Gene Association: SERINC3

UniProt Search: SERINC3 (PROTEIN_CODING)
Function Description: serine incorporator 3

found 16 associated metabolites with current gene based on the text mining result from the pubmed database.

D-Alanyl-D-alanine

(2R)-2-[(2R)-2-aminopropanamido]propanoic acid

C6H12N2O3 (160.0848)


The ATP-dependent carboxylate-amine/thiol ligase superfamily is known to contain enzymes catalyzing the formation of various types of peptide, one of which is d-alanyl-d-alanine.(PMID: 16030213). The glycopeptide antibiotic vancomycin acts by binding to the D-alanyl-D-alanine terminus of the cell wall precursor lipid II in the cytoplasmic membrane.(PMID: 17418637). D-alanine-D-alanine ligase from Thermotoga maritima ATCC 43589 (TmDdl) was a useful biocatalyst for synthesizing D-amino acid dipeptides.D-Alanine-D-alanine ligase (Ddl) catalyzes the biosynthesis of an essential bacterial peptidoglycan precursor D-alanyl-D-alanine and it represents an important target for development of new antibacterial drugs. (PMID: 17267218). D-Alanyl-D-alanine is a microbial metabolite. Alanyl-alanine, also known as ala-ala or A-a dipeptide, is a member of the class of compounds known as dipeptides. Dipeptides are organic compounds containing a sequence of exactly two alpha-amino acids joined by a peptide bond. Alanyl-alanine is soluble (in water) and a weakly acidic compound (based on its pKa). Alanyl-alanine can be found in chives, which makes alanyl-alanine a potential biomarker for the consumption of this food product. Alanyl-alanine can be found primarily in feces. Alanyl-alanine exists in all living organisms, ranging from bacteria to humans. Acquisition and generation of the data is financially supported in part by CREST/JST. D-Ala-D-Ala constitutes the terminus of the peptide part of the peptidoglycan monomer unit and is involved in the transpeptidation reaction as the substrate. D-Ala-D-Ala is catalyzed by D-Alanine-D-Alanine ligase. D-Ala-D-Ala is a bacterial endogenous metabolite[1][2].

   

triacetate lactone

2-Hydroxy-6-methyl-4H-pyran-4-one

C6H6O3 (126.0317)


   

Maltol

3-Hydroxy-2-methyl-4-pyrone; 3-Hydroxy-2-methyl-pyran-4-one; Maltol; Deferiprone Impurity B

C6H6O3 (126.0317)


Maltol, also known as E636 or fema 2656, belongs to the class of organic compounds known as pyranones and derivatives. Pyranones and derivatives are compounds containing a pyran ring which bears a ketone. Some synthetic derivatives of maltol, developed at the University of Urbino, showed limited in vitro antiproliferative activity towards cancer cells lines, perhaps inducing apoptosis in these cells. Maltol is a sweet, baked, and bread tasting compound. Maltol has been detected, but not quantified, in several different foods, such as milk and milk products, nuts, soy beans, pepper (c. annuum), and coffee and coffee products. Maltols sweetness adds to the odor of freshly baked bread, and is used as a flavor enhancer (INS Number 636) in breads and cakes. Related to this property, maltol has been reported to greatly increase aluminum uptake in the body and to increase the oral bioavailability of gallium and iron. Maltol is a naturally occurring organic compound that is used primarily as a flavor enhancer. It is a white crystalline powder that is soluble in hot water, chloroform, and other polar solvents. Maltol is registered as a flavor component in the EU. Maltol, like related 3-hydroxy-4-pyrones such as kojic acid, binds to hard metal centers such as Fe3+, Ga3+, Al3+, and VO2+. It is known in the European E number food additive series as E636. Because it has the odor of cotton candy and caramel, maltol is used to impart a sweet aroma to fragrances. Maltol is a white crystalline powder with a fragrant caramel-butterscotch odor. pH (5\\\\% aqueous solution) 5.3. (NTP, 1992) 3-hydroxy-2-methyl-4-pyrone is a member of 4-pyranones. It has a role as a metabolite. Maltol is a natural product found in Cercidiphyllum japonicum, Coffea arabica, and other organisms with data available. 3-Hydroxy-2-methyl-4-pyrone is a metabolite found in or produced by Saccharomyces cerevisiae. Found in chicory, roasted malt, breads, milk, heated butter, uncured smoked pork, cocoa, coffee, roasted barley, roasted peanuts, roasted filbert, soybean etc. Flavour enhancer and flavouring agent C1907 - Drug, Natural Product > C28269 - Phytochemical Maltol, a type of aromatic compound, exists in high concentrations in red ginseng. Maltol is a potent antioxidative agent and typically is used to enhance flavor and preserve food[1]. Maltol, a type of aromatic compound, exists in high concentrations in red ginseng. Maltol is a potent antioxidative agent and typically is used to enhance flavor and preserve food[1].

   

Octopine

N2-(D-1-Carboxyethyl)-L-arginine

C9H18N4O4 (246.1328)


The (1R)-1-carboxyethyl derivative of L-arginine. It is a metabolite released by plant tumours. KEIO_ID O009; [MS2] KO009138 KEIO_ID O009

   

12,13-EpOME

(9Z)-(12S,13R)-12,13-Epoxyoctadecenoic acid

C18H32O3 (296.2351)


D004791 - Enzyme Inhibitors

   

2-Furanmethanol

(2-FURYL)-methanol (furfurylalcohol)

C5H6O2 (98.0368)


2-Furanmethanol, also known as 2-furylcarbinol or furfural alcohol, belongs to the class of organic compounds known as heteroaromatic compounds. Heteroaromatic compounds are compounds containing an aromatic ring where a carbon atom is linked to an hetero atom. Its structure is that of a furan bearing a hydroxymethyl substituent at the 2-position. 2-Furanmethanol is a sweet, alcoholic and bitter tasting compound. 2-Furanmethanol has been detected, but not quantified, in several different foods, such as cereals and cereal products, potato, white mustards, arabica coffee, and cocoa and cocoa products. This could make 2-furanmethanol a potential biomarker for the consumption of these foods. Isolated from coffee aroma, tea, wheat bread, crispbread, soybean, cocoa, rice, potato chips and other sources. Flavouring ingredient. 2-Furanmethanol is found in many foods, some of which are sesame, pulses, white mustard, and potato.

   

Nopaline

N-[(1S)-4-carbamimidamido-1-carboxybutyl]-D-glutamic acid

C11H20N4O6 (304.1383)


   

Mannopine

AGN-PC-0OKTBE

C11H22N2O8 (310.1376)


A hexitol derivative that is D-mannitol in which the hydroxy group at position 1 is replaced by the alpha-amino group of L-glutamine. It is produced in crown gall tumours induced in a wide range of dicotyledenous plants by Agrobacterium tumefaciens.

   

Octopine

5-carbamimidamido-2-[(1-carboxyethyl)amino]pentanoic acid

C9H18N4O4 (246.1328)


   

Vernolic acid

(9Z)-(12S,13R)-12,13-Epoxyoctadecenoic acid

C18H32O3 (296.2351)


A monounsaturated epoxy fatty acid composed of cis-9-octadecenoic acid having a 12,13-epoxy group.

   

Vetol

5-18-01-00114 (Beilstein Handbook Reference)

C6H6O3 (126.0317)


C1907 - Drug, Natural Product > C28269 - Phytochemical Maltol, a type of aromatic compound, exists in high concentrations in red ginseng. Maltol is a potent antioxidative agent and typically is used to enhance flavor and preserve food[1]. Maltol, a type of aromatic compound, exists in high concentrations in red ginseng. Maltol is a potent antioxidative agent and typically is used to enhance flavor and preserve food[1].

   

LS-2036

5-17-03-00338 (Beilstein Handbook Reference)

C5H6O2 (98.0368)


   

FURFURYL ALCOHOL

FURFURYL ALCOHOL

C5H6O2 (98.0368)


   

N2-(D-1-Carboxyethyl)-L-arginine

N2-(D-1-Carboxyethyl)-L-arginine

C9H18N4O4 (246.1328)


   

(9Z)-(12S,13R)-12,13-Epoxyoctadecenoic acid

(9Z)-(12S,13R)-12,13-Epoxyoctadecenoic acid

C18H32O3 (296.2351)


   

DL-Alanyl-DL-alanine

DL-Alanyl-DL-alanine

C6H12N2O3 (160.0848)