S11418-007-0158-3
- 3208 - Bryophyta: LTS0029806
- 3214 - Bryopsida: LTS0029806
- 200811 - Bryum pseudotriquetrum:
- 4200 - Caprifoliaceae: LTS0029806
- 125017 - Cardiopteridaceae: LTS0029806
- 50178 - Cephalotaxus: LTS0029806
- 13422 - Chrysanthemum: LTS0029806
- 41568 - Chrysanthemum × morifolium: 10.3390/MOLECULES20057683
- 2706 - Citrus: LTS0029806
- 43166 - Citrus aurantium: 10.1016/0031-9422(92)90076-3
- 43166 - Citrus aurantium: 10.1016/0031-9422(93)85237-L
- 43166 - Citrus aurantium: 10.1104/PP.99.1.67
- 43166 - Citrus aurantium: 10.1111/J.1365-2621.1998.TB15675.X
- 558547 - Citrus deliciosa: 10.1016/0021-9673(94)89051-X
- 2708 - Citrus limon: 10.1016/0031-9422(93)85237-L
- 171249 - Citrus limonia: LTS0029806
- 481548 - Citrus longispina: 10.1016/0031-9422(93)85237-L
- 481548 - Citrus longispina: LTS0029806
- 37334 - Citrus maxima:
- 37334 - Citrus maxima: 10.1016/0021-9673(94)89051-X
- 37334 - Citrus maxima: 10.1016/0031-9422(93)85237-L
- 37334 - Citrus maxima: 10.1111/J.1365-2621.1998.TB15675.X
- 37334 - Citrus maxima: LTS0029806
- 85571 - Citrus reticulata: 10.1016/0021-9673(94)89051-X
- 85571 - Citrus reticulata: LTS0029806
- 2711 - Citrus sinensis: 10.1016/0031-9422(93)85237-L
- 2711 - Citrus sinensis: LTS0029806
- 2711 - Citrus sinensis Osbeck: -
- 37690 - Citrus trifoliata: 10.1016/0031-9422(93)85237-L
- 37690 - Citrus trifoliata: LTS0029806
- 55188 - Citrus unshiu: 10.1016/0021-9673(94)89051-X
- 55188 - Citrus unshiu: LTS0029806
- 37656 - Citrus × paradisi: 10.1016/0031-9422(93)85237-L
- 37656 - Citrus × paradisi: 10.1111/J.1365-2621.1998.TB15675.X
- 53878 - Euchresta: LTS0029806
- 256639 - Euchresta japonica: 10.1016/0305-1978(94)90075-2
- 256639 - Euchresta japonica: LTS0029806
- 2759 - Eukaryota: LTS0029806
- 3803 - Fabaceae: LTS0029806
- 3379 - Gnetaceae: LTS0029806
- 3372 - Gnetopsida: LTS0029806
- 3380 - Gnetum: LTS0029806
- 44929 - Gnetum africanum: 10.1016/0031-9422(83)80190-3
- 44929 - Gnetum africanum: LTS0029806
- 85208 - Gonocaryum: LTS0029806
- 2306983 - Gonocaryum calleryanum: 10.1016/0031-9422(94)00884-V
- 2306983 - Gonocaryum calleryanum: LTS0029806
- 47034 - Hedysarum: LTS0029806
- 2023785 - Hedysarum setigerum: LTS0029806
- 9606 - Homo sapiens: -
- 53890 - Kummerowia: LTS0029806
- 466223 - Kummerowia striata: 10.1016/0960-894X(94)80015-4
- 466223 - Kummerowia striata: LTS0029806
- 41707 - Lawsonia: LTS0029806
- 141191 - Lawsonia inermis: 10.1016/J.PHYTOL.2011.05.007
- 141191 - Lawsonia inermis: LTS0029806
- 13596 - Ligustrum: LTS0029806
- 1028359 - Ligustrum robustum:
- 1028359 - Ligustrum robustum: 10.1016/S0031-9422(97)00472-X
- 1028359 - Ligustrum robustum: 10.1021/NP020568G
- 1028359 - Ligustrum robustum: LTS0029806
- 4447 - Liliopsida: LTS0029806
- 49606 - Lonicera: LTS0029806
- 105884 - Lonicera japonica: 10.3724/SP.J.1009.2010.00257
- 105884 - Lonicera japonica: LTS0029806
- 3869 - Lupinus: LTS0029806
- 3873 - Lupinus luteus: 10.1002/(SICI)1096-9888(199905)34:5<486::AID-JMS789>3.0.CO;2-4
- 3873 - Lupinus luteus: LTS0029806
- 3928 - Lythraceae: LTS0029806
- 3398 - Magnoliopsida: LTS0029806
- 3227 - Mniaceae: LTS0029806
- 4144 - Oleaceae: LTS0029806
- 58019 - Pinopsida: LTS0029806
- 3230 - Plagiomnium: LTS0029806
- 417134 - Plagiomnium ciliare: 10.2307/3243844
- 417134 - Plagiomnium ciliare: LTS0029806
- 33090 - Plants: -
- 3275 - Polypodiaceae: LTS0029806
- 241806 - Polypodiopsida: LTS0029806
- 37881 - Poncirus: LTS0029806
- 156491 - Pyrrosia: LTS0029806
- 347942 - Pyrrosia serpens: 10.1016/0031-9422(90)85359-N
- 347942 - Pyrrosia serpens: LTS0029806
- 43205 - Reichardia: LTS0029806
- 43207 - Reichardia picroides: 10.1016/0305-1978(92)90085-R
- 43207 - Reichardia picroides: LTS0029806
- 23513 - Rutaceae: LTS0029806
- 41629 - Saussurea: LTS0029806
- 254913 - Saussurea laniceps: 10.1016/S1875-5364(11)60016-2
- 4721 - Serenoa: LTS0029806
- 4722 - Serenoa repens: 10.1002/ARDP.19893220211
- 4722 - Serenoa repens: LTS0029806
- 35493 - Streptophyta: LTS0029806
- 24208 - Syringa: LTS0029806
- 2563121 - Syringa persica: 10.1016/S0031-9422(02)00024-9
- 2563121 - Syringa persica: LTS0029806
- 43852 - Toxicodendron: LTS0029806
- 269718 - Toxicodendron orientale: 10.1248/CPB.14.877
- 269718 - Toxicodendron orientale: LTS0029806
- 269721 - Toxicodendron succedaneum: 10.1016/0003-9861(52)90164-1
- 269721 - Toxicodendron succedaneum: LTS0029806
- 269722 - Toxicodendron sylvestre: 10.1248/CPB.14.877
- 269722 - Toxicodendron sylvestre: LTS0029806
- 269720 - Toxicodendron trichocarpum: 10.1248/CPB.14.877
- 269720 - Toxicodendron trichocarpum: LTS0029806
- 69388 - Trachelospermum: LTS0029806
- 69389 - Trachelospermum jasminoides: 10.1007/S10600-013-0652-7
- 69389 - Trachelospermum jasminoides: LTS0029806
- 58023 - Tracheophyta: LTS0029806
- 33090 - Viridiplantae: LTS0029806
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Gokhan Zengin, Nada M Mostafa, Yasmin M Abdelkhalek, Omayma A Eldahshan. Antioxidant and Enzyme Inhibitory Activities of Rhoifolin Flavonoid: In Vitro and in Silico Studies.
Chemistry & biodiversity.
2023 Jul; ?(?):e202300117. doi:
10.1002/cbdv.202300117
. [PMID: 37498319] - Eveen Al-Shalabi, Samah Abusulieh, Alaa M Hammad, Suhair Sunoqrot. Rhoifolin loaded in PLGA nanoparticles alleviates oxidative stress and inflammation in vitro and in vivo.
Biomaterials science.
2022 Sep; 10(19):5504-5519. doi:
10.1039/d2bm00309k
. [PMID: 35920694] - Ling Xiong, Hong Lu, Ying Hu, Wei Wang, Rong Liu, Xinpeng Wan, Jianjiang Fu. In vitro anti-motile effects of Rhoifolin, a flavonoid extracted from Callicarpa nudiflora on breast cancer cells via downregulating Podocalyxin-Ezrin interaction during Epithelial Mesenchymal Transition.
Phytomedicine : international journal of phytotherapy and phytopharmacology.
2021 Dec; 93(?):153486. doi:
10.1016/j.phymed.2021.153486
. [PMID: 34649211] - Jiaqi Fang, Zelin Cao, Xiaoxin Song, Xiaoying Zhang, Baoyu Mai, Tingfang Wen, Jingran Lin, Jialan Chen, Yuguang Chi, Taojunfeng Su, Fengxia Xiao. Rhoifolin Alleviates Inflammation of Acute Inflammation Animal Models and LPS-Induced RAW264.7 Cells via IKKβ/NF-κB Signaling Pathway.
Inflammation.
2020 Dec; 43(6):2191-2201. doi:
10.1007/s10753-020-01286-x
. [PMID: 32617861] - Namrta Choudhry, Xin Zhao, Dan Xu, Mark Zanin, Weisan Chen, Zifeng Yang, Jianxin Chen. Chinese Therapeutic Strategy for Fighting COVID-19 and Potential Small-Molecule Inhibitors against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2).
Journal of medicinal chemistry.
2020 11; 63(22):13205-13227. doi:
10.1021/acs.jmedchem.0c00626
. [PMID: 32845145] - Gopalsamy Rajiv Gandhi, Alan Bruno Silva Vasconcelos, Ding-Tao Wu, Hua-Bin Li, Poovathumkal James Antony, Hang Li, Fang Geng, Ricardo Queiroz Gurgel, Narendra Narain, Ren-You Gan. Citrus Flavonoids as Promising Phytochemicals Targeting Diabetes and Related Complications: A Systematic Review of In Vitro and In Vivo Studies.
Nutrients.
2020 Sep; 12(10):. doi:
10.3390/nu12102907
. [PMID: 32977511] - Shanqin Peng, Congqi Hu, Xi Liu, Lei Lei, Guodong He, Chenming Xiong, Wenqian Wu. Rhoifolin regulates oxidative stress and proinflammatory cytokine levels in Freund's adjuvant-induced rheumatoid arthritis via inhibition of NF-κB.
Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas.
2020; 53(6):e9489. doi:
10.1590/1414-431x20209489
. [PMID: 32401927] - Hong Liu, Cheng Xu, Wei Wang, Yue Zhao. Development and Validation of an LC-ESI-MS/MS Method for Simultaneous Determination of Ligustroflavone and Rhoifolin in Rat Plasma and Its Application to a Pharmacokinetic Study.
Journal of chromatographic science.
2017 03; 55(3):267-274. doi:
10.1093/chromsci/bmw181
. [PMID: 27884870] - Michael Plioukas, Chrysi Gabrieli, Diamanto Lazari, Eugene Kokkalou. Phytochemical analysis with the antioxidant and aldose reductase inhibitory capacities of Tephrosia humilis aerial parts' extracts.
Natural product research.
2016 Jun; 30(12):1366-72. doi:
10.1080/14786419.2015.1057729
. [PMID: 26209262] - Shyi-Neng Lou, Yi-Chun Lai, Ya-Siou Hsu, Chi-Tang Ho. Phenolic content, antioxidant activity and effective compounds of kumquat extracted by different solvents.
Food chemistry.
2016 Apr; 197(Pt A):1-6. doi:
10.1016/j.foodchem.2015.10.096
. [PMID: 26616917] - Zhen-Dan He, Kit-Man Lau, Paul Pui-Hay But, Ren-Wang Jiang, Hui Dong, Shuang-Cheng Ma, Kwok-Pui Fung, Wen-Cai Ye, Han-Dong Sun. Antioxidative glycosides from the leaves of Ligustrum robustum.
Journal of natural products.
2003 Jun; 66(6):851-4. doi:
10.1021/np020568g
. [PMID: 12828473] - K Ishii, S Urano, T Furuta, Y Kasuya. Determination of rhoifolin and daidzin in human plasma by high-performance liquid chromatography.
Journal of chromatography. B, Biomedical applications.
1994 May; 655(2):300-4. doi:
10.1016/0378-4347(94)00115-4
. [PMID: 8081478]