Ethyl pentyl ketone (BioDeep_00000004241)
Secondary id: BioDeep_00000631170, BioDeep_00000869739
human metabolite Endogenous
代谢物信息卡片
化学式: C8H16O (128.1201)
中文名称: 3-辛酮
谱图信息:
最多检出来源 Homo sapiens(feces) 8.26%
分子结构信息
SMILES: CCCCCC(=O)CC
InChI: InChI=1S/C8H16O/c1-3-5-6-7-8(9)4-2/h3-7H2,1-2H3
描述信息
Ethyl pentyl ketone, also known as 3-oxooctane or eak, is a member of the class of compounds known as ketones. Ketones are organic compounds in which a carbonyl group is bonded to two carbon atoms R2C=O (neither R may be a hydrogen atom). Ketones that have one or more alpha-hydrogen atoms undergo keto-enol tautomerization, the tautomer being an enol. Thus, ethyl pentyl ketone is considered to be an oxygenated hydrocarbon lipid molecule. Ethyl pentyl ketone is slightly soluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Ethyl pentyl ketone is a sweet, butter, and fresh tasting compound and can be found in a number of food items such as rosemary, hyssop, spearmint, and rocket salad (sspecies), which makes ethyl pentyl ketone a potential biomarker for the consumption of these food products. Ethyl pentyl ketone can be found primarily in feces and saliva. Ethyl pentyl ketone exists in all eukaryotes, ranging from yeast to humans.
Ethyl pentyl ketone, also known as 3-oxooctane or EAK, belongs to the class of organic compounds known as ketones. These are organic compounds in which a carbonyl group is bonded to two carbon atoms R2C=O (neither R may be a hydrogen atom). Ketones that have one or more alpha-hydrogen atoms undergo keto-enol tautomerization, the tautomer being an enol. Thus, ethyl pentyl ketone is considered to be an oxygenated hydrocarbon lipid molecule. A dialkyl ketone that is octane in which the two methylene protons at position 3 have been replaced by an oxo group. Ethyl pentyl ketone is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Ethyl pentyl ketone has been detected, but not quantified, in cardamoms and lemons. This could make ethyl pentyl ketone a potential biomarker for the consumption of these foods. Ethyl pentyl ketone, with regard to humans, has been linked to the inborn metabolic disorder celiac disease.
同义名列表
数据库引用编号
17 个数据库交叉引用编号
- ChEBI: CHEBI:80946
- KEGG: C17145
- PubChem: 246728
- HMDB: HMDB0031295
- Metlin: METLIN71588
- ChEMBL: CHEMBL2269087
- Wikipedia: 3-Octanone
- KNApSAcK: C00034765
- foodb: FDB005050
- chemspider: 215929
- CAS: 106-68-3
- PMhub: MS000016140
- PubChem: 96023597
- LipidMAPS: LMFA12000055
- NIKKAJI: J3.245J
- RefMet: Ethyl pentyl ketone
- KNApSAcK: 80946
分类词条
相关代谢途径
Reactome(0)
BioCyc(0)
PlantCyc(0)
代谢反应
0 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(0)
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
39 个相关的物种来源信息
- 260130 - Acca sellowiana:
- 5341 - Agaricus bisporus: 10.1016/0031-9422(81)84057-5
- 39269 - Agastache foeniculum:
- 39271 - Agastache rugosa: 10.1248/YAKUSHI1947.90.12_1514
- 1392 - Bacillus anthracis: 10.1038/S41598-020-66136-0
- 3483 - Cannabis sativa: 10.1021/NP50008A001
- 751812 - Clinopodium suaveolens: 10.1055/S-2006-962451
- 4039 - Daucus carota: 10.1002/CBDV.201300390
- 662901 - Elsholtzia ciliata: 10.1080/10412905.1996.9700569
- 698833 - Elsholtzia fruticosa: 10.1055/S-2006-961490
- 38945 - Flammulina velutipes:
- 263 - Francisella tularensis: 10.1038/S41598-020-66136-0
- 9606 - Homo sapiens: -
- 441197 - Laggera alata: 10.1002/FFJ.2730050307
- 3860 - Lathyrus sativus: 10.1017/S000748531400087X
- 5353 - Lentinula edodes: 10.1021/JF00125A011
- 268881 - Lepechinia chamaedryoides: 10.1055/S-2006-961452
- 3197 - Marchantia polymorpha: 10.1016/J.PHYTOCHEM.2014.08.008
- 3879 - Medicago sativa: 10.1016/S0031-9422(97)00119-2
- 292239 - Mentha arvensis: 10.1080/10412905.1995.9698515
- 294738 - Mentha japonica: 10.1271/BBB1961.34.1511
- 1533225 - Nepeta nuda: 10.1016/S0031-9422(00)84709-3
- 2849020 - Nepeta tenuifolia: 10.4268/CJCMM20161117
- 204144 - Ocimum gratissimum: 10.1007/BF01959201
- 8068 - Opsanus tau: 10.1016/0041-0101(82)90082-4
- 48386 - Perilla frutescens: 10.1080/10412905.1995.9698555
- 260139 - Pimenta racemosa: 10.1080/10412905.1991.9697952
- 204156 - Platostoma africanum: 10.1055/S-2006-962093
- 5322 - Pleurotus ostreatus: 10.1021/JF960876I
- 174549 - Polygala senega: 10.1002/FFJ.2730100408
- 39367 - Salvia rosmarinus: 10.3390/MOLECULES21111576
- 135199 - Schizonepeta: 10.4268/CJCMM20161117
- 282775 - Tanacetum millefolium: 10.1055/S-2006-960034
- 88032 - Taxus canadensis: 10.1080/10412905.1993.9698163
- 40145 - Tricholoma matsutake:
- 42251 - Tuber borchii: 10.1016/S0031-9422(00)00308-3
- 1255164 - Tuber liyuanum: 10.1080/14786419.2016.1253082
- 472369 - Vaccinium angustifolium: 10.1021/JF00085A053
- 136225 - Zingiber mioga: 10.1271/BBB1961.55.1655
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Wei-Zhen Li, Wen-Juan Kang, Jing-Jiang Zhou, Su-Qin Shang, Shang-Li Shi. The antennal transcriptome analysis and characterizations of odorant-binding proteins in Megachile saussurei (Hymenoptera, Megachilidae).
BMC genomics.
2023 Dec; 24(1):781. doi:
10.1186/s12864-023-09871-8
. [PMID: 38102559] - Adam Yasgar, Danielle Bougie, Richard T Eastman, Ruili Huang, Misha Itkin, Jennifer Kouznetsova, Caitlin Lynch, Crystal McKnight, Mitch Miller, Deborah K Ngan, Tyler Peryea, Pranav Shah, Paul Shinn, Menghang Xia, Xin Xu, Alexey V Zakharov, Anton Simeonov. Quantitative Bioactivity Signatures of Dietary Supplements and Natural Products.
ACS pharmacology & translational science.
2023 May; 6(5):683-701. doi:
10.1021/acsptsci.2c00194
. [PMID: 37200814] - Patricia Martín Santos, Miguel Del Nogal Sánchez, Ángel Pedro Crisolino Pozas, José Luis Pérez Pavón, Bernardo Moreno Cordero. Determination of ketones and ethyl acetate-a preliminary study for the discrimination of patients with lung cancer.
Analytical and bioanalytical chemistry.
2017 Sep; 409(24):5689-5696. doi:
10.1007/s00216-017-0508-2
. [PMID: 28717894] - Yan Qian, Sheng Yu, Ming-Qiu Shan, Wei-Feng Yao, Li Zhang. [Comparison between traditional processing and integration processing for Schizonepetae Herba based on chemical constituents and pharmacological effect].
Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica.
2016 Jun; 41(11):2081-2086. doi:
10.4268/cjcmm20161117
. [PMID: 28901104] - Jun Tabata, Consuelo M De Moraes, Mark C Mescher. Olfactory cues from plants infected by powdery mildew guide foraging by a mycophagous ladybird beetle.
PloS one.
2011; 6(8):e23799. doi:
10.1371/journal.pone.0023799
. [PMID: 21876772] - Sheng Yu, Yiwen Chen, Li Zhang, Mingqiu Shan, Yuping Tang, Anwei Ding. Quantitative comparative analysis of the bio-active and toxic constituents of leaves and spikes of Schizonepeta tenuifolia at different harvesting times.
International journal of molecular sciences.
2011; 12(10):6635-44. doi:
10.3390/ijms12106635
. [PMID: 22072908] - Jakob Eifler, Eugenio Martinelli, Marco Santonico, Rosamaria Capuano, Detlev Schild, Corrado Di Natale. Differential detection of potentially hazardous Fusarium species in wheat grains by an electronic nose.
PloS one.
2011; 6(6):e21026. doi:
10.1371/journal.pone.0021026
. [PMID: 21695232] - Michiel van Wijk, Paulien J A de Bruijn, Maurice W Sabelis. The predatory mite Phytoseiulus persimilis does not perceive odor mixtures as strictly elemental objects.
Journal of chemical ecology.
2010 Nov; 36(11):1211-25. doi:
10.1007/s10886-010-9858-3
. [PMID: 20872172] - Michiel van Wijk, Paulien J A De Bruijn, Maurice W Sabelis. Predatory mite attraction to herbivore-induced plant odors is not a consequence of attraction to individual herbivore-induced plant volatiles.
Journal of chemical ecology.
2008 Jun; 34(6):791-803. doi:
10.1007/s10886-008-9492-5
. [PMID: 18521678] - Jetske G de Boer, Cornelis A Hordijk, Maarten A Posthumus, Marcel Dicke. Prey and non-prey arthropods sharing a host plant: effects on induced volatile emission and predator attraction.
Journal of chemical ecology.
2008 Mar; 34(3):281-90. doi:
10.1007/s10886-007-9405-z
. [PMID: 18185960] - Sven Steiner, Daniel Erdmann, Johannes L M Steidle, Joachim Ruther. Host habitat assessment by a parasitoid using fungal volatiles.
Frontiers in zoology.
2007 Feb; 4(?):3. doi:
10.1186/1742-9994-4-3
. [PMID: 17284315] - Sandrine P Gouinguené, Erich Städler. Oviposition in Delia platura (Diptera, Anthomyiidae): the role of volatile and contact cues of bean.
Journal of chemical ecology.
2006 Jul; 32(7):1399-413. doi:
10.1007/s10886-006-9058-3
. [PMID: 16718565] - Glen C Rains, Samuel L Utley, W Joe Lewis. Behavioral monitoring of trained insects for chemical detection.
Biotechnology progress.
2006 Jan; 22(1):2-8. doi:
10.1021/bp050164p
. [PMID: 16454485] - Yong-Suk Kim, Dong-Hwa Shin. Volatile constituents from the leaves of Callicarpa japonica Thunb. and their antibacterial activities.
Journal of agricultural and food chemistry.
2004 Feb; 52(4):781-7. doi:
10.1021/jf034936d
. [PMID: 14969531] - C Höckelmann, F Jüttner. Volatile organic compound (VOC) analysis and sources of limonene, cyclohexanone and straight chain aldehydes in axenic cultures of Calothrix and Plectonema.
Water science and technology : a journal of the International Association on Water Pollution Research.
2004; 49(9):47-54. doi:
. [PMID: 15237606]
- Stephen M Boué, Betty Y Shih, Carol H Carter-Wientjes, Thomas E Cleveland. Identification of volatile compounds in soybean at various developmental stages using solid phase microextraction.
Journal of agricultural and food chemistry.
2003 Aug; 51(17):4873-6. doi:
10.1021/jf030051q
. [PMID: 12903938] - M A Birkett, K Chamberlain, E Guerrieri, J A Pickett, L J Wadhams, T Yasuda. Volatiles from whitefly-infested plants elicit a host-locating response in the parasitoid, Encarsia formosa.
Journal of chemical ecology.
2003 Jul; 29(7):1589-600. doi:
10.1023/a:1024218729423
. [PMID: 12921437] - Yasmin J Cardoza, Hans T Alborn, James H Tumlinson. In vivo volatile emissions from peanut plants induced by simultaneous fungal infection and insect damage.
Journal of chemical ecology.
2002 Jan; 28(1):161-74. doi:
10.1023/a:1013523104853
. [PMID: 11868672]