D-Glucuronate (BioDeep_00000001733)
Secondary id: BioDeep_00000003270, BioDeep_00000055253, BioDeep_00000265136, BioDeep_00000400046, BioDeep_00000859614
natural product human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite BioNovoGene_Lab2019
代谢物信息卡片
化学式: C6H10O7 (194.042651)
中文名称: D-葡萄糖醛酸
谱图信息:
最多检出来源 Homo sapiens(blood) 0.01%
Last reviewed on 2024-08-21.
Cite this Page
D-Glucuronate. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China.
https://query.biodeep.cn/s/d-glucuronate (retrieved
2024-11-25) (BioDeep RN: BioDeep_00000001733). Licensed
under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
分子结构信息
SMILES: C1(C(C(OC(C1O)O)C(=O)O)O)O
InChI: InChI=1S/C6H10O7/c7-1-2(8)4(5(10)11)13-6(12)3(1)9/h1-4,6-9,12H,(H,10,11)/t1-,2-,3+,4-,6+/m0/s1
描述信息
Glucuronic acid (CAS: 6556-12-3) is a carboxylic acid that has the structure of a glucose molecule that has had its sixth carbon atom (of six total) oxidized. The salts of glucuronic acid are known as glucuronates. Glucuronic acid is highly soluble in water. In humans, glucuronic acid is often linked to toxic or poisonous substances to allow for subsequent elimination, and to hormones to allow for easier transport. These linkages involve O-glycosidic bonds. The process is known as glucuronidation, and the resulting substances are known as glucuronides (or glucuronosides). Glucuronidation uses UDP-glucuronic acid (glucuronic acid linked via a glycosidic bond to uridine diphosphate) as an intermediate. UDP-glucuronic acid is formed in the liver of all animals.
D-Glucuronic acid is an important intermediate isolated from many gums. D-Glucuronic acid and its derivative glucuronolactone are as a liver antidote in the prophylaxis of human health. D-Glucuronic acid has an anti-inflammatory effect for the skin[1].
D-Glucuronic acid is an important intermediate isolated from many gums. D-Glucuronic acid and its derivative glucuronolactone are as a liver antidote in the prophylaxis of human health. D-Glucuronic acid has an anti-inflammatory effect for the skin[1].
同义名列表
28 个代谢物同义名
(2S,3S,4S,5R,6S)-3,4,5,6-tetrahydroxyoxane-2-carboxylic acid; α-δ-glucopyranuronic acid; alpha-D-Glucopyranosyluronic acid; α-D-glucopyranuronic acid; α-δ-glucuronic acid; α-D-Glucopyranosyluronic acid; alpha-D-Glucopyranuronic acid; δ-(+)-glucuronic acid; α-D-glucuronic acid; α-D-Glucopyranuronic acid; alpha-D-Glucuronic acid; D-Glucopyranuronic acid; δ-(+)-glucuronate; beta-D-glucuronic acid; D-(+)-Glucuronic acid; δ-glucuronate; Glucosiduronic acid; D-Glucuronic acid; D-(+)-Glucuronate; Glucosiduronate; Glucuronic acid; D-Glucuronate; Glucuronate; GlcAalpha; GlcAa; GCU; Glucuronic acid; D-Glucuronate
数据库引用编号
39 个数据库交叉引用编号
- ChEBI: CHEBI:47952
- ChEBI: CHEBI:42717
- ChEBI: CHEBI:24298
- ChEBI: CHEBI:4178
- KEGG: C00191
- PubChem: 94715
- HMDB: HMDB0000127
- Metlin: METLIN161
- ChEMBL: CHEMBL496672
- Wikipedia: Glucuronic acid
- MeSH: Glucuronic Acid
- MetaCyc: |D-Galactopyranuronate|
- KNApSAcK: C00001123
- foodb: FDB021897
- chemspider: 392615
- CAS: 6556-12-3
- MoNA: PR100896
- MoNA: PS114707
- MoNA: KO000817
- MoNA: KO000818
- MoNA: KO000814
- MoNA: KO000816
- MoNA: KO000815
- PMhub: MS000001072
- ChEBI: CHEBI:15748
- PDB-CCD: BDP
- PDB-CCD: GCU
- 3DMET: B04646
- NIKKAJI: J82.112H
- medchemexpress: HY-N6612
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-132
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-838
- PubChem: 3491
- KNApSAcK: 15748
- LOTUS: LTS0028036
- wikidata: Q105036139
- LOTUS: LTS0216665
- LOTUS: LTS0220513
- wikidata: Q78172907
分类词条
相关代谢途径
Reactome(0)
BioCyc(7)
PlantCyc(0)
代谢反应
458 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(58)
- baicalein degradation (hydrogen peroxide detoxification):
baicalein + hydrogen peroxide ⟶ 6,7-dehydrobaicalein + H2O
- baicalein metabolism:
UDP-α-D-glucose + baicalein ⟶ H+ + UDP + baicalein 7-O-β-D-glucoside
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
myo-inositol + O2 ⟶ D-glucopyranuronate + H+ + H2O
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
myo-inositol + O2 ⟶ D-glucopyranuronate + H+ + H2O
- chondroitin sulfate degradation (metazoa):
chondroitin sulfate ⟶ N-acetyl-β-D-galactosamine + D-glucopyranuronate
- chondroitin sulfate degradation (metazoa):
chondroitin sulfate ⟶ N-acetyl-β-D-galactosamine + D-glucopyranuronate + sulfate
- ascorbate biosynthesis:
L-gulonate ⟶ H2O + L-gulono-1,4-lactone
- D-glucuronate degradation:
L-gulonate + NADP+ ⟶ aldehydo-D-glucuronate + H+ + NADPH
- superpathway of microbial D-galacturonate and D-glucuronate degradation:
aldehydo-D-glucuronate ⟶ D-fructuronate
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- D-glucuronate degradation I:
NADP+ + xylitol ⟶ H+ + L-xylulose + NADPH
- β-D-glucuronide and D-glucuronate degradation:
aldehydo-D-glucuronate ⟶ D-fructuronate
- superpathway of β-D-glucuronosides degradation:
aldehydo-D-glucuronate ⟶ D-fructuronate
- L-ascorbate biosynthesis IV:
H2O + L-gulono-1,4-lactone ⟶ H+ + L-gulonate
- superpathway of hexuronide and hexuronate degradation:
aldehydo-D-glucuronate ⟶ D-fructuronate
- β-D-glucuronide and D-glucuronate degradation:
H2O + a β-D-glucuronoside ⟶ D-glucopyranuronate + an alcohol
- superpathway of β-D-glucuronosides degradation:
H2O + a β-D-glucuronoside ⟶ D-glucopyranuronate + an alcohol
- superpathway of hexuronide and hexuronate degradation:
H2O + a β-D-glucuronoside ⟶ D-glucopyranuronate + an alcohol
- L-ascorbate biosynthesis IV:
L-gulono-1,4-lactone + O2 ⟶ L-xylo-hex-3-ulono-1,4-lactone + hydrogen peroxide
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- β-D-glucuronide and D-glucuronate degradation:
D-glucopyranuronate ⟶ aldehydo-D-glucuronate
- superpathway of β-D-glucuronide and D-glucuronate degradation:
D-glucopyranuronate ⟶ aldehydo-D-glucuronate
- superpathway of hexuronide and hexuronate degradation:
D-glucopyranuronate ⟶ aldehydo-D-glucuronate
- β-D-glucuronide and D-glucuronate degradation:
H2O + a β-D-glucuronoside ⟶ D-glucopyranuronate + an alcohol
- superpathway of β-D-glucuronide and D-glucuronate degradation:
H2O + a β-D-glucuronoside ⟶ D-glucopyranuronate + an alcohol
- L-ascorbate biosynthesis IV:
H2O + L-gulono-1,4-lactone ⟶ H+ + L-gulonate
- superpathway of hexuronide and hexuronate degradation:
H2O + a β-D-glucuronoside ⟶ D-glucopyranuronate + an alcohol
- L-ascorbate biosynthesis IV:
H2O + L-gulono-1,4-lactone ⟶ H+ + L-gulonate
- superpathway of hexuronide and hexuronate degradation:
D-glucopyranuronate ⟶ aldehydo-D-glucuronate
- β-D-glucuronide and D-glucuronate degradation:
D-glucopyranuronate ⟶ aldehydo-D-glucuronate
- superpathway of β-D-glucuronide and D-glucuronate degradation:
D-glucopyranuronate ⟶ aldehydo-D-glucuronate
- L-ascorbate biosynthesis IV:
L-gulonate + NADP+ ⟶ aldehydo-D-glucuronate + H+ + NADPH
- superpathway of hexuronide and hexuronate degradation:
H2O + a β-D-glucuronoside ⟶ D-glucopyranuronate + an alcohol
- superpathway of β-D-glucuronosides degradation:
H2O + a β-D-glucuronoside ⟶ D-glucopyranuronate + an alcohol
- β-D-glucuronide and D-glucuronate degradation:
H2O + a β-D-glucuronoside ⟶ D-glucopyranuronate + an alcohol
- superpathway of hexuronide and hexuronate degradation:
H2O + a β-D-glucuronoside ⟶ D-glucopyranuronate + an alcohol
- superpathway of β-D-glucuronosides degradation:
H2O + a β-D-glucuronoside ⟶ D-glucopyranuronate + an alcohol
- β-D-glucuronide and D-glucuronate degradation:
H2O + a β-D-glucuronoside ⟶ D-glucopyranuronate + an alcohol
- superpathway of β-D-glucuronide and D-glucuronate degradation:
H2O + a β-D-glucuronoside ⟶ D-glucopyranuronate + an alcohol
- β-D-glucuronide and D-glucuronate degradation:
H2O + a β-D-glucuronoside ⟶ D-glucopyranuronate + an alcohol
- superpathway of hexuronide and hexuronate degradation:
H2O + a β-D-glucuronoside ⟶ D-glucopyranuronate + an alcohol
- superpathway of hexuronide and hexuronate degradation:
D-glucopyranuronate ⟶ aldehydo-D-glucuronate
- superpathway of β-D-glucuronide and D-glucuronate degradation:
D-glucopyranuronate ⟶ aldehydo-D-glucuronate
- β-D-glucuronide and D-glucuronate degradation:
D-glucopyranuronate ⟶ aldehydo-D-glucuronate
- L-ascorbate biosynthesis IV:
L-gulonate + NADP+ ⟶ aldehydo-D-glucuronate + H+ + NADPH
- β-D-glucuronide and D-glucuronate degradation:
D-glucopyranuronate ⟶ aldehydo-D-glucuronate
- superpathway of β-D-glucuronide and D-glucuronate degradation:
D-glucopyranuronate ⟶ aldehydo-D-glucuronate
- β-D-glucuronide and D-glucuronate degradation:
D-glucopyranuronate ⟶ aldehydo-D-glucuronate
- superpathway of β-D-glucuronide and D-glucuronate degradation:
H2O + a β-D-glucuronoside ⟶ D-glucopyranuronate + an alcohol
- β-D-glucuronide and D-glucuronate degradation:
H2O + a β-D-glucuronoside ⟶ D-glucopyranuronate + an alcohol
- β-D-glucuronide and D-glucuronate degradation:
D-glucopyranuronate ⟶ aldehydo-D-glucuronate
- superpathway of β-D-glucuronide and D-glucuronate degradation:
D-glucopyranuronate ⟶ aldehydo-D-glucuronate
- superpathway of hexuronide and hexuronate degradation:
D-glucopyranuronate ⟶ aldehydo-D-glucuronate
- β-D-glucuronide and D-glucuronate degradation:
H2O + a β-D-glucuronoside ⟶ D-glucopyranuronate + an alcohol
- superpathway of β-D-glucuronide and D-glucuronate degradation:
H2O + a β-D-glucuronoside ⟶ D-glucopyranuronate + an alcohol
- superpathway of hexuronide and hexuronate degradation:
H2O + a β-D-glucuronoside ⟶ D-glucopyranuronate + an alcohol
- L-ascorbate biosynthesis IV:
L-gulonate + NADP+ ⟶ aldehydo-D-glucuronate + H+ + NADPH
- β-D-glucuronide and D-glucuronate degradation:
H2O + a β-D-glucuronoside ⟶ D-glucopyranuronate + an alcohol
WikiPathways(0)
Plant Reactome(0)
INOH(1)
- Inositol phosphate metabolism ( Inositol phosphate metabolism ):
O2 + myo-Inositol ⟶ D-Glucuronic acid + H2O
PlantCyc(369)
- baicalein degradation (hydrogen peroxide detoxification):
baicalein + hydrogen peroxide ⟶ 6,7-dehydrobaicalein + H2O
- baicalein degradation (hydrogen peroxide detoxification):
baicalein + hydrogen peroxide ⟶ 6,7-dehydrobaicalein + H2O
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- baicalein degradation (hydrogen peroxide detoxification):
baicalein + hydrogen peroxide ⟶ 6,7-dehydrobaicalein + H2O
- baicalein degradation (hydrogen peroxide detoxification):
baicalein + hydrogen peroxide ⟶ 6,7-dehydrobaicalein + H2O
- baicalein degradation (hydrogen peroxide detoxification):
baicalein + hydrogen peroxide ⟶ 6,7-dehydrobaicalein + H2O
- baicalein degradation (hydrogen peroxide detoxification):
baicalein + hydrogen peroxide ⟶ 6,7-dehydrobaicalein + H2O
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- baicalein degradation (hydrogen peroxide detoxification):
baicalein + hydrogen peroxide ⟶ 6,7-dehydrobaicalein + H2O
- baicalein degradation (hydrogen peroxide detoxification):
baicalein + hydrogen peroxide ⟶ 6,7-dehydrobaicalein + H2O
- baicalein degradation (hydrogen peroxide detoxification):
baicalein + hydrogen peroxide ⟶ 6,7-dehydrobaicalein + H2O
- baicalein degradation (hydrogen peroxide detoxification):
baicalein + hydrogen peroxide ⟶ 6,7-dehydrobaicalein + H2O
- baicalein degradation (hydrogen peroxide detoxification):
baicalein + hydrogen peroxide ⟶ 6,7-dehydrobaicalein + H2O
- baicalein degradation (hydrogen peroxide detoxification):
baicalein + hydrogen peroxide ⟶ 6,7-dehydrobaicalein + H2O
- baicalein degradation (hydrogen peroxide detoxification):
baicalein + hydrogen peroxide ⟶ 6,7-dehydrobaicalein + H2O
- baicalein degradation (hydrogen peroxide detoxification):
baicalein + hydrogen peroxide ⟶ 6,7-dehydrobaicalein + H2O
- baicalein degradation (hydrogen peroxide detoxification):
baicalein + hydrogen peroxide ⟶ 6,7-dehydrobaicalein + H2O
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- baicalein degradation (hydrogen peroxide detoxification):
baicalein + hydrogen peroxide ⟶ 6,7-dehydrobaicalein + H2O
- baicalein degradation (hydrogen peroxide detoxification):
baicalein + hydrogen peroxide ⟶ 6,7-dehydrobaicalein + H2O
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- baicalein degradation (hydrogen peroxide detoxification):
baicalein + hydrogen peroxide ⟶ 6,7-dehydrobaicalein + H2O
- baicalein degradation (hydrogen peroxide detoxification):
baicalein + hydrogen peroxide ⟶ 6,7-dehydrobaicalein + H2O
- baicalein degradation (hydrogen peroxide detoxification):
baicalein + hydrogen peroxide ⟶ 6,7-dehydrobaicalein + H2O
- baicalein degradation (hydrogen peroxide detoxification):
baicalein + hydrogen peroxide ⟶ 6,7-dehydrobaicalein + H2O
- baicalein degradation (hydrogen peroxide detoxification):
baicalein + hydrogen peroxide ⟶ 6,7-dehydrobaicalein + H2O
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- baicalein degradation (hydrogen peroxide detoxification):
baicalein + hydrogen peroxide ⟶ 6,7-dehydrobaicalein + H2O
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
myo-inositol + O2 ⟶ D-glucopyranuronate + H+ + H2O
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
myo-inositol + O2 ⟶ D-glucopyranuronate + H+ + H2O
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
ATP + D-glucopyranuronate ⟶ α-D-glucuronate 1-phosphate + ADP + H+
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
myo-inositol + O2 ⟶ D-glucopyranuronate + H+ + H2O
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
myo-inositol + O2 ⟶ D-glucopyranuronate + H+ + H2O
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
ATP + D-glucopyranuronate ⟶ α-D-glucuronate 1-phosphate + ADP + H+
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
myo-inositol + O2 ⟶ D-glucopyranuronate + H+ + H2O
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
ATP + D-glucopyranuronate ⟶ α-D-glucuronate 1-phosphate + ADP + H+
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
ATP + D-glucopyranuronate ⟶ α-D-glucuronate 1-phosphate + ADP + H+
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
myo-inositol + O2 ⟶ D-glucopyranuronate + H+ + H2O
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
ATP + D-glucopyranuronate ⟶ α-D-glucuronate 1-phosphate + ADP + H+
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
ATP + D-glucopyranuronate ⟶ α-D-glucuronate 1-phosphate + ADP + H+
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
myo-inositol + O2 ⟶ D-glucopyranuronate + H+ + H2O
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
myo-inositol + O2 ⟶ D-glucopyranuronate + H+ + H2O
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
myo-inositol + O2 ⟶ D-glucopyranuronate + H+ + H2O
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
myo-inositol + O2 ⟶ D-glucopyranuronate + H+ + H2O
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
myo-inositol + O2 ⟶ D-glucopyranuronate + H+ + H2O
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
myo-inositol + O2 ⟶ D-glucopyranuronate + H+ + H2O
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
myo-inositol + O2 ⟶ D-glucopyranuronate + H+ + H2O
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
myo-inositol + O2 ⟶ D-glucopyranuronate + H+ + H2O
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
ATP + D-glucopyranuronate ⟶ α-D-glucuronate 1-phosphate + ADP + H+
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
ATP + D-glucopyranuronate ⟶ α-D-glucuronate 1-phosphate + ADP + H+
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
ATP + D-glucopyranuronate ⟶ α-D-glucuronate 1-phosphate + ADP + H+
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
ATP + D-glucopyranuronate ⟶ α-D-glucuronate 1-phosphate + ADP + H+
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
myo-inositol + O2 ⟶ D-glucopyranuronate + H+ + H2O
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
ATP + D-glucopyranuronate ⟶ α-D-glucuronate 1-phosphate + ADP + H+
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
ATP + D-glucopyranuronate ⟶ α-D-glucuronate 1-phosphate + ADP + H+
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
ATP + D-glucopyranuronate ⟶ α-D-glucuronate 1-phosphate + ADP + H+
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
myo-inositol + O2 ⟶ D-glucopyranuronate + H+ + H2O
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
myo-inositol + O2 ⟶ D-glucopyranuronate + H+ + H2O
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
myo-inositol + O2 ⟶ D-glucopyranuronate + H+ + H2O
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
ATP + D-glucopyranuronate ⟶ α-D-glucuronate 1-phosphate + ADP + H+
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
myo-inositol + O2 ⟶ D-glucopyranuronate + H+ + H2O
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
ATP + D-glucopyranuronate ⟶ α-D-glucuronate 1-phosphate + ADP + H+
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
ATP + D-glucopyranuronate ⟶ α-D-glucuronate 1-phosphate + ADP + H+
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
myo-inositol + O2 ⟶ D-glucopyranuronate + H+ + H2O
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
myo-inositol + O2 ⟶ D-glucopyranuronate + H+ + H2O
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
myo-inositol + O2 ⟶ D-glucopyranuronate + H+ + H2O
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
myo-inositol + O2 ⟶ D-glucopyranuronate + H+ + H2O
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
myo-inositol + O2 ⟶ D-glucopyranuronate + H+ + H2O
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
myo-inositol + O2 ⟶ D-glucopyranuronate + H+ + H2O
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
myo-inositol + O2 ⟶ D-glucopyranuronate + H+ + H2O
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
myo-inositol + O2 ⟶ D-glucopyranuronate + H+ + H2O
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
ATP + D-glucopyranuronate ⟶ α-D-glucuronate 1-phosphate + ADP + H+
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
ATP + D-glucopyranuronate ⟶ α-D-glucuronate 1-phosphate + ADP + H+
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
ATP + D-glucopyranuronate ⟶ α-D-glucuronate 1-phosphate + ADP + H+
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
ATP + D-glucopyranuronate ⟶ α-D-glucuronate 1-phosphate + ADP + H+
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
ATP + D-glucopyranuronate ⟶ α-D-glucuronate 1-phosphate + ADP + H+
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
ATP + D-glucopyranuronate ⟶ α-D-glucuronate 1-phosphate + ADP + H+
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
myo-inositol + O2 ⟶ D-glucopyranuronate + H+ + H2O
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
ATP + D-glucopyranuronate ⟶ α-D-glucuronate 1-phosphate + ADP + H+
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
myo-inositol + O2 ⟶ D-glucopyranuronate + H+ + H2O
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
myo-inositol + O2 ⟶ D-glucopyranuronate + H+ + H2O
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
ATP + D-glucopyranuronate ⟶ α-D-glucuronate 1-phosphate + ADP + H+
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
myo-inositol + O2 ⟶ D-glucopyranuronate + H+ + H2O
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
myo-inositol + O2 ⟶ D-glucopyranuronate + H+ + H2O
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
ATP + D-glucopyranuronate ⟶ α-D-glucuronate 1-phosphate + ADP + H+
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
myo-inositol + O2 ⟶ D-glucopyranuronate + H+ + H2O
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
ATP + D-glucopyranuronate ⟶ α-D-glucuronate 1-phosphate + ADP + H+
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
ATP + D-glucopyranuronate ⟶ α-D-glucuronate 1-phosphate + ADP + H+
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
myo-inositol + O2 ⟶ D-glucopyranuronate + H+ + H2O
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
ATP + D-glucopyranuronate ⟶ α-D-glucuronate 1-phosphate + ADP + H+
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
ATP + D-glucopyranuronate ⟶ α-D-glucuronate 1-phosphate + ADP + H+
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
ATP + D-glucopyranuronate ⟶ α-D-glucuronate 1-phosphate + ADP + H+
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
myo-inositol + O2 ⟶ D-glucopyranuronate + H+ + H2O
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
myo-inositol + O2 ⟶ D-glucopyranuronate + H+ + H2O
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
ATP + D-glucopyranuronate ⟶ α-D-glucuronate 1-phosphate + ADP + H+
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
myo-inositol + O2 ⟶ D-glucopyranuronate + H+ + H2O
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
ATP + D-glucopyranuronate ⟶ α-D-glucuronate 1-phosphate + ADP + H+
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
ATP + D-glucopyranuronate ⟶ α-D-glucuronate 1-phosphate + ADP + H+
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
myo-inositol + O2 ⟶ D-glucopyranuronate + H+ + H2O
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
ATP + D-glucopyranuronate ⟶ α-D-glucuronate 1-phosphate + ADP + H+
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
myo-inositol + O2 ⟶ D-glucopyranuronate + H+ + H2O
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
myo-inositol + O2 ⟶ D-glucopyranuronate + H+ + H2O
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
ATP + D-glucopyranuronate ⟶ α-D-glucuronate 1-phosphate + ADP + H+
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
myo-inositol + O2 ⟶ D-glucopyranuronate + H+ + H2O
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
ATP + D-glucopyranuronate ⟶ α-D-glucuronate 1-phosphate + ADP + H+
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
myo-inositol + O2 ⟶ D-glucopyranuronate + H+ + H2O
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
myo-inositol + O2 ⟶ D-glucopyranuronate + H+ + H2O
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
ATP + D-glucopyranuronate ⟶ α-D-glucuronate 1-phosphate + ADP + H+
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
ATP + D-glucopyranuronate ⟶ α-D-glucuronate 1-phosphate + ADP + H+
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
myo-inositol + O2 ⟶ D-glucopyranuronate + H+ + H2O
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
myo-inositol + O2 ⟶ D-glucopyranuronate + H+ + H2O
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
myo-inositol + O2 ⟶ D-glucopyranuronate + H+ + H2O
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
ATP + D-glucopyranuronate ⟶ α-D-glucuronate 1-phosphate + ADP + H+
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
myo-inositol + O2 ⟶ D-glucopyranuronate + H+ + H2O
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
ATP + D-glucopyranuronate ⟶ α-D-glucuronate 1-phosphate + ADP + H+
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
ATP + D-glucopyranuronate ⟶ α-D-glucuronate 1-phosphate + ADP + H+
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
myo-inositol + O2 ⟶ D-glucopyranuronate + H+ + H2O
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
myo-inositol + O2 ⟶ D-glucopyranuronate + H+ + H2O
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
myo-inositol + O2 ⟶ D-glucopyranuronate + H+ + H2O
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
myo-inositol + O2 ⟶ D-glucopyranuronate + H+ + H2O
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
ATP + D-glucopyranuronate ⟶ α-D-glucuronate 1-phosphate + ADP + H+
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
myo-inositol + O2 ⟶ D-glucopyranuronate + H+ + H2O
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
α-D-glucuronate 1-phosphate + H+ + UTP ⟶ UDP-α-D-glucuronate + diphosphate
- baicalein degradation (hydrogen peroxide detoxification):
baicalein + hydrogen peroxide ⟶ 6,7-dehydrobaicalein + H2O
- baicalein degradation (hydrogen peroxide detoxification):
baicalein + hydrogen peroxide ⟶ 6,7-dehydrobaicalein + H2O
- baicalein degradation (hydrogen peroxide detoxification):
baicalein + hydrogen peroxide ⟶ 6,7-dehydrobaicalein + H2O
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- baicalein degradation (hydrogen peroxide detoxification):
baicalein + hydrogen peroxide ⟶ 6,7-dehydrobaicalein + H2O
- baicalein degradation (hydrogen peroxide detoxification):
baicalein + hydrogen peroxide ⟶ 6,7-dehydrobaicalein + H2O
- baicalein degradation (hydrogen peroxide detoxification):
baicalein + hydrogen peroxide ⟶ 6,7-dehydrobaicalein + H2O
- baicalein degradation (hydrogen peroxide detoxification):
baicalein + hydrogen peroxide ⟶ 6,7-dehydrobaicalein + H2O
- baicalein degradation (hydrogen peroxide detoxification):
baicalein + hydrogen peroxide ⟶ 6,7-dehydrobaicalein + H2O
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- baicalein degradation (hydrogen peroxide detoxification):
baicalein + hydrogen peroxide ⟶ 6,7-dehydrobaicalein + H2O
- baicalein degradation (hydrogen peroxide detoxification):
baicalein + hydrogen peroxide ⟶ 6,7-dehydrobaicalein + H2O
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- baicalein degradation (hydrogen peroxide detoxification):
baicalein + hydrogen peroxide ⟶ 6,7-dehydrobaicalein + H2O
- baicalein degradation (hydrogen peroxide detoxification):
baicalein + hydrogen peroxide ⟶ 6,7-dehydrobaicalein + H2O
- baicalein degradation (hydrogen peroxide detoxification):
baicalein + hydrogen peroxide ⟶ 6,7-dehydrobaicalein + H2O
- baicalein degradation (hydrogen peroxide detoxification):
baicalein + hydrogen peroxide ⟶ 6,7-dehydrobaicalein + H2O
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- baicalein degradation (hydrogen peroxide detoxification):
baicalein + hydrogen peroxide ⟶ 6,7-dehydrobaicalein + H2O
- baicalein degradation (hydrogen peroxide detoxification):
baicalein + hydrogen peroxide ⟶ 6,7-dehydrobaicalein + H2O
- baicalein degradation (hydrogen peroxide detoxification):
baicalein + hydrogen peroxide ⟶ 6,7-dehydrobaicalein + H2O
- baicalein degradation (hydrogen peroxide detoxification):
baicalein + hydrogen peroxide ⟶ 6,7-dehydrobaicalein + H2O
- baicalein degradation (hydrogen peroxide detoxification):
baicalein + hydrogen peroxide ⟶ 6,7-dehydrobaicalein + H2O
- baicalein degradation (hydrogen peroxide detoxification):
baicalein + hydrogen peroxide ⟶ 6,7-dehydrobaicalein + H2O
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- baicalein degradation (hydrogen peroxide detoxification):
baicalein + hydrogen peroxide ⟶ 6,7-dehydrobaicalein + H2O
- baicalein degradation (hydrogen peroxide detoxification):
baicalein + hydrogen peroxide ⟶ 6,7-dehydrobaicalein + H2O
- baicalein degradation (hydrogen peroxide detoxification):
baicalein + hydrogen peroxide ⟶ 6,7-dehydrobaicalein + H2O
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- baicalein degradation (hydrogen peroxide detoxification):
baicalein + hydrogen peroxide ⟶ 6,7-dehydrobaicalein + H2O
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- baicalein degradation (hydrogen peroxide detoxification):
baicalein + hydrogen peroxide ⟶ 6,7-dehydrobaicalein + H2O
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- baicalein degradation (hydrogen peroxide detoxification):
baicalein + hydrogen peroxide ⟶ 6,7-dehydrobaicalein + H2O
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- baicalein degradation (hydrogen peroxide detoxification):
baicalein + hydrogen peroxide ⟶ 6,7-dehydrobaicalein + H2O
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- baicalein degradation (hydrogen peroxide detoxification):
baicalein + hydrogen peroxide ⟶ 6,7-dehydrobaicalein + H2O
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- baicalein degradation (hydrogen peroxide detoxification):
baicalein + hydrogen peroxide ⟶ 6,7-dehydrobaicalein + H2O
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- baicalein degradation (hydrogen peroxide detoxification):
baicalein + hydrogen peroxide ⟶ 6,7-dehydrobaicalein + H2O
- baicalein degradation (hydrogen peroxide detoxification):
baicalein + hydrogen peroxide ⟶ 6,7-dehydrobaicalein + H2O
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- baicalein degradation (hydrogen peroxide detoxification):
baicalein + hydrogen peroxide ⟶ 6,7-dehydrobaicalein + H2O
- baicalein degradation (hydrogen peroxide detoxification):
baicalein + hydrogen peroxide ⟶ 6,7-dehydrobaicalein + H2O
- baicalein degradation (hydrogen peroxide detoxification):
baicalein + hydrogen peroxide ⟶ 6,7-dehydrobaicalein + H2O
- baicalein degradation (hydrogen peroxide detoxification):
baicalein + hydrogen peroxide ⟶ 6,7-dehydrobaicalein + H2O
- baicalein degradation (hydrogen peroxide detoxification):
baicalein + hydrogen peroxide ⟶ 6,7-dehydrobaicalein + H2O
- baicalein degradation (hydrogen peroxide detoxification):
baicalein + hydrogen peroxide ⟶ 6,7-dehydrobaicalein + H2O
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- baicalein degradation (hydrogen peroxide detoxification):
baicalein + hydrogen peroxide ⟶ 6,7-dehydrobaicalein + H2O
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- baicalein degradation (hydrogen peroxide detoxification):
baicalein + hydrogen peroxide ⟶ 6,7-dehydrobaicalein + H2O
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- baicalein degradation (hydrogen peroxide detoxification):
baicalein + hydrogen peroxide ⟶ 6,7-dehydrobaicalein + H2O
- baicalein degradation (hydrogen peroxide detoxification):
baicalein + hydrogen peroxide ⟶ 6,7-dehydrobaicalein + H2O
- baicalein degradation (hydrogen peroxide detoxification):
baicalein + hydrogen peroxide ⟶ 6,7-dehydrobaicalein + H2O
- baicalein degradation (hydrogen peroxide detoxification):
baicalein + hydrogen peroxide ⟶ 6,7-dehydrobaicalein + H2O
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- baicalein degradation (hydrogen peroxide detoxification):
baicalein + hydrogen peroxide ⟶ 6,7-dehydrobaicalein + H2O
- baicalein degradation (hydrogen peroxide detoxification):
baicalein + hydrogen peroxide ⟶ 6,7-dehydrobaicalein + H2O
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- baicalein degradation (hydrogen peroxide detoxification):
baicalein + hydrogen peroxide ⟶ 6,7-dehydrobaicalein + H2O
- baicalein degradation (hydrogen peroxide detoxification):
baicalein + hydrogen peroxide ⟶ 6,7-dehydrobaicalein + H2O
- baicalein degradation (hydrogen peroxide detoxification):
baicalein + hydrogen peroxide ⟶ 6,7-dehydrobaicalein + H2O
- baicalein degradation (hydrogen peroxide detoxification):
baicalein + hydrogen peroxide ⟶ 6,7-dehydrobaicalein + H2O
- baicalein degradation (hydrogen peroxide detoxification):
baicalein + hydrogen peroxide ⟶ 6,7-dehydrobaicalein + H2O
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- baicalein degradation (hydrogen peroxide detoxification):
baicalein + hydrogen peroxide ⟶ 6,7-dehydrobaicalein + H2O
- baicalein degradation (hydrogen peroxide detoxification):
baicalein + hydrogen peroxide ⟶ 6,7-dehydrobaicalein + H2O
- baicalein degradation (hydrogen peroxide detoxification):
baicalein + hydrogen peroxide ⟶ 6,7-dehydrobaicalein + H2O
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- baicalein degradation (hydrogen peroxide detoxification):
baicalein + hydrogen peroxide ⟶ 6,7-dehydrobaicalein + H2O
- baicalein degradation (hydrogen peroxide detoxification):
baicalein + hydrogen peroxide ⟶ 6,7-dehydrobaicalein + H2O
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- baicalein degradation (hydrogen peroxide detoxification):
baicalein + hydrogen peroxide ⟶ 6,7-dehydrobaicalein + H2O
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- baicalein degradation (hydrogen peroxide detoxification):
baicalein + hydrogen peroxide ⟶ 6,7-dehydrobaicalein + H2O
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- baicalein degradation (hydrogen peroxide detoxification):
baicalein + hydrogen peroxide ⟶ 6,7-dehydrobaicalein + H2O
- baicalein degradation (hydrogen peroxide detoxification):
baicalein + hydrogen peroxide ⟶ 6,7-dehydrobaicalein + H2O
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- baicalein degradation (hydrogen peroxide detoxification):
baicalein + hydrogen peroxide ⟶ 6,7-dehydrobaicalein + H2O
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- baicalein degradation (hydrogen peroxide detoxification):
baicalein + hydrogen peroxide ⟶ 6,7-dehydrobaicalein + H2O
- baicalein degradation (hydrogen peroxide detoxification):
baicalein + hydrogen peroxide ⟶ 6,7-dehydrobaicalein + H2O
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- baicalein degradation (hydrogen peroxide detoxification):
baicalein + hydrogen peroxide ⟶ 6,7-dehydrobaicalein + H2O
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- baicalein degradation (hydrogen peroxide detoxification):
baicalein + hydrogen peroxide ⟶ 6,7-dehydrobaicalein + H2O
- baicalein degradation (hydrogen peroxide detoxification):
baicalein + hydrogen peroxide ⟶ 6,7-dehydrobaicalein + H2O
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- baicalein degradation (hydrogen peroxide detoxification):
baicalein + hydrogen peroxide ⟶ 6,7-dehydrobaicalein + H2O
- baicalein metabolism:
H+ + NADPH + O2 + chrysin ⟶ H2O + NADP+ + baicalein
- baicalein degradation (hydrogen peroxide detoxification):
baicalein + hydrogen peroxide ⟶ 6,7-dehydrobaicalein + H2O
- baicalein degradation (hydrogen peroxide detoxification):
baicalein + hydrogen peroxide ⟶ 6,7-dehydrobaicalein + H2O
- baicalein metabolism:
H+ + NADPH + O2 + chrysin ⟶ H2O + NADP+ + baicalein
- baicalein degradation (hydrogen peroxide detoxification):
baicalein + hydrogen peroxide ⟶ 6,7-dehydrobaicalein + H2O
- baicalein degradation (hydrogen peroxide detoxification):
baicalein + hydrogen peroxide ⟶ 6,7-dehydrobaicalein + H2O
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
ATP + D-glucopyranuronate ⟶ α-D-glucuronate 1-phosphate + ADP + H+
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
myo-inositol + O2 ⟶ D-glucopyranuronate + H+ + H2O
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
myo-inositol + O2 ⟶ D-glucopyranuronate + H+ + H2O
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
myo-inositol + O2 ⟶ D-glucopyranuronate + H+ + H2O
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
myo-inositol + O2 ⟶ D-glucopyranuronate + H+ + H2O
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
myo-inositol + O2 ⟶ D-glucopyranuronate + H+ + H2O
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
myo-inositol + O2 ⟶ D-glucopyranuronate + H+ + H2O
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
myo-inositol + O2 ⟶ D-glucopyranuronate + H+ + H2O
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
ATP + D-glucopyranuronate ⟶ α-D-glucuronate 1-phosphate + ADP + H+
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
ATP + D-glucopyranuronate ⟶ α-D-glucuronate 1-phosphate + ADP + H+
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
ATP + D-glucopyranuronate ⟶ α-D-glucuronate 1-phosphate + ADP + H+
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
ATP + D-glucopyranuronate ⟶ α-D-glucuronate 1-phosphate + ADP + H+
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
myo-inositol + O2 ⟶ D-glucopyranuronate + H+ + H2O
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
myo-inositol + O2 ⟶ D-glucopyranuronate + H+ + H2O
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
ATP + D-glucopyranuronate ⟶ α-D-glucuronate 1-phosphate + ADP + H+
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
myo-inositol + O2 ⟶ D-glucopyranuronate + H+ + H2O
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
myo-inositol + O2 ⟶ D-glucopyranuronate + H+ + H2O
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
ATP + D-glucopyranuronate ⟶ α-D-glucuronate 1-phosphate + ADP + H+
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
ATP + D-glucopyranuronate ⟶ α-D-glucuronate 1-phosphate + ADP + H+
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
ATP + D-glucopyranuronate ⟶ α-D-glucuronate 1-phosphate + ADP + H+
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
ATP + D-glucopyranuronate ⟶ α-D-glucuronate 1-phosphate + ADP + H+
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
myo-inositol + O2 ⟶ D-glucopyranuronate + H+ + H2O
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
UDP-α-D-glucose + wogonin ⟶ H+ + UDP + wogonin 7-O-β-D-glucoside
COVID-19 Disease Map(0)
PathBank(30)
- Hexuronide and Hexuronate Degradation:
Bilirubin diglucuronide + Water ⟶ Benzyl alcohol + D-glucopyranuronate
- Inositol Metabolism:
Oxygen + myo-Inositol ⟶ D-Glucuronic acid + Water
- Starch and Sucrose Metabolism:
Isovalerylglucuronide + Water ⟶ Alcohol + D-Glucuronic acid
- Glycogen Synthetase Deficiency:
Isovalerylglucuronide + Water ⟶ Alcohol + D-Glucuronic acid
- Glycogenosis, Type III. Cori Disease, Debrancher Glycogenosis:
Isovalerylglucuronide + Water ⟶ Alcohol + D-Glucuronic acid
- Glycogenosis, Type IV. Amylopectinosis, Anderson Disease:
Isovalerylglucuronide + Water ⟶ Alcohol + D-Glucuronic acid
- Glycogenosis, Type VI. Hers Disease:
Isovalerylglucuronide + Water ⟶ Alcohol + D-Glucuronic acid
- Mucopolysaccharidosis VII. Sly Syndrome:
Isovalerylglucuronide + Water ⟶ Alcohol + D-Glucuronic acid
- Sucrase-Isomaltase Deficiency:
Isovalerylglucuronide + Water ⟶ Alcohol + D-Glucuronic acid
- Inositol Metabolism:
Oxygen + myo-Inositol ⟶ D-Glucuronic acid + Water
- Starch and Sucrose Metabolism:
Isovalerylglucuronide + Water ⟶ Alcohol + D-Glucuronic acid
- Glycogen Synthetase Deficiency:
Isovalerylglucuronide + Water ⟶ Alcohol + D-Glucuronic acid
- Glycogenosis, Type III. Cori Disease, Debrancher Glycogenosis:
Isovalerylglucuronide + Water ⟶ Alcohol + D-Glucuronic acid
- Glycogenosis, Type IV. Amylopectinosis, Anderson Disease:
Isovalerylglucuronide + Water ⟶ Alcohol + D-Glucuronic acid
- Glycogenosis, Type VI. Hers Disease:
Isovalerylglucuronide + Water ⟶ Alcohol + D-Glucuronic acid
- Mucopolysaccharidosis VII. Sly Syndrome:
Isovalerylglucuronide + Water ⟶ Alcohol + D-Glucuronic acid
- Sucrase-Isomaltase Deficiency:
Isovalerylglucuronide + Water ⟶ Alcohol + D-Glucuronic acid
- Inositol Metabolism:
Oxygen + myo-Inositol ⟶ D-Glucuronic acid + Water
- Starch and Sucrose Metabolism:
Isovalerylglucuronide + Water ⟶ Alcohol + D-Glucuronic acid
- Inositol Metabolism:
Oxygen + myo-Inositol ⟶ D-Glucuronic acid + Water
- Starch and Sucrose Metabolism:
Isovalerylglucuronide + Water ⟶ Alcohol + D-Glucuronic acid
- Inositol Metabolism:
Oxygen + myo-Inositol ⟶ D-Glucuronic acid + Water
- Inositol Metabolism:
Oxygen + myo-Inositol ⟶ D-Glucuronic acid + Water
- Glycogen Synthetase Deficiency:
Isovalerylglucuronide + Water ⟶ Alcohol + D-Glucuronic acid
- Glycogenosis, Type III. Cori Disease, Debrancher Glycogenosis:
Isovalerylglucuronide + Water ⟶ Alcohol + D-Glucuronic acid
- Glycogenosis, Type IV. Amylopectinosis, Anderson Disease:
Isovalerylglucuronide + Water ⟶ Alcohol + D-Glucuronic acid
- Glycogenosis, Type VI. Hers Disease:
Isovalerylglucuronide + Water ⟶ Alcohol + D-Glucuronic acid
- Mucopolysaccharidosis VII. Sly Syndrome:
Isovalerylglucuronide + Water ⟶ Alcohol + D-Glucuronic acid
- Sucrase-Isomaltase Deficiency:
Isovalerylglucuronide + Water ⟶ Alcohol + D-Glucuronic acid
- Ascorbate Biosynthesis:
Hydrogen Ion + NADPH + aldehydo-D-glucuronate ⟶ Gulonic acid + NADP
PharmGKB(0)
28 个相关的物种来源信息
- 182999 - Acanthospermum hispidum: 10.1016/0378-8741(90)90067-4
- 1264805 - Astragalus brachycarpus: 10.1007/BF00564977
- 3055 - Chlamydomonas reinhardtii: 10.1111/TPJ.12747
- 86864 - Codonopsis pilosula: 10.1248/BPB.31.1860
- 1701078 - Eremogone saxatilis: 10.1007/BF00580921
- 2759 - Eukaryota: LTS0216665
- 3803 - Fabaceae: LTS0216665
- 46347 - Glycyrrhiza: LTS0216665
- 49827 - Glycyrrhiza glabra: 10.1007/S10600-009-9403-1
- 49827 - Glycyrrhiza glabra: LTS0216665
- 9606 - Homo sapiens: -
- 3398 - Magnoliopsida: LTS0216665
- 47085 - Medicago lupulina: 10.5586/ASBP.1984.048
- 44586 - Panax Notoginseng (Burk.) F. H. Chen Ex C. Chow: -
- 4837 - Phycomyces blakesleeanus: 10.1016/0031-9422(96)00146-X
- 49647 - Primula: LTS0216665
- 170927 - Primula veris: 10.1055/S-0028-1099459
- 170927 - Primula veris: LTS0216665
- 4335 - Primulaceae: LTS0216665
- 157169 - Ramalina fraxinea: 10.5586/ASBP.1979.002
- 190515 - Siraitia grosvenorii: 10.1016/0378-8741(90)90067-4
- 1883 - Streptomyces: 10.3390/MOLECULES22091396
- 35493 - Streptophyta: LTS0216665
- 224153 - Suaeda aegyptiaca: 10.4197/SCI.16-1.4
- 98319 - Symplocos tinctoria: 10.1016/0378-8741(90)90067-4
- 58023 - Tracheophyta: LTS0216665
- 767879 - Vachellia tortuosa: 10.1016/S0031-9422(97)00478-0
- 33090 - Viridiplantae: LTS0216665
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Guofu Yan, Jiawei Zhou, Xueqing Cui, Ming Liu, Shiyang Bai, Jihong Sun, Jie Tang, Kaikai Li, Sa Liu. Physicochemical properties and fractal characterizations of the functionalized porous clinoptilolites for controlling alginate delivery in growing cauliflower and leaf mustard.
Plant physiology and biochemistry : PPB.
2024 Jun; 211(?):108694. doi:
10.1016/j.plaphy.2024.108694
. [PMID: 38714131] - Pengyun Wang, Baolong Zhao, Zhongtian Yin, Xin Gao, Mengyao Liu. Structure elucidation and anticancer activity of a heteropolysaccharide from white tea.
Carbohydrate polymers.
2024 Jun; 333(?):121976. doi:
10.1016/j.carbpol.2024.121976
. [PMID: 38494228] - Reham Hassan, H M M Abo Eldahab, F A Shehata, S A El-Reefy, S A Mohamed. Proficiency of some synthetic alginate derivatives for sequestration of Iodine-131 from radioactive liquid waste.
Environmental technology.
2024 Jun; 45(16):3202-3215. doi:
10.1080/09593330.2023.2213447
. [PMID: 37248845] - Zhimin Li, Runping Chen, Yufang Wen, Hanxiang Liu, Yangyang Chen, Xiaoyu Wu, Youxin Yang, Xinru Wu, Yong Zhou, Jianping Liu. Comprehensive analysis of the UDP-glucuronate decarboxylase (UXS) gene family in tobacco and functional characterization of NtUXS16 in Golgi apparatus in Arabidopsis.
BMC plant biology.
2023 Nov; 23(1):551. doi:
10.1186/s12870-023-04575-3
. [PMID: 37936064] - Ze Li, Shaoguo Ru, Jiali Li, Yunjia Yang, Weiwei Wang. Continuous exposure to bisphenol S increases the accumulation of endogenous metabolic toxicants by obstructing the glucuronic acid pathway.
Environmental pollution (Barking, Essex : 1987).
2023 Sep; 336(?):122433. doi:
10.1016/j.envpol.2023.122433
. [PMID: 37659633] - Chang Wen, Tingting Li, Binqiang Wang, Can Jin, Saijuan Li, Yun Li, Meixia Li, Kan Ding. A pectic polysaccharide isolated from Achyranthes bidentata is metabolized by human gut Bacteroides spp.
International journal of biological macromolecules.
2023 Sep; 248(?):125785. doi:
10.1016/j.ijbiomac.2023.125785
. [PMID: 37451376] - Zhou Hong, Li-Shuang Zhou, Zhi-Zhi Zhao, Guo-Qi Yuan, Xiao-Jiang Wang, Yan Lu, Dao-Feng Chen. Structural characterization and anticomplement activity of an acidic heteropolysaccharide from Lysimachia christinae Hance.
Planta medica.
2023 Aug; ?(?):. doi:
10.1055/a-2148-7163
. [PMID: 37541436] - Scott Mazurkewich, Karoline C Scholzen, Rikke H Brusch, Jens Christian N Poulsen, Yusuf Theibich, Silvia Hüttner, Lisbeth Olsson, Johan Larsbrink, Leila Lo Leggio. Structural and functional investigation of a fungal member of carbohydrate esterase family 15 with potential specificity for rare xylans.
Acta crystallographica. Section D, Structural biology.
2023 Jun; 79(Pt 6):545-555. doi:
10.1107/s205979832300325x
. [PMID: 37227091] - Dyoni M Oliveira. Glucuronic acid: not just another brick in the cell wall.
The New phytologist.
2023 04; 238(1):8-10. doi:
10.1111/nph.18804
. [PMID: 36862529] - Neha Thakur, Flowerika, Siddhant Chaturvedi, Siddharth Tiwari. Wheat derived glucuronokinase as a potential target for regulating ascorbic acid and phytic acid content with increased root length under drought and ABA stresses in Arabidopsis thaliana.
Plant science : an international journal of experimental plant biology.
2023 Mar; 331(?):111671. doi:
10.1016/j.plantsci.2023.111671
. [PMID: 36931562] - Theodora Tryfona, Matthieu Bourdon, Rita Delgado Marques, Marta Busse-Wicher, Francisco Vilaplana, Katherine Stott, Paul Dupree. Grass xylan structural variation suggests functional specialization and distinctive interaction with cellulose and lignin.
The Plant journal : for cell and molecular biology.
2023 03; 113(5):1004-1020. doi:
10.1111/tpj.16096
. [PMID: 36602010] - Marta Derba-Maceluch, Madhusree Mitra, Mattias Hedenström, Xiaokun Liu, Madhavi L Gandla, Félix R Barbut, Ilka N Abreu, Evgeniy N Donev, János Urbancsok, Thomas Moritz, Leif J Jönsson, Adrian Tsang, Justin Powlowski, Emma R Master, Ewa J Mellerowicz. Xylan glucuronic acid side chains fix suberin-like aliphatic compounds to wood cell walls.
The New phytologist.
2023 Jan; ?(?):. doi:
10.1111/nph.18712
. [PMID: 36600379] - Naoto Isono, Emi Mizutani, Haruka Hayashida, Hirotaka Katsuzaki, Wataru Saburi. Functional characterization of a novel GH94 glycoside phosphorylase, 3-O-β-d-glucopyranosyl β-d-glucuronide phosphorylase, and implication of the metabolic pathway of acidic carbohydrates in Paenibacillus borealis.
Biochemical and biophysical research communications.
2022 10; 625(?):60-65. doi:
10.1016/j.bbrc.2022.07.098
. [PMID: 35947916] - Gaofeng Cai, Caihong Wu, Ningning Mao, Zuchen Song, Lin Yu, Tianyu Zhu, Song Peng, Yang Yang, Zhenguang Liu, Deyun Wang. Isolation, purification and characterization of Pueraria lobata polysaccharide and its effects on intestinal function in cyclophosphamide-treated mice.
International journal of biological macromolecules.
2022 Oct; 218(?):356-367. doi:
10.1016/j.ijbiomac.2022.07.153
. [PMID: 35878664] - Ruiqin Zhong, Chanhui Lee, Dongtao Cui, Dennis R Phillips, Earle R Adams, Ho-Young Jeong, Ki-Hong Jung, Zheng-Hua Ye. Identification of xylan arabinosyl 2-O-xylosyltransferases catalyzing the addition of 2-O-xylosyl residue onto arabinosyl side chains of xylan in grass species.
The Plant journal : for cell and molecular biology.
2022 10; 112(1):193-206. doi:
10.1111/tpj.15939
. [PMID: 35959609] - Ruiqin Zhong, Dennis R Phillips, Zheng-Hua Ye. Independent recruitment of glycosyltransferase family 61 members for xylan substitutions in conifers.
Planta.
2022 Sep; 256(4):70. doi:
10.1007/s00425-022-03989-x
. [PMID: 36068444] - Qingzhu Gao, Bin Cheng, Chang Chen, Chong Lei, Xue Lin, Dan Nie, Jingjing Li, Luyi Huang, Xiaosong Li, Kai Wang, Ailong Huang, Ni Tang. Dysregulated glucuronic acid metabolism exacerbates hepatocellular carcinoma progression and metastasis through the TGFβ signalling pathway.
Clinical and translational medicine.
2022 08; 12(8):e995. doi:
10.1002/ctm2.995
. [PMID: 35979621] - Bao Guo, Xiaoyan Xu, Miaomiao Shao, Xu Yang, Gaofei He, Kangwei Qi, Jianxin Gu, Lan Wang. UDP-glucose 6-dehydrogenase lessens sorafenib sensitivity via modulating unfolded protein response.
Biochemical and biophysical research communications.
2022 07; 613(?):207-213. doi:
10.1016/j.bbrc.2022.05.048
. [PMID: 35617808] - William J Nicolas, Florian Fäßler, Przemysław Dutka, Florian K M Schur, Grant Jensen, Elliot Meyerowitz. Cryo-electron tomography of the onion cell wall shows bimodally oriented cellulose fibers and reticulated homogalacturonan networks.
Current biology : CB.
2022 Jun; 32(11):2375-2389.e6. doi:
10.1016/j.cub.2022.04.024
. [PMID: 35508170] - Hai-Yun Zhang, Ye Zhang, Yan Zhang, Zheng-Ping Jiang, Yuan-Lu Cui, Qiang-Song Wang. ROS-responsive thioketal-linked alginate/chitosan carriers for irritable bowel syndrome with diarrhea therapy.
International journal of biological macromolecules.
2022 Jun; 209(Pt A):70-82. doi:
10.1016/j.ijbiomac.2022.03.118
. [PMID: 35351547] - Nan Ruan, Zhengjun Dang, Meihan Wang, Liyu Cao, Ye Wang, Sitong Liu, Yijun Tang, Yuwei Huang, Qun Zhang, Quan Xu, Wenfu Chen, Fengcheng Li. FRAGILE CULM 18 encodes a UDP-glucuronic acid decarboxylase required for xylan biosynthesis and plant growth in rice.
Journal of experimental botany.
2022 04; 73(8):2320-2335. doi:
10.1093/jxb/erac036
. [PMID: 35104839] - Juan Du, Charles T Anderson, Chaowen Xiao. Dynamics of pectic homogalacturonan in cellular morphogenesis and adhesion, wall integrity sensing and plant development.
Nature plants.
2022 04; 8(4):332-340. doi:
10.1038/s41477-022-01120-2
. [PMID: 35411046] - Duangjai Tungmunnithum, Samantha Drouet, Christophe Hano. Flavonoids from Sacred Lotus Stamen Extract Slows Chronological Aging in Yeast Model by Reducing Oxidative Stress and Maintaining Cellular Metabolism.
Cells.
2022 02; 11(4):. doi:
10.3390/cells11040599
. [PMID: 35203251] - Oyeyemi O Ajayi, Michael A Held, Allan M Showalter. Glucuronidation of type II arabinogalactan polysaccharides function in sexual reproduction of Arabidopsis.
The Plant journal : for cell and molecular biology.
2022 01; 109(1):164-181. doi:
10.1111/tpj.15562
. [PMID: 34726315] - Ping Zhou, Jing Zhang, Yudi Xu, Peng Zhang, Yongqing Xiao, Ying Liu. Simultaneous quantification of anthraquinone glycosides, aglycones, and glucuronic acid metabolites in rat plasma and tissues after oral administration of raw and steamed rhubarb in blood stasis rats by UHPLC-MS/MS.
Journal of separation science.
2022 Jan; 45(2):529-541. doi:
10.1002/jssc.202100623
. [PMID: 34784448] - Wenxiang Xiao, Jing Liu, Yinan Xiong, Yaoxin Li, Hua Li. Fluorescent sensing of free bilirubin at nanomolar level using a Langmuir-Blodgett film of glucuronic acid-functionalized gold nanoclusters.
Analytical and bioanalytical chemistry.
2021 Nov; 413(28):7009-7019. doi:
10.1007/s00216-021-03660-6
. [PMID: 34535815] - Yuanyuan Zhao, Jinfeng Bi, Jianyong Yi, Xinye Wu, Youchuan Ma, Ruiping Li. Pectin and homogalacturonan with small molecular mass modulate microbial community and generate high SCFAs via in vitro gut fermentation.
Carbohydrate polymers.
2021 Oct; 269(?):118326. doi:
10.1016/j.carbpol.2021.118326
. [PMID: 34294338] - Jan J Lyczakowski, Li Yu, Oliver M Terrett, Christina Fleischmann, Henry Temple, Glenn Thorlby, Mathias Sorieul, Paul Dupree. Two conifer GUX clades are responsible for distinct glucuronic acid patterns on xylan.
The New phytologist.
2021 09; 231(5):1720-1733. doi:
10.1111/nph.17531
. [PMID: 34086997] - Kaustubh Chandrakant Khaire, Kedar Sharma, Abhijeet Thakur, Vijayanand Suryakant Moholkar, Arun Goyal. Extraction and characterization of xylan from sugarcane tops as a potential commercial substrate.
Journal of bioscience and bioengineering.
2021 Jun; 131(6):647-654. doi:
10.1016/j.jbiosc.2021.01.009
. [PMID: 33676868] - Akane Kanasaki, Misato Niibo, Tetsuo Iida. Effect of D-allulose feeding on the hepatic metabolomics profile in male Wistar rats.
Food & function.
2021 May; 12(9):3931-3938. doi:
10.1039/d0fo03024d
. [PMID: 33977954] - Xin Chen, Mingli Gu, Tengda Li, Yi Sun. Metabolite reanalysis revealed potential biomarkers for COVID-19: a potential link with immune response.
Future microbiology.
2021 05; 16(?):577-588. doi:
10.2217/fmb-2021-0047
. [PMID: 33973485] - Xiaowei Zhang, Jianhua Xie, Tingting Chen, Dongdong Ma, Tianming Yao, Fangting Gu, Jongbin Lim, Mitchell R Tuinstra, Bruce R Hamaker. High arabinoxylan fine structure specificity to gut bacteria driven by corn genotypes but not environment.
Carbohydrate polymers.
2021 Apr; 257(?):117667. doi:
10.1016/j.carbpol.2021.117667
. [PMID: 33541670] - Emiliano Manzo, Aniello Schiano Moriello, Francesco Tinto, Roberta Verde, Marco Allarà, Luciano De Petrocellis, Ester Pagano, Angelo A Izzo, Vincenzo Di Marzo, Stefania Petrosino. A Glucuronic Acid-Palmitoylethanolamide Conjugate (GLUPEA) Is an Innovative Drug Delivery System and a Potential Bioregulator.
Cells.
2021 02; 10(2):. doi:
10.3390/cells10020450
. [PMID: 33672574] - Minqian Zhu, Riming Huang, Peng Wen, Ya Song, Baolin He, Jialing Tan, Huili Hao, Hong Wang. Structural characterization and immunological activity of pectin polysaccharide from kiwano (Cucumis metuliferus) peels.
Carbohydrate polymers.
2021 Feb; 254(?):117371. doi:
10.1016/j.carbpol.2020.117371
. [PMID: 33357887] - Taskeen Niaz, Anwesha Sarkar, Alan Mackie, Muhammad Imran. Impact of albumin corona on mucoadhesion and antimicrobial activity of carvacrol loaded chitosan nano-delivery systems under simulated gastro-intestinal conditions.
International journal of biological macromolecules.
2021 Feb; 169(?):171-182. doi:
10.1016/j.ijbiomac.2020.12.085
. [PMID: 33340623] - Josiana Moreira Mar, Laiane Souza da Silva, Maxwaldo da S Rabello, Matheus Moraes Biondo, Valdely Ferreira Kinupp, Pedro Henrique Campelo, Estevan Bruginski, Francinete Ramos Campos, Jaqueline de Araújo Bezerra, Edgar Aparecido Sanches. Development of alginate/inulin carrier systems containing non-conventional Amazonian berry extracts.
Food research international (Ottawa, Ont.).
2021 01; 139(?):109838. doi:
10.1016/j.foodres.2020.109838
. [PMID: 33509463] - Yan Li, Yang Deng, Zhen Li, Zhuqing Liu, Meizi Piao, Xiaoqian Cui. Composition, physicochemical properties, and anti-fatigue activity of water-soluble okra (Abelmoschus esculentus) stem pectins.
International journal of biological macromolecules.
2020 Dec; 165(Pt B):2630-2639. doi:
10.1016/j.ijbiomac.2020.10.167
. [PMID: 33115649] - Oyeyemi Olugbenga Ajayi, Allan M Showalter. Systems identification and characterization of β-glucuronosyltransferase genes involved in arabinogalactan-protein biosynthesis in plant genomes.
Scientific reports.
2020 11; 10(1):20562. doi:
10.1038/s41598-020-72658-4
. [PMID: 33239665] - Soo Yeon Chung, Hikaru Seki, Yukiko Fujisawa, Yoshikazu Shimoda, Susumu Hiraga, Yuhta Nomura, Kazuki Saito, Masao Ishimoto, Toshiya Muranaka. A cellulose synthase-derived enzyme catalyses 3-O-glucuronosylation in saponin biosynthesis.
Nature communications.
2020 11; 11(1):5664. doi:
10.1038/s41467-020-19399-0
. [PMID: 33199711] - Jianjun Wu, Yongbin Xu, Juan Su, Bo Zhu, Siqi Wang, Kaohua Liu, Huijun Wang, Songshan Shi, Qiaoyan Zhang, Luping Qin, Shunchun Wang. Roles of gut microbiota and metabolites in a homogalacturonan-type pectic polysaccharide from Ficus pumila Linn. fruits mediated amelioration of obesity.
Carbohydrate polymers.
2020 Nov; 248(?):116780. doi:
10.1016/j.carbpol.2020.116780
. [PMID: 32919569] - Guoliang Wang, Youlin Zhang, Runguang Zhang, Jianlong Pan, Dengfei Qi, Jing Wang, Xiaoyue Yang. The protective effects of walnut green husk polysaccharide on liver injury, vascular endothelial dysfunction and disorder of gut microbiota in high fructose-induced mice.
International journal of biological macromolecules.
2020 Nov; 162(?):92-106. doi:
10.1016/j.ijbiomac.2020.06.055
. [PMID: 32531370] - Yuechen Liu, Yue Li, Tianpu Zhang, Huan Zhao, Simiao Fan, Xuemeng Cai, Yijia Liu, Zhu Li, Shan Gao, Yubo Li, Chunquan Yu. Analysis of biomarkers and metabolic pathways in patients with unstable angina based on ultra‑high‑performance liquid chromatography‑quadrupole time‑of‑flight mass spectrometry.
Molecular medicine reports.
2020 Nov; 22(5):3862-3872. doi:
10.3892/mmr.2020.11476
. [PMID: 32901869] - Fanke Zeng, Wenbo Chen, Ping He, Qiping Zhan, Qian Wang, Hui Wu, Mengmeng Zhang. Structural characterization of polysaccharides with potential antioxidant and immunomodulatory activities from Chinese water chestnut peels.
Carbohydrate polymers.
2020 Oct; 246(?):116551. doi:
10.1016/j.carbpol.2020.116551
. [PMID: 32747236] - Ceren Narin, Ulku Ertugrul, Ozan Tas, Serpil Sahin, Mecit Halil Oztop. Encapsulation of pea protein in an alginate matrix by cold set gelation method and use of the capsules in fruit juices.
Journal of food science.
2020 Oct; 85(10):3423-3431. doi:
10.1111/1750-3841.15433
. [PMID: 32918310] - Weihua Jin, Qiufu Fang, Di Jiang, Tongtong Li, Bin Wei, Jiadong Sun, Wenjing Zhang, Zhongshan Zhang, Fuming Zhang, Robert J Linhardt, Hong Wang, Weihong Zhong. Structural characteristics and anti-complement activities of polysaccharides from Sargassum hemiphyllum.
Glycoconjugate journal.
2020 10; 37(5):553-563. doi:
10.1007/s10719-020-09928-w
. [PMID: 32617856] - M Osman Sheikh, David Venzke, Mary E Anderson, Takako Yoshida-Moriguchi, John N Glushka, Alison V Nairn, Melina Galizzi, Kelley W Moremen, Kevin P Campbell, Lance Wells. HNK-1 sulfotransferase modulates α-dystroglycan glycosylation by 3-O-sulfation of glucuronic acid on matriglycan.
Glycobiology.
2020 09; 30(10):817-829. doi:
10.1093/glycob/cwaa024
. [PMID: 32149355] - Jung Sunwoo, Sang Chun Ji, Andrew HyoungJin Kim, Kyung-Sang Yu, Joo-Youn Cho, In-Jin Jang, SeungHwan Lee. Impact of Vancomycin-Induced Changes in the Intestinal Microbiota on the Pharmacokinetics of Simvastatin.
Clinical and translational science.
2020 07; 13(4):752-760. doi:
10.1111/cts.12761
. [PMID: 32058642] - Adam Jozwiak, Prashant D Sonawane, Sayantan Panda, Constantine Garagounis, Kalliope K Papadopoulou, Bekele Abebie, Hassan Massalha, Efrat Almekias-Siegl, Tali Scherf, Asaph Aharoni. Plant terpenoid metabolism co-opts a component of the cell wall biosynthesis machinery.
Nature chemical biology.
2020 07; 16(7):740-748. doi:
10.1038/s41589-020-0541-x
. [PMID: 32424305] - Atsushi Toyoda, Mizuho Sato, Masaki Muto, Tatsuhiko Goto, Yuji Miyaguchi, Eiichi Inoue. Metabolomic analyses of plasma and liver of mice fed with immature Citrus tumida peel.
Bioscience, biotechnology, and biochemistry.
2020 Jun; 84(6):1098-1104. doi:
10.1080/09168451.2020.1719821
. [PMID: 32019425] - Weihua Jin, Hong Tang, Jinmei Zhang, Bin Wei, Jiadong Sun, Wenjing Zhang, Fuming Zhang, Hong Wang, Robert J Linhardt, Weihong Zhong. Structural analysis of a novel sulfated galacto-fuco-xylo-glucurono-mannan from Sargassum fusiforme and its anti-lung cancer activity.
International journal of biological macromolecules.
2020 Apr; 149(?):450-458. doi:
10.1016/j.ijbiomac.2020.01.275
. [PMID: 32004605] - Meixia Li, Han Yue, Yeqing Wang, Ciliang Guo, Zhenyun Du, Can Jin, Kan Ding. Intestinal microbes derived butyrate is related to the immunomodulatory activities of Dendrobium officinale polysaccharide.
International journal of biological macromolecules.
2020 Apr; 149(?):717-723. doi:
10.1016/j.ijbiomac.2020.01.305
. [PMID: 32014483] - Ruben Parra, Miguel A Paredes, Juana Labrador, Cláudia Nunes, Manuel A Coimbra, Nieves Fernandez-Garcia, Enrique Olmos, Mercedes Gallardo, Maria C Gomez-Jimenez. Cell Wall Composition and Ultrastructural Immunolocalization of Pectin and Arabinogalactan Protein during Olea europaea L. Fruit Abscission.
Plant & cell physiology.
2020 Apr; 61(4):814-825. doi:
10.1093/pcp/pcaa009
. [PMID: 32016408] - Dawei Gao, Wenqiang Sun, Dianwen Wang, Hualin Dong, Ran Zhang, Sibin Yu. A xylan glucuronosyltransferase gene exhibits pleiotropic effects on cellular composition and leaf development in rice.
Scientific reports.
2020 02; 10(1):3726. doi:
10.1038/s41598-020-60593-3
. [PMID: 32111928] - Soukaina Bouissil, Zainab El Alaoui-Talibi, Guillaume Pierre, Philippe Michaud, Cherkaoui El Modafar, Cedric Delattre. Use of Alginate Extracted from Moroccan Brown Algae to Stimulate Natural Defense in Date Palm Roots.
Molecules (Basel, Switzerland).
2020 Feb; 25(3):. doi:
10.3390/molecules25030720
. [PMID: 32046017] - Yan-Li Xie, Wayne Jiang, Fen Li, Yu Zhang, Xiao-Yu Liang, Meng Wang, Xueqing Zhou, Shao-Ying Wu, Cheng-Hui Zhang. Controlled Release of Spirotetramat Using Starch-Chitosan-Alginate-Encapsulation.
Bulletin of environmental contamination and toxicology.
2020 Jan; 104(1):149-155. doi:
10.1007/s00128-019-02752-5
. [PMID: 31784766] - Scott Mazurkewich, Jens-Christian N Poulsen, Leila Lo Leggio, Johan Larsbrink. Structural and biochemical studies of the glucuronoyl esterase OtCE15A illuminate its interaction with lignocellulosic components.
The Journal of biological chemistry.
2019 12; 294(52):19978-19987. doi:
10.1074/jbc.ra119.011435
. [PMID: 31740581] - Meihua Miao, Xiaozhong Li, Qin Wang, Yunfen Zhu, Yanyan Cui, Xuejun Shao. Association between anti-α-1,4-D-polygalacturonic acid antibodies and Henoch-Schönlein purpura in children.
The Journal of international medical research.
2019 Jun; 47(6):2545-2554. doi:
10.1177/0300060519843728
. [PMID: 31068035] - Min-Yi Jin, Tong Zhang, Yi-Shun Yang, Yue Ding, Jun-Song Li, Gao-Ren Zhong. A simplified and miniaturized glucometer-based assay for the detection of β-glucosidase activity.
Journal of Zhejiang University. Science. B.
2019 Mar; 20(3):264-272. doi:
10.1631/jzus.b1800416
. [PMID: 30829013] - Yuriy A Knirel, Pavel A Ivanov, Sofiya N Senchenkova, Olesya I Naumenko, Olga O Ovchinnikova, Alexander S Shashkov, Alla K Golomidova, Vladislav V Babenko, Eugene E Kulikov, Andrey V Letarov. Structure and gene cluster of the O antigen of Escherichia coli F17, a candidate for a new O-serogroup.
International journal of biological macromolecules.
2019 Mar; 124(?):389-395. doi:
10.1016/j.ijbiomac.2018.11.149
. [PMID: 30448500] - Meng Wang, Zongchang Xu, Rana Imtiaz Ahmed, Yiping Wang, Ruibo Hu, Gongke Zhou, Yingzhen Kong. Tubby-like Protein 2 regulates homogalacturonan biosynthesis in Arabidopsis seed coat mucilage.
Plant molecular biology.
2019 Mar; 99(4-5):421-436. doi:
10.1007/s11103-019-00827-9
. [PMID: 30707395] - Fatemeh Abbasi, Firooz Samadi, Seid Mahdi Jafari, Sanaz Ramezanpour, Mahmoud Shams Shargh. Ultrasound-assisted preparation of flaxseed oil nanoemulsions coated with alginate-whey protein for targeted delivery of omega-3 fatty acids into the lower sections of gastrointestinal tract to enrich broiler meat.
Ultrasonics sonochemistry.
2019 Jan; 50(?):208-217. doi:
10.1016/j.ultsonch.2018.09.014
. [PMID: 30249371] - E Ivanov Kavkova, C Blöchl, R Tenhaken. The Myo-inositol pathway does not contribute to ascorbic acid synthesis.
Plant biology (Stuttgart, Germany).
2019 Jan; 21 Suppl 1(?):95-102. doi:
10.1111/plb.12898
. [PMID: 30102814] - Limin Tang, Meng Zhang, Xiulian Li, Lijuan Zhang. Glucuronidated bilirubin: Significantly increased in hepatic encephalopathy.
Progress in molecular biology and translational science.
2019; 162(?):363-376. doi:
10.1016/bs.pmbts.2018.12.009
. [PMID: 30905463] - Luciana Linhares de Azevedo Bittencourt, Kelly Alencar Silva, Valéria Pereira de Sousa, Gizele Cardoso Fontes-Sant'Ana, Maria Helena Rocha-Leão. Blueberry Residue Encapsulation by Ionotropic Gelation.
Plant foods for human nutrition (Dordrecht, Netherlands).
2018 Dec; 73(4):278-286. doi:
10.1007/s11130-018-0685-y
. [PMID: 30076506] - Niladri Chattopadhyay, Tobias Kanacher, Manuela Casjens, Sebastian Frechen, Sandra Ligges, Torsten Zimmermann, Antje Rottmann, Bart Ploeger, Joachim Höchel, Marcus-Hillert Schultze-Mosgau. CYP3A4-mediated effects of rifampicin on the pharmacokinetics of vilaprisan and its UGT1A1-mediated effects on bilirubin glucuronidation in humans.
British journal of clinical pharmacology.
2018 12; 84(12):2857-2866. doi:
10.1111/bcp.13750
. [PMID: 30171692] - Rune Nygaard Monrad, Jens Eklöf, Kristian B R M Krogh, Peter Biely. Glucuronoyl esterases: diversity, properties and biotechnological potential. A review.
Critical reviews in biotechnology.
2018 Nov; 38(7):1121-1136. doi:
10.1080/07388551.2018.1468316
. [PMID: 29739247] - Bowen Ren, Xueyun Chen, Shoukang Du, Ye Ma, Huinan Chen, Guoliang Yuan, Jianliang Li, Dangsheng Xiong, Huaping Tan, Zhonghua Ling, Yong Chen, Xiaohong Hu, Xiaohong Niu. Injectable polysaccharide hydrogel embedded with hydroxyapatite and calcium carbonate for drug delivery and bone tissue engineering.
International journal of biological macromolecules.
2018 Oct; 118(Pt A):1257-1266. doi:
10.1016/j.ijbiomac.2018.06.200
. [PMID: 30021396] - M Mehedi Hasan, M Nuruzzaman Khan, Papia Haque, Mohammed Mizanur Rahman. Novel alginate-di-aldehyde cross-linked gelatin/nano-hydroxyapatite bioscaffolds for soft tissue regeneration.
International journal of biological macromolecules.
2018 Oct; 117(?):1110-1117. doi:
10.1016/j.ijbiomac.2018.06.020
. [PMID: 29885393] - Hui-Chong Lau, Seonghee Jeong, Aeri Kim. Gelatin-alginate coacervates for circumventing proteolysis and probing intermolecular interactions by SPR.
International journal of biological macromolecules.
2018 Oct; 117(?):427-434. doi:
10.1016/j.ijbiomac.2018.05.093
. [PMID: 29775708] - Natallia Varankovich, Alexander Grigoryan, Kirsty Brown, G Douglas Inglis, Richard R E Uwiera, Michael T Nickerson, Darren R Korber. Pea-protein alginate encapsulation adversely affects development of clinical signs of Citrobacter rodentium-induced colitis in mice treated with probiotics.
Canadian journal of microbiology.
2018 Oct; 64(10):744-760. doi:
10.1139/cjm-2018-0166
. [PMID: 29958098] - Jelena V Milojković, Jelena B Popović-Djordjević, Lato L Pezo, Ilija D Brčeski, Aleksandar Ž Kostić, Vladan D Milošević, Mirjana D Stojanović. Applying multi-criteria analysis for preliminary assessment of the properties of alginate immobilized Myriophyllum spicatum in lake water samples.
Water research.
2018 Sep; 141(?):163-171. doi:
10.1016/j.watres.2018.05.014
. [PMID: 29783169] - Shiv Shankar, Jong-Whan Rhim. Antimicrobial wrapping paper coated with a ternary blend of carbohydrates (alginate, carboxymethyl cellulose, carrageenan) and grapefruit seed extract.
Carbohydrate polymers.
2018 Sep; 196(?):92-101. doi:
10.1016/j.carbpol.2018.04.128
. [PMID: 29891329] - Rongli Li, Rencai Chen, Weiwei Liu, Cuiying Qin, Jing Han. Preparation of enteric-coated microcapsules of astaxanthin oleoresin by complex coacervation.
Pharmaceutical development and technology.
2018 Sep; 23(7):674-681. doi:
10.1080/10837450.2016.1238483
. [PMID: 27645209] - Misha Ali, Qayyum Husain. Guar gum blended alginate/agarose hydrogel as a promising support for the entrapment of peroxidase: Stability and reusability studies for the treatment of textile effluent.
International journal of biological macromolecules.
2018 Sep; 116(?):463-471. doi:
10.1016/j.ijbiomac.2018.05.037
. [PMID: 29751036] - Alireza Mehregan Nikoo, Rassoul Kadkhodaee, Behrouz Ghorani, Hussam Razzaq, Nick Tucker. Electrospray-assisted encapsulation of caffeine in alginate microhydrogels.
International journal of biological macromolecules.
2018 Sep; 116(?):208-216. doi:
10.1016/j.ijbiomac.2018.04.167
. [PMID: 29729337] - James R Templeman, Michael A Rogers, John P Cant, Brian W McBride, Vern R Osborne. Effects of a wax organogel and alginate gel complex on holy basil (Ocimum sanctum) in vitro ruminal dry matter disappearance and gas production.
Journal of the science of food and agriculture.
2018 Sep; 98(12):4488-4494. doi:
10.1002/jsfa.8973
. [PMID: 29460434] - Pedro M Castro, Flávia Sousa, Rui Magalhães, Victor Manuel Pizones Ruiz-Henestrosa, Ana M R Pilosof, Ana Raquel Madureira, Bruno Sarmento, Manuela E Pintado. Incorporation of beads into oral films for buccal and oral delivery of bioactive molecules.
Carbohydrate polymers.
2018 Aug; 194(?):411-421. doi:
10.1016/j.carbpol.2018.04.032
. [PMID: 29801856] - E Güncüm, T Bakırel, C Anlaş, H Ekici, N Işıklan. Novel amoxicillin nanoparticles formulated as sustained release delivery system for poultry use.
Journal of veterinary pharmacology and therapeutics.
2018 Aug; 41(4):588-598. doi:
10.1111/jvp.12505
. [PMID: 29604071] - M Emilia Brassesco, Nadia Woitovich Valetti, Guillermo A Picó. Control of the adsorption properties of alginate - guar gum matrix functionalized with epichlorohydrin through the addition of different flexible chain polymers as toll for the chymotrypsinogen isolation.
International journal of biological macromolecules.
2018 Aug; 115(?):494-500. doi:
10.1016/j.ijbiomac.2018.04.087
. [PMID: 29678791] - Xiong Wang, Fang Liu, Yuan Gao, Chang-Hu Xue, Robert W Li, Qing-Juan Tang. Transcriptome analysis revealed anti-obesity effects of the Sodium Alginate in high-fat diet -induced obese mice.
International journal of biological macromolecules.
2018 Aug; 115(?):861-870. doi:
10.1016/j.ijbiomac.2018.04.042
. [PMID: 29649537] - Betül Yesiltas, Ann-Dorit Moltke Sørensen, Pedro J García-Moreno, Sampson Anankanbil, Zheng Guo, Charlotte Jacobsen. Combination of sodium caseinate and succinylated alginate improved stability of high fat fish oil-in-water emulsions.
Food chemistry.
2018 Jul; 255(?):290-299. doi:
10.1016/j.foodchem.2018.02.074
. [PMID: 29571479] - Andrés S Liffourrena, Gloria I Lucchesi. Alginate-perlite encapsulated Pseudomonas putida A (ATCC 12633) cells: Preparation, characterization and potential use as plant inoculants.
Journal of biotechnology.
2018 Jul; 278(?):28-33. doi:
10.1016/j.jbiotec.2018.04.019
. [PMID: 29723546] - Raquel Gallardo-Rivera, María de Los Ángeles Aguilar-Santamaría, Phaedra Silva-Bermúdez, Julieta García-López, Alberto Tecante, Cristina Velasquillo, Angélica Román-Guerrero, César Pérez-Alonso, Humberto Vázquez-Torres, Keiko Shirai. Polyelectrolyte complex of Aloe vera, chitosan, and alginate produced fibroblast and lymphocyte viabilities and migration.
Carbohydrate polymers.
2018 Jul; 192(?):84-94. doi:
10.1016/j.carbpol.2018.03.044
. [PMID: 29691038] - Masoud Erfani, Vahid Javanbakht. Methylene Blue removal from aqueous solution by a biocomposite synthesized from sodium alginate and wastes of oil extraction from almond peanut.
International journal of biological macromolecules.
2018 Jul; 114(?):244-255. doi:
10.1016/j.ijbiomac.2018.03.003
. [PMID: 29550422] - Jianan Gao, Kun Li, Juan Xu, Wenwen Zhang, Jinju Ma, Lanxiang Liu, Yanlin Sun, Hong Zhang, Kai Li. Unexpected Rheological Behavior of a Hydrophobic Associative Shellac-Based Oligomeric Food Thickener.
Journal of agricultural and food chemistry.
2018 Jul; 66(26):6799-6805. doi:
10.1021/acs.jafc.8b01148
. [PMID: 29878772] - Pascal Humbert, Marina Vemmer, Frauke Mävers, Mario Schumann, Stefan Vidal, Anant V Patel. Development of an attract-and-kill co-formulation containing Saccharomyces cerevisiae and neem extract attractive towards wireworms.
Pest management science.
2018 Jul; 74(7):1575-1585. doi:
10.1002/ps.4842
. [PMID: 29281183] - Sorada Kanokpanont, Rungnapha Yamdech, Pornanong Aramwit. Stability enhancement of mulberry-extracted anthocyanin using alginate/chitosan microencapsulation for food supplement application.
Artificial cells, nanomedicine, and biotechnology.
2018 Jun; 46(4):773-782. doi:
10.1080/21691401.2017.1339050
. [PMID: 28599580] - Franco Emanuel Vasile, María Alicia Judis, María Florencia Mazzobre. Impact of Prosopis alba exudate gum on sorption properties and physical stability of fish oil alginate beads prepared by ionic gelation.
Food chemistry.
2018 Jun; 250(?):75-82. doi:
10.1016/j.foodchem.2018.01.018
. [PMID: 29412931] - Xiaobao Nie, Lihong Wang, Qi Wang, Jilin Lei, Wanshu Hong, Baosheng Huang, Changfeng Zhang. Effect of a Sodium Alginate Coating Infused with Tea Polyphenols on the Quality of Fresh Japanese Sea Bass (Lateolabrax japonicas) Fillets.
Journal of food science.
2018 Jun; 83(6):1695-1700. doi:
10.1111/1750-3841.14184
. [PMID: 29799117] - Juliana Perdiz Senna, Thaís Nogueira Barradas, Stephani Cardoso, Talita Carvalho Castiglione, Michael J Serpe, Kattya Gyselle de Holanda E Silva, Claudia Regina Elias Mansur. Dual alginate-lipid nanocarriers as oral delivery systems for amphotericin B.
Colloids and surfaces. B, Biointerfaces.
2018 Jun; 166(?):187-194. doi:
10.1016/j.colsurfb.2018.03.015
. [PMID: 29602077] - Khairy M Tohamy, Mostafa Mabrouk, Islam E Soliman, Hanan H Beherei, Mohamed A Aboelnasr. Novel alginate/hydroxyethyl cellulose/hydroxyapatite composite scaffold for bone regeneration: In vitro cell viability and proliferation of human mesenchymal stem cells.
International journal of biological macromolecules.
2018 Jun; 112(?):448-460. doi:
10.1016/j.ijbiomac.2018.01.181
. [PMID: 29408578] - Elisabet Segredo-Morales, Patricia García-García, Ricardo Reyes, Edgar Pérez-Herrero, Araceli Delgado, Carmen Évora. Bone regeneration in osteoporosis by delivery BMP-2 and PRGF from tetronic-alginate composite thermogel.
International journal of pharmaceutics.
2018 May; 543(1-2):160-168. doi:
10.1016/j.ijpharm.2018.03.034
. [PMID: 29567197] - Xing Ding, Jinhua Li, Yu Pan, Yue Zhang, Lei Ni, Yaling Wang, Xingguo Zhang. Genome-Wide Identification and Expression Analysis of the UGlcAE Gene Family in Tomato.
International journal of molecular sciences.
2018 May; 19(6):. doi:
10.3390/ijms19061583
. [PMID: 29861481] - Pingfei Li, Shu Wang, Haoyuan Chen, Shiming Zhang, Shihui Yu, Yuenan Li, Mengsuo Cui, Weisan Pan, Xinggang Yang. A novel ion-activated in situ gelling ophthalmic delivery system based on κ-carrageenan for acyclovir.
Drug development and industrial pharmacy.
2018 May; 44(5):829-836. doi:
10.1080/03639045.2017.1414232
. [PMID: 29212376] - Ian M Sims, Alan M Smith, Gordon A Morris, Muhammad U Ghori, Susan M Carnachan. Structural and rheological studies of a polysaccharide mucilage from lacebark leaves (Hoheria populnea A. Cunn.).
International journal of biological macromolecules.
2018 May; 111(?):839-847. doi:
10.1016/j.ijbiomac.2017.12.142
. [PMID: 29292146] - Ahmed I El-Batal, Nawal E Al-Hazmi, Farag M Mosallam, Gharieb S El-Sayyad. Biogenic synthesis of copper nanoparticles by natural polysaccharides and Pleurotus ostreatus fermented fenugreek using gamma rays with antioxidant and antimicrobial potential towards some wound pathogens.
Microbial pathogenesis.
2018 May; 118(?):159-169. doi:
10.1016/j.micpath.2018.03.013
. [PMID: 29530808] - María F Bergero, Gloria I Lucchesi. Degradation of cationic surfactants using immobilized bacteria: Its effect on adsorption to activated sludge.
Journal of biotechnology.
2018 Apr; 272-273(?):1-6. doi:
10.1016/j.jbiotec.2018.03.003
. [PMID: 29518462] - Hui Huang, Yuan Lin, Pengcheng Peng, Jinju Geng, Ke Xu, Yan Zhang, Lili Ding, Hongqiang Ren. Calcium ion- and rhamnolipid-mediated deposition of soluble matters on biocarriers.
Water research.
2018 04; 133(?):37-46. doi:
10.1016/j.watres.2018.01.010
. [PMID: 29407713] - Piotr Salachna, Monika Grzeszczuk, Edward Meller, Marcin Soból. Oligo-Alginate with Low Molecular Mass Improves Growth and Physiological Activity of Eucomis autumnalis under Salinity Stress.
Molecules (Basel, Switzerland).
2018 Apr; 23(4):. doi:
10.3390/molecules23040812
. [PMID: 29614824]