Gene Association: PTGR1

UniProt Search: PTGR1 (PROTEIN_CODING)
Function Description: prostaglandin reductase 1

found 38 associated metabolites with current gene based on the text mining result from the pubmed database.

thiram

N(1),N(1),N(3),N(3)-Tetramethyl-2-dithioperoxy-1,3-dithiodicarbonic diamide

C6H12N2S4 (239.9883)


P - Antiparasitic products, insecticides and repellents > P03 - Ectoparasiticides, incl. scabicides, insecticides and repellents > P03A - Ectoparasiticides, incl. scabicides > P03AA - Sulfur containing products CONFIDENCE standard compound; EAWAG_UCHEM_ID 3724 D009676 - Noxae > D009153 - Mutagens D016573 - Agrochemicals D010575 - Pesticides Same as: D06114

   

Punicic acid

cis-9, trans-11, trans-13-octadecatrienoic acid

C18H30O2 (278.2246)


alpha-Eleostearic acid is found in bitter gourd. alpha-Eleostearic acid is isolated from seed oil of Momordica charantia (bitter melon Isolated from seed oil of Momordica charantia (bitter melon). alpha-Eleostearic acid is found in bitter gourd and fruits.

   

Methyltestosterone

(1S,2R,10R,11S,14S,15S)-14-hydroxy-2,14,15-trimethyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-6-en-5-one

C20H30O2 (302.2246)


A synthetic anabolic steroid used for treating men with testosterone deficiency or similar androgen replacement therapies. Also, has antineoplastic properties and so has been used secondarily in women with advanced breast cancer. Methyltestosterone is a schedule III drug in the US. CONFIDENCE standard compound; INTERNAL_ID 1072; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9426; ORIGINAL_PRECURSOR_SCAN_NO 9425 CONFIDENCE standard compound; INTERNAL_ID 1072; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9487; ORIGINAL_PRECURSOR_SCAN_NO 9483 CONFIDENCE standard compound; INTERNAL_ID 1072; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9433; ORIGINAL_PRECURSOR_SCAN_NO 9431 CONFIDENCE standard compound; INTERNAL_ID 1072; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9476; ORIGINAL_PRECURSOR_SCAN_NO 9475 CONFIDENCE standard compound; INTERNAL_ID 1072; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9423; ORIGINAL_PRECURSOR_SCAN_NO 9422 CONFIDENCE standard compound; INTERNAL_ID 1072; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9541; ORIGINAL_PRECURSOR_SCAN_NO 9538 G - Genito urinary system and sex hormones > G03 - Sex hormones and modulators of the genital system > G03E - Androgens and female sex hormones in combination > G03EK - Androgens and female sex hormones in combination with other drugs G - Genito urinary system and sex hormones > G03 - Sex hormones and modulators of the genital system > G03B - Androgens > G03BA - 3-oxoandrosten (4) derivatives D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D045930 - Anabolic Agents C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone CONFIDENCE standard compound; INTERNAL_ID 2816 D000970 - Antineoplastic Agents

   

15-KETE

(5Z,8Z,11Z,13E)-15-Ketoeicosa-5,8,11,13-tetraenoic acid

C20H30O3 (318.2195)


15-OxoETE or 15-KETE is a keto-containing leukotriene derivative produced by oxidation of the 15-hydroxyl of 15-HETE. [HMDB] 15-OxoETE or 15-KETE is a keto-containing leukotriene derivative produced by oxidation of the 15-hydroxyl of 15-HETE.

   

Leukotriene B4

5S,12R-dihydroxy-6Z,8E,10E,14Z-eicosatetraenoic acid

C20H32O4 (336.23)


A leukotriene composed of (6Z,8E,10E,14Z)-icosatetraenoic acid having (5S)- and (12R)-hydroxy substituents. It is a lipid mediator of inflammation that is generated from arachidonic acid via the 5-lipoxygenase pathway. Chemical was purchased from CAY20110 (Lot 0439924-0).; Diagnostic ions: 335.1, 317.2, 195.1, 129.0, 115.0, 111.5

   

Neoxanthin

(1R,3S)-6-[(1M,3E,5E,7E,9E,11E,13E,15Z,17E)-18-[(1S,4S,6R)-4-hydroxy-2,2,6-trimethyl-7-oxabicyclo[4.1.0]heptan-1-yl]-3,7,12,16-tetramethyloctadeca-1,3,5,7,9,11,13,15,17-nonaen-1-ylidene]-1,5,5-trimethylcyclohexane-1,3-diol

C40H56O4 (600.4178)


Neoxanthin belongs to the class of organic compounds known as xanthophylls. These are carotenoids containing an oxygenated carotene backbone. Carotenes are characterized by the presence of two end-groups (mostly cyclohexene rings, but also cyclopentene rings or acyclic groups) linked by a long branched alkyl chain. Xanthophylls arise by oxygenation of the carotene backbone. Neoxanthin is an intermediate in the synthesis of abscisic acid from violaxanthin. Neoxanthin has been detected, but not quantified in, several different foods, such as apples, paprikas, Valencia oranges, kiwis, globe artichokes, sparkleberries, hard wheat, and cinnamon. This could make neoxanthin a potential biomarker for the consumption of these foods. Neoxanthin has been shown to exhibit apoptotic and anti-proliferative functions (PMID: 15333710, 15333710). Neoxanthin is a carotenoid and xanthophyll. In plants, it is an intermediate in the biosynthesis of the plant hormone abscisic acid. It is produced from violaxanthin by the action of neoxanthin synthase. It is a major xanthophyll found in green leafy vegetables such as spinach. [Wikipedia] D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids

   

Antheraxanthin A

6-[(1E,3Z,5E,7E,9E,11Z,13E,15E,17E)-18-(4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl)-3,7,12,16-tetramethyloctadeca-1,3,5,7,9,11,13,15,17-nonaen-1-yl]-1,5,5-trimethyl-7-oxabicyclo[4.1.0]heptan-3-ol

C40H56O3 (584.4229)


Antheraxanthin a is a member of the class of compounds known as xanthophylls. Xanthophylls are carotenoids containing an oxygenated carotene backbone. Carotenes are characterized by the presence of two end-groups (mostly cyclohexene rings, but also cyclopentene rings or acyclic groups) linked by a long branched alkyl chain. Carotenes belonging form a subgroup of the carotenoids family. Xanthophylls arise by oxygenation of the carotene backbone. Antheraxanthin a is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Antheraxanthin a can be found in herbs and spices, which makes antheraxanthin a a potential biomarker for the consumption of this food product. Antheraxanthin A is found in herbs and spices. Antheraxanthin A is a constituent of Capsicum fruit; potential nutriceutical D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids

   

Violaxanthin

(1R,3S,6S)-6-[(1E,3E,5E,7E,9E,11E,13E,15E,17E)-18-[(1S,4S,6R)-4-hydroxy-2,2,6-trimethyl-7-oxabicyclo[4.1.0]heptan-1-yl]-3,7,12,16-tetramethyloctadeca-1,3,5,7,9,11,13,15,17-nonaen-1-yl]-1,5,5-trimethyl-7-oxabicyclo[4.1.0]heptan-3-ol

C40H56O4 (600.4178)


Violaxanthin belongs to the class of organic compounds known as xanthophylls. These are carotenoids containing an oxygenated carotene backbone. Carotenes are characterized by the presence of two end-groups (mostly cyclohexene rings, but also cyclopentene rings or acyclic groups) linked by a long branched alkyl chain. Xanthophylls arise by oxygenation of the carotene backbone. Thus, violaxanthin is considered to be an isoprenoid lipid molecule. Violaxanthin is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Violaxanthin is an orange-coloured pigment that is found in brown algae and various plants (e.g. pansies). It is biosynthesized from the epoxidation of zeaxanthin. Violaxanthin is a food additive that is only approved for use in Australia and New Zealand (INS: 161e) (PMID: 29890662). 3 (violaxanthin, zeaxanthin and antheraxanthin) participate in series of photo-induced interconversions known as violaxanthin cycle; Xanthophyll; a carotene epoxide that is precursor to capsanthin; cleavage of 9-cis-epoxycarotenoids (violaxanthin) to xanthoxin, catalyzed by 9-cis-epoxycarotenoid dioxygenase, is the key regulatory step of abscisic acid biosynthesis; one of 3 xanthophylls involved in evolution of plastids of green plants (oxygen evolution). (all-E)-Violaxanthin is found in many foods, some of which are orange bell pepper, passion fruit, pepper (c. annuum), and italian sweet red pepper. D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids

   

Actinonin

(2R)-N'-hydroxy-N-[(2S)-1-[(2S)-2-(hydroxymethyl)pyrrolidin-1-yl]-3-methyl-1-oxobutan-2-yl]-2-pentylbutanediamide

C19H35N3O5 (385.2577)


D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents Actinonin ((-)-Actinonin) is a naturally occurring antibacterial agent produced by Actinomyces. Actinonin inhibits aminopeptidase M, aminopeptidase N and leucine aminopeptidase. Actinonin is a potent reversible peptide deformylase (PDF) inhibitor with a Ki of 0.28 nM. Actinonin also inhibits MMP-1, MMP-3, MMP-8, MMP-9, and hmeprin α with Ki values of 300 nM, 1,700 nM, 190 nM, 330 nM, and 20 nM, respectively. Actinonin is an apoptosis inducer. Actinonin has antiproliferative and antitumor activities[1][2][3][4][5].

   

12-HHTrE

12(S)-Hydroxy-(5Z,8Z,10E)-heptadeca-5,8,10-trienoic acid anion

C17H28O3 (280.2038)


12(S)-HHTrE is an unusual product of the cyclooxygenase (COX) pathway and one of the primary arachidonic acid metabolites of the human platelet.1 It is biosynthesized by thromboxane (TX) synthesis from prostaglandin H2 (PGH2) concurrently with TXA2. The biological role of 12(S)-HHTrE is uncertain. It is avidly oxidized to 12-oxoHTrE by porcine 15-hydroxy PGDH. [HMDB] 12(S)-HHTrE is an unusual product of the cyclooxygenase (COX) pathway and one of the primary arachidonic acid metabolites of the human platelet.1 It is biosynthesized by thromboxane (TX) synthesis from prostaglandin H2 (PGH2) concurrently with TXA2. The biological role of 12(S)-HHTrE is uncertain. It is avidly oxidized to 12-oxoHTrE by porcine 15-hydroxy PGDH.

   

(13E)-11a-Hydroxy-9,15-dioxoprost-13-enoic acid

7-[(1R,2R,3R)-3-hydroxy-5-oxo-2-[(1E)-3-oxooct-1-en-1-yl]cyclopentyl]heptanoic acid

C20H32O5 (352.225)


(13E)-11a-Hydroxy-9,15-dioxoprost-13-enoic acid is a substrate for Carbonyl reductase 1.Prostaglandins are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent, able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis, through receptor-mediated G-protein linked signalling pathways. (13E)-11a-Hydroxy-9,15-dioxoprost-13-enoic acid is a substrate for Carbonyl reductase 1.

   

15-Keto-prostaglandin E2

(5Z)-7-[(1R,2R,3R)-3-hydroxy-5-oxo-2-[(1E)-3-oxooct-1-en-1-yl]cyclopentyl]hept-5-enoic acid

C20H30O5 (350.2093)


15-keto-PGE2 is one of the prostaglandin E2 metabolites. (PMID 7190512). It is a degradation product produced by 15-hydroxy prostaglandin dehydrogenase (PGDH or 15-PGDH). Dinoprostone is a naturally occurring prostaglandin E2 (PGE2) and the most common and most biologically active of the mammalian prostaglandins. It has important effects in labour and also stimulates osteoblasts to release factors which stimulate bone resorption by osteoclasts (a type of bone cell that removes bone tissue by removing the bones mineralized matrix). PGE2 has been shown to increase vasodilation and cAMP production, to enhance the effects of bradykinin and histamine, to induce uterine contractions and to activate platelet aggregation. PGE2 is also responsible for maintaining the open passageway of the fetal ductus arteriosus; decreasing T-cell proliferation and lymphocyte migration and activating the secretion of IL-1alpha and IL-2. PGE2 exhibits both pro- and anti-inflammatory effects, particularly on dendritic cells (DC). Depending on the nature of maturation signals, PGE2 has different and sometimes opposite effects on DC biology. PGE2 exerts an inhibitory action, reducing the maturation of DC and their ability to present antigen. PGE2 has also been shown to stimulate DC and promote IL-12 production when given in combination with TNF-alpha. PGE2 is an environmentally bioactive substance. Its action is prolonged and sustained by other factors especially IL-10. It modulates the activities of professional DC by acting on their differentiation, maturation and their ability to secrete cytokines. PGE2 is a potent inducer of IL-10 in bone marrow-derived DC (BM-DC), and PGE2-induced IL-10 is a key regulator of the BM-DC pro-inflammatory phenotype. (PMID: 16978535). Prostaglandins are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent, able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis, through receptor-mediated G-protein linked signalling pathways. 15-keto-PGE2 is one of the prostaglandin E2 metabolites. (PMID 7190512). It is a degradation product produced by 15-hydroxy prostaglandin dehydrogenase (PGDH or 15-PGDH)

   

12-Keto-leukotriene B4

(5S,6Z,8E,10E,14Z)-5-Hydroxy-12-oxoeicosa-6,8,10,14-tetraenoic acid

C20H30O4 (334.2144)


12-Keto-leukotriene B4 is formed when leukotriene B4 (LTB4) is metabolized by beta-oxidation. LTB4 is the major metabolite in neutrophil polymorphonuclear leukocytes. Leukotrienes are metabolites of arachidonic acid derived from the action of 5-LO (5-lipoxygenase). The immediate product of 5-LO is LTA4 (leukotriene A4), which is enzymatically converted into either LTB4 (leukotriene B4) by LTA4 hydrolase or LTC4 (leukotriene C4) by LTC4 synthase. The regulation of leukotriene production occurs at various levels, including expression of 5-LO, translocation of 5-LO to the perinuclear region and phosphorylation to either enhance or inhibit the activity of 5-LO. Biologically active LTB4 is metabolized by w-oxidation carried out by specific cytochrome P450s (CYP4F) followed by beta-oxidation from the w-carboxy position and after CoA ester formation. (PMID: 8632343, 9667737)Leukotrienes are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent, able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis, through receptor-mediated G-protein linked signalling pathways. 12-Keto-leukotriene B4 is formed when leukotriene B4 (LTB4) is metabolized by beta-oxidation. LTB4 is the major metabolite in neutrophil polymorphonuclear leukocytes. Leukotrienes are metabolites of arachidonic acid derived from the action of 5-LO (5-lipoxygenase). The immediate product of 5-LO is LTA4 (leukotriene A4), which is enzymatically converted into either LTB4 (leukotriene B4) by LTA4 hydrolase or LTC4 (leukotriene C4) by LTC4 synthase. The regulation of leukotriene production occurs at various levels, including expression of 5-LO, translocation of 5-LO to the perinuclear region and phosphorylation to either enhance or inhibit the activity of 5-LO. Biologically active LTB4 is metabolized by w-oxidation carried out by specific cytochrome P450s (CYP4F) followed by beta-oxidation from the w-carboxy position and after CoA ester formation. (PMID: 8632343, 9667737)

   

11-Dehydro-thromboxane B2

(5E)-7-[(2R,3S,4S)-4-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-6-oxooxan-3-yl]hept-5-enoic acid

C20H32O6 (368.2199)


11-Dehydro-thromboxane B2, a stable thromboxane metabolite, is a full agonist of chemoattractant receptor-homologous molecule expressed on TH2 cells (CRTH2) in human eosinophils and basophils. Given its production in the allergic lung, antagonism of the 11-dehydro- thromboxane B2/CRTH2axis may be of therapeutic relevance. (PMID 14668348)Thromboxanes are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent, able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis, through receptor-mediated G-protein linked signalling pathways. 11-Dehydro-thromboxane B2, a stable thromboxane metabolite, is a full agonist of chemoattractant receptor-homologous molecule expressed on TH2 cells (CRTH2) in human eosinophils and basophils. Given its production in the allergic lung, antagonism of the 11-dehydro- thromboxane B2/CRTH2axis may be of therapeutic relevance. (PMID 14668348)

   

Chlorobenzene

Chlorobenzene (acd/name 4.0)

C6H5Cl (112.008)


Chlorobenzene is an aromatic organic compound with the chemical formula C6H5Cl. This colorless, flammable liquid is a common solvent and a widely used intermediate in the manufacture of other chemicals. Rhodococcus phenolicus is a bacterium species able to degrade chlorobenzene as sole carbon sources.

   

Illudin S

(-)-1alpha,7beta,12-trihydroxy-2,9-illudadien-8-one

C15H20O4 (264.1362)


D000970 - Antineoplastic Agents

   

Leukotriene B4

(6Z,8E,10E,14Z)-(5S,12R)-5,12-Dihydroxyeicosa-6,8,10,14-tetraenoic acid

C20H32O4 (336.23)


Leukotriene B4 is the major metabolite in neutrophil polymorphonuclear leukocytes. Leukotrienes are metabolites of arachidonic acid derived from the action of 5-LO (5-lipoxygenase). The immediate product of 5-LO is LTA4 (leukotriene A4), which is enzymatically converted into either LTB4 (leukotriene B4) by LTA4 hydrolase or LTC4 (leukotriene C4) by LTC4 synthase. The regulation of leukotriene production occurs at various levels, including expression of 5-LO, translocation of 5-LO to the perinuclear region, and phosphorylation to either enhance or inhibit the activity of 5-LO. Biologically active LTB4 is metabolized by omega-oxidation carried out by specific cytochrome P450s (CYP4F) followed by beta-oxidation from the omega-carboxy position and after CoA ester formation. Other specific pathways of leukotriene metabolism include the 12-hydroxydehydrogenase/15-oxo-prostaglandin-13-reductase that form a series of conjugated diene metabolites that have been observed to be excreted in human urine. Metabolism of LTC4 occurs by sequential peptide cleavage reactions involving a gamma-glutamyl transpeptidase that forms LTD4 (leukotriene D4) and a membrane-bound dipeptidase that converts LTD4 into LTE4 (leukotriene E4) before omega-oxidation. These metabolic transformations of the primary leukotrienes are critical for termination of their biological activity, and defects in expression of participating enzymes may be involved in specific genetic disease. The term leukotriene was coined to indicate the presence of three conjugated double bonds within the 20-carbon structure of arachidonic acid as well as the fact that these compounds were derived from leucocytes such as PMNNs or transformed mast cells. Interestingly, most of the cells known to express 5-LO are of myeloid origin, which includes neutrophils, eosinophils, mast cells, macrophages, basophils, and monocytes. Leukotriene biosynthesis begins with the specific oxidation of arachidonic acid by a free radical mechanism as a consequence of interaction with 5-LO. The first enzymatic step involves the abstraction of a hydrogen atom from C-7 of arachidonate followed by the addition of molecular oxygen to form 5-HpETE (5-hydroperoxyeicosatetraenoic acid). A second enzymatic step is also catalyzed by 5-LO and involves removal of a hydrogen atom from C-10, resulting in the formation of the conjugated triene epoxide LTA4. LTA4 must then be released by 5-LO and encounter either LTA4-H (LTA4 hydrolase) or LTC4-S [LTC4 (leukotriene C4) synthase]. LTA4-H can stereospecifically add water to C-12 while retaining a specific double-bond geometry, leading to LTB4 [leukotriene B4, 5(S),12(R)-dihydroxy-6,8,10,14-(Z,E,E,Z)-eicosatetraenoic acid]. If LTA4 encounters LTC4-S, then the reactive epoxide is opened at C-6 by the thiol anion of glutathione to form the product LTC4 [5(S)-hydroxy-6(R)-S-glutathyionyl-7,9,11,14- (E,E,Z,Z)-eicosatetraenoic acid], essentially a glutathionyl adduct of oxidized arachidonic acid. Both of these terminal leukotrienes are biologically active in that specific GPCRs recognize these chemical structures and receptor recognition initiates complex intracellular signalling cascades. In order for these molecules to serve as lipid mediators, however, they must be released from the biosynthetic cell into the extracellular milieu so that they can encounter the corresponding GPCRs. Surprising features of this cascade include the recognition of the assembly of critical enzymes at the perinuclear region of the cell and even localization of 5-LO within the nucleus of some cells. Under some situations, the budding phagosome has been found to assemble these proteins. Non-enzymatic proteins such as FLAP are now known as critical partners of this protein-machine assembly. An unexpected pathway of leukotriene biosynthesis involves the transfer of the chemically reactive intermediate, LTA4, from the biosynthetic cell followed by conversion into LTB4 or LTC4 by other cells that do not express ...

   

8-iso-15-keto-PGE2

(5Z)-7-[(1S,2R)-3-hydroxy-5-oxo-2-[(1E)-3-oxooct-1-en-1-yl]cyclopentyl]hept-5-enoic acid

C20H30O5 (350.2093)


8-iso-15-keto-PGE2 is an isoprostane. Isoprostanes are arachidonic acid metabolites produced by peroxidative attack of membrane lipids. These accumulate to substantial levels in many clinical conditions characterized in part by accumulation of free radicals and reactive oxygen species, including asthma, hypertension and ischemia reperfusion injury. For this reason, they are frequently used as markers of oxidative stress; however, many are now finding that these molecules are not inert, but in fact evoke powerful biological responses in an increasing array of cell types. In many cases, these biological effects can account in part for the various features and manifestations of those clinical conditions. Thus, it may be possible that the isoprostanes are playing somewhat of a causal role in those disease states (PMID: 14504139). Dinoprostone is a naturally occurring prostaglandin E2 (PGE2) and the most common and most biologically active of the mammalian prostaglandins. It has important effects in labour and also stimulates osteoblasts to release factors which stimulate bone resorption by osteoclasts (a type of bone cell that removes bone tissue by removing the bones mineralized matrix). PGE2 has been shown to increase vasodilation and cAMP production, to enhance the effects of bradykinin and histamine, to induce uterine contractions and to activate platelet aggregation. PGE2 is also responsible for maintaining the open passageway of the fetal ductus arteriosus; decreasing T-cell proliferation and lymphocyte migration and activating the secretion of IL-1alpha and IL-2. PGE2 exhibits both pro- and anti-inflammatory effects, particularly on dendritic cells (DC). Depending on the nature of maturation signals, PGE2 has different and sometimes opposite effects on DC biology. PGE2 exerts an inhibitory action, reducing the maturation of DC and their ability to present antigen. PGE2 has also been shown to stimulate DC and promote IL-12 production when given in combination with TNF-alpha. PGE2 is an environmentally bioactive substance. Its action is prolonged and sustained by other factors especially IL-10. It modulates the activities of professional DC by acting on their differentiation, maturation and their ability to secrete cytokines. PGE2 is a potent inducer of IL-10 in bone marrow-derived DC (BM-DC), and PGE2-induced IL-10 is a key regulator of the BM-DC pro-inflammatory phenotype (PMID: 16978535). Prostaglandins are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent, able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis, through receptor-mediated G-protein linked signalling pathways. 8-iso-15-keto-PGE2 is an isoprostane. Isoprostanes are arachidonic acid metabolites produced by peroxidative attack of membrane lipids. These accumulate to substantial levels in many clinical conditions characterized in part by accumulation of free radicals and reactive oxygen species, including asthma, hypertension and ischemia reperfusion injury. For this reason, they are frequently used as markers of oxidative stress; however, many are now finding that these molecules are not inert, but in fact evoke powerful biological responses in an increasing array of cell types. In many cases, these biological effects can account in part for the various features and manifestations of those clinical conditions. Thus, it may be possible that the isoprostanes are playing somewhat of a causal role in those disease states. (PMID: 14504139)

   

Neoxanthin

(1R,3S)-6-[(3E,5E,7E,9E,11E,13E,15E,17E)-18-[(1S,4S,6R)-4-hydroxy-2,2,6-trimethyl-7-oxabicyclo[4.1.0]heptan-1-yl]-3,7,12,16-tetramethyl-octadeca-1,3,5,7,9,11,13,15,17-nonaenylidene]-1,5,5-trimethyl-cyclohexane-1,3-diol

C40H56O4 (600.4178)


9-cis-neoxanthin is a neoxanthin in which all of the double bonds have trans geometry except for that at the 9 position, which is cis. It is a 9-cis-epoxycarotenoid and a neoxanthin. Neoxanthin is a natural product found in Hibiscus syriacus, Cladonia rangiferina, and other organisms with data available. D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids

   

(all-E)-Antheraxanthin

(3S,5R,6S,3R)-5,6-Epoxy-5,6-dihydro-beta,beta-carotene-3,3-diol

C40H56O3 (584.4229)


An epoxycarotenol that is beta-carotene-3,3-diol in which one of the one of the endocyclic double bonds has been oxidised to the corresponding epoxide. It is a neutral yellow plant pigment found in Euglenophyta. D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids Window width for selecting the precursor ion was 3 Da.; This record was created by the financial support of MEXT/JSPS KAKENHI Grant Number 16HP2005 to the Mass Spectrometry Society of Japan.

   

Violaxanthin

(1S,4S,6R)-1-[(1E,3E,5E,7E,9E,11E,13E,15E,17E)-18-[(1S,4S,6R)-4-hydroxy-2,2,6-trimethyl-7-oxabicyclo[4.1.0]heptan-1-yl]-3,7,12,16-tetramethyl-octadeca-1,3,5,7,9,11,13,15,17-nonaenyl]-2,2,6-trimethyl-7-oxabicyclo[4.1.0]heptan-4-ol

C40H56O4 (600.4178)


D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids Cucurbitachrome 1 is a member of the class of compounds known as xanthophylls. Xanthophylls are carotenoids containing an oxygenated carotene backbone. Carotenes are characterized by the presence of two end-groups (mostly cyclohexene rings, but also cyclopentene rings or acyclic groups) linked by a long branched alkyl chain. Carotenes belonging form a subgroup of the carotenoids family. Xanthophylls arise by oxygenation of the carotene backbone. Cucurbitachrome 1 is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Cucurbitachrome 1 can be found in a number of food items such as italian sweet red pepper, herbs and spices, fruits, and red bell pepper, which makes cucurbitachrome 1 a potential biomarker for the consumption of these food products. (all-e)-violaxanthin is a member of the class of compounds known as xanthophylls. Xanthophylls are carotenoids containing an oxygenated carotene backbone. Carotenes are characterized by the presence of two end-groups (mostly cyclohexene rings, but also cyclopentene rings or acyclic groups) linked by a long branched alkyl chain. Carotenes belonging form a subgroup of the carotenoids family. Xanthophylls arise by oxygenation of the carotene backbone (all-e)-violaxanthin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). (all-e)-violaxanthin can be found in a number of food items such as orange bell pepper, green bell pepper, passion fruit, and yellow bell pepper, which makes (all-e)-violaxanthin a potential biomarker for the consumption of these food products.

   

methyltestosterone

17-Methyltestosterone

C20H30O2 (302.2246)


G - Genito urinary system and sex hormones > G03 - Sex hormones and modulators of the genital system > G03E - Androgens and female sex hormones in combination > G03EK - Androgens and female sex hormones in combination with other drugs G - Genito urinary system and sex hormones > G03 - Sex hormones and modulators of the genital system > G03B - Androgens > G03BA - 3-oxoandrosten (4) derivatives D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D045930 - Anabolic Agents C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone D000970 - Antineoplastic Agents

   

FA 18:3

(-)-lamenallenic acid;(-)-octadeca-5,6-trans-16-trienoic acid

C18H30O2 (278.2246)


CONFIDENCE standard compound; INTERNAL_ID 143 COVID info from WikiPathways D - Dermatologicals Same as: D07213 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Gamma-linolenic acid (γ-Linolenic acid) is an omega-6 (n-6), 18 carbon (18C-) polyunsaturated fatty acid (PUFA) extracted from Perilla frutescens. Gamma-linolenic acid supplements could restore needed PUFAs and mitigate the disease[1]. Gamma-linolenic acid (γ-Linolenic acid) is an omega-6 (n-6), 18 carbon (18C-) polyunsaturated fatty acid (PUFA) extracted from Perilla frutescens. Gamma-linolenic acid supplements could restore needed PUFAs and mitigate the disease[1]. α-Linolenic acid, isolated from Perilla frutescens, is an essential fatty acid that cannot be synthesized by humans. α-Linolenic acid can affect the process of thrombotic through the modulation of PI3K/Akt signaling. α-Linolenic acid possess the anti-arrhythmic properties and is related to cardiovascular disease and cancer[1]. α-Linolenic acid, isolated from Perilla frutescens, is an essential fatty acid that cannot be synthesized by humans. α-Linolenic acid can affect the process of thrombotic through the modulation of PI3K/Akt signaling. α-Linolenic acid possess the anti-arrhythmic properties and is related to cardiovascular disease and cancer[1]. α-Linolenic acid, isolated from Perilla frutescens, is an essential fatty acid that cannot be synthesized by humans. α-Linolenic acid can affect the process of thrombotic through the modulation of PI3K/Akt signaling. α-Linolenic acid possess the anti-arrhythmic properties and is related to cardiovascular disease and cancer[1].

   

15-keto-Prostaglandin E2

9,15-dioxo-11-hydroxy-prosta-5Z,13E-dien-1-oic acid

C20H30O5 (350.2093)


   

FA 20:5;O

(5Z,8Z,11Z,14Z)-(17R,18S)-17,18-Epoxyicosa-5,8,11,14-tetraenoic acid

C20H30O3 (318.2195)


A 17(18)-EpETE in which the epoxy group has (17R,18S)-configuration. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

FA 20:5;O2

4-((1R,5S)-5-((R,1E,5Z)-3-hydroxyundeca-1,5-dien-1-yl)-4-oxocyclopent-2-en-1-yl)butanoic acid

C20H30O4 (334.2144)


An oxylipin that is the (5S,6S)-epoxy-(15S)-hydroxy derivative of 7E,9E,11Z,13E-icosa-7,9,11,13-tetraenoic acid. D000890 - Anti-Infective Agents > D000998 - Antiviral Agents D000970 - Antineoplastic Agents

   

FA 20:4;O4

4-(3-{[(1S,2S,3S)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]methyl}oxiran-2-yl)butanoic acid

C20H32O6 (368.2199)


D009676 - Noxae > D016877 - Oxidants > D010545 - Peroxides

   

FA 20:5;O3

(5R,6E,8Z,10E,12E,14R,15R,17Z)-5,14,15-trihydroxyicosa-6,8,10,12,17-pentaenoic acid

C20H30O5 (350.2093)


   

CHLOROBENZENE

CHLOROBENZENE

C6H5Cl (112.008)


   

thiram

Tetramethylthioperoxydicarbonic diamide

C6H12N2S4 (239.9883)


P - Antiparasitic products, insecticides and repellents > P03 - Ectoparasiticides, incl. scabicides, insecticides and repellents > P03A - Ectoparasiticides, incl. scabicides > P03AA - Sulfur containing products D009676 - Noxae > D009153 - Mutagens D016573 - Agrochemicals D010575 - Pesticides Same as: D06114

   

Estan

(8R,9S,10R,13S,14S,17S)-17-hydroxy-10,13,17-trimethyl-2,6,7,8,9,11,12,14,15,16-decahydro-1H-cyclopenta[a]phenanthren-3-one

C20H30O2 (302.2246)


G - Genito urinary system and sex hormones > G03 - Sex hormones and modulators of the genital system > G03E - Androgens and female sex hormones in combination > G03EK - Androgens and female sex hormones in combination with other drugs G - Genito urinary system and sex hormones > G03 - Sex hormones and modulators of the genital system > G03B - Androgens > G03BA - 3-oxoandrosten (4) derivatives D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D045930 - Anabolic Agents C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone D000970 - Antineoplastic Agents

   

11-Dehydro-thromboxane B2

(E)-7-[4-Hydroxy-2-[(E)-3-hydroxyoct-1-enyl]-6-oxooxan-3-yl]hept-5-enoic acid

C20H32O6 (368.2199)


A thromboxane obtained by formal oxidation of the hemiacetal hydroxy function of thromboxane B2.

   

15-Oxoprostaglandin e1

15-dehydro-prostaglandin E1

C20H32O5 (352.225)


   

15-Oxo-ETE

15-Oxo-ETE

C20H30O3 (318.2195)


An oxoicosatetraenoic acid having (5Z,8Z,11Z,13E) double bond stereochemistry, and an oxo group in position 15.

   

12S-HHTrE

12-Hydroxyheptadecatrienoic acid

C17H28O3 (280.2038)


A trienoic fatty acid that consists of (5Z,8E,10E)-heptadeca-5,8,10-trienoic acid bearing an additional 12S-hydroxy substituent.

   

12-Oxo-ltb4

12-Oxo-ltb4

C20H30O4 (334.2144)


   

alpha-Eleostearic acid

alpha-Eleostearic acid

C18H30O2 (278.2246)


   

all-trans-neoxanthin

all-trans-neoxanthin

C40H56O4 (600.4178)


A neoxanthin in which all of the double bonds have trans geometry. D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids