myo-Inositol hexakisphosphate (BioDeep_00000000585)
Secondary id: BioDeep_00000413288, BioDeep_00001867525
human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite BioNovoGene_Lab2019 Volatile Flavor Compounds
代谢物信息卡片
化学式: C6H18O24P6 (659.8613808)
中文名称: 肌醇六磷酸 (酯), 环己六醇六磷酸, 肌醇六磷酸, 植酸, 植酸 二钾盐
谱图信息:
最多检出来源 Homo sapiens(blood) 1.79%
分子结构信息
SMILES: C1(C(C(C(C(C1OP(=O)(O)O)OP(=O)(O)O)OP(=O)(O)O)OP(=O)(O)O)OP(=O)(O)O)OP(=O)(O)O
InChI: InChI=1S/C6H18O24P6/c7-31(8,9)25-1-2(26-32(10,11)12)4(28-34(16,17)18)6(30-36(22,23)24)5(29-35(19,20)21)3(1)27-33(13,14)15/h1-6H,(H2,7,8,9)(H2,10,11,12)(H2,13,14,15)(H2,16,17,18)(H2,19,20,21)(H2,22,23,24)/t1-,2-,3-,4+,5-,6-
描述信息
myo-Inositol hexakisphosphate is an intermediate in inositol phosphate metabolism. It can be generated from D-myo-inositol 1,3,4,5,6-pentakisphosphate via the enzyme inositol-pentakisphosphate 2-kinase (EC 2.7.1.158). myo-Inositol hexakisphosphate is also known as phytic acid. It can be used clinically as a complexing agent for the removal of traces of heavy metal ions. It acts also as a hypocalcemic agent. Phytic acid is a strong chelator of important minerals such as calcium, magnesium, iron, and zinc and can, therefore, contribute to mineral deficiencies in developing countries. For people with a particularly low intake of essential minerals, especially young children and those in developing countries, this effect can be undesirable. However, dietary mineral chelators help prevent over-mineralization of joints, blood vessels, and other parts of the body, which is most common in older persons. Phytic acid is a plant antioxidant (PMID: 3040709).
Myo-inositol hexakisphosphate is a myo-inositol hexakisphosphate in which each hydroxy group of myo-inositol is monophosphorylated. It has a role as an iron chelator, an antineoplastic agent, a signalling molecule, an Escherichia coli metabolite, a mouse metabolite and a cofactor. It is a conjugate acid of a myo-inositol hexakisphosphate(12-).
Phytic acid is under investigation in clinical trial NCT01000233 (Value of Oral Phytate (InsP6) in the Prevention of Progression of the Cardiovascular Calcifications).
Myo-inositol hexakisphosphate is a metabolite found in or produced by Escherichia coli (strain K12, MG1655).
Phytic acid is a natural product found in Chloris gayana, Vachellia nilotica, and other organisms with data available.
Myo-Inositol hexakisphosphate is a metabolite found in or produced by Saccharomyces cerevisiae.
Complexing agent for removal of traces of heavy metal ions. It acts also as a hypocalcemic agent.
Widely distributed in many higher plants. The Ca salt is used as a sequestrant in food flavouring
C26170 - Protective Agent > C275 - Antioxidant
同义名列表
97 个代谢物同义名
1,2,3,4,5,6-cyclohexanehexol, hexakis(dihydrogen phosphate), (1alpha,2alpha,3alpha,4beta,5alpha,6beta)-; {[(1s,2R,3R,4r,5S,6S)-2,3,4,5,6-pentakis(phosphonooxy)cyclohexyl]oxy}phosphonic acid; {[(1r,2R,3S,4s,5R,6S)-2,3,4,5,6-pentakis(phosphonooxy)cyclohexyl]oxy}phosphonic acid; rel-(1R,2r,3S,4R,5s,6S)-Cyclohexane-1,2,3,4,5,6-hexayl hexakis(dihydrogen phosphate); [(1s,2R,3R,4r,5S,6S)-2,3,4,5,6-pentakis(phosphonooxy)cyclohexyl]oxyphosphonic acid; (1R,2S,3r,4R,5S,6s)-cyclohexane-1,2,3,4,5,6-hexayl hexakis[dihydrogen (phosphate)]; rel-(1R,2r,3S,4R,5s,6S)-Cyclohexane-1,2,3,4,5,6-hexaylhexakis(dihydrogenphosphate); (1R,2r,3S,4R,5s,6S)-cyclohexane-1,2,3,4,5,6-hexayl hexakis(dihydrogen phosphate); Phosphoric acid mono-(2,3,4,5,6-pentakis-phosphonooxy-cyclohexyl) ester; MYO-INOSITOL, 1,2,3,4,5,6-HEXAKIS(DIHYDROGEN PHOSPHATE),60\\% IN WATER; MYO-INOSITOL HEXAKISPHOSPHATE; INOSITOL 1,2,3,4,5,6-HEXAKISPHOSPHATE; {[2,3,4,5,6-pentakis(phosphonooxy)cyclohexyl]oxy}phosphonic acid; cyclohexane-1,2,3,4,5,6-hexayl hexakis[dihydrogen (phosphate)]; (2,3,4,5,6-pentaphosphonooxycyclohexyl) dihydrogen phosphate; myo-Inositol, 1,2,3,4,5,6-hexakis(dihydrogen phosphate); 1D-Myo-inositol 1,2,3,4,5,6-hexakisphosphoric acid; inositol polyphosphate, inositol hexakisphosphate; D-Myo-inositol 1,2,3,4,5,6-hexakisphosphoric acid; Myo-inositol 1,2,3,4,5,6-hexakisphosphoric acid; INOSITOL, HEXAKIS(DIHYDROGEN PHOSPHATE), myo-; Phytic Acid (ca. 50\\% in Water, ca. 1.1mol/L); 1D-myo-Inositol 1,2,3,4,5,6-hexakisphosphate; myo-Inositol, hexakis(dihydrogen phosphate); Inositol 1,2,3,4,5,6-hexakisphosphoric acid; D-myo-Inositol 1,2,3,4,5,6-hexakisphosphate; Hexakis(dihydrogen phosphate) myo-inositol; myo-inositol hexakis(dihydrogen phosphate); myo-Inositol 1,2,3,4,5,6-hexakisphosphate; D-myo-Inositol-1,2,3,4,5,6-hexaphosphate; 1D-Myo-inositol hexakisphosphoric acid; Inositol 1,2,3,4,5,6-hexakisphosphate; Myo-inositol hexakisphosphoric acid; diphosphoinositol tetrakisphosphate; D-chiro inositol hexakisphosphate; 1D-myo-inositol hexakisphosphate; Inosithexaphosphorsaure [German]; myo-Inositol hexakis(phosphate); myo-Inosistol hexakisphosphate; myo-inositol hexakisphosphate; Inositol hexaphosphoric acid; IMQLKJBTEOYOSI-OBXALCGXSA-N; IMQLKJBTEOYOSI-GPIVLXJGSA-N; Inositol hexakis(phosphate); inositolhexaphosphoric acid; IMQLKJBTEOYOSI-UHFFFAOYSA-N; meso-Inositol hexaphosphate; myo-Inositol hexaphosphate; Acido fitico [INN-Spanish]; Acidum fyticum [INN-Latin]; Hexakisphosphate, Inositol; Saure des phytins [German]; Acide fytique [INN-French]; inositol hexakisphosphate; Phytic acid (dry powder); Inosithexaphosphorsaeure; Phytic acid (potassium); Inosithexaphosphorsaure; Hexaphosphate, Inositol; Inositol hexaphosphate; FYTIC ACID [WHO-DD]; PHYTIC ACID [INCI]; Saeure des phytins; FYTIC ACID [MART.]; hexasodium-phytate; Saure des phytins; Fytic acid [INN]; Phytate, Calcium; PHYTIC ACID [MI]; Phytate, Sodium; Calcium Phytate; UNII-7IGF0S7R8I; Dermofeel pa-3; Acidum fyticum; Sodium Phytate; Acide fytique; Acid, Phytic; NCI60_002200; NCI60_038627; Acido fitico; Phytic acid; 7IGF0S7R8I; Fytic acid; Phyticacid; Alkalovert; Alkovert; Exfoderm; Phytine; Phytate; Phytin; Phyton; InsP6; 1zsh; 1bq3; IP-6; IHP; IP6; Phytic acid
数据库引用编号
26 个数据库交叉引用编号
- ChEBI: CHEBI:187038
- ChEBI: CHEBI:17401
- KEGG: C01204
- PubChem: 890
- HMDB: HMDB0003502
- Metlin: METLIN4238
- DrugBank: DB14981
- ChEMBL: CHEMBL1233511
- ChEMBL: CHEMBL2005481
- Wikipedia: Phytic_acid
- MeSH: Phytic Acid
- ChemIDplus: 0000083863
- MetaCyc: MI-HEXAKISPHOSPHATE
- foodb: FDB000374
- chemspider: 16735966
- CAS: 83-86-3
- medchemexpress: HY-N0814
- PMhub: MS000000456
- PubChem: 4428
- PDB-CCD: I6P
- PDB-CCD: IHP
- 3DMET: B00260
- NIKKAJI: J9.332G
- RefMet: Inositol hexakisphosphate
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-266
- KNApSAcK: 17401
分类词条
相关代谢途径
Reactome(0)
BioCyc(0)
PlantCyc(0)
代谢反应
166 个相关的代谢反应过程信息。
Reactome(15)
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Inositol phosphate metabolism:
ATP + I(3,4,5,6)P4 ⟶ ADP + I(1,3,4,5,6)P5
- Synthesis of IPs in the nucleus:
ATP + I(1,4,5)P3 ⟶ ADP + I(1,3,4,5)P4
- Synthesis of pyrophosphates in the cytosol:
ATP + I(3,4,5,6)P4 ⟶ ADP + I(1,3,4,5,6)P5
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Inositol phosphate metabolism:
ATP + I(1,3,4)P3 ⟶ ADP + I(1,3,4,5)P4
- Synthesis of IPs in the nucleus:
ATP + I(1,4,5)P3 ⟶ ADP + I(1,3,4,5)P4
- Synthesis of pyrophosphates in the cytosol:
ATP + I(3,4,5,6)P4 ⟶ ADP + I(1,3,4,5,6)P5
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Inositol phosphate metabolism:
H2O + I4P ⟶ Ins + Pi
- Synthesis of IPs in the nucleus:
ATP + I(1,4,5)P3 ⟶ ADP + I(1,3,4,5)P4
- Synthesis of pyrophosphates in the cytosol:
ATP + I(3,4,5,6)P4 ⟶ ADP + I(1,3,4,5,6)P5
- Synthesis of IPs in the ER lumen:
H2O + I(1,3,4,5)P4 ⟶ I(1,4,5)P3 + Pi
- Synthesis of IPs in the ER lumen:
H2O + I(1,3,4,5)P4 ⟶ I(1,4,5)P3 + Pi
- Synthesis of IPs in the ER lumen:
H2O + I(1,3,4,5)P4 ⟶ I(1,4,5)P3 + Pi
BioCyc(0)
WikiPathways(0)
Plant Reactome(136)
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lipid-independent phytate biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lipid-independent phytate biosynthesis:
ATP + Ins ⟶ ADP + I3P
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lipid-independent phytate biosynthesis:
ATP + Ins ⟶ ADP + I3P
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lipid-independent phytate biosynthesis:
ATP + Ins ⟶ ADP + I3P
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lipid-independent phytate biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lipid-independent phytate biosynthesis:
ATP + Ins ⟶ ADP + I3P
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lipid-independent phytate biosynthesis:
ATP + Ins ⟶ ADP + I3P
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lipid-independent phytate biosynthesis:
ATP + Ins ⟶ ADP + I3P
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lipid-independent phytate biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lipid-independent phytate biosynthesis:
ATP + Ins ⟶ ADP + I3P
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lipid-independent phytate biosynthesis:
ATP + Ins ⟶ ADP + I3P
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lipid-independent phytate biosynthesis:
ATP + Ins ⟶ ADP + I3P
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lipid-independent phytate biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lipid-independent phytate biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lipid-independent phytate biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lipid-independent phytate biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lipid-independent phytate biosynthesis:
ATP + Ins ⟶ ADP + I3P
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lipid-independent phytate biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lipid-independent phytate biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lipid-independent phytate biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lipid-independent phytate biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lipid-independent phytate biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lipid-independent phytate biosynthesis:
ATP + Ins ⟶ ADP + I3P
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lipid-independent phytate biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lipid-independent phytate biosynthesis:
ATP + Ins ⟶ ADP + I3P
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lipid-independent phytate biosynthesis:
ATP + Ins ⟶ ADP + I3P
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lipid-independent phytate biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lipid-independent phytate biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lipid-independent phytate biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lipid-independent phytate biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lipid-independent phytate biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lipid-independent phytate biosynthesis:
ATP + Ins ⟶ ADP + I3P
- Phytic acid biosynthesis:
ATP + Ins ⟶ ADP + I3P
- Phytic acid biosynthesis:
ATP + Ins ⟶ ADP + I3P
- Phytic acid biosynthesis:
ATP + Ins ⟶ ADP + I3P
- Phytic acid biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Phytic acid biosynthesis:
ATP + Ins ⟶ ADP + I3P
- Phytic acid biosynthesis:
ATP + Ins ⟶ ADP + I3P
- Phytic acid biosynthesis:
ATP + Ins ⟶ ADP + I3P
- Phytic acid biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Phytic acid biosynthesis:
ATP + Ins ⟶ ADP + I3P
- Phytic acid biosynthesis:
ATP + Ins ⟶ ADP + I3P
- Phytic acid biosynthesis:
ATP + Ins ⟶ ADP + I3P
- Phytic acid biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Phytic acid biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Phytic acid biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Phytic acid biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Phytic acid biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Phytic acid biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Lipid-independent phytate biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Phytic acid biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Lipid-independent phytate biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Phytic acid biosynthesis:
ATP + Ins ⟶ ADP + I3P
- Phytic acid biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Phytic acid biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Phytic acid biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Phytic acid biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Phytic acid biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Phytic acid biosynthesis:
ATP + Ins ⟶ ADP + I3P
- Phytic acid biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Phytic acid biosynthesis:
ATP + Ins ⟶ ADP + I3P
- Phytic acid biosynthesis:
ATP + Ins ⟶ ADP + I3P
- Phytic acid biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Phytic acid biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Phytic acid biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Phytic acid biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Phytic acid biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Phytic acid biosynthesis:
ATP + Ins ⟶ ADP + I3P
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(15)
- Inositol Phosphate Metabolism:
Myo-inositol 1-phosphate + Water ⟶ Phosphate + myo-Inositol
- Inositol Metabolism:
Oxygen + myo-Inositol ⟶ D-Glucuronic acid + Water
- Inositol Phosphate Metabolism:
1D-myo-Inositol 3-phosphate + Water ⟶ Phosphate + myo-Inositol
- Inositol Metabolism:
Myo-inositol 1-phosphate + Water ⟶ Phosphate + myo-Inositol
- Phytate Biosynthesis:
Adenosine triphosphate + Inositol 1,3,4-trisphosphate ⟶ 1D-Myo-inositol 1,3,4,6-tetrakisphosphate + Adenosine diphosphate + Hydrogen Ion
- Inositol Metabolism:
Oxygen + myo-Inositol ⟶ D-Glucuronic acid + Water
- Inositol Phosphate Metabolism:
Myo-inositol 1-phosphate + Water ⟶ Phosphate + myo-Inositol
- Inositol Metabolism:
Oxygen + myo-Inositol ⟶ D-Glucuronic acid + Water
- Inositol Phosphate Metabolism:
Myo-inositol 1-phosphate + Water ⟶ Phosphate + myo-Inositol
- Inositol Metabolism:
Oxygen + myo-Inositol ⟶ D-Glucuronic acid + Water
- Inositol Phosphate Metabolism:
Myo-inositol 1-phosphate + Water ⟶ Phosphate + myo-Inositol
- Inositol Metabolism:
Oxygen + myo-Inositol ⟶ D-Glucuronic acid + Water
- Inositol Phosphate Metabolism:
Myo-inositol 1-phosphate + Water ⟶ Phosphate + myo-Inositol
- Inositol Metabolism:
Oxygen + myo-Inositol ⟶ D-Glucuronic acid + Water
- Inositol Phosphate Metabolism:
Myo-inositol 1-phosphate + Water ⟶ Phosphate + myo-Inositol
PharmGKB(0)
57 个相关的物种来源信息
- 97177 - Abies nordmanniana: 10.1016/0031-9422(82)80121-0
- 420411 - Acacia saligna: 10.1016/0031-9422(82)80121-0
- 992640 - Aloe excelsa: 10.1016/0031-9422(82)80121-0
- 183225 - Alyogyne huegelii: 10.1016/0031-9422(82)80121-0
- 4151 - Antirrhinum majus: 10.1016/0031-9422(82)80121-0
- 56993 - Araucaria bidwillii: 10.1016/0031-9422(82)80121-0
- 259859 - Arctotheca calendula: 10.1016/0031-9422(82)80121-0
- 146531 - Avena byzantina:
- 4498 - Avena sativa:
- 3708 - Brassica napus: 10.1021/JF00011A007
- 3823 - Canavalia ensiformis: 10.1006/JFCA.1994.1019
- 3824 - Canavalia gladiata: 10.1006/JFCA.1994.1019
- 110876 - Chloris gayana: 10.1016/0031-9422(82)80121-0
- 3827 - Cicer arietinum: 10.1021/JF00022A042
- 43366 - Clitoria ternatea: 10.1006/JFCA.1994.1019
- 906799 - Dendrobium lowii:
- 1711604 - Eucalyptus youngiana: 10.1016/0031-9422(82)80121-0
- 3617 - Fagopyrum esculentum: 10.1021/JF00048A015
- 3847 - Glycine max:
- 34274 - Gossypium herbaceum: 10.1007/BF00937621
- 3635 - Gossypium hirsutum:
- 4232 - Helianthus annuus: 10.1016/0031-9422(82)80121-0
- 9606 - Homo sapiens: -
- 4516 - Hordeum bulbosum: 10.1016/0031-9422(82)80121-0
- 4513 - Hordeum vulgare:
- 51240 - Juglans regia: 10.1016/0031-9422(82)80121-0
- 3864 - Lens culinaris:
- 4689 - Lilium henryi:
- 4690 - Lilium longiflorum: 10.1104/PP.83.2.408
- 4006 - Linum usitatissimum: 10.1021/JF9601527
- 669149 - Micoletzkya: 10.1016/0031-9422(82)80121-0
- 161031 - Moringa peregrina: 10.1111/J.1365-2621.1995.TB05680.X
- 4530 - Oryza sativa:
- 98709 - Pericallis cruenta: 10.1016/0031-9422(82)80121-0
- 652132 - Pericallis hybrida: 10.1016/0031-9422(82)80121-0
- 3884 - Phaseolus lunatus:
- 3885 - Phaseolus vulgaris: 10.1021/JF00022A042
- 151559 - Pinus flexilis: 10.1016/0031-9422(82)80121-0
- 71633 - Pinus halepensis: 10.1016/0031-9422(85)80034-0
- 289741 - Pistacia chinensis: 10.1016/0031-9422(82)80121-0
- 3888 - Pisum sativum:
- 501392 - Quercus faginea: 10.1016/0031-9422(82)80121-0
- 568689 - Quercus lusitanica: 10.1016/0031-9422(82)80121-0
- 38942 - Quercus robur: 10.1016/0031-9422(82)80121-0
- 4550 - Secale cereale:
- 205564 - Solanum mauritianum: 10.1016/0031-9422(82)80121-0
- 3562 - Spinacia oleracea: 10.1021/JF00048A015
- 255355 - Strelitzia reginae: 10.1016/0031-9422(82)80121-0
- 3641 - Theobroma cacao: 10.1515/ZNC-1998-9-1002
- 78534 - Trigonella foenum-graecum:
- 4565 - Triticum aestivum:
- 138033 - Vachellia nilotica: 10.1016/0308-8146(95)00238-3
- 3906 - Vicia faba:
- 87088 - Vigna umbellata: 10.1006/JFCA.1994.1019
- 69721 - Zantedeschia aethiopica: 10.1016/0031-9422(82)80121-0
- 4577 - Zea mays:
- 75727 - Zizania aquatica: 10.1021/JF00037A004
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Ângela Liberal, Ângela Fernandes, Isabel C F R Ferreira, Ana María Vivar-Quintana, Lillian Barros. Effect of different physical pre-treatments on physicochemical and techno-functional properties, and on the antinutritional factors of lentils (Lens culinaris spp).
Food chemistry.
2024 Aug; 450(?):139293. doi:
10.1016/j.foodchem.2024.139293
. [PMID: 38631207] - Frank K Amoako, Amit Sagervanshi, Md Arif Hussain, Britta Pitann, Karl H Mühling. Transcriptional and physiological analyses uncover the mineralization and uptake mechanisms of phytic acid in symbiotically grown Vicia faba plants.
Plant physiology and biochemistry : PPB.
2024 Jun; 211(?):108723. doi:
10.1016/j.plaphy.2024.108723
. [PMID: 38749376] - Angela M Develin, Brian Fuglestad. Inositol Hexaphosphate as an Inhibitor and Potential Regulator of p47phox Membrane Anchoring.
Biochemistry.
2024 May; 63(9):1097-1106. doi:
10.1021/acs.biochem.4c00117
. [PMID: 38669178] - Frederike Zeibig, Benjamin Kilian, Hakan Özkan, Sumitra Pantha, Michael Frei. Grain quality traits within the wheat (Triticum spp.) genepool: prospects for improved nutrition through de novo domestication.
Journal of the science of food and agriculture.
2024 May; 104(7):4400-4410. doi:
10.1002/jsfa.13328
. [PMID: 38318752] - Hacer Levent, Kübra Aktaş. The effect of germinated black lentils on cookie quality by applying ultraviolet radiation and ultrasound technology.
Journal of food science.
2024 May; 89(5):2557-2566. doi:
10.1111/1750-3841.17002
. [PMID: 38578119] - Bjørn Dueholm, Johanna Fonskov, Åsa Grimberg, Sandra Carlsson, Mohammed Hefni, Tina Henriksson, Cecilia Hammenhag. Cookability of 24 pea accessions-determining factors and potential predictors of cooking quality.
Journal of the science of food and agriculture.
2024 Apr; 104(6):3685-3696. doi:
10.1002/jsfa.13253
. [PMID: 38158792] - Qi Li, Xiaolei Yang, Changning Li, Aolei He, Shanmu He, Xuemei Li, Ying Zhang, Tuo Yao. Comparison of bio-beads combined with Pseudomonas edaphica and three phosphate materials for lead immobilization: Performance, mechanism and plant growth.
Journal of environmental management.
2024 Apr; 357(?):120797. doi:
10.1016/j.jenvman.2024.120797
. [PMID: 38574707] - Chenjing Liu, Chun-Yan Hu, Shufen Xiao, Songge Deng, Xue Liu, Daniel Menezes-Blackburn, Lena Q Ma. Insoluble-Phytate Improves Plant Growth and Arsenic Accumulation in As-Hyperaccumulator Pteris vittata: Phytase Activity, Nutrient Uptake, and As-Metabolism.
Environmental science & technology.
2024 Feb; 58(8):3858-3868. doi:
10.1021/acs.est.3c10546
. [PMID: 38356137] - Shutong Fan, Xun Gao, Xi Yang, Xianjun Li. Infusing phytate-based biomass flame retardants into the cellulose lumens of Chinese fir wood attains superior flame retardant efficacy.
International journal of biological macromolecules.
2024 Feb; 258(Pt 2):128975. doi:
10.1016/j.ijbiomac.2023.128975
. [PMID: 38147971] - Yan Mei, Meiling Zhang, Gengyue Cao, Jiale Zhu, Aiyue Zhang, Hongyan Bai, Chuanchao Dai, Yong Jia. Endofungal bacteria and ectomycorrhizal fungi synergistically promote the absorption of organic phosphorus in Pinus massoniana.
Plant, cell & environment.
2024 Feb; 47(2):600-610. doi:
10.1111/pce.14742
. [PMID: 37885374] - Danail Georgiev, Milena Kostova, Ana Caroline de Oliveira, Yordan Muhovski. Investigation of the potential of yeast strains for phytase biosynthesis in a two-step screening procedure.
Journal of microbiological methods.
2024 Jan; 217-218(?):106890. doi:
10.1016/j.mimet.2024.106890
. [PMID: 38272400] - Niklas Widderich, Paul Bubenheim, Andreas Liese. Online monitoring of phytate content in plant residuals during wet-treatment.
Scientific reports.
2024 01; 14(1):612. doi:
10.1038/s41598-023-49950-0
. [PMID: 38182617] - Anshu Sahu, Rita Verma, Uma Gupta, Shashi Kashyap, Indraneel Sanyal. An Overview of Targeted Genome Editing Strategies for Reducing the Biosynthesis of Phytic Acid: an Anti-nutrient in Crop Plants.
Molecular biotechnology.
2024 Jan; 66(1):11-25. doi:
10.1007/s12033-023-00722-1
. [PMID: 37061991] - Yuanfeng Huo, Jingyue Wang, Yinggang Xu, Deyi Hu, Kexian Zhang, Bingjie Chen, Yueyi Wu, Jiaxin Liu, Tianlang Yan, Yang Li, Chaorui Yan, Xuesong Gao, Shu Yuan, Guangdeng Chen. The Impact of Various Organic Phosphorus Carriers on the Uptake and Use Efficiency in Barley.
International journal of molecular sciences.
2023 Dec; 24(24):. doi:
10.3390/ijms242417191
. [PMID: 38139020] - Qian Ju, Rong Huang, Ruimin Hu, Junjie Fan, Dinglin Zhang, Jun Ding, Rong Li. Phytic acid-modified manganese dioxide nanoparticles oligomer for magnetic resonance imaging and targeting therapy of osteosarcoma.
Drug delivery.
2023 Dec; 30(1):2181743. doi:
10.1080/10717544.2023.2181743
. [PMID: 36855959] - Tiffany Amat, Ali Assifaoui, Christophe Schmitt, Rémi Saurel. Importance of binary and ternary complex formation on the functional and nutritional properties of legume proteins in presence of phytic acid and calcium.
Critical reviews in food science and nutrition.
2023 Nov; 63(33):12036-12058. doi:
10.1080/10408398.2022.2098247
. [PMID: 35852135] - Qingli Qu, Anquan Yang, Jing Wang, Min Xie, Xiaoli Zhang, Dan Huang, Ranhua Xiong, Dong Pei, Chaobo Huang. Responsive and biocompatible chitosan-phytate microparticles with various morphology for antibacterial activity based on gas-shearing microfluidics.
Journal of colloid and interface science.
2023 Nov; 649(?):68-75. doi:
10.1016/j.jcis.2023.06.006
. [PMID: 37336155] - Hanane Joudaki, Negar Aria, Roya Moravej, Mohamadreza Rezaei Yazdi, Zarrindokht Emami-Karvani, Michael R Hamblin. Microbial Phytases: Properties and Applications in the Food Industry.
Current microbiology.
2023 Oct; 80(12):374. doi:
10.1007/s00284-023-03471-1
. [PMID: 37847302] - Hanna Philippi, Vera Sommerfeld, Oluyinka A Olukosi, Wilhelm Windisch, Alessandra Monteiro, Markus Rodehutscord. Effect of dietary zinc source, zinc concentration, and exogenous phytase on intestinal phytate degradation products, bone mineralization, and zinc status of broiler chickens.
Poultry science.
2023 Oct; 102(12):103160. doi:
10.1016/j.psj.2023.103160
. [PMID: 37856908] - Amit Vashishth, Nimisha Tehri, Piyush Tehri, Avinash Sharma, Anil Kumar Sharma, Vineet Kumar. Unraveling the potential of bacterial phytases for sustainable management of phosphorous.
Biotechnology and applied biochemistry.
2023 Oct; 70(5):1690-1706. doi:
10.1002/bab.2466
. [PMID: 37042496] - Qi-Lin Lu, Jiayin Wu, Hanchen Wang, Biao Huang, Hongbo Zeng. Plant-inspired multifunctional fluorescent cellulose nanocrystals intelligent nanocomposite hydrogel.
International journal of biological macromolecules.
2023 Sep; 249(?):126019. doi:
10.1016/j.ijbiomac.2023.126019
. [PMID: 37542759] - Tao Zhou, Qinqin Xing, Jikang Sun, Ping Wang, Jian Zhu, Zhiming Liu. The mechanism of KpMIPS gene significantly improves resistance of Koelreuteria paniculata to heavy metal cadmium in soil.
The Science of the total environment.
2023 Sep; 906(?):167219. doi:
10.1016/j.scitotenv.2023.167219
. [PMID: 37734601] - Shengnan Zhu, Qi Guo, Yingbin Xue, Xing Lu, Tao Lai, Cuiyue Liang, Jiang Tian. Impaired glycosylation of GmPAP15a, a root-associated purple acid phosphatase, inhibits extracellular phytate-P utilization in soybean.
Plant, cell & environment.
2023 Sep; ?(?):. doi:
10.1111/pce.14715
. [PMID: 37691629] - Alessio Cimini, Alessandro Poliziani, Lorenzo Morgante, Mauro Moresi. Antinutrient removal in yellow lentils by malting.
Journal of the science of food and agriculture.
2023 Aug; ?(?):. doi:
10.1002/jsfa.12950
. [PMID: 37647525] - Mina Alikhani, Atena Mirbolook, Jalal Sadeghi, Amir Lakzian. Effect of a new slow-release zinc fertilizer based on carbon dots on the zinc concentration, growth indices, and yield in wheat (Triticum aestivum).
Plant physiology and biochemistry : PPB.
2023 Jul; 200(?):107783. doi:
10.1016/j.plaphy.2023.107783
. [PMID: 37269825] - Stefan Ritter, Martina Gastl, Thomas Becker. Impact of Germination on the Protein Solubility and Antinutritive Compounds of Lupinus angustifolius and Vicia faba in the Production of Protein-Rich Legume-Based Beverages.
Journal of agricultural and food chemistry.
2023 Jun; 71(23):9080-9096. doi:
10.1021/acs.jafc.3c01249
. [PMID: 37253086] - Lowell Dilworth, Dewayne Stennett, Felix Omoruyi. Cellular and Molecular Activities of IP6 in Disease Prevention and Therapy.
Biomolecules.
2023 06; 13(6):. doi:
10.3390/biom13060972
. [PMID: 37371552] - Han Wang, Lu Chen, Shuang Wu, Weiping Jin, Wangyang Shen, Zhongze Hu, Wenjing Huang, Gang Liu. Improve stability and application of rice oil bodies via surface modification with ferulic acid, (-)-epicatechin, and phytic acid.
Food chemistry.
2023 May; 409(?):135274. doi:
10.1016/j.foodchem.2022.135274
. [PMID: 36586252] - Yazmín Stefani Perea-Vélez, Rogelio Carrillo-González, Ma Del Carmen A González-Chávez, Jaco Vangronsveld, Iván Ortiz Monasterio, Daniel Tapia Maruri. Citrate-coated cobalt ferrite nanoparticles for the nano-enabled biofortification of wheat.
Food & function.
2023 May; 14(9):4017-4035. doi:
10.1039/d2fo03835h
. [PMID: 37067010] - Xuexue Liang, Ge Bai, Chun Hua Niu, Zhong Wei, Zhi Gang Lei, Kai Chen, Xuhong Guo. High inhabitation activity of CMCS/Phytic acid/Zn2+ nanoparticles via flash nanoprecipitation (FNP) for bacterial and fungal infections.
International journal of biological macromolecules.
2023 May; ?(?):124747. doi:
10.1016/j.ijbiomac.2023.124747
. [PMID: 37150368] - Aung Zaw Oo, Hidetoshi Asai, Khin Thuzar Win, Junichiro Marui, Hiroki Saito. Seed phytic acid concentration affects rice seedling vigor irrespective of soil phosphorus bioavailability.
Physiologia plantarum.
2023 May; 175(3):e13913. doi:
10.1111/ppl.13913
. [PMID: 37043305] - Na Li, Yu-Xuan Wu, Yun-Di Zhang, Shu-Ren Wang, Guo-Cai Zhang, Jing Yang. Phytic acid is a new substitutable plant-derived antifungal agent for the seedling blight of Pinus sylvestris var. mongolica caused by Fusarium oxysporum.
Pesticide biochemistry and physiology.
2023 Apr; 191(?):105341. doi:
10.1016/j.pestbp.2023.105341
. [PMID: 36963923] - Hayley L Whitfield, Sining He, Yinghong Gu, Colleen Sprigg, Hui-Fen Kuo, Tzyy-Jen Chiou, Andrew M Riley, Barry V L Potter, Andrew M Hemmings, Charles A Brearley. Diversification in the inositol tris/tetrakisphosphate kinase (ITPK) family: crystal structure and enzymology of the outlier AtITPK4.
The Biochemical journal.
2023 Mar; 480(6):433-453. doi:
10.1042/bcj20220579
. [PMID: 36896917] - Neha Thakur, Flowerika, Siddhant Chaturvedi, Siddharth Tiwari. Wheat derived glucuronokinase as a potential target for regulating ascorbic acid and phytic acid content with increased root length under drought and ABA stresses in Arabidopsis thaliana.
Plant science : an international journal of experimental plant biology.
2023 Mar; 331(?):111671. doi:
10.1016/j.plantsci.2023.111671
. [PMID: 36931562] - Lamia L'Hocine, Allaoua Achouri, Emily Mason, Mélanie Pitre, Delphine Martineau-Côté, Stéphane Sirois, Salwa Karboune. Assessment of Protein Nutritional Quality of Novel Hairless Canary Seed in Comparison to Wheat and Oat Using In Vitro Static Digestion Models.
Nutrients.
2023 Mar; 15(6):. doi:
10.3390/nu15061347
. [PMID: 36986077] - Somayeh Shahani, Nasrin Mehraban, Fereshteh Talebpour Amiri, Seyed Mohammad Abedi, Zohreh Noaparast, Salam Mohammadinia. Melissa Officinalis L. aqueous extract pretreatment decreases methotrexate-induced hepatotoxicity at lower dose and increases 99mTc-phytate liver uptake, as a probe of liver toxicity assessment, in rats.
Annals of nuclear medicine.
2023 Mar; 37(3):166-175. doi:
10.1007/s12149-022-01813-w
. [PMID: 36469234] - Young-Teck Kim, Robert Kimmel, Xiyu Wang. A New Method to Determine Antioxidant Activities of Biofilms Using a pH Indicator (Resazurin) Model System.
Molecules (Basel, Switzerland).
2023 Feb; 28(5):. doi:
10.3390/molecules28052092
. [PMID: 36903338] - B W Parsons, P L Utterback, C M Parsons, S J Rochell, J L Emmert. Research Note: Evaluation of a precision-fed rooster assay for determination of phytic acid disappearance in feedstuffs.
Poultry science.
2023 Feb; 102(2):102356. doi:
10.1016/j.psj.2022.102356
. [PMID: 36493548] - Q Q Zhang, C Chang, Q Chu, H H Wang, J Zhang, Z X Yan, Z G Song, A L Geng. Dietary calcium and non-phytate phosphorus levels affect the performance, serum biochemical indices, and lipid metabolism in growing pullets.
Poultry science.
2023 Feb; 102(2):102354. doi:
10.1016/j.psj.2022.102354
. [PMID: 36470028] - C Friedrich H Longin, Muhammad Afzal, Jens Pfannstiel, Ute Bertsche, Tanja Melzer, Andrea Ruf, Christoph Heger, Tobias Pfaff, Margit Schollenberger, Markus Rodehutscord. Mineral and Phytic Acid Content as Well as Phytase Activity in Flours and Breads Made from Different Wheat Species.
International journal of molecular sciences.
2023 Feb; 24(3):. doi:
10.3390/ijms24032770
. [PMID: 36769092] - H Hafsan, M Mahmood Saleh, J Baban, F Mohammed, T Ahmed Hamza, I Ibrahim, M M Kadhim, K A Zwain, Y Fakri Mustafa. Evaluation of Phosphorus Storage and Performance of Broilers Using Phytase Synthetic Enzyme.
Archives of Razi Institute.
2023 02; 78(1):107-114. doi:
10.22092/ari.2022.359524.2443
. [PMID: 37312704] - Hao Liu, Anjie Li, Jean-David Rochaix, Zhenfeng Liu. Architecture of chloroplast TOC-TIC translocon supercomplex.
Nature.
2023 Jan; ?(?):. doi:
10.1038/s41586-023-05744-y
. [PMID: 36702157] - Brian Q Phillippy, Janet L Donahue, Sarah P Williams, Caitlin A Cridland, Imara Y Perera, Glenda E Gillaspy. Regulation of inositol 1,2,4,5,6-pentakisphosphate and inositol hexakisphosphate levels in Gossypium hirsutum by IPK1.
Planta.
2023 Jan; 257(2):46. doi:
10.1007/s00425-023-04080-9
. [PMID: 36695941] - Guiwei Wang, Zexing Jin, Timothy S George, Gu Feng, Lin Zhang. Arbuscular mycorrhizal fungi enhance plant phosphorus uptake through stimulating hyphosphere soil microbiome functional profiles for phosphorus turnover.
The New phytologist.
2023 Jan; ?(?):. doi:
10.1111/nph.18772
. [PMID: 36694293] - Ran Han, Jia-Yi Chen, Si-Xue He, Chen-Jing Liu, Zhi-Hua Dai, Xue Liu, Yue Cao, Lena Q Ma. Phytate and Arsenic Enhance Each Other's Uptake in As-hyperaccumulator Pteris vittata: Root Exudation of Phytate and Phytase, and Plant Uptake of Phytate-P.
Environmental science & technology.
2023 01; 57(1):190-200. doi:
10.1021/acs.est.2c05659
. [PMID: 36521032] - Yueming Dersjant-Li, Ivonne Kok, Edwin Westreicher-Kristen, Rubén García-González, Alessandro Mereu, Trine Christensen, Leon Marchal. Effect of a biosynthetic bacterial 6-phytase on the digestibility of phosphorus and phytate in midlactating dairy cows.
Journal of animal science.
2023 Jan; 101(?):. doi:
10.1093/jas/skad032
. [PMID: 36705267] - Eda Aktas-Akyildiz. Effect of wheat bran and whole wheat flour on manti quality.
Anais da Academia Brasileira de Ciencias.
2023; 95(suppl 2):e20220044. doi:
10.1590/0001-3765202320220044
. [PMID: 38126429] - E V Shikh, A A Makhova, O B Dorogun, E V Elizarova. [The role of phytates in human nutrition].
Voprosy pitaniia.
2023; 92(4):20-28. doi:
10.33029/0042-8833-2023-92-4-20-28
. [PMID: 37801451] - Murugesan Tamilzharasi, Dharmalingam Kumaresan, Venkatesan Thiruvengadam, Jegadeesan Souframanien, T K S Latha, N Manikanda Boopathi, Palaniappan Jayamani. Development and characterization of gamma ray and EMS induced mutants for powdery mildew resistance in blackgram.
International journal of radiation biology.
2023; 99(8):1267-1284. doi:
10.1080/09553002.2023.2173820
. [PMID: 36745747] - Federico Colombo, Andrea Pagano, Stefano Sangiorgio, Anca Macovei, Alma Balestrazzi, Fabrizio Araniti, Roberto Pilu. Study of Seed Ageing in lpa1-1 Maize Mutant and Two Possible Approaches to Restore Seed Germination.
International journal of molecular sciences.
2023 Jan; 24(1):. doi:
10.3390/ijms24010732
. [PMID: 36614175] - De-Yang Li, Na Li, Xing-Hua Dong, Zhi-Feng Tan, Xiao-Kang Na, Xiao-Yang Liu, Da-Yong Zhou. Effect of phytic acid combined with lactic acid on color and texture deterioration of ready-to-eat shrimps during storage.
Food chemistry.
2022 Dec; 396(?):133702. doi:
10.1016/j.foodchem.2022.133702
. [PMID: 35853373] - Agata Markiewicz-Tomczyk, Elżbieta Budzisz, Anna Erkiert-Polguj. Clinical evaluation of anti-aging effects of combined therapy-Azelaic acid, phytic acid, and vitamin C applied layer by layer in females with Fitzpatrick skin types II and III.
Journal of cosmetic dermatology.
2022 Dec; 21(12):6830-6839. doi:
10.1111/jocd.15359
. [PMID: 36056802] - Emileigh Lucas, Lauren Mosesso, Taylor Roswall, Yun-Ya Yang, Kirk Scheckel, Amy Shober, Gurpal S Toor. X-ray absorption near edge structure spectroscopy reveals phosphate minerals at surface and agronomic sampling depths in agricultural Ultisols saturated with legacy phosphorus.
Chemosphere.
2022 Dec; 308(Pt 2):136288. doi:
10.1016/j.chemosphere.2022.136288
. [PMID: 36058369] - Gerardo Asensio, Ana M Hernández-Arriaga, Marcela Martín-Del-Campo, M Auxiliadora Prieto, Luis Rojo, Blanca Vázquez-Lasa. A study on Sr/Zn phytate complexes: structural properties and antimicrobial synergistic effects against Streptococcus mutans.
Scientific reports.
2022 11; 12(1):20177. doi:
10.1038/s41598-022-24300-8
. [PMID: 36418367] - Nadia Bouain, Huikyong Cho, Jaspreet Sandhu, Patcharin Tuiwong, Chanakan Prom-U-Thai, Luqing Zheng, Zaigham Shahzad, Hatem Rouached. Plant growth stimulation by high CO2 depends on phosphorus homeostasis in chloroplasts.
Current biology : CB.
2022 10; 32(20):4493-4500.e4. doi:
10.1016/j.cub.2022.08.032
. [PMID: 36075219] - Federico Colombo, Stefano Sangiorgio, Alessandro Abruzzese, Monica Bononi, Fernando Tateo, Sushil Kumar Singh, Fabio Francesco Nocito, Roberto Pilu. The Potential of Low Phytic Acid1-1 Mutant in Maize (Zea mays L.): A Sustainable Solution to Non-Renewable Phosphorus.
Frontiers in bioscience (Landmark edition).
2022 10; 27(10):284. doi:
10.31083/j.fbl2710284
. [PMID: 36336866] - Megan E Nelson, Su A Lee, Yueming Dersjant-Li, Janet Remus, Hans H Stein. Microbial phytase reduces basal endogenous loss of calcium in pigs fed diets containing phytate phosphorus at commercial levels.
Journal of animal science.
2022 Oct; 100(10):. doi:
10.1093/jas/skac280
. [PMID: 36037529] - Inger-Cecilia Mayer Labba, Hannah Steinhausen, Linnéa Almius, Knud Erik Bach Knudsen, Ann-Sofie Sandberg. Nutritional Composition and Estimated Iron and Zinc Bioavailability of Meat Substitutes Available on the Swedish Market.
Nutrients.
2022 Sep; 14(19):. doi:
10.3390/nu14193903
. [PMID: 36235566] - Muhammed Azharudheen Tp, Awadhesh Kumar, Chandrappa Anilkumar, Rameswar Prasad Sah, Sasmita Behera, Bishnu Charan Marndi. Understanding natural genetic variation for grain phytic acid content and functional marker development for phytic acid-related genes in rice.
BMC plant biology.
2022 Sep; 22(1):446. doi:
10.1186/s12870-022-03831-2
. [PMID: 36114452] - Ran Han, Jiayi Chen, Sixue He, Zhihua Dai, Xue Liu, Yue Cao, Lena Q Ma. Arsenic-induced up-regulation of P transporters PvPht1;3-1;4 enhances both As and P uptake in As-hyperaccumulator Pteris vittata.
Journal of hazardous materials.
2022 09; 438(?):129430. doi:
10.1016/j.jhazmat.2022.129430
. [PMID: 35780738] - Xin Ran, Guiqiu Hu, Fuding He, Kefei Li, Feng Li, Dianwen Xu, Juxiong Liu, Shoupeng Fu. Phytic Acid Improves Hepatic Steatosis, Inflammation, and Oxidative Stress in High-Fat Diet (HFD)-Fed Mice by Modulating the Gut-Liver Axis.
Journal of agricultural and food chemistry.
2022 Sep; 70(36):11401-11411. doi:
10.1021/acs.jafc.2c04406
. [PMID: 36040330] - Ji Hyeon Song, Gilok Shin, Hye Jeong Kim, Saet Buyl Lee, Ju Yeon Moon, Jae Cheol Jeong, Hong-Kyu Choi, In Ah Kim, Hyeon Jin Song, Cha Young Kim, Young-Soo Chung. Mutation of GmIPK1 Gene Using CRISPR/Cas9 Reduced Phytic Acid Content in Soybean Seeds.
International journal of molecular sciences.
2022 Sep; 23(18):. doi:
10.3390/ijms231810583
. [PMID: 36142495] - Michael Weber, Thilo M Fuchs. Metabolism in the Niche: a Large-Scale Genome-Based Survey Reveals Inositol Utilization To Be Widespread among Soil, Commensal, and Pathogenic Bacteria.
Microbiology spectrum.
2022 08; 10(4):e0201322. doi:
10.1128/spectrum.02013-22
. [PMID: 35924911] - Wenxiu Yang, Zhimin Gu, Xiaoru Chen, Weihua Gao, Hua Wen, Fan Wu, Juan Tian. Effects of phytase supplementation of high-plant-protein diets on growth, phosphorus utilization, antioxidant, and digestion in red swamp crayfish (Procambarus clarkii).
Fish & shellfish immunology.
2022 Aug; 127(?):797-803. doi:
10.1016/j.fsi.2022.07.034
. [PMID: 35842112] - Nibras Belgaroui, Wided El Ifa, Moez Hanin. Phytic acid contributes to the phosphate-zinc signaling crosstalk in Arabidopsis.
Plant physiology and biochemistry : PPB.
2022 Jul; 183(?):1-8. doi:
10.1016/j.plaphy.2022.04.029
. [PMID: 35526500] - Xue Liu, Ran Han, Yue Cao, Benjamin L Turner, Lena Q Ma. Enhancing Phytate Availability in Soils and Phytate-P Acquisition by Plants: A Review.
Environmental science & technology.
2022 07; 56(13):9196-9219. doi:
10.1021/acs.est.2c00099
. [PMID: 35675210] - Lingyun Gui, Beibei Chen, Zhen Zhou, Yong Liang, Man He, Bin Hu. Phytic acid functionalized magnetic adsorbents for facile enrichment of trace rare earth elements in environmental water, digested atmospheric particulates and the extracts followed by inductively coupled plasma mass spectrometry detection.
Talanta.
2022 Jul; 244(?):123426. doi:
10.1016/j.talanta.2022.123426
. [PMID: 35381498] - Tobi Z Ogunribido, Michael R Bedford, Olayiwola Adeola, Kolapo M Ajuwon. Effects of supplemental myo-inositol on growth performance and apparent total tract digestibility of weanling piglets fed reduced protein high-phytate diets and intestinal epithelial cell proliferation and function.
Journal of animal science.
2022 Jul; 100(7):. doi:
10.1093/jas/skac187
. [PMID: 35589552] - Donglan He, Wenjie Wan. Distribution of Culturable Phosphate-Solubilizing Bacteria in Soil Aggregates and Their Potential for Phosphorus Acquisition.
Microbiology spectrum.
2022 06; 10(3):e0029022. doi:
10.1128/spectrum.00290-22
. [PMID: 35536021] - Akihiro Uehara, Daiju Matsumura, Takuya Tsuji, Haruko Yakumaru, Izumi Tanaka, Ayumi Shiro, Hiroyuki Saitoh, Hiroshi Ishihara, Shino Homma-Takeda. Uranium chelating ability of decorporation agents in serum evaluated by X-ray absorption spectroscopy.
Analytical methods : advancing methods and applications.
2022 06; 14(24):2439-2445. doi:
10.1039/d2ay00565d
. [PMID: 35694955] - Alexander J Pak, Manish Gupta, Mark Yeager, Gregory A Voth. Inositol Hexakisphosphate (IP6) Accelerates Immature HIV-1 Gag Protein Assembly toward Kinetically Trapped Morphologies.
Journal of the American Chemical Society.
2022 06; 144(23):10417-10428. doi:
10.1021/jacs.2c02568
. [PMID: 35666943] - M Papp, V Sommerfeld, M Schollenberger, U Avenhaus, M Rodehutscord. Phytate degradation and phosphorus utilisation by broiler chickens fed diets containing wheat with increased phytase activity.
British poultry science.
2022 Jun; 63(3):375-385. doi:
10.1080/00071668.2021.1966756
. [PMID: 34378995] - Li Zhu, Ankita Mukherjee, Clare Kyomugasho, Dongyan Chen, Marc Hendrickx. Calcium transport and phytate hydrolysis during chemical hardening of common bean seeds.
Food research international (Ottawa, Ont.).
2022 Jun; 156(?):111315. doi:
10.1016/j.foodres.2022.111315
. [PMID: 35651071] - Kenza Bouaouina, Alexandre Barras, Nacer Bezzi, Mohammed A Amin, Sabine Szunerits, Rabah Boukherroub. Adsorption-reduction of Cr(VI) onto unmodified and phytic acid-modified carob waste: Kinetic and isotherm modeling.
Chemosphere.
2022 Jun; 297(?):134188. doi:
10.1016/j.chemosphere.2022.134188
. [PMID: 35257706] - Yue Shi, Kaixuan Zhao, Guang Yang, Jia Yu, Yuxin Li, Michael M Kessels, Lina Yu, Britta Qualmann, Per-Olof Berggren, Shao-Nian Yang. Inositol hexakisphosphate primes syndapin I/PACSIN 1 activation in endocytosis.
Cellular and molecular life sciences : CMLS.
2022 May; 79(6):286. doi:
10.1007/s00018-022-04305-2
. [PMID: 35534740] - Sabuktagin Rahman, Nazma Shaheen. Phytate-iron molar ratio and bioavailability of iron in Bangladesh.
Tropical medicine & international health : TM & IH.
2022 05; 27(5):509-514. doi:
10.1111/tmi.13750
. [PMID: 35383403] - Hyeon Jeong Lee, Se-Rin Kim, Jea Young Park, Eun Young Park. Phytate-mediated phosphorylation of starch by dry heating with rice bran extract.
Carbohydrate polymers.
2022 Apr; 282(?):119104. doi:
10.1016/j.carbpol.2022.119104
. [PMID: 35123757] - Yitong Yin, Ximing Luo, Xiangyu Guan, Jiawei Zhao, Yuan Tan, Xiaonan Shi, Mingtao Luo, Xiangcai Han. Arsenic Release from Soil Induced by Microorganisms and Environmental Factors.
International journal of environmental research and public health.
2022 04; 19(8):. doi:
10.3390/ijerph19084512
. [PMID: 35457378] - Xian-Hui Shao, Xiao Yang, Yue Zhou, Qing-Chang Xia, Yun-Ping Lu, Xiao Yan, Chen Chen, Ting-Ting Zheng, Lin-Lin Zhang, Yu-Ning Ma, Yu-Xia Ma, Shu-Zhong Gao. Antibacterial, wearable, transparent tannic acid-thioctic acid-phytic acid hydrogel for adhesive bandages.
Soft matter.
2022 Apr; 18(14):2814-2828. doi:
10.1039/d2sm00058j
. [PMID: 35322837] - Feng Ji, Shuai Zhang, Yong An, Zheng Wang, Yuxin Shao, Shaohua Du, Xing Li, Xiaoshan Sun. Influence of dietary phosphorus concentrations on the performance of rearing pigeons (Columba livia), and bone properties of squabs.
Poultry science.
2022 Apr; 101(4):101744. doi:
10.1016/j.psj.2022.101744
. [PMID: 35220034] - Wei Wang, Yiwen Xie, Lei Liu, Graham J King, Philip White, Guangda Ding, Sheliang Wang, Hongmei Cai, Chuang Wang, Fangsen Xu, Lei Shi. Genetic Control of Seed Phytate Accumulation and the Development of Low-Phytate Crops: A Review and Perspective.
Journal of agricultural and food chemistry.
2022 Mar; 70(11):3375-3390. doi:
10.1021/acs.jafc.1c06831
. [PMID: 35275483] - Raquel Faba-Rodriguez, Yinghong Gu, Melissa Salmon, Giuseppe Dionisio, Henrik Brinch-Pedersen, Charles A Brearley, Andrew M Hemmings. Structure of a cereal purple acid phytase provides new insights to phytate degradation in plants.
Plant communications.
2022 03; 3(2):100305. doi:
10.1016/j.xplc.2022.100305
. [PMID: 35529950] - Jung H Suh, Sarah J Zyba, Mark Shigenaga, Christine M McDonald, Janet C King. Marginal Zinc Deficiency Alters Essential Fatty Acid Metabolism in Healthy Men.
The Journal of nutrition.
2022 03; 152(3):671-679. doi:
10.1093/jn/nxab425
. [PMID: 34919682] - Kang Zhao, Shah Tufail, Yuji Arai, Prabhakar Sharma, Qianru Zhang, Yanhua Chen, Xiang Wang, Jianying Shang. Effect of phytic acid and morphology on Fe (oxyhydr)oxide transport under saturated flow condition.
Journal of hazardous materials.
2022 02; 424(Pt D):127659. doi:
10.1016/j.jhazmat.2021.127659
. [PMID: 34774354] - Dan Sun, Wen Zhang, Huayuan Feng, Xinyuan Li, Ran Han, Benjamin L Turner, Rongliang Qiu, Yue Cao, Lena Q Ma. Novel phytase PvPHY1 from the As-hyperaccumulator Pteris vittata enhances P uptake and phytate hydrolysis, and inhibits As translocation in Plant.
Journal of hazardous materials.
2022 02; 423(Pt B):127106. doi:
10.1016/j.jhazmat.2021.127106
. [PMID: 34536848] - Huan Xiang, Qingyang Li, Dongxiao Sun-Waterhouse, Jiawei Li, Chun Cui, Geoffrey In Waterhouse. Improving the color and functional properties of seabuckthorn seed protein with phytase treatment combined with alkaline solubilization and isoelectric precipitation.
Journal of the science of food and agriculture.
2022 Feb; 102(3):931-939. doi:
10.1002/jsfa.11425
. [PMID: 34265087] - Kristel Tanilas, Tiina Kriščiunaite. Development of LC-MS-ESI-TOF method for quantification of phytates in food using 13C-labelled maize as internal standard.
Analytical and bioanalytical chemistry.
2022 Feb; 414(4):1539-1552. doi:
10.1007/s00216-021-03770-1
. [PMID: 35024913] - Sangar Khan, Paul J Milham, Kamel Mohamed Eltohamy, Yingbing Jin, Ziwan Wang, Xinqiang Liang. Phytate exudation by the roots of Pteris vittata can dissolve colloidal FePO4.
Environmental science and pollution research international.
2022 Feb; 29(9):13142-13153. doi:
10.1007/s11356-021-16534-2
. [PMID: 34570322] - Dil Thavarajah, Tristan J Lawrence, Sarah E Powers, Joshua Kay, Pushparajah Thavarajah, Emerson Shipe, Rebecca McGee, Shiv Kumar, Rick Boyles. Organic dry pea (Pisum sativum L.) biofortification for better human health.
PloS one.
2022 ; 17(1):e0261109. doi:
10.1371/journal.pone.0261109
. [PMID: 35025919] - Yianna Y Zhang, Regine Stockmann, Ken Ng, Said Ajlouni. Revisiting phytate-element interactions: implications for iron, zinc and calcium bioavailability, with emphasis on legumes.
Critical reviews in food science and nutrition.
2022; 62(6):1696-1712. doi:
10.1080/10408398.2020.1846014
. [PMID: 33190514] - Young Joo Oh, Seul-Ah Kim, Soo Hwi Yang, Da Hye Kim, Ya-Yun Cheng, Jung Il Kang, Sang Yun Lee, Nam Soo Han. Integrated genome-based assessment of safety and probiotic characteristics of Lactiplantibacillus plantarum PMO 08 isolated from kimchi.
PloS one.
2022; 17(10):e0273986. doi:
10.1371/journal.pone.0273986
. [PMID: 36190947] - Hai Liu, Qing Zhao, Yanhua Cheng. Composted invasive plant Ageratina adenophora enhanced barley (Hordeum vulgare) growth and soil conditions.
PloS one.
2022; 17(9):e0275302. doi:
10.1371/journal.pone.0275302
. [PMID: 36173955] - Fred Brouns. Phytic Acid and Whole Grains for Health Controversy.
Nutrients.
2021 Dec; 14(1):. doi:
10.3390/nu14010025
. [PMID: 35010899] - Mona S Calvo, Jaime Uribarri. Perspective: Plant-based Whole-Grain Foods for Chronic Kidney Disease: The Phytate-Phosphorus Conundrum.
Advances in nutrition (Bethesda, Md.).
2021 12; 12(6):2056-2067. doi:
10.1093/advances/nmab066
. [PMID: 34192744] - Marjia Sultana, Towhid Hasan, Nazma Shaheen. Molar ratios of dietary phytate to minerals and iron status of female residential students in University of Dhaka, Bangladesh.
Nutrition and health.
2021 Dec; 27(4):405-412. doi:
10.1177/0260106021991633
. [PMID: 33655777] - L Vanessa Lagos, Mike R Bedford, Hans H Stein. Increased microbial phytase increased phytate destruction, plasma inositol, and feed efficiency of weanling pigs, but reduced dietary calcium and phosphorus did not affect gastric pH or fecal score and reduced growth performance and bone ash.
Journal of animal science.
2021 Dec; 99(12):. doi:
10.1093/jas/skab333
. [PMID: 34747490] - Bibek Byanju, Milagros P Hojilla-Evangelista, Buddhi P Lamsal. Fermentation performance and nutritional assessment of physically processed lentil and green pea flour.
Journal of the science of food and agriculture.
2021 Nov; 101(14):5792-5806. doi:
10.1002/jsfa.11229
. [PMID: 33792043] - Yao Xia, Rongfeng Zou, Maxime Escouboué, Liang Zhong, Chengjun Zhu, Cécile Pouzet, Xueqiang Wu, Yongjin Wang, Guohua Lv, Haibo Zhou, Pinghua Sun, Ke Ding, Laurent Deslandes, Shuguang Yuan, Zhi-Min Zhang. Secondary-structure switch regulates the substrate binding of a YopJ family acetyltransferase.
Nature communications.
2021 10; 12(1):5969. doi:
10.1038/s41467-021-26183-1
. [PMID: 34645811] - Daniel Couto, Annika Richter, Henriette Walter, David Furkert, Michael Hothorn, Dorothea Fiedler. Using Biotinylated myo-Inositol Hexakisphosphate to Investigate Inositol Pyrophosphate-Protein Interactions with Surface-Based Biosensors.
Biochemistry.
2021 09; 60(37):2739-2748. doi:
10.1021/acs.biochem.1c00497
. [PMID: 34499474]