Guanosine diphosphate mannose (BioDeep_00000001755)

 

Secondary id: BioDeep_00000400239, BioDeep_00000415787

natural product human metabolite PANOMIX_OTCML-2023 Endogenous


代谢物信息卡片


[({[(2R,3S,4R,5R)-5-(2-amino-6-oxo-6,9-dihydro-1H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy]({[(2R,3S,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy})phosphinic acid

化学式: C16H25N5O16P2 (605.0772)
中文名称: GDP-甘露糖
谱图信息: 最多检出来源 Homo sapiens(plant) 10.53%

分子结构信息

SMILES: C([C@@H]1[C@H]([C@@H]([C@@H]([C@H](O1)OP(=O)(O)OP(=O)(O)OC[C@@H]1[C@H]([C@H]([C@H](n2cnc3c2nc(N)[nH]c3=O)O1)O)O)O)O)O)O
InChI: InChI=1S/C16H25N5O16P2/c17-16-19-12-6(13(28)20-16)18-3-21(12)14-10(26)8(24)5(34-14)2-33-38(29,30)37-39(31,32)36-15-11(27)9(25)7(23)4(1-22)35-15/h3-5,7-11,14-15,22-27H,1-2H2,(H,29,30)(H,31,32)(H3,17,19,20,28)/t4-,5-,7-,8-,9+,10-,11+,14-,15-/m1/s1

描述信息

Guanosine diphosphate mannose, also known as gdp-D-mannose or guanosine pyrophosphoric acid mannose, is a member of the class of compounds known as purine nucleotide sugars. Purine nucleotide sugars are purine nucleotides bound to a saccharide derivative through the terminal phosphate group. Guanosine diphosphate mannose is slightly soluble (in water) and a moderately acidic compound (based on its pKa). Guanosine diphosphate mannose can be found in a number of food items such as sorrel, common persimmon, citrus, and butternut, which makes guanosine diphosphate mannose a potential biomarker for the consumption of these food products. Guanosine diphosphate mannose exists in all living species, ranging from bacteria to humans. In humans, guanosine diphosphate mannose is involved in a couple of metabolic pathways, which include fructose and mannose degradation and fructose intolerance, hereditary. Guanosine diphosphate mannose is also involved in fructosuria, which is a metabolic disorder. Guanosine diphosphate mannose or GDP-mannose is a nucleotide sugar that is a substrate for glycosyltransferase reactions in metabolism. This compound is a substrate for enzymes called mannosyltransferases .
GDP-mannose is a nucleoside diphosphate sugar that is important in the production of fucosylated oligosaccharides. In particular, GDP-mannose is converted to GDP-fucose, which is the fucose donor in the construction of all mammalian fucosylated glycans. GDP-mannose is transformed to GDP-fucose via three enzymatic reactions carried out by two proteins, GDP-mannose 4,6-dehydratase (GMD) and a second enzyme, GDP-keto-6-deoxymannose 3,5-epimerase, 4-reductase. GDP-mannose 4,6-dehydratase (EC 4.2.1.47) catalyzes the chemical reaction: GDP-mannose <--> GDP-4-dehydro-6-deoxy-D-mannose + H2O. The epimerase converts the GDP-4-dehydro-6-deoxy-D-mannose to GDP-fucose (PMID: 12651883). GDP-mannose is also synthesized from mannose 1-phosphate via the enzyme ATP-mannose-1-phosphate-guanyltransferase and GTP.
Acquisition and generation of the data is financially supported in part by CREST/JST.

同义名列表

48 个代谢物同义名

[({[(2R,3S,4R,5R)-5-(2-amino-6-oxo-6,9-dihydro-1H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy]({[(2R,3S,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy})phosphinic acid; Guanosine 5-(trihydrogen diphosphoric acid), mono-alpha-D-mannopyranosyl ester; Guanosine 5-(trihydrogen diphosphoric acid), mono-a-D-mannopyranosyl ester; Guanosine 5-(trihydrogen diphosphoric acid), mono-α-D-mannopyranosyl ester; Guanosine 5-(trihydrogen diphosphate), mono-alpha-D-mannopyranosyl ester; Guanosine 5-(trihydrogen diphosphate), mono-a-D-mannopyranosyl ester; Guanosine 5-(trihydrogen diphosphate), mono-α-D-mannopyranosyl ester; Guanosine 5’-(trihydrogen pyrophosphate) monomannopyranosyl ester; Guanosine 5-(trihydrogen pyrophosphate) monomannopyranosyl ester; Guanosine 5’-(trihydrogen pyrophosphate) mono-D-mannosyl ester; Guanosine 5-(trihydrogen pyrophosphate) mono-D-mannosyl ester; Guanosine 5’-(trihydrogen pyrophosphate) monomannosyl ester; Guanosine 5-(trihydrogen pyrophosphate) monomannosyl ester; Guanosine 5’-(trihydrogen diphosphate) p’-mannosyl ester; Guanosine 5-(trihydrogen diphosphate) p-mannosyl ester; Guanosine 5-pyrophosphate alpha-D-mannosyl ester; Guanosine 5’-pyrophosphate α-D-mannosyl ester; Guanosine-5-diphosphate-D-mannose sodium salt; Guanosine 5-pyrophosphate α-D-mannosyl ester; Guanosine 5’-pyrophosphate D-mannosyl ester; Guanosine 5-pyrophosphate D-mannosyl ester; Guanosine pyrophosphoric acid mannose; Guanosine diphosphoric acid mannose; Guanosine 5’-diphosphate D-mannose; Guanosine 5-diphosphate-D-mannose; Guanosine 5-diphosphate D-mannose; Mannose, guanosine pyrophosphate; Pyrophosphate mannose, guanosine; GUANOSINE 5-DIPHOSPHO-D-MANNOSE; Guanosine pyrophosphate mannose; Diphosphate mannose, guanosine; Mannose, guanosine diphosphate; Guanosine diphosphate mannose; Diphosphomannose, guanosine; Guanosine diphosphomannose; GDP-alpha-D-Mannose; GDP-D-galactose; GDP-Α-D-mannose; GDP-a-D-Mannose; GDP-D-Mannose; Mannose, GDP; GDP Mannose; GDP-Mannose; GDP-Glucose; GDPmannose; GDP-Man; Guanosine diphosphate mannose(GDP-mannose); GDP-mannose



数据库引用编号

37 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(4)

PlantCyc(2)

代谢反应

1257 个相关的代谢反应过程信息。

Reactome(23)

BioCyc(15)

WikiPathways(1)

Plant Reactome(551)

INOH(1)

PlantCyc(648)

COVID-19 Disease Map(0)

PathBank(18)

PharmGKB(0)

5 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 9 ABCB1, ALG2, DAG1, GCK, GMDS, GMPPA, GMPPB, PMM2, SLC9A1
Peripheral membrane protein 2 ALG2, GCK
Endoplasmic reticulum membrane 5 ALG1, ALG11, ALG2, DPM1, HSP90B1
Nucleus 5 ALG2, DPM1, GCK, HSP90B1, UGDH
cytosol 11 ALG2, DAG1, FCSK, GALE, GCK, GMDS, GMPPA, GMPPB, HSP90B1, PMM2, UGDH
phagocytic vesicle 1 MPEG1
nucleoplasm 6 ALG2, DAG1, GCK, PMM2, SLC9A1, UGDH
Cell membrane 2 ABCB1, SLC9A1
lamellipodium 2 DAG1, SLC9A1
Multi-pass membrane protein 4 ABCB1, KCNA3, MPEG1, SLC9A1
Golgi apparatus membrane 1 GCK
cell surface 2 ABCB1, SLC9A1
glutamatergic synapse 2 DAG1, KCNA3
Golgi apparatus 1 FUT2
Golgi membrane 2 FUT2, GCK
neuronal cell body 1 PMM2
presynaptic membrane 1 KCNA3
sarcolemma 1 DAG1
smooth endoplasmic reticulum 1 HSP90B1
endosome 1 ALG2
plasma membrane 4 ABCB1, DAG1, KCNA3, SLC9A1
Membrane 9 ABCB1, ALG1, ALG11, ALG2, DAG1, DPM1, HSP90B1, KCNA3, SLC9A1
apical plasma membrane 2 ABCB1, SLC9A1
axon 1 KCNA3
basolateral plasma membrane 3 DAG1, GCK, SLC9A1
extracellular exosome 9 ABCB1, ALG2, DAG1, FUT2, GMDS, GMPPA, HSP90B1, SLC9A1, UGDH
endoplasmic reticulum 4 ALG1, ALG2, DPM1, HSP90B1
extracellular space 2 DAG1, TG
perinuclear region of cytoplasm 4 ALG2, HSP90B1, KCNA3, SLC9A1
adherens junction 1 DAG1
intercalated disc 1 SLC9A1
mitochondrion 2 GCK, SLC9A1
protein-containing complex 1 HSP90B1
intracellular membrane-bounded organelle 1 DAG1
filopodium 1 DAG1
Secreted 1 TG
extracellular region 4 DAG1, HSP90B1, MPEG1, TG
Single-pass membrane protein 3 ALG1, ALG11, ALG2
[Isoform 2]: Secreted 1 MPEG1
external side of plasma membrane 1 DAG1
T-tubule 1 SLC9A1
cytoplasmic vesicle 2 ALG2, MPEG1
midbody 1 HSP90B1
Single-pass type II membrane protein 1 FUT2
postsynaptic membrane 2 DAG1, KCNA3
Apical cell membrane 1 ABCB1
Cell membrane, sarcolemma 1 DAG1
Membrane raft 2 KCNA3, SLC9A1
focal adhesion 3 DAG1, HSP90B1, SLC9A1
GABA-ergic synapse 1 DAG1
basement membrane 1 DAG1
collagen-containing extracellular matrix 2 DAG1, HSP90B1
Postsynaptic cell membrane 1 DAG1
phagocytic vesicle membrane 1 MPEG1
cytoskeleton 1 DAG1
Basolateral cell membrane 2 GCK, SLC9A1
[Isoform 2]: Cell membrane 1 KCNA3
Cul3-RING ubiquitin ligase complex 1 ALG2
Nucleus, nucleoplasm 1 DAG1
Melanosome 1 HSP90B1
Golgi cisterna membrane 1 FUT2
sperm plasma membrane 1 HSP90B1
voltage-gated potassium channel complex 1 KCNA3
plasma membrane raft 1 DAG1
Golgi lumen 1 DAG1
endoplasmic reticulum lumen 2 DAG1, HSP90B1
node of Ranvier 1 DAG1
Golgi apparatus, Golgi stack membrane 1 FUT2
endoplasmic reticulum exit site 1 ALG2
calyx of Held 1 KCNA3
Sarcoplasmic reticulum lumen 1 HSP90B1
costamere 1 DAG1
external side of apical plasma membrane 1 ABCB1
[Isoform 1]: Cell membrane 1 KCNA3
dystrophin-associated glycoprotein complex 1 DAG1
contractile ring 1 DAG1
postsynaptic cytosol 1 DAG1
dolichol-phosphate-mannose synthase complex 1 DPM1
Cytoplasmic vesicle, COPII-coated vesicle membrane 1 ALG2
COPII vesicle coat 1 ALG2
nuclear periphery 1 DAG1
endocytic vesicle lumen 1 HSP90B1
endoplasmic reticulum chaperone complex 1 HSP90B1
photoreceptor ribbon synapse 1 DAG1
phagolysosome membrane 1 MPEG1
cytoplasmic side of endoplasmic reticulum membrane 2 ALG1, ALG2
cation-transporting ATPase complex 1 SLC9A1
[Isoform 3]: Cytoplasm, perinuclear region 1 KCNA3
[Beta-dystroglycan]: Cell membrane 1 DAG1
dystroglycan complex 1 DAG1
[Isoform 1]: Cytoplasmic vesicle membrane 1 MPEG1
[Macrophage-expressed gene 1 protein, processed form]: Cytoplasmic vesicle, phagosome membrane 1 MPEG1
GDP-mannose pyrophosphorylase complex 2 GMPPA, GMPPB


文献列表

  • Naho Nishigaki, Yoshihisa Yoshimi, Hiroaki Kuki, Tadashi Kunieda, Ikuko Hara-Nishimura, Yoichi Tsumuraya, Daisuke Takahashi, Paul Dupree, Toshihisa Kotake. Galactoglucomannan structure of Arabidopsis seed-coat mucilage in GDP-mannose synthesis impaired mutants. Physiologia plantarum. 2021 Nov; 173(3):1244-1252. doi: 10.1111/ppl.13519. [PMID: 34380178]
  • Chunmei Yu, Ming Yan, Huizhen Dong, Jie Luo, Yongchao Ke, Anfang Guo, Yanhong Chen, Jian Zhang, Xiaosan Huang. Maize bHLH55 functions positively in salt tolerance through modulation of AsA biosynthesis by directly regulating GDP-mannose pathway genes. Plant science : an international journal of experimental plant biology. 2021 Jan; 302(?):110676. doi: 10.1016/j.plantsci.2020.110676. [PMID: 33288001]
  • Robert Howlett, Katri Anttonen, Nicholas Read, Margaret C M Smith. Disruption of the GDP-mannose synthesis pathway in Streptomyces coelicolor results in antibiotic hyper-susceptible phenotypes. Microbiology (Reading, England). 2018 04; 164(4):614-624. doi: 10.1099/mic.0.000636. [PMID: 29493491]
  • Thomas F T Rexer, Anna Schildbach, Jan Klapproth, Angelika Schierhorn, Reza Mahour, Markus Pietzsch, Erdmann Rapp, Udo Reichl. One pot synthesis of GDP-mannose by a multi-enzyme cascade for enzymatic assembly of lipid-linked oligosaccharides. Biotechnology and bioengineering. 2018 Jan; 115(1):192-205. doi: 10.1002/bit.26454. [PMID: 28922469]
  • Pengyan Zhang, Zhanru Shao, Weihua Jin, Delin Duan. Comparative characterization of two GDP-mannose dehydrogenase genes from Saccharina japonica (Laminariales, Phaeophyceae). BMC plant biology. 2016 Mar; 16(?):62. doi: 10.1186/s12870-016-0750-3. [PMID: 26956020]
  • Shota Sawake, Noriaki Tajima, Jenny C Mortimer, Jeemeng Lao, Toshiki Ishikawa, Xiaolan Yu, Yukiko Yamanashi, Yoshihisa Yoshimi, Maki Kawai-Yamada, Paul Dupree, Yoichi Tsumuraya, Toshihisa Kotake. KONJAC1 and 2 Are Key Factors for GDP-Mannose Generation and Affect l-Ascorbic Acid and Glucomannan Biosynthesis in Arabidopsis. The Plant cell. 2015 Dec; 27(12):3397-409. doi: 10.1105/tpc.15.00379. [PMID: 26672069]
  • Jenny C Mortimer, Xiaolan Yu, Sandra Albrecht, Francesca Sicilia, Mariela Huichalaf, Diego Ampuero, Louise V Michaelson, Alex M Murphy, Toshiro Matsunaga, Samantha Kurz, Elaine Stephens, Timothy C Baldwin, Tadashi Ishii, Johnathan A Napier, Andreas P M Weber, Michael G Handford, Paul Dupree. Abnormal glycosphingolipid mannosylation triggers salicylic acid-mediated responses in Arabidopsis. The Plant cell. 2013 May; 25(5):1881-94. doi: 10.1105/tpc.113.111500. [PMID: 23695979]
  • Sílvia A Sousa, Joana R Feliciano, Pedro F Pinheiro, Jorge H Leitão. Biochemical and functional studies on the Burkholderia cepacia complex bceN gene, encoding a GDP-D-mannose 4,6-dehydratase. PloS one. 2013; 8(2):e56902. doi: 10.1371/journal.pone.0056902. [PMID: 23460819]
  • Jakob Engel, Philipp S Schmalhorst, Françoise H Routier. Biosynthesis of the fungal cell wall polysaccharide galactomannan requires intraluminal GDP-mannose. The Journal of biological chemistry. 2012 Dec; 287(53):44418-24. doi: 10.1074/jbc.m112.398321. [PMID: 23139423]
  • Sabine Kuettel, Majken C T Wadum, Maria Lucia S Güther, Karina Mariño, Carolin Riemer, Michael A J Ferguson. The de novo and salvage pathways of GDP-mannose biosynthesis are both sufficient for the growth of bloodstream-form Trypanosoma brucei. Molecular microbiology. 2012 Apr; 84(2):340-51. doi: 10.1111/j.1365-2958.2012.08026.x. [PMID: 22375793]
  • Chase F Kempinski, Rawaa Haffar, Carina Barth. Toward the mechanism of NH(4) (+) sensitivity mediated by Arabidopsis GDP-mannose pyrophosphorylase. Plant, cell & environment. 2011 May; 34(5):847-58. doi: 10.1111/j.1365-3040.2011.02290.x. [PMID: 21332510]
  • Michael Kämpf, Birgit Absmanner, Markus Schwarz, Ludwig Lehle. Biochemical characterization and membrane topology of Alg2 from Saccharomyces cerevisiae as a bifunctional alpha1,3- and 1,6-mannosyltransferase involved in lipid-linked oligosaccharide biosynthesis. The Journal of biological chemistry. 2009 May; 284(18):11900-12. doi: 10.1074/jbc.m806416200. [PMID: 19282279]
  • Frank A Hoeberichts, Elke Vaeck, Guy Kiddle, Emmy Coppens, Brigitte van de Cotte, Antoine Adamantidis, Sandra Ormenese, Christine H Foyer, Marc Zabeau, Dirk Inzé, Claire Périlleux, Frank Van Breusegem, Marnik Vuylsteke. A Temperature-sensitive mutation in the Arabidopsis thaliana phosphomannomutase gene disrupts protein glycosylation and triggers cell death. The Journal of biological chemistry. 2008 Feb; 283(9):5708-18. doi: 10.1074/jbc.m704991200. [PMID: 18086684]
  • Floriana Fruscione, Laura Sturla, Garry Duncan, James L Van Etten, Paola Valbuzzi, Antonio De Flora, Eleonora Di Zanni, Michela Tonetti. Differential role of NADP+ and NADPH in the activity and structure of GDP-D-mannose 4,6-dehydratase from two chlorella viruses. The Journal of biological chemistry. 2008 Jan; 283(1):184-193. doi: 10.1074/jbc.m706614200. [PMID: 17974560]
  • Hairong Huang, Michael S Scherman, Wim D'Haeze, Danny Vereecke, Marcelle Holsters, Dean C Crick, Michael R McNeil. Identification and active expression of the Mycobacterium tuberculosis gene encoding 5-phospho-{alpha}-d-ribose-1-diphosphate: decaprenyl-phosphate 5-phosphoribosyltransferase, the first enzyme committed to decaprenylphosphoryl-d-arabinose synthesis. The Journal of biological chemistry. 2005 Jul; 280(26):24539-43. doi: 10.1074/jbc.m504068200. [PMID: 15878857]
  • Xiaoling Gu, Mao Chen, Qingzhong Wang, Min Zhang, Baolin Wang, Honghai Wang. Expression and purification of a functionally active recombinant GDP-mannosyltransferase (PimA) from Mycobacterium tuberculosis H37Rv. Protein expression and purification. 2005 Jul; 42(1):47-53. doi: 10.1016/j.pep.2005.03.015. [PMID: 15939292]
  • Thierry Fontaine, Terry K Smith, Arthur Crossman, John S Brimacombe, Jean-Paul Latgé, Michael A J Ferguson. In vitro biosynthesis of glycosylphosphatidylinositol in Aspergillus fumigatus. Biochemistry. 2004 Dec; 43(48):15267-75. doi: 10.1021/bi0486029. [PMID: 15568819]
  • Margaret I Kanipes, Anthony A Ribeiro, Shanhua Lin, Robert J Cotter, Christian R H Raetz. A mannosyl transferase required for lipopolysaccharide inner core assembly in Rhizobium leguminosarum. Purification, substrate specificity, and expression in Salmonella waaC mutants. The Journal of biological chemistry. 2003 May; 278(18):16356-64. doi: 10.1074/jbc.m301255200. [PMID: 12591937]
  • Terry K Smith, Arthur Crossman, Michael J Paterson, Charles N Borissow, John S Brimacombe, Michael A J Ferguson. Specificities of enzymes of glycosylphosphatidylinositol biosynthesis in Trypanosoma brucei and HeLa cells. The Journal of biological chemistry. 2002 Oct; 277(40):37147-53. doi: 10.1074/jbc.m203371200. [PMID: 12147686]
  • B Kneidinger, M Graninger, G Adam, M Puchberger, P Kosma, S Zayni, P Messner. Identification of two GDP-6-deoxy-D-lyxo-4-hexulose reductases synthesizing GDP-D-rhamnose in Aneurinibacillus thermoaerophilus L420-91T. The Journal of biological chemistry. 2001 Feb; 276(8):5577-83. doi: 10.1074/jbc.m010027200. [PMID: 11096116]
  • J S Rush, K Panneerselvam, C J Waechter, H H Freeze. Mannose supplementation corrects GDP-mannose deficiency in cultured fibroblasts from some patients with Congenital Disorders of Glycosylation (CDG). Glycobiology. 2000 Aug; 10(8):829-35. doi: 10.1093/glycob/10.8.829. [PMID: 10929009]
  • P L Conklin, S R Norris, G L Wheeler, E H Williams, N Smirnoff, R L Last. Genetic evidence for the role of GDP-mannose in plant ascorbic acid (vitamin C) biosynthesis. Proceedings of the National Academy of Sciences of the United States of America. 1999 Mar; 96(7):4198-203. doi: 10.1073/pnas.96.7.4198. [PMID: 10097187]
  • J L O'Rear, J R Scocca, B K Walker, A Kaiden, S S Krag. Chinese hamster ovary cells with reduced hexokinase activity maintain normal GDP-mannose levels. Journal of cellular biochemistry. 1999 Jan; 72(1):56-66. doi: 10.1002/(sici)1097-4644(19990101)72:1<56::aid-jcb7>3.0.co;2-h. [PMID: 10025667]
  • Adrián A Vojnov, Angeles Zorreguieta, J Maxwell Dow, Michael J Daniels, Marcelo A Dankert. Evidence for a role for the gumB and gumC gene products in the formation of xanthan from its pentasaccharide repeating unit by Xanthomonas campestris. Microbiology (Reading, England). 1998 Jun; 144 ( Pt 6)(?):1487-1493. doi: 10.1099/00221287-144-6-1487. [PMID: 9639919]
  • C Körner, L Lehle, K von Figura. Abnormal synthesis of mannose 1-phosphate derived carbohydrates in carbohydrate-deficient glycoprotein syndrome type I fibroblasts with phosphomannomutase deficiency. Glycobiology. 1998 Feb; 8(2):165-71. doi: 10.1093/glycob/8.2.165. [PMID: 9451026]
  • J C Villagómez-Castro, C Calvo-Méndez, L Vargas-Rodríguez, A Flores-Carreón, E López-Romero. Entamoeba histolytica: solubilization and biochemical characterization of dolichol phosphate mannose synthase, an essential enzyme in glycoprotein biosynthesis. Experimental parasitology. 1998 Feb; 88(2):111-20. doi: 10.1006/expr.1998.4233. [PMID: 9538865]
  • G S Besra, C B Morehouse, C M Rittner, C J Waechter, P J Brennan. Biosynthesis of mycobacterial lipoarabinomannan. The Journal of biological chemistry. 1997 Jul; 272(29):18460-6. doi: 10.1074/jbc.272.29.18460. [PMID: 9218490]
  • J L Kadrmas, K A Brozek, C R Raetz. Lipopolysaccharide core glycosylation in Rhizobium leguminosarum. An unusual mannosyl transferase resembling the heptosyl transferase I of Escherichia coli. The Journal of biological chemistry. 1996 Dec; 271(50):32119-25. doi: . [PMID: 8943265]
  • K A Brozek, J L Kadrmas, C R Raetz. Lipopolysaccharide biosynthesis in Rhizobium leguminosarum. Novel enzymes that process precursors containing 3-deoxy-D-manno-octulosonic acid. The Journal of biological chemistry. 1996 Dec; 271(50):32112-8. doi: . [PMID: 8943264]
  • H Y Kim, D Thomas, M R Hanley. Stimulation of Ca(2+)-dependent membrane currents in Xenopus oocytes by microinjection of pyrimidine nucleotide-glucose conjugates. Molecular pharmacology. 1996 Feb; 49(2):360-4. doi: . [PMID: 8632770]
  • L Ielpi, R O Couso, M A Dankert. Sequential assembly and polymerization of the polyprenol-linked pentasaccharide repeating unit of the xanthan polysaccharide in Xanthomonas campestris. Journal of bacteriology. 1993 May; 175(9):2490-500. doi: 10.1128/jb.175.9.2490-2500.1993. [PMID: 7683019]
  • G Piro, A Zuppa, G Dalessandro, D H Northcote. Glucomannan synthesis in pea epicotyls: the mannose and glucose transferases. Planta. 1993; 190(2):206-20. doi: 10.1007/bf00196613. [PMID: 7685647]
  • J S Rush, C J Waechter. Expression of dolichol-linked saccharide intermediate synthesis during the development of B lymphocytes. Glycobiology. 1991 Mar; 1(2):229-35. doi: 10.1093/glycob/1.2.229. [PMID: 1726646]
  • W J Masterson, J Raper, T L Doering, G W Hart, P T Englund. Fatty acid remodeling: a novel reaction sequence in the biosynthesis of trypanosome glycosyl phosphatidylinositol membrane anchors. Cell. 1990 Jul; 62(1):73-80. doi: 10.1016/0092-8674(90)90241-6. [PMID: 1694728]
  • A K Menon, R T Schwarz, S Mayor, G A Cross. Cell-free synthesis of glycosyl-phosphatidylinositol precursors for the glycolipid membrane anchor of Trypanosoma brucei variant surface glycoproteins. Structural characterization of putative biosynthetic intermediates. The Journal of biological chemistry. 1990 Jun; 265(16):9033-42. doi: ". [PMID: 1693147]
  • D Rimoldi, K E Creek, L M De Luca. Reduced mannose incorporation into GDP-mannose and dolichol-linked intermediates of N-glycosylation in hamster liver during vitamin A deficiency. Molecular and cellular biochemistry. 1990 Mar; 93(2):129-40. doi: 10.1007/bf00226184. [PMID: 1693171]
  • K Yokoyama, C E Ballou. Synthesis of alpha 1----6-mannooligosaccharides in Mycobacterium smegmatis. Function of beta-mannosylphosphoryldecaprenol as the mannosyl donor. The Journal of biological chemistry. 1989 Dec; 264(36):21621-8. doi: . [PMID: 2480954]
  • D K Banerjee. Amphomycin inhibits mannosylphosphoryldolichol synthesis by forming a complex with dolichylmonophosphate. The Journal of biological chemistry. 1989 Feb; 264(4):2024-8. doi: . [PMID: 2464586]
  • Y Goussault, S Nakabayashi, C D Warren, B Bugge, R W Jeanloz. Biosynthesis, in calf pancreas microsomes, of three lipid-linked oligosaccharide diphosphates from a synthetic dolichyl diphosphate tetrasaccharide. Carbohydrate research. 1988 Aug; 179(?):381-92. doi: 10.1016/0008-6215(88)84134-x. [PMID: 2463085]
  • R E Campbell, C T Brett, J R Hillman. A xylosyltransferase involved in the synthesis of a protein-associated xyloglucan in suspension-cultured dwarf-French-bean (Phaseolus vulgaris) cells and its interaction with a glucosyltransferase. The Biochemical journal. 1988 Aug; 253(3):795-800. doi: 10.1042/bj2530795. [PMID: 2460084]
  • W McDowell, T J Grier, J R Rasmussen, R T Schwarz. The role of C-4-substituted mannose analogues in protein glycosylation. Effect of the guanosine diphosphate esters of 4-deoxy-4-fluoro-D-mannose and 4-deoxy-D-mannose on lipid-linked oligosaccharide assembly. The Biochemical journal. 1987 Dec; 248(2):523-31. doi: 10.1042/bj2480523. [PMID: 2449168]
  • M J Spiro, R G Spiro. Control of N-linked carbohydrate unit synthesis in thyroid endoplasmic reticulum by membrane organization and dolichyl phosphate availability. The Journal of biological chemistry. 1986 Nov; 261(31):14725-32. doi: 10.1016/s0021-9258(18)66931-5. [PMID: 2429959]
  • M Perez, C B Hirschberg. Topography of glycosylation reactions in the rough endoplasmic reticulum membrane. The Journal of biological chemistry. 1986 May; 261(15):6822-30. doi: ". [PMID: 2422171]
  • K E Creek, D Rimoldi, A J Clifford, C S Silverman-Jones, L M De Luca. Mannosylation of endogenous and exogenous phosphatidic acid by liver microsomal membranes. Formation of phosphatidylmannose. The Journal of biological chemistry. 1986 Mar; 261(8):3490-500. doi: 10.1016/s0021-9258(17)35675-2. [PMID: 2419333]
  • K Katamura, T Heike, K Shinomiya, H Mikawa. Regulation of synthesis of N-linked glycoproteins and their lipid intermediates in human T lymphoblastoid cells. The International journal of biochemistry. 1986; 18(11):999-1003. doi: 10.1016/0020-711x(86)90245-4. [PMID: 2433172]
  • Y Okamoto, K Murakami, Y Tahara, H Fukawa, N Akamatsu. alpha-Dihydrodecaprenyl phosphate as a sugar carrier in the membrane of AH 70Btc hepatoma cells. The International journal of biochemistry. 1986; 18(2):175-8. doi: 10.1016/0020-711x(86)90152-7. [PMID: 2419179]
  • R Cecchelli, R Cacan, A Verbert. Accumulation of UDP-GlcNAc into intracellular vesicles and occurrence of a carrier-mediated transport. Study with plasma-membrane-permeabilized mouse thymocytes. European journal of biochemistry. 1985 Nov; 153(1):111-6. doi: 10.1111/j.1432-1033.1985.tb09275.x. [PMID: 2415359]
  • E L Kean. Stimulation by dolichol phosphate-mannose and phospholipids of the biosynthesis of N-acetylglucosaminylpyrophosphoryl dolichol. The Journal of biological chemistry. 1985 Oct; 260(23):12561-71. doi: 10.1016/s0021-9258(17)38908-1. [PMID: 2413026]
  • M J Spiro, R G Spiro. Effect of anion-specific inhibitors on the utilization of sugar nucleotides for N-linked carbohydrate unit assembly by thyroid endoplasmic reticulum vesicles. The Journal of biological chemistry. 1985 May; 260(9):5808-15. doi: . [PMID: 2580839]
  • B N Panayotov, V I Zhivkov. Conversion of dolichyl pyrophosphate N,N'-diacetylchitobiose to lipid-tri- to heptasaccharides by liver microsomes from hibernating ground squirrels (Citellus citellus L.). The International journal of biochemistry. 1985; 17(6):713-7. doi: 10.1016/0020-711x(85)90370-2. [PMID: 2411612]
  • S V Kyosseva, V I Zhivkov. Biosynthesis of lipid-linked oligosaccharides in embryonic liver. Formation of mannose containing derivatives. The International journal of biochemistry. 1985; 17(7):813-7. doi: 10.1016/0020-711x(85)90269-1. [PMID: 2414140]
  • R Datema, R T Schwarz. An inhibitor of mannosylation of retinyl-phosphate. Bioscience reports. 1984 Mar; 4(3):213-21. doi: 10.1007/bf01119656. [PMID: 6202337]
  • W Sasak, C Levrat, C D Warren, R W Jeanloz. Biosynthesis of dolichyl pentasaccharide diphosphate in calf pancreas microsomes. The Journal of biological chemistry. 1984 Jan; 259(1):332-7. doi: . [PMID: 6200473]
  • J A Alhadeff, P Watkins. Lipid-mediated glycosylation in human liver. Characterization of the enzymatic transfer of N-acetylglucosamine from UDP-N-acetylglucosamine and mannose from GDP-mannose to dolichyl phosphate. Enzyme. 1984; 31(2):90-103. doi: . [PMID: 6202504]
  • G R Hayes, J J Lucas. Stimulation of lipid-linked oligosaccharide assembly during oviduct differentiation. The Journal of biological chemistry. 1983 Dec; 258(24):15095-100. doi: 10.1016/s0021-9258(17)43776-8. [PMID: 6197410]
  • Y Shidoji, C S Silverman-Jones, L M De Luca. Retinyl phosphate mannose synthesis in rat liver membranes. Phospholipase sensitivity and phospholipid requirement. The Biochemical journal. 1983 Dec; 216(3):727-35. doi: 10.1042/bj2160727. [PMID: 6199016]
  • J C Comley, J J Jaffe. The conversion of exogenous retinol and related compounds into retinyl phosphate mannose by adult Brugia pahangi in vitro. The Biochemical journal. 1983 Aug; 214(2):367-76. doi: 10.1042/bj2140367. [PMID: 6193781]
  • L Lehle, A Haselbeck, W Tanner. Synthesis of retinylphosphate mannose in yeast and its possible involvement in lipid-linked oligosaccharide formation. Biochimica et biophysica acta. 1983 May; 757(1):77-84. doi: 10.1016/0304-4165(83)90154-x. [PMID: 6188495]
  • C L Parfett, J C Jamieson, J A Wright. Changes in cell surface glycoproteins on non-differentiating L6 rat myoblasts selected for resistance to concanavalin A. Experimental cell research. 1983 Apr; 144(2):405-15. doi: 10.1016/0014-4827(83)90420-2. [PMID: 6188627]
  • K E Creek, D J Morré, C S Silverman-Jones, Y Shidoji, L M De Luca. Mannosyl carrier functions of retinyl phosphate and dolichyl phosphate in rat liver endoplasmic reticulum. The Biochemical journal. 1983 Feb; 210(2):541-7. doi: 10.1042/bj2100541. [PMID: 6190478]
  • E L Kean. Influence of metal ions on the biosynthesis of N-acetylglucosaminyl polyprenols by the retina. Biochimica et biophysica acta. 1983 Feb; 750(2):268-73. doi: 10.1016/0005-2760(83)90028-0. [PMID: 6190511]
  • A R Santa Cruz, L A Quesada Allue, A Baldi. Lipid-bound sugars in malignant human breast tumors. Partial characterization of mannosyl and glucosyl transferase activities. Molecular and cellular biochemistry. 1983; 56(1):55-66. doi: 10.1007/bf00228769. [PMID: 6195518]
  • C K Ramachandran, S L Gray, G Melnykovych. Studies on the stimulation of dolichol-mediated glycosylation by dexamethasone in HeLa cells. The Biochemical journal. 1982 Oct; 208(1):47-52. doi: 10.1042/bj2080047. [PMID: 6186247]
  • Y Ben-Yoseph, C L DeFranco, H L Nadler. Mannosylation of glycoproteins and dolichol derivatives in fibroblasts from patients with cystic fibrosis. Biochimica et biophysica acta. 1982 Oct; 718(2):172-6. doi: 10.1016/0304-4165(82)90216-1. [PMID: 6182921]
  • E Bause, G Legler. The effect of flavomycin on the synthesis and transfer of lipid-linked saccharides in pig brain. The Biochemical journal. 1982 Mar; 201(3):481-7. doi: 10.1042/bj2010481. [PMID: 6178396]
  • K Flanagan, W H Scouten, S E Nyquist. Involvement of dolichol phosphates as intermediates in the mannosyl and galactosyl transferases of rat testicular germ cell Golgi apparatus membranes. Biology of reproduction. 1982 Feb; 26(1):147-54. doi: 10.1095/biolreprod26.1.147. [PMID: 6175352]
  • Y Shidoji, L M De Luca. Rat liver microsomes catalyse mannosyl transfer from GDP-D-mannose to retinyl phosphate with high efficiency in the absence of detergents. The Biochemical journal. 1981 Dec; 200(3):529-38. doi: 10.1042/bj2000529. [PMID: 6177313]
  • L Ielpi, R Couso, M Dankert. Lipid-linked intermediates in the biosynthesis of xanthan gum. FEBS letters. 1981 Aug; 130(2):253-6. doi: 10.1016/0014-5793(81)81132-5. [PMID: 6169554]
  • T N Druzhinina, A N Pankrushina, V N Shibaev, T V Likholat. [Biosynthesis of carbohydrate-containing polymers in plants. I. Products formed with enzyme preparation from clover seedlings. Characterization of polyprenylphosphosugars]. Biokhimiia (Moscow, Russia). 1981 Aug; 46(8):1445-57. doi: ". [PMID: 6168302]
  • B Hoflack, R Cacan, A Verbert. Dolichol pathway in lymphocytes from rat spleen. Influence of the glucosylation on the cleavage of dolichyl diphosphate oligosaccharides into phosphooligosaccharides. European journal of biochemistry. 1981 Jul; 117(2):285-90. doi: 10.1111/j.1432-1033.1981.tb06335.x. [PMID: 6168468]
  • J I Rearick, K Fujimoto, S Kornfeld. Identification of the mannosyl donors involved in the synthesis of lipid-linked oligosaccharides. The Journal of biological chemistry. 1981 Apr; 256(8):3762-9. doi: ". [PMID: 6163773]
  • C Ronin, C Caseti, S Bouchilloux. Transfer of glucose in the biosynthesis of thyroid glycoproteins. I. Inhibition of glucose transfer to oligosaccharide lipids by GDP-mannose. Biochimica et biophysica acta. 1981 Apr; 674(1):48-57. doi: 10.1016/0304-4165(81)90345-7. [PMID: 6165397]
  • S Kato, M Tsuji, Y Nakanishi, S Suzuki. Inhibition of lipid-linked oligosaccharide synthesis by aryl phosphates. The Biochemical journal. 1981 Apr; 196(1):71-9. doi: 10.1042/bj1960071. [PMID: 6171269]
  • M A Passero, C W Pass, T R Hutchinson. Isolation and identification of a mannolipid intermediate in the synthesis of pulmonary glycoproteins. Experimental lung research. 1981 Mar; 2(1):17-26. doi: 10.3109/01902148109052299. [PMID: 6179772]
  • M Rudick, V Rudick, S Magie, E Jacobson. Glycoprotein synthesis in lysolecithin-treated cells using sugar nucleotides as glycosyl donors. In vitro. 1981 Feb; 17(2):173-7. doi: 10.1007/bf02618076. [PMID: 6168561]
  • J W Jensen, J D Springfield, J S Schutzbach. The biosynthesis of oligosaccharide-lipids. Isolation of an oligosaccharide-P-P-lipid acceptor. The Journal of biological chemistry. 1980 Dec; 255(23):11268-72. doi: ". [PMID: 6160149]
  • I K Vijay, G H Perdew, D E Lewis. Biosynthesis of mammary glycoproteins. Partial characterization of the sequence for the assembly of lipid-linked saccharides. The Journal of biological chemistry. 1980 Dec; 255(23):11210-20. doi: ". [PMID: 6160147]
  • I K Vijay, G H Perdew. Biosynthesis of mammary glycoproteins. Structural characterization of different isomers of lipid-linked hexa- and heptasaccharides. The Journal of biological chemistry. 1980 Dec; 255(23):11221-6. doi: ". [PMID: 6160148]
  • R B Trimble, F Maley, A L Tarentino. Characterization of large oligosaccharide-lipids synthesized in vitro by microsomes from Saccharomyces cerevisiae. The Journal of biological chemistry. 1980 Nov; 255(21):10232-8. doi: ". [PMID: 6159353]
  • B Hoflack, R Cacan, A Verbert. Metabolism of lipid-linked oligosaccharide intermediates in rat spleen lymphocytes. Evidence for ectoglycosyltransferase activities. European journal of biochemistry. 1980 Nov; 112(1):81-6. doi: 10.1111/j.1432-1033.1980.tb04989.x. [PMID: 6161005]
  • P Babczinski. Inhibition of lipid-linked mannose and mannoprotein synthesis in yeast by diumycin in vitro. European journal of biochemistry. 1980 Nov; 112(1):53-8. doi: 10.1111/j.1432-1033.1980.tb04986.x. [PMID: 6161004]
  • R Datema, R T Schwarz, J Winkler. Glycosylation of influenza virus proteins in the presence of fluoroglucose occurs via a different pathway. European journal of biochemistry. 1980 Sep; 110(2):355-61. doi: 10.1111/j.1432-1033.1980.tb04875.x. [PMID: 6160037]
  • L Lehle. Biosynthesis of the core region of yeast mannoproteins. Formation of a glucosylated dolichol-bound oligosaccharide precursor, its transfer to protein and subsequent modification. European journal of biochemistry. 1980 Aug; 109(2):589-601. doi: 10.1111/j.1432-1033.1980.tb04832.x. [PMID: 6157537]
  • R Datema, R T Schwarz, A W Jankowski. Fluoroglucose-inhibition of protein glycosylation in vivo. Inhibition of mannose and glucose incorporation into lipid-linked oligosaccharides. European journal of biochemistry. 1980 Aug; 109(2):331-41. doi: 10.1111/j.1432-1033.1980.tb04799.x. [PMID: 6157536]
  • J A Hanover, W J Lennarz, J D Young. Synthesis of N- and O-linked glycopeptides in oviduct membrane preparations. The Journal of biological chemistry. 1980 Jul; 255(14):6713-6. doi: ". [PMID: 6156162]
  • J S Schutzbach, J D Springfield, J W Jensen. The biosynthesis of oligosaccharide-lipids. Formation of an alpha-1,2-mannosyl-mannose linkage. The Journal of biological chemistry. 1980 May; 255(9):4170-5. doi: ". [PMID: 6154707]
  • R Cacan, B Hoflack, A Verbert. Fate of oligosaccharide-lipid intermediates synthesized by resting rat-spleen lymphocytes. European journal of biochemistry. 1980 May; 106(2):473-9. doi: 10.1111/j.1432-1033.1980.tb04594.x. [PMID: 6156825]
  • J P Spencer, A D Elbein. Transfer of mannose from GDP-mannose to lipid-linked oligosaccharide by soluble mannosyl transferase. Proceedings of the National Academy of Sciences of the United States of America. 1980 May; 77(5):2524-7. doi: 10.1073/pnas.77.5.2524. [PMID: 6156451]
  • C M Chadwick, D H Northcote. Glucosylation of phosphorylpolyisoprenol and sterol at the plasma membrane of soya-bean (Glycine max) protoplasts. The Biochemical journal. 1980 Feb; 186(2):411-21. doi: 10.1042/bj1860411. [PMID: 6445731]
  • M S Kang, A D Elbein. Incorporation of glucose into lipid-linked saccharides in aorta and its inhibition by amphomycin. Archives of biochemistry and biophysics. 1979 Nov; 198(1):304-13. doi: 10.1016/0003-9861(79)90423-5. [PMID: 507847]
  • D E Lewis, I K Vijay. Metabolism of N-acetylglucosamine and glucose in membranes from lactating bovine mammary tissue. Journal of dairy science. 1979 Nov; 62(11):1726-33. doi: 10.3168/jds.s0022-0302(79)83489-x. [PMID: 94066]
  • E Bause, L Jaenicke. Formation of lipid-linked sugar compounds in Volvox carteri f. nagariensis Iyengar. FEBS letters. 1979 Oct; 106(2):321-4. doi: 10.1016/0014-5793(79)80524-4. [PMID: 499516]
  • C Levrat, P Louisot. [Mannosylation of lipid and protein acceptors in sheep lung microsomes]. Comptes rendus des seances de l'Academie des sciences. Serie D, Sciences naturelles. 1979 Oct; 289(6):533-6. doi: ". [PMID: 93519]
  • D A Vessey, P Zatta, D Zakim. Properties of the dolichol phosphate: GDPmannose mannosyltransferase of liver microsomes. Medical biology. 1979 Oct; 57(5):345-51. doi: ". [PMID: 522522]
  • S S Krag. A concanavalin A-resistant Chinese hamster ovary cell line is deficient in the synthesis of [3H]glucosyl oligosaccharide-lipid. The Journal of biological chemistry. 1979 Sep; 254(18):9167-77. doi: 10.1016/s0021-9258(19)86826-6. [PMID: 479186]
  • A D Elbein, J Gafford, M S Kang. Inhibition of lipid-linked saccharide synthesis: comparison of tunicamycin, streptovirudin, and antibiotic 24010. Archives of biochemistry and biophysics. 1979 Sep; 196(2):311-8. doi: 10.1016/0003-9861(79)90583-6. [PMID: 485154]
  • C Levrat, P Louisot. [Biosynthesis of pulmonary glycoconjugates. III. Mannosylation of lipid and protein acceptors]. Canadian journal of biochemistry. 1979 Sep; 57(9):1163-9. doi: ". [PMID: 509358]
  • M J Smith, J B Schreiber, G Wolf. Subcellular localization of the enzyme that forms mannosyl retinyl phosphate from guanosine diphosphate [14C]mannose and retinyl phosphate. The Biochemical journal. 1979 Jun; 180(3):449-53. doi: 10.1042/bj1800449a. [PMID: 486123]
  • J A Wright, J C Jamieson, H Ceri. Studies on glycoprotein biosynthesis in concanavalin A-resistant cell lines. Defective formation of mannose-linked lipid intermediates. Experimental cell research. 1979 Jun; 121(1):1-8. doi: 10.1016/0014-4827(79)90437-3. [PMID: 446521]